1
|
Biran A, Dingjan T, Futerman AH. How has the evolution of our understanding of the compartmentalization of sphingolipid biosynthesis over the past 30 years altered our view of the evolution of the pathway? CURRENT TOPICS IN MEMBRANES 2024:S1063-5823(24)00009-7. [PMID: 39078394 DOI: 10.1016/bs.ctm.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Sphingolipids are unique among cellular lipids inasmuch as their biosynthesis is compartmentalized between the endoplasmic reticulum (ER) and the Golgi apparatus. This compartmentalization was first recognized about thirty years ago, and the current review not only updates studies on the compartmentalization of sphingolipid biosynthesis, but also discusses the ramifications of this feature for our understanding of how the pathway could have evolved. Thus, we augment some of our recent studies by inclusion of two further molecular pathways that need to be considered when analyzing the evolutionary requirements for generation of sphingolipids, namely contact sites between the ER and the Golgi apparatus, and the mechanism(s) of vesicular transport between these two organelles. Along with evolution of the individual enzymes of the pathway, their subcellular localization, and the supply of essential metabolites via the anteome, it becomes apparent that current models to describe evolution of the sphingolipid biosynthetic pathway may need substantial refinement.
Collapse
Affiliation(s)
- Assaf Biran
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Golgi Dysfunctions in Ciliopathies. Cells 2022; 11:cells11182773. [PMID: 36139347 PMCID: PMC9496873 DOI: 10.3390/cells11182773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The Golgi apparatus (GA) is essential for intracellular sorting, trafficking and the targeting of proteins to specific cellular compartments. Anatomically, the GA spreads all over the cell but is also particularly enriched close to the base of the primary cilium. This peculiar organelle protrudes at the surface of almost all cells and fulfills many cellular functions, in particular during development, when a dysfunction of the primary cilium can lead to disorders called ciliopathies. While ciliopathies caused by loss of ciliated proteins have been extensively documented, several studies suggest that alterations of GA and GA-associated proteins can also affect ciliogenesis. Here, we aim to discuss how the loss-of-function of genes coding these proteins induces ciliary defects and results in ciliopathies.
Collapse
|
3
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
4
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
5
|
The PKD-Dependent Biogenesis of TGN-to-Plasma Membrane Transport Carriers. Cells 2021; 10:cells10071618. [PMID: 34203456 PMCID: PMC8303525 DOI: 10.3390/cells10071618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 01/30/2023] Open
Abstract
Membrane trafficking is essential for processing and transport of proteins and lipids and to establish cell compartmentation and tissue organization. Cells respond to their needs and control the quantity and quality of protein secretion accordingly. In this review, we focus on a particular membrane trafficking route from the trans-Golgi network (TGN) to the cell surface: protein kinase D (PKD)-dependent pathway for constitutive secretion mediated by carriers of the TGN to the cell surface (CARTS). Recent findings highlight the importance of lipid signaling by organelle membrane contact sites (MCSs) in this pathway. Finally, we discuss our current understanding of multiple signaling pathways for membrane trafficking regulation mediated by PKD, G protein-coupled receptors (GPCRs), growth factors, metabolites, and mechanosensors.
Collapse
|
6
|
Tang BL. Defects in early secretory pathway transport machinery components and neurodevelopmental disorders. Rev Neurosci 2021; 32:851-869. [PMID: 33781010 DOI: 10.1515/revneuro-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The early secretory pathway, provisionally comprising of vesicular traffic between the endoplasmic reticulum (ER) and the Golgi apparatus, occurs constitutively in mammalian cells. Critical for a constant supply of secretory and plasma membrane (PM) materials, the pathway is presumably essential for general cellular function and survival. Neurons exhibit a high intensity in membrane dynamics and protein/lipid trafficking, with differential and polarized trafficking towards the somatodendritic and axonal PM domains. Mutations in genes encoding early secretory pathway membrane trafficking machinery components are known to result in neurodevelopmental or neurological disorders with disease manifestation in early life. Here, such rare disorders associated with autosomal recessive mutations in coat proteins, membrane tethering complexes and membrane fusion machineries responsible for trafficking in the early secretory pathway are summarily discussed. These mutations affected genes encoding subunits of coat protein complex I and II, subunits of transport protein particle (TRAPP) complexes, members of the YIP1 domain family (YIPF) and a SNAP receptor (SNARE) family member. Why the ubiquitously present and constitutively acting early secretory pathway machinery components could specifically affect neurodevelopment is addressed, with the plausible underlying disease etiologies and neuropathological mechanisms resulting from these mutations explored.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore117597, Singapore
| |
Collapse
|
7
|
Sec17 (α-SNAP) and Sec18 (NSF) restrict membrane fusion to R-SNAREs, Q-SNAREs, and SM proteins from identical compartments. Proc Natl Acad Sci U S A 2019; 116:23573-23581. [PMID: 31685636 DOI: 10.1073/pnas.1913985116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Membrane fusion at each organelle requires conserved proteins: Rab-GTPases, effector tethering complexes, Sec1/Munc18 (SM)-family SNARE chaperones, SNAREs of the R, Qa, Qb, and Qc families, and the Sec17/α-SNAP and ATP-dependent Sec18/NSF SNARE chaperone system. The basis of organelle-specific fusion, which is essential for accurate protein compartmentation, has been elusive. Rab family GTPases, SM proteins, and R- and Q-SNAREs may contribute to this specificity. We now report that the fusion supported by SNAREs alone is both inefficient and promiscuous with respect to organelle identity and to stimulation by SM family proteins or complexes. SNARE-only fusion is abolished by the disassembly chaperones Sec17 and Sec18. Efficient fusion in the presence of Sec17 and Sec18 requires a tripartite match between the organellar identities of the R-SNARE, the Q-SNAREs, and the SM protein or complex. The functions of Sec17 and Sec18 are not simply negative regulation; they stimulate fusion with either vacuolar SNAREs and their SM protein complex HOPS or endoplasmic reticulum/cis-Golgi SNAREs and their SM protein Sly1. The fusion complex of each organelle is assembled from its own functionally matching pieces to engage Sec17/Sec18 for fusion stimulation rather than inhibition.
Collapse
|
8
|
Bassaganyas L, Popa SJ, Horlbeck M, Puri C, Stewart SE, Campelo F, Ashok A, Butnaru CM, Brouwers N, Heydari K, Ripoche J, Weissman J, Rubinsztein DC, Schekman R, Malhotra V, Moreau K, Villeneuve J. New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells. J Cell Biol 2019; 218:3861-3879. [PMID: 31488582 PMCID: PMC6829651 DOI: 10.1083/jcb.201902028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/16/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood. Here, we present a powerful strategy based on a pooled genome-wide CRISPRi screen that allowed the identification of new factors involved in protein transport. Two newly identified factors, TTC17 and CCDC157, localized along the secretory pathway and were found to interact with resident proteins of ER-Golgi membranes. In addition, we uncovered that upon TTC17 knockdown, the polarized organization of Golgi cisternae was altered, creating glycosylation defects, and that CCDC157 is an important factor for the fusion of transport carriers to Golgi membranes. In conclusion, our work identified and characterized new actors in the mechanisms of protein transport and secretion and opens stimulating perspectives for the use of our platform in physiological and pathological contexts.
Collapse
Affiliation(s)
- Laia Bassaganyas
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, and Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Stephanie J Popa
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Max Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sarah E Stewart
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Felix Campelo
- Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Anupama Ashok
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristian M Butnaru
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Photonic Investigations, Center of Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania
| | - Nathalie Brouwers
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jean Ripoche
- Institut National de la Sante et de la Recherche Medicale U1026, Université de Bordeaux, Bordeaux, France
| | - Jonathan Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Cambridge, UK
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA
| | - Vivek Malhotra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Kevin Moreau
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Julien Villeneuve
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Behrendt L, Kurth I, Kaether C. A disease causing ATLASTIN 3 mutation affects multiple endoplasmic reticulum-related pathways. Cell Mol Life Sci 2019; 76:1433-1445. [PMID: 30666337 PMCID: PMC6420906 DOI: 10.1007/s00018-019-03010-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
Atlastins (ATLs) are membrane-bound GTPases involved in shaping of the endoplasmic reticulum (ER). Mutations in ATL1 and ATL3 cause spastic paraplegia and hereditary sensory neuropathy. We here show that the sensory neuropathy causing ATL3 Y192C mutation reduces the complexity of the tubular ER-network. ATL3 Y192C delays ER-export by reducing the number of ER exit sites, reduces autophagy, fragments the Golgi and causes malformation of the nucleus. In cultured primary neurons, ATL3 Y192C does not localize to the growing axon, resulting in axon growth deficits. Patient-derived fibroblasts possess a tubular ER with reduced complexity and have a reduced number of autophagosomes. The data suggest that the disease-causing ATL3 Y192C mutation affects multiple ER-related pathways, possibly as a consequence of the distorted ER morphology.
Collapse
Affiliation(s)
- Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
10
|
Jo S, Fonseca TL, Bocco BMLC, Fernandes GW, McAninch EA, Bolin AP, Da Conceição RR, Werneck-de-Castro JP, Ignacio DL, Egri P, Németh D, Fekete C, Bernardi MM, Leitch VD, Mannan NS, Curry KF, Butterfield NC, Bassett JD, Williams GR, Gereben B, Ribeiro MO, Bianco AC. Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain. J Clin Invest 2019; 129:230-245. [PMID: 30352046 PMCID: PMC6307951 DOI: 10.1172/jci123176] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022] Open
Abstract
Levothyroxine (LT4) is a form of thyroid hormone used to treat hypothyroidism. In the brain, T4 is converted to the active form T3 by type 2 deiodinase (D2). Thus, it is intriguing that carriers of the Thr92Ala polymorphism in the D2 gene (DIO2) exhibit clinical improvement when liothyronine (LT3) is added to LT4 therapy. Here, we report that D2 is a cargo protein in ER Golgi intermediary compartment (ERGIC) vesicles, recycling between ER and Golgi. The Thr92-to-Ala substitution (Ala92-D2) caused ER stress and activated the unfolded protein response (UPR). Ala92-D2 accumulated in the trans-Golgi and generated less T3, which was restored by eliminating ER stress with the chemical chaperone 4-phenyl butyric acid (4-PBA). An Ala92-Dio2 polymorphism-carrying mouse exhibited UPR and hypothyroidism in distinct brain areas. The mouse refrained from physical activity, slept more, and required additional time to memorize objects. Enhancing T3 signaling in the brain with LT3 improved cognition, whereas restoring proteostasis with 4-PBA eliminated the Ala92-Dio2 phenotype. In contrast, primary hypothyroidism intensified the Ala92-Dio2 phenotype, with only partial response to LT4 therapy. Disruption of cellular proteostasis and reduced Ala92-D2 activity may explain the failure of LT4 therapy in carriers of Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Sungro Jo
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Tatiana L. Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Barbara M. L. C. Bocco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Gustavo W. Fernandes
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Elizabeth A. McAninch
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Anaysa P. Bolin
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pharmacology, Biomedical Science Institute, University of São Paulo, and
| | - Rodrigo R. Da Conceição
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | - Daniele L. Ignacio
- Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, Illinois, USA
| | - Péter Egri
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dorottya Németh
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Maria Martha Bernardi
- Graduate Program of Environmental and Experimental Pathology, Graduate Program of Dentistry, Universidade Paulista, São Paulo, SP, Brazil
| | - Victoria D. Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Naila S. Mannan
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Katharine F. Curry
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Natalie C. Butterfield
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - J.H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Balázs Gereben
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miriam O. Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, SP, Brazil
| | - Antonio C. Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
11
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
12
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
13
|
Hanna MG, Peotter JL, Frankel EB, Audhya A. Membrane Transport at an Organelle Interface in the Early Secretory Pathway: Take Your Coat Off and Stay a While: Evolution of the metazoan early secretory pathway. Bioessays 2018; 40:e1800004. [PMID: 29741780 PMCID: PMC6166410 DOI: 10.1002/bies.201800004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Indexed: 01/25/2023]
Abstract
Most metazoan organisms have evolved a mildly acidified and calcium diminished sorting hub in the early secretory pathway commonly referred to as the Endoplasmic Reticulum-Golgi intermediate compartment (ERGIC). These membranous vesicular-tubular clusters are found tightly juxtaposed to ER subdomains that are competent for the production of COPII-coated transport carriers. In contrast to many unicellular systems, metazoan COPII carriers largely transit just a few hundred nanometers to the ERGIC, prior to COPI-dependent transport on to the cis-Golgi. The mechanisms underlying formation and maintenance of ERGIC membranes are poorly defined. However, recent evidence suggests an important role for Trk-fused gene (TFG) in regulating the integrity of the ER/ERGIC interface. Moreover, in the absence of cytoskeletal elements to scaffold tracks on which COPII carriers might move, TFG appears to promote anterograde cargo transport by locally tethering COPII carriers adjacent to ERGIC membranes. This action, regulated in part by the intrinsically disordered domain of TFG, provides sufficient time for COPII coat disassembly prior to heterotypic membrane fusion and cargo delivery to the ERGIC.
Collapse
Affiliation(s)
- Michael G. Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - Jennifer L. Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - E. B. Frankel
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health 440 Henry Mall, Madison, WI 53706, USA,
| |
Collapse
|
14
|
Davis S, Wang J, Ferro-Novick S. Crosstalk between the Secretory and Autophagy Pathways Regulates Autophagosome Formation. Dev Cell 2017; 41:23-32. [PMID: 28399396 DOI: 10.1016/j.devcel.2017.03.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/26/2017] [Accepted: 03/16/2017] [Indexed: 12/26/2022]
Abstract
The induction of autophagy by nutrient deprivation leads to a rapid increase in the formation of autophagosomes, unique organelles that replenish the cellular pool of nutrients by sequestering cytoplasmic material for degradation. The urgent need for membranes to form autophagosomes during starvation to maintain homeostasis leads to a dramatic rearrangement of intracellular membranes. Here we discuss recent findings that have begun to uncover how different parts of the secretory pathway directly and indirectly contribute to autophagosome formation during starvation.
Collapse
Affiliation(s)
- Saralin Davis
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0668, USA
| | - Juan Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0668, USA
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0668, USA.
| |
Collapse
|
15
|
Osterrieder A, Sparkes IA, Botchway SW, Ward A, Ketelaar T, de Ruijter N, Hawes C. Stacks off tracks: a role for the golgin AtCASP in plant endoplasmic reticulum-Golgi apparatus tethering. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3339-3350. [PMID: 28605454 PMCID: PMC5853478 DOI: 10.1093/jxb/erx167] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/25/2017] [Indexed: 05/18/2023]
Abstract
The plant Golgi apparatus modifies and sorts incoming proteins from the endoplasmic reticulum (ER) and synthesizes cell wall matrix material. Plant cells possess numerous motile Golgi bodies, which are connected to the ER by yet to be identified tethering factors. Previous studies indicated a role for cis-Golgi plant golgins, which are long coiled-coil domain proteins anchored to Golgi membranes, in Golgi biogenesis. Here we show a tethering role for the golgin AtCASP at the ER-Golgi interface. Using live-cell imaging, Golgi body dynamics were compared in Arabidopsis thaliana leaf epidermal cells expressing fluorescently tagged AtCASP, a truncated AtCASP-ΔCC lacking the coiled-coil domains, and the Golgi marker STtmd. Golgi body speed and displacement were significantly reduced in AtCASP-ΔCC lines. Using a dual-colour optical trapping system and a TIRF-tweezer system, individual Golgi bodies were captured in planta. Golgi bodies in AtCASP-ΔCC lines were easier to trap and the ER-Golgi connection was more easily disrupted. Occasionally, the ER tubule followed a trapped Golgi body with a gap, indicating the presence of other tethering factors. Our work confirms that the intimate ER-Golgi association can be disrupted or weakened by expression of truncated AtCASP-ΔCC and suggests that this connection is most likely maintained by a golgin-mediated tethering complex.
Collapse
Affiliation(s)
- Anne Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Imogen A Sparkes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| | - Stan W Botchway
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Andy Ward
- Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Didcot, Oxon, UK
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Norbert de Ruijter
- Laboratory of Cell Biology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, UK
| |
Collapse
|
16
|
Beyer AR, Rodino KG, VieBrock L, Green RS, Tegels BK, Oliver LD, Marconi RT, Carlyon JA. Orientia tsutsugamushi Ank9 is a multifunctional effector that utilizes a novel GRIP-like Golgi localization domain for Golgi-to-endoplasmic reticulum trafficking and interacts with host COPB2. Cell Microbiol 2017; 19. [PMID: 28103630 DOI: 10.1111/cmi.12727] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 01/11/2023]
Abstract
Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that afflicts 1 million people annually. This obligate intracellular bacterium boasts one of the largest microbial arsenals of ankyrin repeat-containing protein (Ank) effectors, most of which target the endoplasmic reticulum (ER) by undefined mechanisms. Ank9 is the only one proven to function during infection. Here, we demonstrate that Ank9 bears a motif that mimics the GRIP domain of eukaryotic golgins and is necessary and sufficient for its Golgi localization. Ank9 reaches the ER exclusively by retrograde trafficking from the Golgi. Consistent with this observation, it binds COPB2, a host protein that mediates Golgi-to-ER transport. Ank9 destabilizes the Golgi and ER in a Golgi localization domain-dependent manner and induces the activating transcription factor 4-dependent unfolded protein response. The Golgi is also destabilized in cells infected with O. tsutsugamushi or treated with COPB2 small interfering RNA. COPB2 reduction and/or the cellular events that it invokes, such as Golgi destabilization, benefit Orientia replication. Thus, Ank9 or bacterial negative modulation of COPB2 might contribute to the bacterium's intracellular replication. This report identifies a novel microbial Golgi localization domain, links Ank9 to the ability of O. tsutsugamushi to perturb Golgi structure, and describes the first mechanism by which any Orientia effector targets the secretory pathway.
Collapse
Affiliation(s)
- Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Department of Biology, Virginia State University, Petersburg, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Brittney K Tegels
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.,Kaztronix, McLean, VA, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
17
|
Klink VP, Sharma K, Pant SR, McNeece B, Niraula P, Lawrence GW. Components of the SNARE-containing regulon are co-regulated in root cells undergoing defense. PLANT SIGNALING & BEHAVIOR 2017; 12:e1274481. [PMID: 28010187 PMCID: PMC5351740 DOI: 10.1080/15592324.2016.1274481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 05/23/2023]
Abstract
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3). While important in inhibiting pathogen infection, limited observations have been made regarding the transcriptional regulation of regulon genes until now. Experiments made using the model agricultural Glycine max (soybean) have identified co-regulated gene expression of regulon components. The results explain the observation of hundreds of genes expressed specifically in the root cells undergoing the natural process of defense. Data regarding additional G. max genes functioning within the context of the regulon are presented here, including Sec 14, Sec 4 and Sec 23. Other examined G. max homologs of membrane fusion genes include an endosomal bromo domain-containing protein1 (Bro1), syntaxin6 (SYP6), SYP131, SYP71, SYP8, Bet1, coatomer epsilon (ϵ-COP), a coatomer zeta (ζ-COP) paralog and an ER to Golgi component (ERGIC) protein. Furthermore, the effectiveness of biochemical pathways that would function within the context of the regulon ave been examined, including xyloglucan xylosyltransferase (XXT), reticuline oxidase (RO) and galactinol synthase (GS). The experiments have unveiled the importance of the regulon during defense in the root and show how the deposition of callose relates to the process.
Collapse
Affiliation(s)
- Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Keshav Sharma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Shankar R. Pant
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brant McNeece
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
18
|
Davis S, Wang J, Zhu M, Stahmer K, Lakshminarayan R, Ghassemian M, Jiang Y, Miller EA, Ferro-Novick S. Sec24 phosphorylation regulates autophagosome abundance during nutrient deprivation. eLife 2016; 5. [PMID: 27855785 PMCID: PMC5148606 DOI: 10.7554/elife.21167] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022] Open
Abstract
Endoplasmic Reticulum (ER)-derived COPII coated vesicles constitutively transport secretory cargo to the Golgi. However, during starvation-induced stress, COPII vesicles have been implicated as a membrane source for autophagosomes, distinct organelles that engulf cellular components for degradation by macroautophagy (hereafter called autophagy). How cells regulate core trafficking machinery to fulfill dramatically different cellular roles in response to environmental cues is unknown. Here we show that phosphorylation of conserved amino acids on the membrane-distal surface of the Saccharomyces cerevisiae COPII cargo adaptor, Sec24, reprograms COPII vesicles for autophagy. We also show casein kinase 1 (Hrr25) is a key kinase that phosphorylates this regulatory surface. During autophagy, Sec24 phosphorylation regulates autophagosome number and its interaction with the C-terminus of Atg9, a component of the autophagy machinery required for autophagosome initiation. We propose that the acute need to produce autophagosomes during starvation drives the interaction of Sec24 with Atg9 to increase autophagosome abundance. DOI:http://dx.doi.org/10.7554/eLife.21167.001 When cells experience stressful conditions, such as a shortage of nutrients, they can digest their own material via a ‘self-eating’ process called autophagy and then recycle the products for further use. When autophagy is triggered, a new membrane structure called the autophagosome forms within the cell as it engulfs the material that is to be digested. The autophagosome delivers these materials to a compartment where they are broken down into smaller parts and the resulting raw materials are reused as needed. The membranes that make up the autophagosome are derived from other membranes within the cell. These include small membrane-bound compartments called vesicles, which carry proteins from one part of the cell to another, or to the outside of the cell. COPII vesicles, for example, carry out the first transport step in the pathway that leads out of the cell – the so-called secretory pathway. Recently it was found that, when cells are starving, COPII vesicles can be diverted to the autophagy pathway and provide a source of membrane to build the autophagosome. However, it was not understood how the membrane of a COPII vesicle is reprogrammed so that it can interact with the cellular machinery that builds autophagosomes. Using genetic and biochemical methods, Davis et al. have now teased apart the distinct roles of COPII vesicles in autophagy and the secretory pathway in budding yeast. The results show that a protein called Sec24, a component of the coat on the vesicles, interacts with another protein called Atg9, which is needed for the first steps of autophagosome formation. Davis et al. observed that Sec24 could be modified by the attachment of phosphate groups at a distinct site on the surface of Sec24. This modification promotes Sec24 to interact with Atg9 and increases the number of autophagosomes that form when cells are starving. Davis et al. also found that the enzyme casein kinase 1 is one of the enzymes responsible for attaching phosphate groups to Sec24. Following on from this work, it will be important to test whether modification of vesicle coat proteins is a widespread mechanism for reprogramming membranes for different uses in other situations as well. DOI:http://dx.doi.org/10.7554/eLife.21167.002
Collapse
Affiliation(s)
- Saralin Davis
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Juan Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Ming Zhu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Kyle Stahmer
- Department of Biological Sciences, Columbia University, New York, United States
| | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, United States.,Biomolecular and Proteomics Mass Spectrometry Facility, University of California, San Diego, San Diego, United States
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Elizabeth A Miller
- Department of Biological Sciences, Columbia University, New York, United States.,MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
19
|
Rodrigues FF, Shao W, Harris TJC. The Arf GAP Asap promotes Arf1 function at the Golgi for cleavage furrow biosynthesis in Drosophila. Mol Biol Cell 2016; 27:3143-3155. [PMID: 27535433 PMCID: PMC5063621 DOI: 10.1091/mbc.e16-05-0272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 11/11/2022] Open
Abstract
Drosophila embryo cleavage requires the conserved Arf GAP Asap. Asap seems to recycle Arf1 to the Golgi from post-Golgi membranes for optimal Golgi output and cleavage furrow biosynthesis. Biosynthetic traffic from the Golgi drives plasma membrane growth. For Drosophila embryo cleavage, this growth is rapid but regulated for cycles of furrow ingression and regression. The highly conserved small G protein Arf1 organizes Golgi trafficking. Arf1 is activated by guanine nucleotide exchange factors, but essential roles for Arf1 GTPase-activating proteins (GAPs) are less clear. We report that the conserved Arf GAP Asap is required for cleavage furrow ingression in the early embryo. Because Asap can affect multiple subcellular processes, we used genetic approaches to dissect its primary effect. Our data argue against cytoskeletal or endocytic involvement and reveal a common role for Asap and Arf1 in Golgi organization. Although Asap lacked Golgi enrichment, it was necessary and sufficient for Arf1 accumulation at the Golgi, and a conserved Arf1-Asap binding site was required for Golgi organization and output. Of note, Asap relocalized to the nuclear region at metaphase, a shift that coincided with subtle Golgi reorganization preceding cleavage furrow regression. We conclude that Asap is essential for Arf1 to function at the Golgi for cleavage furrow biosynthesis. Asap may recycle Arf1 to the Golgi from post-Golgi membranes, providing optimal Golgi output for specific stages of the cell cycle.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Wei Shao
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
20
|
Galea G, Bexiga MG, Panarella A, O'Neill ED, Simpson JC. A high-content screening microscopy approach to dissect the role of Rab proteins in Golgi-to-ER retrograde trafficking. J Cell Sci 2015; 128:2339-49. [PMID: 25999475 DOI: 10.1242/jcs.167973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Here, we describe a high-content microscopy-based screen that allowed us to systematically assess and rank proteins involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport in mammalian cells. Using a cell line stably expressing a GFP-tagged Golgi enzyme, we used brefeldin A treatment to stimulate the production of Golgi-to-ER carriers and then quantitatively analysed populations of cells for changes in this trafficking event. Systematic RNA interference (RNAi)-based depletion of 58 Rab GTPase proteins and 12 Rab accessory proteins of the PRAF, YIPF and YIF protein families revealed that nine of these were strong regulators. In addition to demonstrating roles for Rab1a, Rab1b, Rab2a, and Rab6a or Rab6a' in this transport step, we also identified Rab10 and Rab11a as playing a role and being physically present on a proportion of the Golgi-to-ER tubular intermediates. Combinatorial depletions of Rab proteins also revealed previously undescribed functional co-operation and physical co-occurrence between several Rab proteins. Our approach therefore provides a novel and robust strategy for a more complete investigation of the molecular components required to regulate Golgi-to-ER transport in mammalian cells.
Collapse
Affiliation(s)
- George Galea
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mariana G Bexiga
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Angela Panarella
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Elaine D O'Neill
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
21
|
Yu J, Chia J, Canning C, Jones C, Bard F, Virshup D. WLS Retrograde Transport to the Endoplasmic Reticulum during Wnt Secretion. Dev Cell 2014; 29:277-91. [DOI: 10.1016/j.devcel.2014.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/05/2014] [Accepted: 03/21/2014] [Indexed: 01/01/2023]
|
22
|
Faso C, Bischof S, Hehl AB. The proteome landscape of Giardia lamblia encystation. PLoS One 2013; 8:e83207. [PMID: 24391747 PMCID: PMC3877021 DOI: 10.1371/journal.pone.0083207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/09/2013] [Indexed: 11/18/2022] Open
Abstract
Giardia lamblia is an intestinal protozoan parasite required to survive in the environment in order to be transmitted to a new host. To ensure parasite survival, flagellated trophozoites colonizing the small intestine differentiate into non-motile environmentally-resistant cysts which are then shed in the environment. This cell differentiation process called encystation is characterized by significant morphological remodeling which includes secretion of large amounts of cyst wall material. Although much is known about the transcriptional regulation of encystation and the synthesis and trafficking of cyst wall material, the investigation of global changes in protein content and abundance during G. lamblia encystation is still unaddressed. In this study, we report on the quantitative analysis of the G. lamblia proteome during encystation using tandem mass spectrometry. Quantification of more than 1000 proteins revealed major changes in protein abundance in early, mid and late encystation, notably in constitutive secretory protein trafficking. Early stages of encystation were marked by a striking decrease of endoplasmic reticulum-targeted variant-specific surface proteins and significant increases in cytoskeleton regulatory components, NEK protein kinases and proteins involved in protein folding and glycolysis. This was in stark contrast to cells in the later stages of encystation which presented a surprisingly similar proteome composition to non-encysting trophozoites. Altogether these data constitute the first quantitative atlas of the Giardia proteome covering the whole process of encystation and point towards an important role for post-transcriptional control of gene expression in Giardia differentiation. Furthermore, our data provide a valuable resource for the community-based annotation effort of the G. lamblia genome, where almost 70% of all predicted gene models remains “hypothetical”.
Collapse
Affiliation(s)
- Carmen Faso
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CF)
| | | | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
- * E-mail: (ABH); (CF)
| |
Collapse
|
23
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
24
|
Kuijpers M, Yu KL, Teuling E, Akhmanova A, Jaarsma D, Hoogenraad CC. The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO J 2013; 32:2056-72. [PMID: 23736259 DOI: 10.1038/emboj.2013.131] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/07/2013] [Indexed: 02/06/2023] Open
Abstract
The vesicle-associated membrane protein (VAMP) associated protein B (VAPB) is an integral membrane protein localized to the endoplasmic reticulum (ER). The P56S mutation in VAPB has been linked to motor neuron degeneration in amyotrophic lateral sclerosis type 8 (ALS8) and forms ER-like inclusions in various model systems. However, the role of wild-type and mutant VAPB in neurons is poorly understood. Here, we identified Yip1-interacting factor homologue A (YIF1A) as a new VAPB binding partner and important component in the early secretory pathway. YIF1A interacts with VAPB via its transmembrane regions, recycles between the ER and Golgi and is mainly localized to the ER-Golgi intermediate compartments (ERGICs) in rat hippocampal neurons. VAPB strongly affects the distribution of YIF1A and is required for intracellular membrane trafficking into dendrites and normal dendritic morphology. When VAPB-P56S is present, YIF1A is recruited to the VAPB-P56S clusters and loses its ERGIC localization. These data suggest that both VAPB and YIF1A are important for ER-to-Golgi transport and that missorting of YIF1A may contribute to VAPB-associated motor neuron disease.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Division of Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Yeong FM. Multi-step down-regulation of the secretory pathway in mitosis: a fresh perspective on protein trafficking. Bioessays 2013; 35:462-71. [PMID: 23494566 PMCID: PMC3654163 DOI: 10.1002/bies.201200144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The secretory pathway delivers proteins synthesized at the rough endoplasmic reticulum (RER) to various subcellular locations via the Golgi apparatus. Currently, efforts are focused on understanding the molecular machineries driving individual processes at the RER and Golgi that package, modify and transport proteins. However, studies are routinely performed using non-dividing cells. This obscures the critical issue of how the secretory pathway is affected by cell division. Indeed, several studies have indicated that protein trafficking is down-regulated during mitosis. Moreover, the RER and Golgi apparatus exhibit gross reorganization in mitosis. Here I provide a relatively neglected perspective of how the mitotic cyclin-dependent kinase (CDK1) could regulate various stages of the secretory pathway. I highlight several aspects of the mitotic control of protein trafficking that remain unresolved and suggest that further studies on how the mitotic CDK1 influences the secretory pathway are necessary to obtain a deeper understanding of protein transport.
Collapse
Affiliation(s)
- Foong May Yeong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
26
|
Spooner E, McLaughlin BM, Lepow T, Durns TA, Randall J, Upchurch C, Miller K, Campbell EM, Fares H. Systematic screens for proteins that interact with the mucolipidosis type IV protein TRPML1. PLoS One 2013; 8:e56780. [PMID: 23418601 PMCID: PMC3572064 DOI: 10.1371/journal.pone.0056780] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/15/2013] [Indexed: 11/19/2022] Open
Abstract
Mucolipidosis type IV is a lysosomal storage disorder resulting from mutations in the MCOLN1 gene, which encodes the endosomal/lysosomal Transient Receptor Potential channel protein mucolipin-1/TRPML1. Cells isolated from Mucolipidosis type IV patients and grown in vitro and in in vivo models of this disease both show several lysosome-associated defects. However, it is still unclear how TRPML1 regulates the transport steps implicated by these defects. Identifying proteins that associate with TRPML1 will facilitate the elucidation of its cellular and biochemical functions. We report here two saturation screens for proteins that interact with TRPML1: one that is based on immunoprecipitation/mass spectrometry and the other using a genetic yeast two-hybrid approach. From these screens, we identified largely non-overlapping proteins, which represent potential TRPML1-interactors., Using additional interaction assays on some of the potential interactors from each screen, we validated some proteins as candidate TRPML1 interactors In addition, our analysis indicates that each of the two screens not only identified some false-positive interactors, as expected from any screen, but also failed to uncover potential TRPML1 interactors. Future studies on the true interactors, first identified in these screens, will help elucidate the structure and function of protein complexes containing TRPML1.
Collapse
Affiliation(s)
- Ellen Spooner
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Brooke M. McLaughlin
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Talya Lepow
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Tyler A. Durns
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Justin Randall
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Cameron Upchurch
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Katherine Miller
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Erin M. Campbell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Golgins are a family of long rod-like proteins characterized by the presence of central coiled-coil domains. Members of the golgin family have important roles in membrane trafficking, where they function as tethering factors that capture transport vesicles and facilitate membrane fusion. Golgin family members also have essential roles in maintaining the organization of the Golgi apparatus. Knockdown of individual golgins in cultured cells resulted in the disruption of the Golgi structure and the dispersal of Golgi marker proteins throughout the cytoplasm. However, these cellular phenotypes have not always been recapitulated in vivo. For example, embryonic development proceeds much further than expected and Golgi disruption was observed in only a subset of cell types in mice lacking the ubiquitously expressed golgin GMAP-210. Cell-type specific functional compensation among golgins may explain the absence of global cell lethality when a ubiquitously expressed golgin is missing. In this study we show that functional compensation does not occur for the golgin USO1. Mice lacking this ubiquitously expressed protein exhibit disruption of Golgi structure and early embryonic lethality, indicating that USO1 is indispensable for early embryonic development.
Collapse
Affiliation(s)
- Susie Kim
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Adele Hill
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Matthew L. Warman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Patrick Smits
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, Massachusetts, United States of America
- * E-mail: Patrick Smits
| |
Collapse
|
28
|
Abstract
Mutations in the LMNA gene are associated with a spectrum of human dystrophic diseases termed the "nuclear laminopathies." We recently found that the accumulation of the inner nuclear envelope proteins SUN1 is pathogenic in progeric and dystrophic laminopathies. This conclusion arose from the unexpected observation that the deletion of Sun1, instead of accelerating aging, actually ameliorated the progeric and dystrophic phenotypes in Lmna-deficient mice. In human cells, knocking down SUN1 corrected the nuclear aberrancies and the senescent tendencies of HGPS (Hutchinson-Gilford progeria syndrome) skin fibroblasts. Here we offer additional comments on the contributions of SUN1 and the process of normal protein turnover to cellular aging.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| | | | | |
Collapse
|
29
|
Abstract
As plant Golgi bodies move through the cell along the actin cytoskeleton, they face the need to maintain their polarized stack structure whilst receiving, processing and distributing protein cargo destined for secretion. Structural proteins, or Golgi matrix proteins, help to hold cisternae together and tethering factors direct cargo carriers to the correct target membranes. This review focuses on golgins, a protein family containing long coiled-coil regions, summarizes their known functions in animal cells and highlights recent findings about plant golgins and their putative roles in the plant secretory pathway.
Collapse
Affiliation(s)
- A Osterrieder
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
30
|
Abstract
The Golgi is an ancient and fundamental eukaryotic organelle. Evolutionary cell biological studies have begun establishing the repertoire, processes, and level of complexity of membrane-trafficking machinery present in early eukaryotic cells. This article serves as a review of the literature on the topic of Golgi evolution and diversity and reports a novel comparative genomic survey addressing Golgi machinery in the widest taxonomic diversity of eukaryotes sampled to date. Finally, the article is meant to serve as a primer on the rationale and design of evolutionary cell biological studies, hopefully encouraging readers to consider this approach as an addition to their cell biological toolbox. It is clear that the major machinery involved in vesicle trafficking to and from the Golgi was already in place by the time of the divergence of the major eukaryotic lineages, nearly 2 billion years ago. Much of this complexity was likely generated by an evolutionary process involving gene duplication and coevolution of specificity encoding membrane-trafficking proteins. There have also been clear cases of loss of Golgi machinery in some lineages as well as innovation of novel machinery. The Golgi is a wonderfully complex and diverse organelle and its continued exploration promises insight into the evolutionary history of the eukaryotic cell.
Collapse
Affiliation(s)
- Mary J Klute
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
31
|
Grieve AG, Rabouille C. Golgi bypass: skirting around the heart of classical secretion. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005298. [PMID: 21441587 DOI: 10.1101/cshperspect.a005298] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Classical secretion consists of the delivery of transmembrane and soluble proteins to the plasma membrane and the extracellular medium, respectively, and is mediated by the organelles of the secretory pathway, the Endoplasmic Reticulum (ER), the ER exit sites, and the Golgi, as described by the Nobel Prize winner George Palade (Palade 1975). At the center of this transport route, the Golgi stack has a major role in modifying, processing, sorting, and dispatching newly synthesized proteins to their final destinations. More recently, however, it has become clear that an increasing number of transmembrane proteins reach the plasma membrane unconventionally, either by exiting the ER in non-COPII vesicles or by bypassing the Golgi. Here, we discuss the evidence for Golgi bypass and the possible physiological benefits of it. Intriguingly, at least during Drosophila development, Golgi bypass seems to be mediated by a Golgi protein, dGRASP, which is found ectopically localized to the plasma membrane.
Collapse
Affiliation(s)
- Adam G Grieve
- Cell Microscopy Centre, Department of Cell Biology, University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|