1
|
Sun Q, Mu X, Gao Q, Wang J, Hu M, Liu H. Influences of physical stimulations on the migration and differentiation of Schwann cells involved in peripheral nerve repair. Cell Adh Migr 2025; 19:2450311. [PMID: 39817348 PMCID: PMC11740713 DOI: 10.1080/19336918.2025.2450311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Peripheral nerve injury repair has always been a research concern of scientists. At the tissue level, axonal regeneration has become a research spotlight in peripheral nerve repair. Through transplantation of autologous nerve grafts or other emerging biomaterials functional recovery after facial nerve injury is not ideal in clinical scenarios. Great strides have been made to improve facial nerve repair at the micro-cellular level. Physical stimulation techniques can trigger Schwann cells (SCs) to migrate and differentiate into cells required for peripheral nerve repair. Classified by the sources of physical stimulations, SCs repair peripheral nerves through galvanotaxis, magnetotaxis and durotaxis. This article summarized the activation, directional migration and differentiation of SCs induced by physical stimulations, thus providing new ideas for the research of peripheral nerve repair.
Collapse
Affiliation(s)
- Qingyan Sun
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Chinese People’s Liberation Army (PLA) Medical School, Beijing, China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Chinese People’s Liberation Army (PLA) Medical School, Beijing, China
- Department of Stomatology of Air Force Hospital in the Southern Theater, Guangzhou, Guangdong Province, China
| | - Qi Gao
- Department of Stomatology of Air Force Hospital in the Southern Theater, Guangzhou, Guangdong Province, China
| | - Juncheng Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Hu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Huawei Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Tisdale EJ, Artalejo CR. ERK activation by Rab2B in the early secretory pathway impacts the ERGIC-Golgi interface. Cell Signal 2025; 130:111710. [PMID: 40037424 DOI: 10.1016/j.cellsig.2025.111710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
The Golgi complex is a hub for several signal transduction networks that regulate Golgi morphology, membrane transport, and glycosylation. The Rab2 (A, B isoforms) protein participates in membrane trafficking to and from the Golgi and is also linked to signaling molecules. In that regard, Rab2A in breast cancer stem cells binds and blocks (p)ERK1/2 inactivation by MAP kinase phosphatase 3. However, the cellular role of Rab2B in ERK1/2 signaling activity at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC/IC) and cis Golgi where Rab2B immunolocalizes and functions is unknown. To address this question, normal rat kidney (NRK) cells were transfected with Rab2B cDNA to mimic Rab2 overexpression as found in cancer cells. Rab2B overexpressing NRK cells had a significant increase in steady state activated ERK. Studies were then performed to identify the Rab2-ERK1/2 substrate(s) that locate and function in the early secretory pathway. To that end, GRASP65 was identified as a target of ERK1/2 phosphorylation. In Rab2B overexpressing NRK cells, GRASP65 co-distributed with GM130 on membranes of the ERGIC/IC that increased in size and number with the concomitant appearance of unlinked cis Golgi elements. Additionally, we observed GRASP65 labeled ERGIC/IC membranes that accumulated at 15°C and remained prominent after temperature shift to 37 °C to promote transport. However, addition of a MEK inhibitor reversed the transport block indicating that ERK1/2 phosphorylation of GRASP65 effected ERGIC/IC redistribution to the cis Golgi. Since several glycosyltransferases cycle between the Golgi and ERGIC/IC, a potential consequence of Golgi structural changes is modification of protein glycosylation. Indeed, we found changes in total and cell surface O-glycosylation in Rab2B overexpressing cells. These results suggest that phosphoGRASP65 plays an important role in the protein sorting and recycling process from the ERGIC/IC to cis Golgi: Dysregulation results in cis Golgi discontinuities and aberrant glycosylated proteins that are potentially pro-oncogenic.
Collapse
Affiliation(s)
- Ellen J Tisdale
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48202, United States of America.
| | - Cristina R Artalejo
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48202, United States of America
| |
Collapse
|
3
|
Xu P, Zhang R, Zhou Z, Xu H, Li Y, Yang M, Lin R, Wang Y, Huang X, Xie Q, Meng W. MARK2 regulates Golgi apparatus reorientation by phosphorylation of CAMSAP2 in directional cell migratio. eLife 2025; 14:RP105977. [PMID: 40333320 PMCID: PMC12058119 DOI: 10.7554/elife.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.
Collapse
Affiliation(s)
- Peipei Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- Neuroscience Center, Department of Basic Medical Sciences, Shantou University Medical CollegeShantouChina
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengge Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruifan Lin
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Qi Xie
- Wangjing Hospital of China Academy of Chinese Medical SciencesBeijingChina
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Sherry J, Pawar KI, Dolat L, Smith E, Chang IC, Pha K, Kaake R, Swaney DL, Herrera C, McMahon E, Bastidas RJ, Johnson JR, Valdivia RH, Krogan NJ, Elwell CA, Verba K, Engel JN. The Chlamydia effector Dre1 binds dynactin to reposition host organelles during infection. Cell Rep 2025; 44:115509. [PMID: 40186871 DOI: 10.1016/j.celrep.2025.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis replicates in a specialized membrane-bound compartment where it repositions host organelles during infection to acquire nutrients and evade host surveillance. We describe a bacterial effector, Dre1, that binds specifically to dynactin associated with host microtubule organizing centers without globally impeding dynactin function. Dre1 is required to reposition the centrosome, mitotic spindle, Golgi apparatus, and primary cilia around the inclusion and contributes to pathogen fitness in cell-based and mouse models of infection. We utilized Dre1 to affinity purify the megadalton dynactin protein complex and determined the first cryoelectron microscopy (cryo-EM) structure of human dynactin. Our results suggest that Dre1 binds to the pointed end of dynactin and uncovers the first bacterial effector that modulates dynactin function. Our work highlights how a pathogen employs a single effector to evoke targeted, large-scale changes in host cell organization that facilitate pathogen growth without inhibiting host viability.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Komal Ishwar Pawar
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - I-Chang Chang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Khavong Pha
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clara Herrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleanor McMahon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kliment Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
5
|
Pariani AP, Huhn V, Maknis TR, Alonso V, Almada E, Vena R, Favre C, Goldenring JR, Kaverina I, Larocca MC. CLASP1/2 REGULATE IMMUNE SYNAPSE MATURATION IN NATURAL KILLER CELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633904. [PMID: 39896676 PMCID: PMC11785047 DOI: 10.1101/2025.01.20.633904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Natural killer (NK) cells are the first line of defense against viral infections and tumors. Their cytotoxic activity relies on the formation of an immune synapse (IS) with target cells. The lymphocyte function-associated antigen (LFA)-1 plays a central role in NK cell cytotoxicity by modulating NK-IS assembly and maturation. LFA-1 organization at the IS involves a Golgi-dependent mechanism, which has not been completely elucidated. CLIP-associating proteins (CLASP) 1/2 are microtubule plus-tip interacting proteins that control the dynamics of Golgi derived microtubules (GDMTs). In the present study, we found that CLASP1/2 depletion impaired LFA-1 organization at the IS and inhibited the polarization of the centrosome and the lytic granules towards the target cell. Our results also revealed the role of the Golgi apparatus as a microtubule organizing center (MTOC) in these cells. Furthermore, we found that, similarly to what was described in other cell types, NK cells require CLASP1/2 and AKAP350 for efficient nucleation of microtubules at the Golgi. Overall, this study uncovers the role of CLASP1/2 in the maturation of the lytic IS in NK cells, and presents evidence supporting the contribution of GDMTs in this process. Summary sentence The Golgi apparatus (GA) functions as a microtubule-organizing center (MTOC) in NK cells. During the recognition of tumoral cells by NK cells, CLASP1/2-mediated stabilization of GA-derived microtubules (GDMTs) facilitates vesicular LFA-1 (LFA-1 v ) trafficking toward the interaction surface, thereby promoting the immune synapse (IS) maturation.
Collapse
|
6
|
Jessop E, Young N, Garcia-Del-Valle B, Crusher JT, Obara B, Karakesisoglou I. SIRT2 Inhibition by AGK2 Promotes Perinuclear Cytoskeletal Organisation and Reduces Invasiveness of MDA-MB-231 Triple-Negative Breast Cancer Cells in Confined In Vitro Models. Cells 2024; 13:2023. [PMID: 39682770 PMCID: PMC11639776 DOI: 10.3390/cells13232023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterised by the absence of targetable hormone receptors and increased metastatic rates. As nuclear softening strongly contributes to TNBC's enhanced metastatic capacity, increasing the nuclear stiffness of TNBC cells may present a promising therapeutic avenue. Previous evidence has demonstrated the ability of Sirtuin 2 (SIRT2) inhibition to induce cytoskeletal reorganisation, a key factor in regulating nuclear mechanics. Thus, our study aimed to investigate the effect of SIRT2 inhibition on the nuclear mechanics and migratory behaviour of TNBC cells. To achieve this, SIRT2 was pharmacologically inhibited in MDA-MB-231 cells using AGK2, a SIRT2-specific inhibitor. Although SIRT2 inhibition had no effect on LINC complex composition, the AGK2-treated MDA-MB-231 cells displayed more prominent perinuclear organisations of acetylated α-tubulin, vimentin, and F-actin. Additionally, the nuclei of the AGK2-treated MDA-MB-231 cells exhibited greater resistance to collapse under osmotic shock. Scratch-wound assays also revealed that SIRT2 inhibition led to polarity defects in the MDA-MB-231 cells, while in vitro space-restrictive invasion assays highlighted their reduced migratory capacity upon AGK2 treatment. Taken together, our findings suggest that SIRT2 inhibition promotes a perinuclear cytoskeletal organisation in MDA-MB-231 cells, which enhances their nuclear rigidity and impedes their invasion through confined spaces in vitro.
Collapse
Affiliation(s)
- Emily Jessop
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Natalie Young
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Beatriz Garcia-Del-Valle
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Jack T. Crusher
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK;
| | - Iakowos Karakesisoglou
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (E.J.); (N.Y.); (B.G.-D.-V.); (J.T.C.)
| |
Collapse
|
7
|
Nakagawa N. The neuronal Golgi in neural circuit formation and reorganization. Front Neural Circuits 2024; 18:1504422. [PMID: 39703196 PMCID: PMC11655203 DOI: 10.3389/fncir.2024.1504422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration. Moreover, neuronal activity-dependent remodeling of the Golgi structure enables morphological changes in neurons, which provides the cellular basis of circuit reorganization during postnatal critical period. In this review, I summarize recent findings illustrating the unique Golgi positioning and its developmental dynamics in various types of neurons. I also discuss the upstream regulators for the Golgi positioning in neurons, and functional roles of the Golgi in neural circuit formation and reorganization. Elucidating how Golgi apparatus sculpts neuronal connectivity would deepen our understanding of the cellular/molecular basis of neural circuit development and plasticity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
8
|
Tago T, Fujii S, Sasaki S, Shirae-Kurabayashi M, Sakamoto N, Yamamoto T, Maeda M, Ueki T, Satoh T, Satoh AK. Cell-wide arrangement of Golgi/RE units depends on the microtubule organization. Cell Struct Funct 2024; 49:101-110. [PMID: 39358226 PMCID: PMC11930777 DOI: 10.1247/csf.24055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
We have previously shown that Golgi stacks and recycling endosomes (REs) exist as Golgi/RE units in sea urchin embryos. In this study, we showed that Golgi/RE units were scattered throughout the cytoplasm at early developmental stages but gathered to form a "Golgi ring" surrounding the centric REs at the blastula stage. This change in the cell-wide arrangement of Golgi/RE units coincided with a dramatic change in microtubule organization from a randomly oriented cortical pattern to radial arrays under the apical plasma membrane. A single gigantic Golgi apparatus surrounding centric RE is clearly associated with the center of the radial microtubule arrays. Furthermore, we found that in some animal species belonging to different clades, Golgi stacks lack lateral connections but are likely centralized by microtubule motors. These results suggest that Golgi centralization depends on the organization of the microtubule array in addition to the lateral linking between Golgi stacks.Key words: Golgi stack, recycling endosome, Golgi-ribbon, microtubule, cilium, sea urchin, ascidian.
Collapse
Affiliation(s)
- Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Shogo Sasaki
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Naoaki Sakamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takashi Yamamoto
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Makoto Maeda
- Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tatsuya Ueki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K. Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
9
|
Lei L, Ikami K, Diaz Miranda EA, Ko S, Wilson F, Abbott H, Pandoy R, Jin S. The mouse Balbiani body regulates primary oocyte quiescence via RNA storage. Commun Biol 2024; 7:1247. [PMID: 39358443 PMCID: PMC11447053 DOI: 10.1038/s42003-024-06900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In mammalian females, the transition from dormancy in primordial follicles to follicular development is critical for maintaining ovarian function and reproductive longevity. In mice, the quiescent primary oocyte of the primordial follicle contains a Balbiani body (B-body), an organelle aggregate comprised of a spherical structure of Golgi complexes. Here we show that the structure of the B-body is maintained by microtubules and actin. The B-body stores mRNA-capping enzyme and 597 mRNAs associated with mRNA-decapping enzyme 1 A (DCP1A). Gene ontology analysis results indicate that proteins encoded by these mRNAs function in enzyme binding, cellular component organization and packing of telomere ends. Pharmacological depolymerization of microtubules or actin led to B-body disassociation and nascent protein synthesis around the dissociated B-bodies within three hours. An increased number of activated developing follicles were observed in ovaries with prolonged culture and the in vivo mouse model. Our results indicate that the mouse B-body is involved in the activation of dormant primordial follicles likely via translation of the B-body-associated RNAs in primary oocytes.
Collapse
Affiliation(s)
- Lei Lei
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA.
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Kanako Ikami
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Buck Institute for Research on Aging, Novato, California, 94949, USA
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, 95616, USA
| | - Edgar Andres Diaz Miranda
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Sooah Ko
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| | - Faith Wilson
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ronald Pandoy
- Buck Institute for Research on Aging, Novato, California, 94949, USA
| | - Shiying Jin
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, 65211, USA
| |
Collapse
|
10
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
11
|
Sarpangala N, Randell B, Gopinathan A, Kogan O. Tunable intracellular transport on converging microtubule morphologies. BIOPHYSICAL REPORTS 2024; 4:100171. [PMID: 38996867 PMCID: PMC11345624 DOI: 10.1016/j.bpr.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
A common type of cytoskeletal morphology involves multiple microtubules converging with their minus ends at the microtubule organizing center (MTOC). The cargo-motor complex will experience ballistic transport when bound to microtubules or diffusive transport when unbound. This machinery allows for sequestering and subsequent dispersal of dynein-transported cargo. The general principles governing dynamics, efficiency, and tunability of such transport in the MTOC vicinity are not fully understood. To address this, we develop a one-dimensional model that includes advective transport toward an attractor (such as the MTOC) and diffusive transport that allows particles to reach absorbing boundaries (such as cellular membranes). We calculated the mean first passage time (MFPT) for cargo to reach the boundaries as a measure of the effectiveness of sequestering (large MFPT) and diffusive dispersal (low MFPT). We show that the MFPT experiences a dramatic growth, transitioning from a low to high MFPT regime (dispersal to sequestering) over a window of cargo on-/off-rates that is close to in vivo values. Furthermore, increasing either the on-rate (attachment) or off-rate (detachment) can result in optimal dispersal when the attractor is placed asymmetrically. Finally, we also describe a regime of rare events where the MFPT scales exponentially with motor velocity and the escape location becomes exponentially sensitive to the attractor positioning. Our results suggest that structures such as the MTOC allow for the sensitive control of the spatial and temporal features of transport and corresponding function under physiological conditions.
Collapse
Affiliation(s)
| | - Brooke Randell
- University of California, Santa Cruz, Santa Cruz, California
| | | | - Oleg Kogan
- Queens College of CUNY, Queens, New York.
| |
Collapse
|
12
|
Tago T, Yamada Y, Goto Y, Toyooka K, Ochi Y, Satoh T, Satoh AK. Golgi clustering by the deficiency of COPI-SNARE in Drosophila photoreceptors. Front Cell Dev Biol 2024; 12:1442198. [PMID: 39296936 PMCID: PMC11408282 DOI: 10.3389/fcell.2024.1442198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
A comprehensive study of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the fly genome by RNAi in Drosophila photoreceptors indicated that knockdown of any of the COPI-SNAREs, Syx18, Sec20, and Use1, resulted in the same characteristic phenotypes: Golgi stacks gathering on their trans-side, laterally expanded Golgi cisternae, and a reduced number of discrete Golgi stacks. These Golgi stacks are reminiscent of mammalian Golgi ribbons and Brefeldin A (BFA)-bodies in Drosophila S2 cells. As previously reported, BFA suppresses trans-Golgi network (TGN) fission and Golgi stack separation to form a BFA-body, which is a cluster of Golgi stacks cored by recycling endosomes. We found that the impairing each of COPI-SNAREs results in clustered Golgi stacks similar to BFA-bodies, indicating that COPI-SNAREs have a role to separate clustered Golgi stacks. These results further support the idea that the movement of Golgi stacks and the balance of fusion and fission of the TGN determine the level of clustering and ribbon formation of Golgi stacks within cells.
Collapse
Affiliation(s)
- Tatsuya Tago
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Yumi Yamada
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Yumi Goto
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Yuka Ochi
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Takunori Satoh
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| | - Akiko K Satoh
- Program of Life and environmental Science, Graduate School of Integral Science for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
14
|
Peng L, Zhang D, Tu H, Wu D, Xiang S, Yang W, Zhao Y, Yang J. The role of Map1b in regulating osteoblast polarity, proliferation, differentiation and migration. Bone 2024; 181:117038. [PMID: 38316337 DOI: 10.1016/j.bone.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Osteoblast polarity, proliferation, differentiation, and migration are essential for maintaining normal bone structure and function. While the microtubule-associated protein Map1b has been extensively studied in nerve cells, its role in bone cells is less known. We investigated the functional significance of Map1b in mouse bone marrow stromal cells (ST2) and elucidated its relationship and influence on cytoskeletal polarity and Golgi organization. Our results suggest that Map1b, as a microtubule regulatory protein, can also regulate the expression of cyclin PCNA, p-H3(S10) and migration-related protein integrin β1, thereby affecting the proliferation and migration of osteoblasts. The downstream target gene Rgc32 was screened by RNA sequencing. Furthermore, Map1b, as a downstream mediator, regulates the Wnt5a signaling pathway. This study expands our understanding of the involvement of Map1b in bone biology and highlights its crucial role in governing osteoblast polarity, proliferation, and migration, thereby providing a basis for developing novel therapeutic strategies targeting Map1b in orthopedic medicine and promoting precision treatment modalities. Further investigations on the precise mechanisms underlying Map1b's influence on bone cell function and disease progression are needed.
Collapse
Affiliation(s)
- Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
15
|
Shirai R, Yamauchi J. Emerging Evidence of Golgi Stress Signaling for Neuropathies. Neurol Int 2024; 16:334-348. [PMID: 38525704 PMCID: PMC10961782 DOI: 10.3390/neurolint16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
The Golgi apparatus is an intracellular organelle that modifies cargo, which is transported extracellularly through the nucleus, endoplasmic reticulum, and plasma membrane in order. First, the general function of the Golgi is reviewed and, then, Golgi stress signaling is discussed. In addition to the six main Golgi signaling pathways, two pathways that have been increasingly reported in recent years are described in this review. The focus then shifts to neurological disorders, examining Golgi stress reported in major neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The review also encompasses findings related to other diseases, including hypomyelinating leukodystrophy, frontotemporal spectrum disorder/amyotrophic lateral sclerosis, microcephaly, Wilson's disease, and prion disease. Most of these neurological disorders cause Golgi fragmentation and Golgi stress. As a result, strong signals may act to induce apoptosis.
Collapse
Affiliation(s)
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan;
| |
Collapse
|
16
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
17
|
Sharma M, Mukherjee S, Shaw AK, Mondal A, Behera A, Das J, Bose A, Sinha B, Sarma JD. Connexin 43 mediated collective cell migration is independent of Golgi orientation. Biol Open 2023; 12:bio060006. [PMID: 37815438 PMCID: PMC10629497 DOI: 10.1242/bio.060006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Cell migration is vital for multiple physiological functions and is involved in the metastatic dissemination of tumour cells in various cancers. For effective directional migration, cells often reorient their Golgi apparatus and, therefore, the secretory traffic towards the leading edge. However, not much is understood about the regulation of Golgi's reorientation. Herein, we address the role of gap junction protein Connexin 43 (Cx43), which connects cells, allowing the direct exchange of molecules. We utilized HeLa WT cells lacking Cx43 and HeLa 43 cells, stably expressing Cx43, and found that functional Cx43 channels affected Golgi morphology and reduced the reorientation of Golgi during cell migration. Although the migration velocity of the front was reduced in HeLa 43, the front displayed enhanced coherence in movement, implying an augmented collective nature of migration. On BFA treatment, Golgi was dispersed and the high heterogeneity in inter-regional front velocity of HeLa WT cells was reduced to resemble the HeLa 43. HeLa 43 had higher vimentin expression and stronger basal F-actin. Furthermore, non-invasive measurement of basal membrane height fluctuations revealed a lower membrane tension. We, therefore, propose that reorientation of Golgi is not the major determinant of migration in the presence of Cx43, which induces collective-like coherent migration in cells.
Collapse
Affiliation(s)
- Madhav Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Suvam Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Archana Kumari Shaw
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Amrutamaya Behera
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Jibitesh Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Bidisha Sinha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
18
|
Suber Y, Alam MNA, Nakos K, Bhakt P, Spiliotis ET. Microtubule-associated septin complexes modulate kinesin and dynein motility with differential specificities. J Biol Chem 2023; 299:105084. [PMID: 37495111 PMCID: PMC10463263 DOI: 10.1016/j.jbc.2023.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.
Collapse
Affiliation(s)
- Yani Suber
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Md Noor A Alam
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Nakagawa N, Iwasato T. Golgi polarity shift instructs dendritic refinement in the neonatal cortex by mediating NMDA receptor signaling. Cell Rep 2023; 42:112843. [PMID: 37516101 DOI: 10.1016/j.celrep.2023.112843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
Dendritic refinement is a critical component of activity-dependent neuronal circuit maturation, through which individual neurons establish specific connectivity with their target axons. Here, we demonstrate that the developmental shift of Golgi polarity is a key process in dendritic refinement. During neonatal development, the Golgi apparatus in layer 4 spiny stellate (SS) neurons in the mouse barrel cortex lose their original apical positioning and acquire laterally polarized distributions. This lateral Golgi polarity, which is oriented toward the barrel center, peaks on postnatal days 5-7 (P5-P7) and disappears by P15, which aligns with the developmental time course of SS neuron dendritic refinement. Genetic ablation of N-methyl-D-aspartate (NMDA) receptors, key players in dendritic refinement, disturbs the lateral Golgi polarity. Golgi polarity manipulation disrupts the asymmetric dendritic projection pattern and the primary-whisker-specific response of SS neurons. Our results elucidate activity-dependent Golgi dynamics and their critical role in developmental neuronal circuit refinement.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Shizuoka 411-8540, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
20
|
Gallisà-Suñé N, Sànchez-Fernàndez-de-Landa P, Zimmermann F, Serna M, Regué L, Paz J, Llorca O, Lüders J, Roig J. BICD2 phosphorylation regulates dynein function and centrosome separation in G2 and M. Nat Commun 2023; 14:2434. [PMID: 37105961 PMCID: PMC10140047 DOI: 10.1038/s41467-023-38116-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The activity of dynein is regulated by a number of adaptors that mediate its interaction with dynactin, effectively activating the motor complex while also connecting it to different cargos. The regulation of adaptors is consequently central to dynein physiology but remains largely unexplored. We now describe that one of the best-known dynein adaptors, BICD2, is effectively activated through phosphorylation. In G2, phosphorylation of BICD2 by CDK1 promotes its interaction with PLK1. In turn, PLK1 phosphorylation of a single residue in the N-terminus of BICD2 results in a structural change that facilitates the interaction with dynein and dynactin, allowing the formation of active motor complexes. Moreover, modified BICD2 preferentially interacts with the nucleoporin RanBP2 once RanBP2 has been phosphorylated by CDK1. BICD2 phosphorylation is central for dynein recruitment to the nuclear envelope, centrosome tethering to the nucleus and centrosome separation in the G2 and M phases of the cell cycle. This work reveals adaptor activation through phosphorylation as crucial for the spatiotemporal regulation of dynein activity.
Collapse
Affiliation(s)
- Núria Gallisà-Suñé
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
- Aging and Metabolism Programme, IRB Barcelona, Barcelona, Spain
| | - Fabian Zimmermann
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Marina Serna
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Laura Regué
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain
| | - Joel Paz
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Joan Roig
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
21
|
Lungu C, Meyer F, Hörning M, Steudle J, Braun A, Noll B, Benz D, Fränkle F, Schmid S, Eisler SA, Olayioye MA. Golgi screen identifies the RhoGEF Solo as a novel regulator of RhoB and endocytic transport. Traffic 2023; 24:162-176. [PMID: 36562184 DOI: 10.1111/tra.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase-activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy-based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP-RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.
Collapse
Affiliation(s)
- Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Florian Meyer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Marcel Hörning
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany.,Institute of Biomaterials and Biomolecular Systems, Biobased Materials Group, University of Stuttgart, Stuttgart, Germany
| | - Jasmin Steudle
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Anja Braun
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - David Benz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Felix Fränkle
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stephan A Eisler
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
22
|
Frye KB, Zhu X, Khodjakov A, Kaverina I. Unbiased Quantification of Golgi Scattering and Golgi-Centrosome Association. Methods Mol Biol 2023; 2557:529-541. [PMID: 36512235 PMCID: PMC9844073 DOI: 10.1007/978-1-0716-2639-9_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The vertebrate Golgi complex is a large dynamic organelle which undergoes morphological changes and fragmentation both as a part of normal physiological dynamics and under disease conditions. The Golgi is known to have a functionally important relationship with the centrosome. The extent of the spatial association between these two organelles varies in a dynamic and regulated manner. It is essential to have a reliable unbiased approach to evaluate Golgi volume, Golgi extension/scattering in the 3D cell space, and spatial association of the Golgi with the centrosome. It is also important that each of these features is evaluated by a simple metric, one measurement per cell, so that the variability and deviations in the cell population can be easily assessed. Here, we present an approach to analyze confocal microscopy image stacks to easily measure Golgi volume, scattering, and association with the centrosome. The approach is based on a custom MATLAB script, provided here as a supplement, and also uses widely available software (ImageJ and/or Imaris). The output of the script is a table with the following parameters: Golgi volume in voxels, Golgi volume in μm3, "Golgi-Golgi" distance (averaged distance between all Golgi voxels), Golgi-centrosome distance (averaged distance between each Golgi voxel and the nearest mother centriole), and centrosome-centrosome distance (for cells with duplicated centrosome, the distance between the mother centrioles). The approach can also be applied to analyze distribution of any fluorescently- labeled structure within a cell and its association with the centrosome or any single point within the cell volume.
Collapse
Affiliation(s)
- Keyada B Frye
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
23
|
Banerjee P, Tan X, Russell WK, Kurie JM. Analysis of Golgi Secretory Functions in Cancer. Methods Mol Biol 2022; 2557:785-810. [PMID: 36512251 DOI: 10.1007/978-1-0716-2639-9_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer cells utilize secretory pathways for paracrine signaling and extracellular matrix remodeling to facilitate directional cell migration, invasion, and metastasis. The Golgi apparatus is a central secretory signaling hub that is often deregulated in cancer. Here we described technologies that utilize microscopic, biochemical, and proteomic approaches to analyze Golgi secretory functions in genetically heterogeneous cancer cell lines.
Collapse
Affiliation(s)
- Priyam Banerjee
- Frits and Rita Markus Bio-Imaging Resource Center, The Rockefeller University, New York, NY, USA
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
24
|
Li L, Chen Y, Liao W, Yu Q, Lin H, Shi Y, Zhang L, Fu G, Wang Z, Li X, Kong X, Zhou T, Qin L. Associations of IFT20 and GM130 protein expressions with clinicopathological features and survival of patients with lung adenocarcinoma. BMC Cancer 2022; 22:809. [PMID: 35869490 PMCID: PMC9308367 DOI: 10.1186/s12885-022-09905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 12/21/2022] Open
Abstract
Background Lung cancer is the leading cause of malignancy-related mortality and lung adenocarcinoma accounts for about 40% of lung malignancies. The aim of this study was to investigate the associations of intraflagellar transport protein 20 (IFT20) and Golgi matrix protein 130 (GM130) expression with clinicopathological features and survival in patients with lung adenocarcinoma. Methods The expressions of IFT20 and GM130 protein in cancerous and matched adjacent lung tissues of 235 patients with lung adenocarcinoma were assessed by tissue microarray and immunohistochemistry, which were indicated by the mean optical density (IOD/area), the rate of positive staining cells and staining intensity score. The correlation between IFT20 and GM130 protein was assessed by Spearman’s rank correlation. Associations of IFT20 and GM130 protein expression with clinicopathological features of patients were analyzed by multivariate logistic regression models. The survival analysis of patients was performed by Cox proportional hazard regression models. Results With adjustment for multiple potential confounders, each one-point increase in IFT20 protein staining intensity score was significantly associated with 32% and 29% reduced risk for TNM stage in II ~ IV and lymphatic metastasis of patients, respectively (P < 0.05). And each one-point increase in GM130 protein staining intensity score was associated with a significant reduction in the risk of poor differentiation and tumors size > 7 cm by 29% and 38% for lung adenocarcinoma patients, respectively (P < 0.05). In stratified Cox model analysis, enhanced IFT20 staining intensity score was significantly decreased the risk of death by 16% for patients without distant metastasis. And elevated the IOD/area of GM130 expression significantly decreased the death risk of lung adenocarcinoma patients with tumor size > 7 cm or distant metastasis by 54% and 65%, respectively (P < 0.05). Conclusion IFT20 and GM130 protein expressions were negatively associated with tumor differentiated types, size, TNM stage and lymphatic metastasis of lung adenocarcinoma. Both IFT20 and GM130 proteins have some protective effects on the survival of lung adenocarcinoma patients with specific clinicopathological features. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09905-6.
Collapse
|
25
|
Liu S, Tian S, Lin T, He X, Eze Ideozu J, Wang R, Wang Y, Yue D, Geng H. G3BP1 regulates breast cancer cell proliferation and metastasis by modulating PKCζ. Front Genet 2022; 13:1034889. [PMID: 36330442 PMCID: PMC9623284 DOI: 10.3389/fgene.2022.1034889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is a leading cause of death and morbidity among female cancers. Several factors, including hormone levels, lifestyle, and dysregulated RNA-binding proteins, have been associated with the development of breast cancer. Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and protein kinase C, Zeta isoform (PKCζ) are oncogenes implicated in numerous cancers, including breast cancer. However, their interaction and role in promoting breast cancer proliferation and metastasis have not been well-characterized. In the present study, we demonstrated that G3BP1 expression was elevated in breast cancer and that knockdown of G3BP1 diminished the proliferation and metastasis of breast cancer cells. Mechanistically, we identified proliferation and a series of metastasis-related properties, including chemotaxis, migration, Golgi polarity localization, and actin polymerization, that were modulated by G3BP1 knockdown. We found that G3BP1 and PKCζ were co-localized and interacted intracellularly, and they co-underwent membrane translocation under EGF stimulation. Following the knockdown of G3BP1, we observed the membrane translocation and phosphorylation of PKCζ were significantly impaired, suggesting that G3BP1 regulates the activation of PKCζ. Our findings indicate that G3BP1 plays multiple roles in breast cancer cell proliferation and metastasis. The activation of PKCζ by G3BP1 may be the specific mechanism underlying the process.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Shaoping Tian
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Tianyu Lin
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Xin He
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin Eze Ideozu
- Genomic Medicine, Genomic Research Center, AbbVie, North Chicago, IL, United States
| | - Rui Wang
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Dan Yue
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
- *Correspondence: Dan Yue, ; Hua Geng,
| | - Hua Geng
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin, China
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Center Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Dan Yue, ; Hua Geng,
| |
Collapse
|
26
|
Huang YRJ, Chiu SC, Tseng JS, Chen JMM, Wei TYW, Chu CY, Kao HTE, Yang CYO, Shih YCE, Yang TY, Chiu KY, Teng CLJ, Yu CTR. The JMJD6/HURP axis promotes cell migration via NF-κB-dependent centrosome repositioning and Cdc42-mediated Golgi repositioning. J Cell Physiol 2022; 237:4517-4530. [PMID: 36250981 DOI: 10.1002/jcp.30900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Golgi apparatus (GA) and centrosome reposition toward cell leading end during directional cell migration in a coupling way, thereby determining cell polarity by transporting essential factors to the proximal plasma membrane. The study provides mechanistic insights into how GA repositioning (GR) is regulated, and how GR and centrosome repositioning (CR) are coupled. Our previous published works reveals that PRMT5 methylates HURP at R122 and the HURP m122 inhibits GR and cell migration by stabilizing GA-associated acetyl-tubulin and then rigidifying GA. The current study further shows that the demethylase JMJD6-guided demethylation of HURP at R122 promotes GR and cell migration. The HURP methylation mimicking mutant 122 F blocks JMJD6-induced GR and cell migration, suggesting JMJD6 relays GR stimulating signal to HURP. Mechanistic studies reveal that the HURP methylation deficiency mutant 122 K promotes GR through NF-κB-induced CR and subsequently CR-dependent Cdc42 upregulation, where Cdc42 couples CR to GR. Taken together, HURP methylation statuses provide a unique opportunity to understand how GR is regulated, and the GA intrinsic mechanism controlling Golgi rigidity and the GA extrinsic mechanism involving NF-κB-CR-Cdc42 cascade collectively dictate GR.
Collapse
Affiliation(s)
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Tong-You Wade Wei
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Department of Medicine, Postdoctoral Scholar, University of California, San Diego, California, USA
| | - Chen-Yu Chu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Hsu-Ting Eric Kao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | | | - Yong-Chun Erin Shih
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kun-Yuan Chiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Department of Surgery, Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| |
Collapse
|
27
|
Sengupta R, Mihelc EM, Angel S, Lanman JK, Kuhn RJ, Stahelin RV. Contribution of the Golgi apparatus in morphogenesis of a virus-induced cytopathic vacuolar system. Life Sci Alliance 2022; 5:5/10/e202000887. [PMID: 36137747 PMCID: PMC9500387 DOI: 10.26508/lsa.202000887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Electron tomography reveals four classes of cytopathic vesicles-II (CPV-II) stemming from the host Golgi apparatus after Venezuelan equine encephalitis virus infection. The Golgi apparatus (GA) in mammalian cells is pericentrosomally anchored and exhibits a stacked architecture. During infections by members of the alphavirus genus, the host cell GA is thought to give rise to distinct mobile pleomorphic vacuoles known as CPV-II (cytopathic vesicle-II) via unknown morphological steps. To dissect this, we adopted a phased electron tomography approach to image multiple overlapping volumes of a cell infected with Venezuelan equine encephalitis virus (VEEV) and complemented it with localization of a peroxidase-tagged Golgi marker. Analysis of the tomograms revealed a pattern of progressive cisternal bending into double-lamellar vesicles as a central process underpinning the biogenesis and the morphological complexity of this vacuolar system. Here, we propose a model for the conversion of the GA to CPV-II that reveals a unique pathway of intracellular virus envelopment. Our results have implications for alphavirus-induced displacement of Golgi cisternae to the plasma membrane to aid viral egress operating late in the infection cycle.
Collapse
Affiliation(s)
- Ranjan Sengupta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA .,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Elaine M Mihelc
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Stephanie Angel
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Jason K Lanman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA .,The Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
28
|
Leong EL, Khaing NT, Cadot B, Hong WL, Kozlov S, Werner H, Wong ESM, Stewart CL, Burke B, Lee YL. Nesprin-1 LINC complexes recruit microtubule cytoskeleton proteins and drive pathology in Lmna-mutant striated muscle. Hum Mol Genet 2022; 32:177-191. [PMID: 35925868 PMCID: PMC9840208 DOI: 10.1093/hmg/ddac179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
Mutations in LMNA, the gene encoding A-type lamins, cause laminopathies-diseases of striated muscle and other tissues. The aetiology of laminopathies has been attributed to perturbation of chromatin organization or structural weakening of the nuclear envelope (NE) such that the nucleus becomes more prone to mechanical damage. The latter model requires a conduit for force transmission to the nucleus. NE-associated Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes are one such pathway. Using clustered regularly interspaced short palindromic repeats to disrupt the Nesprin-1 KASH (Klarsicht, ANC-1, Syne Homology) domain, we identified this LINC complex protein as the predominant NE anchor for microtubule cytoskeleton components, including nucleation activities and motor complexes, in mouse cardiomyocytes. Loss of Nesprin-1 LINC complexes resulted in loss of microtubule cytoskeleton proteins at the nucleus and changes in nuclear morphology and positioning in striated muscle cells, but with no overt physiological defects. Disrupting the KASH domain of Nesprin-1 suppresses Lmna-linked cardiac pathology, likely by reducing microtubule cytoskeleton activities at the nucleus. Nesprin-1 LINC complexes thus represent a potential therapeutic target for striated muscle laminopathies.
Collapse
Affiliation(s)
| | | | - Bruno Cadot
- Sorbonne Université, INSERM U974, Institut de Myologie, GH Pitié Salpêtrière, 47 Boulevard de l’Hôpital, Paris 75013, France
| | - Wei Liang Hong
- Institute of Medical Biology, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore,ASTAR Skin Research Labs (ASRL), Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hendrikje Werner
- Institute of Medical Biology, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore,ASTAR Skin Research Labs (ASRL), Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore
| | - Esther Sook Miin Wong
- Institute of Medical Biology, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Level 6 Immunos, Singapore 138648, Singapore,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Level 5 Immunos, Singapore 138648, Singapore
| | - Colin L Stewart
- To whom correspondence should be addressed. Colin L. Stewart, ; Brian Burke, ; Yin Loon Lee,
| | - Brian Burke
- To whom correspondence should be addressed. Colin L. Stewart, ; Brian Burke, ; Yin Loon Lee,
| | - Yin Loon Lee
- To whom correspondence should be addressed. Colin L. Stewart, ; Brian Burke, ; Yin Loon Lee,
| |
Collapse
|
29
|
Zhang Y, Zhang S, Zhou H, Ma X, Wu L, Tian M, Li S, Qian X, Gao X, Chai R. Dync1li1 is required for the survival of mammalian cochlear hair cells by regulating the transportation of autophagosomes. PLoS Genet 2022; 18:e1010232. [PMID: 35727824 PMCID: PMC9249241 DOI: 10.1371/journal.pgen.1010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation. Hearing loss is one of the most common sensorial disorders globally. The main reason of hearing loss is the irreversible loss or malfunction of cochlear hair cells. Identifying new hearing loss-related genes and investigating their roles and mechanisms in HC survival are important for the prevention and treatment of hereditary hearing loss. Cytoplasmic dynein 1 is reported to play important roles in in ciliogenesis and protein transport in the mouse photoreceptors. Here, we described the expression pattern of Dyncili1 (a subunit of cytoplasmic dynein 1) in the mouse cochlea and used knockout mice to investigate its specific role in the hair cell of cochlea.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| |
Collapse
|
30
|
Pasapera AM, Heissler SM, Eto M, Nishimura Y, Fischer RS, Thiam HR, Waterman CM. MARK2 regulates directed cell migration through modulation of myosin II contractility and focal adhesion organization. Curr Biol 2022; 32:2704-2718.e6. [PMID: 35594862 DOI: 10.1016/j.cub.2022.04.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/23/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Cancer cell migration during metastasis is mediated by a highly polarized cytoskeleton. MARK2 and its invertebrate homolog Par1B are kinases that regulate the microtubule cytoskeleton to mediate polarization of neurons in mammals and embryos in invertebrates. However, the role of MARK2 in cancer cell migration is unclear. Using osteosarcoma cells, we found that in addition to its known localizations on microtubules and the plasma membrane, MARK2 also associates with the actomyosin cytoskeleton and focal adhesions. Cells depleted of MARK proteins demonstrated that MARK2 promotes phosphorylation of both myosin II and the myosin phosphatase targeting subunit MYPT1 to synergistically drive myosin II contractility and stress fiber formation in cells. Studies with isolated proteins showed that MARK2 directly phosphorylates myosin II regulatory light chain, while its effects on MYPT1 phosphorylation are indirect. Using a mutant lacking the membrane-binding domain, we found that membrane association is required for focal adhesion targeting of MARK2, where it specifically enhances cell protrusion by promoting FAK phosphorylation and formation of focal adhesions oriented in the direction of migration to mediate directionally persistent cell motility. Together, our results define MARK2 as a master regulator of the actomyosin and microtubule cytoskeletal systems and focal adhesions to mediate directional cancer cell migration.
Collapse
Affiliation(s)
- Ana M Pasapera
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Sarah M Heissler
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Masumi Eto
- Department of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| | - Yukako Nishimura
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA; Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Robert S Fischer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Hawa R Thiam
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA
| | - Clare M Waterman
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 50, South Drive, Room 4537, MSC 8019, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Nakano A. The Golgi Apparatus and its Next-Door Neighbors. Front Cell Dev Biol 2022; 10:884360. [PMID: 35573670 PMCID: PMC9096111 DOI: 10.3389/fcell.2022.884360] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
The Golgi apparatus represents a central compartment of membrane traffic. Its apparent architecture, however, differs considerably among species, from unstacked and scattered cisternae in the budding yeast Saccharomyces cerevisiae to beautiful ministacks in plants and further to gigantic ribbon structures typically seen in mammals. Considering the well-conserved functions of the Golgi, its fundamental structure must have been optimized despite seemingly different architectures. In addition to the core layers of cisternae, the Golgi is usually accompanied by next-door compartments on its cis and trans sides. The trans-Golgi network (TGN) can be now considered as a compartment independent from the Golgi stack. On the cis side, the intermediate compartment between the ER and the Golgi (ERGIC) has been known in mammalian cells, and its functional equivalent is now suggested for yeast and plant cells. High-resolution live imaging is extremely powerful for elucidating the dynamics of these compartments and has revealed amazing similarities in their behaviors, indicating common mechanisms conserved along the long course of evolution. From these new findings, I would like to propose reconsideration of compartments and suggest a new concept to describe their roles comprehensively around the Golgi and in the post-Golgi trafficking.
Collapse
|
32
|
Vaidžiulytė K, Macé AS, Battistella A, Beng W, Schauer K, Coppey M. Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking. eLife 2022; 11:69229. [PMID: 35302488 PMCID: PMC8963884 DOI: 10.7554/elife.69229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
Migrating cells present a variety of paths, from random to highly directional ones. While random movement can be explained by basal intrinsic activity, persistent movement requires stable polarization. Here, we quantitatively address emergence of persistent migration in (hTERT)–immortalizedRPE1 (retinal pigment epithelial) cells over long timescales. By live cell imaging and dynamic micropatterning, we demonstrate that the Nucleus-Golgi axis aligns with direction of migration leading to efficient cell movement. We show that polarized trafficking is directed toward protrusions with a 20-min delay, and that migration becomes random after disrupting internal cell organization. Eventually, we prove that localized optogenetic Cdc42 activation orients the Nucleus-Golgi axis. Our work suggests that polarized trafficking stabilizes the protrusive activity of the cell, while protrusive activity orients this polarity axis, leading to persistent cell migration. Using a minimal physical model, we show that this feedback is sufficient to recapitulate the quantitative properties of cell migration in the timescale of hours.
Collapse
Affiliation(s)
| | | | | | | | - Kristine Schauer
- Tumor Cell Dynamics Unit, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
33
|
Mascanzoni F, Iannitti R, Colanzi A. Functional Coordination among the Golgi Complex, the Centrosome and the Microtubule Cytoskeleton during the Cell Cycle. Cells 2022; 11:cells11030354. [PMID: 35159164 PMCID: PMC8834581 DOI: 10.3390/cells11030354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
The Golgi complex of mammalian cells is organized in a ribbon-like structure often closely associated with the centrosome during interphase. Conversely, the Golgi complex assumes a fragmented and dispersed configuration away from the centrosome during mitosis. The structure of the Golgi complex and the relative position to the centrosome are dynamically regulated by microtubules. Many pieces of evidence reveal that this microtubule-mediated dynamic association between the Golgi complex and centrosome is of functional significance in cell polarization and division. Here, we summarize findings indicating how the Golgi complex and the centrosome cooperate in organizing the microtubule network for the directional protein transport and centrosome positioning required for cell polarization and regulating fundamental cell division processes.
Collapse
|
34
|
Kurashiki T, Horikoshi Y, Kamizaki K, Sunaguchi T, Hara K, Morimoto M, Kitagawa Y, Nakaso K, Otsuki A, Matsura T. Molecular mechanisms underlying the promotion of wound repair by coenzyme Q10: PI3K/Akt signal activation via alterations to cell membrane domains. J Clin Biochem Nutr 2022; 70:222-230. [PMID: 35692678 PMCID: PMC9130066 DOI: 10.3164/jcbn.21-141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10) promotes wound healing in vitro and in vivo. However, the molecular mechanisms underlying the promoting effects of CoQ10 on wound repair remain unknown. In the present study, we investigated the molecular mechanisms through which CoQ10 induces wound repair using a cellular wound-healing model. CoQ10 promoted wound closure in a dose-dependent manner and wound-mediated cell polarization after wounding in HaCaT cells. A comparison with other CoQ homologs, benzoquinone derivatives, and polyisoprenyl compounds suggested that the whole structure of CoQ10 is required for potent wound repair. The phosphorylation of Akt after wounding and the plasma membrane translocation of Akt were elevated in CoQ10-treated cells. The promoting effect of CoQ10 on wound repair was abrogated by co-treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor. Immunohistochemical and biochemical analyses showed that CoQ10 increased the localization of caveolin-1 (Cav-1) to the apical membrane domains of the cells and the Cav-1 content in the membrane-rich fractions. Depletion of Cav-1 suppressed CoQ10-mediated wound repair and PI3K/Akt signaling activation in HaCaT cells. These results indicated that CoQ10 increases the translocation of Cav-1 to the plasma membranes, activating the downstream PI3K/Akt signaling pathway, and resulting in wound closure in HaCaT cells.
Collapse
Affiliation(s)
- Tatsuyuki Kurashiki
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Yosuke Horikoshi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University
| | - Teppei Sunaguchi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Kazushi Hara
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Masaki Morimoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, Faculty of Medicine, Tottori University
| | - Yoshinori Kitagawa
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University
| | - Kazuhiro Nakaso
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Akihiro Otsuki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University
| | - Tatsuya Matsura
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| |
Collapse
|
35
|
Sato Y, Fujiwara M, Nishino H, Harada R, Kawasaki E, Morimoto R, Ohgo S, Wada N. Normal skeletal pattern formation in chick limb bud with a mesenchymal hole is mediated by adjustment of cellular properties along the anterior-posterior axis in the limb bud. Dev Biol 2021; 483:76-88. [PMID: 34973174 DOI: 10.1016/j.ydbio.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 11/18/2022]
Abstract
The chick limb bud has plasticity to reconstruct a normal skeletal pattern after a part of mesenchymal mass is excised to make a hole in its early stage of development. To understand the details of hole closure and re-establishment of normal limb axes to reconstruct a normal limb skeleton, we focused on cellular and molecular changes during hole repair and limb restoration. We excised a cube-shaped mass of mesenchymal cells from the medial region of chick hindlimb bud (stage 23) and observed the following morphogenesis. The hole had closed by 15 h after excision, followed by restoration of the limb bud morphology, and the cartilage pattern was largely restored by 48 h. Lineage analysis of the mesenchymal cells showed that cells at the anterior and posterior margins of the hole were adjoined at the hole closure site, whereas cells at the proximal and distal margins were not. To investigate cell polarity during hole repair, we analyzed intracellular positioning of the Golgi apparatus relative to the nuclei. We found that the Golgi apparatus tended to be directed toward the hole among cells at the anterior and posterior margins but not among cells at identical positions in normal limb buds or cells at the proximal and distal hole margins. In the manipulated limb buds, the frequency of cell proliferation was maintained compared with the control side. Tbx3 expression, which was usually restricted to anterior and posterior margins of the limb bud, was temporarily expanded medially and then reverted to a normal pattern as limb reconstruction proceeded, with Tbx3 negative cells reappearing in the medial regions of the limb buds. Thus, mesenchymal hole closure and limb reconstruction are mainly mediated by cells at the anterior and posterior hole margins. These results suggest that adjustment of cellular properties along the anteroposterior axis is crucial to restore limb damage and reconstruct normal skeletal patterns.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Momoko Fujiwara
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Haruka Nishino
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Rei Harada
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Eriko Kawasaki
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ryo Morimoto
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shiro Ohgo
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
36
|
Kumari A, Kumar C, Pergu R, Kumar M, Mahale SP, Wasnik N, Mylavarapu SVS. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J Cell Biol 2021; 220:212736. [PMID: 34709360 PMCID: PMC8562849 DOI: 10.1083/jcb.202005184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein's cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome-nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sagar P Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| |
Collapse
|
37
|
Dahl TM, Reed M, Gerstner CD, Baehr W. Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 34807236 PMCID: PMC8626856 DOI: 10.1167/iovs.62.14.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Cytoplasmic dynein-1 (henceforth dynein) moves cargo in conjunction with dynactin toward the minus end of microtubules. The dynein heavy chain, DYNC1H1, comprises the backbone of dynein, a retrograde motor. Deletion of Dync1h1 abrogates dynein function. The purpose of this communication is to demonstrate effects of photoreceptor dynein inactivation during late postnatal development and in adult retina. Methods We mated Dync1h1F/F mice with iCre75 and Prom1-CreERT2 mice to generate conditional rod and tamoxifen-induced knockout in rods and cones, respectively. We documented retina degeneration with confocal microscopy at postnatal day (P) 10 to P30 for the iCre75 line and 1 to 4 weeks post tamoxifen induction (wPTI) for the Prom1-CreERT2 line. We performed scotopic and photopic electroretinography (ERG) at P16 to P30 in the iCre75 line and at 1-week increments in the Prom1-CreERT2 line. Results were evaluated statistically using Student's t-test, two-factor ANOVA, and Welch's ANOVA. Results Cre-induced homologous recombination of Dync1h1F/F mice truncated DYNC1H1 after exon 23. rodDync1h1-/- photoreceptors degenerated after P14, reducing outer nuclear layer (ONL) thickness and combined inner segment/outer segment (IS/OS) length significantly by P18. Scotopic ERG a-wave amplitudes decreased by P16 and were extinguished at P30. Cones were stable under rod-knockout conditions until P21 but inactive at P30. In tamDync1h1-/- photoreceptors, the IS/OS began shortening by 3wPTI and were nearly eliminated by 4wPTI. The ONL shrank significantly over this interval, indicating rapid photoreceptor degeneration following the loss of dynein. Conclusions Our results demonstrate dynein is essential for the secretory pathway, formation of outer segments, and photoreceptor maintenance.
Collapse
Affiliation(s)
- Tiffanie M Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Cecilia D Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States.,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
38
|
ER Morphology in the Pathogenesis of Hereditary Spastic Paraplegia. Cells 2021; 10:cells10112870. [PMID: 34831093 PMCID: PMC8616106 DOI: 10.3390/cells10112870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is the most abundant and widespread organelle in cells. Its peculiar membrane architecture, formed by an intricate network of tubules and cisternae, is critical to its multifaceted function. Regulation of ER morphology is coordinated by a few ER-specific membrane proteins and is thought to be particularly important in neurons, where organized ER membranes are found even in the most distant neurite terminals. Mutation of ER-shaping proteins has been implicated in the neurodegenerative disease hereditary spastic paraplegia (HSP). In this review we discuss the involvement of these proteins in the pathogenesis of HSP, focusing on the experimental evidence linking their molecular function to disease onset. Although the precise biochemical activity of some ER-related HSP proteins has been elucidated, the pathological mechanism underlying ER-linked HSP is still undetermined and needs to be further investigated.
Collapse
|
39
|
Lee MH, Park YJ, Hong SH, Koo MA, Cho M, Park JC. Pulsed Electrical Stimulation Enhances Consistency of Directional Migration of Adipose-Derived Stem Cells. Cells 2021; 10:cells10112846. [PMID: 34831069 PMCID: PMC8616144 DOI: 10.3390/cells10112846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022] Open
Abstract
Electrical stimulation is a well-known strategy for regulating cell behavior, both in pathological and physiological processes such as wound healing, tissue regeneration, and embryonic development. Electrotaxis is the directional migration of cells toward the cathode or anode when subjected to electrical stimulation. In this study, we investigated the conditions for enhanced directional migration of electrically stimulated adipose-derived stem cells (ADSCs) during prolonged culture, using a customized agar-salt electrotaxis chamber. Exposure of ADSCs to a 1200 μA electric current for 3 h, followed by cessation of stimulation for 6 h and resumed stimulation for a further 3 h, increased directional cell migration toward the anode without inducing cell death. Moreover, Golgi polarization maintained the direction of polarity parallel to the direction of cell movement. Herein, we demonstrated that a pulsed electric current is sufficient to trigger directional migration of ADSCs in long-term culture while maintaining cell viability.
Collapse
Affiliation(s)
- Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Minyoung Cho
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (Y.J.P.); (S.H.H.); (M.-A.K.); (M.C.)
- Department of Medical Device Engineering and Management, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-1917
| |
Collapse
|
40
|
Ridge LA, Kewbank D, Schütz D, Stumm R, Scambler PJ, Ivins S. Dual role for CXCL12 signaling in semilunar valve development. Cell Rep 2021; 36:109610. [PMID: 34433040 PMCID: PMC8411116 DOI: 10.1016/j.celrep.2021.109610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 04/29/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Cxcl12-null embryos have dysplastic, misaligned, and hyperplastic semilunar valves (SLVs). In this study, we show that CXCL12 signaling via its receptor CXCR4 fulfills distinct roles at different stages of SLV development, acting initially as a guidance cue to pattern cellular distribution within the valve primordia during the endocardial-to-mesenchymal transition (endoMT) phase and later regulating mesenchymal cell proliferation during SLV remodeling. Transient, anteriorly localized puncta of internalized CXCR4 are observed in cells undergoing endoMT. In vitro, CXCR4+ cell orientation in response to CXCL12 requires phosphatidylinositol 3-kinase (PI3K) signaling and is inhibited by suppression of endocytosis. This dynamic intracellular localization of CXCR4 during SLV development is related to CXCL12 availability, potentially enabling activation of divergent downstream signaling pathways at key developmental stages. Importantly, Cxcr7-/- mutants display evidence of excessive CXCL12 signaling, indicating a likely role for atypical chemokine receptor CXCR7 in regulating ligand bioavailability and thus CXCR4 signaling output during SLV morphogenesis.
Collapse
Affiliation(s)
- Liam A Ridge
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dania Kewbank
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Dagmar Schütz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Ralf Stumm
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena 07747, Germany
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sarah Ivins
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
41
|
Wiktor M, Wiertelak W, Maszczak-Seneczko D, Balwierz PJ, Szulc B, Olczak M. Identification of novel potential interaction partners of UDP-galactose (SLC35A2), UDP-N-acetylglucosamine (SLC35A3) and an orphan (SLC35A4) nucleotide sugar transporters. J Proteomics 2021; 249:104321. [PMID: 34242836 DOI: 10.1016/j.jprot.2021.104321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Nucleotide sugar transporters (NSTs) are ER and Golgi-resident members of the solute carrier 35 (SLC35) family which supply substrates for glycosylation by exchanging lumenal nucleotide monophosphates for cytosolic nucleotide sugars. Defective NSTs have been associated with congenital disorders of glycosylation (CDG), however, molecular basis of many types of CDG remains poorly characterized. To better understand the biology of NSTs, we identified potential interaction partners of UDP-galactose transporter (SLC35A2), UDP-N-acetylglucosamine transporter (SLC35A3) and an orphan nucleotide sugar transporter SLC35A4 of to date unassigned specificity. For this purpose, each of the SLC35A2-A4 proteins was used as a bait in four independent pull-down experiments and the identity of the immunoprecipitated material was discovered using MS techniques. From the candidate list obtained, we selected a few for which the interaction was confirmed in vitro using the NanoBiT system, a split luciferase-based luminescent technique. NSTs have been shown to interact with two ATPases (ATP2A2, ATP2C1), Golgi pH regulator B (GPR89B) and calcium channel (TMCO1), which may reflect the regulation of glycosylation by ion homeostasis, and with basigin (BSG). Our findings provide a starting point for the NST interaction network discovery in order to better understand how glycosylation is regulated and linked to other cellular processes. SIGNIFICANCE: Despite the facts that nucleotide sugar transporters are a key component of the protein glycosylation machinery, and deficiencies in their activity underlie serious metabolic diseases, biology, function and regulation of these essential proteins remain enigmatic. In this study we have advanced the field by identifying sets of new potential interaction partners for UDP-galactose transporter (SLC35A2), UDP-N-acetylglucosamine transporter (SLC35A3) and an orphan transporter SLC35A4 of yet undefined role. Several of these new interactions were additionally confirmed in vitro using the NanoBiT system, a split luciferase complementation assay. This work is also significant in that it addresses the overall challenge of discovering membrane protein interaction partners by a detailed comparison of 4 different co-immunoprecipitation strategies and by custom sample preparation and data processing workflows.
Collapse
Affiliation(s)
- Maciej Wiktor
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Wojciech Wiertelak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | | | - Piotr Jan Balwierz
- Computational Regulatory Genomics, MRC-London Institute of Medical Sciences, London, United Kingdom.
| | - Bożena Szulc
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
42
|
The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci Rep 2021; 11:5358. [PMID: 33686165 PMCID: PMC7940470 DOI: 10.1038/s41598-021-84750-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/12/2021] [Indexed: 01/31/2023] Open
Abstract
The morphology of the Golgi complex is influenced by the cellular context, which strictly correlates with nuclear functions; however, the mechanism underlying this association remains elusive. The inner nuclear membrane SUN proteins, SUN1 and SUN2, have diverse functions together with the outer nuclear membrane nesprin proteins, which comprise the LINC complex. We found that depletion of SUN1 leads to Golgi complex dispersion with maintenance of ministacks and retained function for vesicle transport through the Golgi complex. In addition, SUN2 associates with microtubule plus-end-directed motor KIF20A, possibly via nesprin-2. KIF20A plays a role in the Golgi dispersion in conjunction with the SUN2-nesprin-2 LINC complex in SUN1-depleted cells, suggesting that SUN1 suppresses the function of the SUN2-nesprin-2 LINC complex under a steady-state condition. Further, SUN1-knockout mice, which show impaired cerebellar development and cerebellar ataxia, presented altered Golgi morphology in Purkinje cells. These findings revealed a regulation of the Golgi organization by the LINC complex.
Collapse
|
43
|
Li P, Li L, Yu B, Wang X, Wang Q, Lin J, Zheng Y, Zhu J, He M, Xia Z, Tu M, Liu JS, Lin Z, Fu X. Doublecortin facilitates the elongation of the somatic Golgi apparatus into proximal dendrites. Mol Biol Cell 2021; 32:422-434. [PMID: 33405953 PMCID: PMC8098852 DOI: 10.1091/mbc.e19-09-0530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in the doublecortin (DCX) gene, which encodes a microtubule (MT)-binding protein, cause human cortical malformations, including lissencephaly and subcortical band heterotopia. A deficiency in DCX and DCX-like kinase 1 (DCLK1), a functionally redundant and structurally similar cognate of DCX, decreases neurite length and increases the number of primary neurites directly arising from the soma. The underlying mechanism is not completely understood. In this study, the elongation of the somatic Golgi apparatus into proximal dendrites, which have been implicated in dendrite patterning, was significantly decreased in the absence of DCX/DCLK1. Phosphorylation of DCX at S47 or S327 was involved in this process. DCX deficiency shifted the distribution of CLASP2 proteins to the soma from the dendrites. In addition to CLASP2, dynein and its cofactor JIP3 were abnormally distributed in DCX-deficient neurons. The association between JIP3 and dynein was significantly increased in the absence of DCX. Down-regulation of CLASP2 or JIP3 expression with specific shRNAs rescued the Golgi phenotype observed in DCX-deficient neurons. We conclude that DCX regulates the elongation of the Golgi apparatus into proximal dendrites through MT-associated proteins and motors.
Collapse
Affiliation(s)
- Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Luyao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Binyuan Yu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xinye Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jingjing Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yihui Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinjin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Minzhi He
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhaonan Xia
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengjing Tu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Judy S Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
44
|
Fujii S, Kurokawa K, Tago T, Inaba R, Takiguchi A, Nakano A, Satoh T, Satoh AK. Sec71 separates Golgi stacks in Drosophila S2 cells. J Cell Sci 2020; 133:jcs245571. [PMID: 33262309 PMCID: PMC10668125 DOI: 10.1242/jcs.245571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/18/2020] [Indexed: 01/19/2023] Open
Abstract
Golgi stacks are the basic structural units of the Golgi. Golgi stacks are separated from each other and scattered in the cytoplasm of Drosophila cells. Here, we report that the ARF-GEF inhibitor Brefeldin A (BFA) induces the formation of BFA bodies, which are aggregates of Golgi stacks, trans-Golgi networks and recycling endosomes. Recycling endosomes are located in the centers of BFA bodies, while Golgi stacks surround them on their trans sides. Live imaging of S2 cells revealed that Golgi stacks repeatedly merged and separated on their trans sides, and BFA caused successive merger by inhibiting separation, forming BFA bodies. S2 cells carrying genome-edited BFA-resistant mutant Sec71M717L did not form BFA bodies at high concentrations of BFA; S2 cells carrying genome-edited BFA-hypersensitive mutant Sec71F713Y produced BFA bodies at low concentrations of BFA. These results indicate that Sec71 is the sole BFA target for BFA body formation and controls Golgi stack separation. Finally, we showed that impairment of Sec71 in fly photoreceptors induces BFA body formation, with accumulation of both apical and basolateral cargoes, resulting in inhibition of polarized transport.
Collapse
Affiliation(s)
- Syara Fujii
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Ryota Inaba
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Arata Takiguchi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
45
|
Involvement of JNK1 in Neuronal Polarization During Brain Development. Cells 2020; 9:cells9081897. [PMID: 32823764 PMCID: PMC7466125 DOI: 10.3390/cells9081897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
The c-Jun N-terminal Kinases (JNKs) are a group of regulatory elements responsible for the control of a wide array of functions within the cell. In the central nervous system (CNS), JNKs are involved in neuronal polarization, starting from the cell division of neural stem cells and ending with their final positioning when migrating and maturing. This review will focus mostly on isoform JNK1, the foremost contributor of total JNK activity in the CNS. Throughout the text, research from multiple groups will be summarized and discussed in order to describe the involvement of the JNKs in the different steps of neuronal polarization. The data presented support the idea that isoform JNK1 is highly relevant to the regulation of many of the processes that occur in neuronal development in the CNS.
Collapse
|
46
|
Regulation of TrkB cell surface expression-a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor. Cell Tissue Res 2020; 382:5-14. [PMID: 32556728 PMCID: PMC7529634 DOI: 10.1007/s00441-020-03224-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Neurotrophin signaling via receptor tyrosine kinases is essential for the development and function of the nervous system in vertebrates. TrkB activation and signaling show substantial differences to other receptor tyrosine kinases of the Trk family that mediate the responses to nerve growth factor and neurotrophin-3. Growing evidence suggests that TrkB cell surface expression is highly regulated and determines the sensitivity of neurons to brain-derived neurotrophic factor (BDNF). This translocation of TrkB depends on co-factors and modulators of cAMP levels, N-glycosylation, and receptor transactivation. This process can occur in very short time periods and the resulting rapid modulation of target cell sensitivity to BDNF could represent a mechanism for fine-tuning of synaptic plasticity and communication in complex neuronal networks. This review focuses on those modulatory mechanisms in neurons that regulate responsiveness to BDNF via control of TrkB surface expression.
Collapse
|
47
|
The Golgi ribbon: mechanisms of maintenance and disassembly during the cell cycle. Biochem Soc Trans 2020; 48:245-256. [PMID: 32010930 DOI: 10.1042/bst20190646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
The Golgi complex (GC) has an essential role in the processing and sorting of proteins and lipids. The GC of mammalian cells is composed of stacks of cisternae connected by membranous tubules to create a continuous network, the Golgi ribbon, whose maintenance requires several core and accessory proteins. Despite this complex structural organization, the Golgi apparatus is highly dynamic, and this property becomes particularly evident during mitosis, when the ribbon undergoes a multistep disassembly process that allows its correct partitioning and inheritance by the daughter cells. Importantly, alterations of the Golgi structure are associated with a variety of physiological and pathological conditions. Here, we review the core mechanisms and signaling pathways involved in both the maintenance and disassembly of the Golgi ribbon, and we also report on the signaling pathways that connect the disassembly of the Golgi ribbon to mitotic entry and progression.
Collapse
|
48
|
Beigl TB, Hellesvik M, Saraste J, Arnesen T, Aksnes H. N-terminal acetylation of actin by NAA80 is essential for structural integrity of the Golgi apparatus. Exp Cell Res 2020; 390:111961. [PMID: 32209306 DOI: 10.1016/j.yexcr.2020.111961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 01/07/2023]
Abstract
N-alpha-acetyltransferase 80 (NAA80) was recently demonstrated to acetylate the N-terminus of actin, with NAA80 knockout cells showing actin cytoskeleton-related phenotypes, such as increased formation of membrane protrusions and accelerated migration. Here we report that NAA80 knockout cells additionally display fragmentation of the Golgi apparatus. We further employed rescue assays to demonstrate that this phenotype is connected to the ability of NAA80 to modify actin. Thus, re-expression of NAA80, which leads to re-establishment of actin's N-terminal acetyl group, rescued the Golgi fragmentation, whereas a catalytic dead NAA80 mutant could neither restore actin Nt-acetylation nor Golgi structure. The Golgi phenotype of NAA80 KO cells was shared by both migrating and non-migrating cells and live-cell imaging indicated increased Golgi dynamics in migrating NAA80 KO cells. Finally, we detected a drastic increase in the amount of F-actin in cells lacking NAA80, suggesting a causal relationship between this effect and the observed re-organization of Golgi structure. The findings further underscore the importance of actin Nt-acetylation and provide novel insight into its cellular roles, suggesting a mechanistic link between actin modification state and Golgi organization.
Collapse
Affiliation(s)
- Tobias B Beigl
- Department of Biomedicine, University of Bergen, Norway; Institute of Cell Biology and Immunology, University of Stuttgart, Germany
| | | | | | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Norway; Department of Biological Sciences, University of Bergen, Norway; Department of Surgery, Haukeland University Hospital, Norway
| | | |
Collapse
|
49
|
Hao H, Niu J, Xue B, Su QP, Liu M, Yang J, Qin J, Zhao S, Wu C, Sun Y. Golgi-associated microtubules are fast cargo tracks and required for persistent cell migration. EMBO Rep 2020; 21:e48385. [PMID: 31984633 DOI: 10.15252/embr.201948385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Microtubules derived from the Golgi (Golgi MTs) have been implicated to play critical roles in persistent cell migration, but the underlying mechanisms remain elusive, partially due to the lack of direct observation of Golgi MT-dependent vesicular trafficking. Here, using super-resolution stochastic optical reconstruction microscopy (STORM), we discovered that post-Golgi cargos are more enriched on Golgi MTs and also surprisingly move much faster than on non-Golgi MTs. We found that, compared to non-Golgi MTs, Golgi MTs are morphologically more polarized toward the cell leading edge with significantly fewer inter-MT intersections. In addition, Golgi MTs are more stable and contain fewer lattice repair sites than non-Golgi MTs. Our STORM/live-cell imaging demonstrates that cargos frequently pause at the sites of both MT intersections and MT defects. Furthermore, by optogenetic maneuvering of cell direction, we demonstrate that Golgi MTs are essential for persistent cell migration but not for cells to change direction. Together, our study unveils the role of Golgi MTs in serving as a group of "fast tracks" for anterograde trafficking of post-Golgi cargos.
Collapse
Affiliation(s)
- Huiwen Hao
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Jiahao Niu
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Qian Peter Su
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Menghan Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junsheng Yang
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Jinshan Qin
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Shujuan Zhao
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
50
|
Diaz U, Bergman ZJ, Johnson BM, Edington AR, de Cruz MA, Marshall WF, Riggs B. Microtubules are necessary for proper Reticulon localization during mitosis. PLoS One 2019; 14:e0226327. [PMID: 31877164 PMCID: PMC6932760 DOI: 10.1371/journal.pone.0226327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023] Open
Abstract
During mitosis, the structure of the Endoplasmic Reticulum (ER) displays a dramatic reorganization and remodeling, however, the mechanism driving these changes is poorly understood. Hairpin-containing ER transmembrane proteins that stabilize ER tubules have been identified as possible factors to promote these drastic changes in ER morphology. Recently, the Reticulon and REEP family of ER shaping proteins have been shown to heavily influence ER morphology by driving the formation of ER tubules, which are known for their close proximity with microtubules. Here, we examine the role of microtubules and other cytoskeletal factors in the dynamics of a Drosophila Reticulon, Reticulon-like 1 (Rtnl1), localization to spindle poles during mitosis in the early embryo. At prometaphase, Rtnl1 is enriched to spindle poles just prior to the ER retention motif KDEL, suggesting a possible recruitment role for Rtnl1 in the bulk localization of ER to spindle poles. Using image analysis-based methods and precise temporal injections of cytoskeletal inhibitors in the early syncytial Drosophila embryo, we show that microtubules are necessary for proper Rtnl1 localization to spindles during mitosis. Lastly, we show that astral microtubules, not microfilaments, are necessary for proper Rtnl1 localization to spindle poles, and is largely independent of the minus-end directed motor protein dynein. This work highlights the role of the microtubule cytoskeleton in Rtnl1 localization to spindles during mitosis and sheds light on a pathway towards inheritance of this major organelle.
Collapse
Affiliation(s)
- Ulises Diaz
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- Department of Biochemistry & Biophysics, UCSF Mission Bay, San Francisco, California, United States of America
| | - Zane J. Bergman
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Brittany M. Johnson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Alia R. Edington
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Matthew A. de Cruz
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, UCSF Mission Bay, San Francisco, California, United States of America
| | - Blake Riggs
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|