1
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
2
|
Stern LJ, Clement C, Galluzzi L, Santambrogio L. Non-mutational neoantigens in disease. Nat Immunol 2024; 25:29-40. [PMID: 38168954 PMCID: PMC11075006 DOI: 10.1038/s41590-023-01664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024]
Abstract
The ability of mammals to mount adaptive immune responses culminating with the establishment of immunological memory is predicated on the ability of the mature T cell repertoire to recognize antigenic peptides presented by syngeneic MHC class I and II molecules. Although it is widely believed that mature T cells are highly skewed towards the recognition of antigenic peptides originating from genetically diverse (for example, foreign or mutated) protein-coding regions, preclinical and clinical data rather demonstrate that novel antigenic determinants efficiently recognized by mature T cells can emerge from a variety of non-mutational mechanisms. In this Review, we describe various mechanisms that underlie the formation of bona fide non-mutational neoantigens, such as epitope mimicry, upregulation of cryptic epitopes, usage of non-canonical initiation codons, alternative RNA splicing, and defective ribosomal RNA processing, as well as both enzymatic and non-enzymatic post-translational protein modifications. Moreover, we discuss the implications of the immune recognition of non-mutational neoantigens for human disease.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, UMass Chan Medical School, Worcester, MA, USA
- Immunology and Microbiology Program, UMass Chan Medical School, Worcester, MA, USA
| | - Cristina Clement
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Grunwald C, Adamska-Patruno E, Wawrusiewicz-Kurylonek N, Czarnowska A, Snarska K, Dardzińska-Głębocka A, Kapica-Topczewska K, Mirończuk A, Bazylewicz M, Kochanowicz J, Krętowski A, Kułakowska A, Chorąży M. Multiple sclerosis susceptibility may be associated with the coding rs20541 (R130Q) IL-13 gene polymorphism in the Polish population. Sci Rep 2023; 13:22083. [PMID: 38086930 PMCID: PMC10716410 DOI: 10.1038/s41598-023-49615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023] Open
Abstract
Some of the multiple autoimmune diseases have been already associated with IL-13 single-nucleotide polymorphisms (SNPs). However, there are only few studies regarding multiple sclerosis (MS) risk and IL-13 rs20541 (R130Q) polymorphism, and their results are conflicting. Therefore, the aim of our study was to investigate the frequency of the IL-13 gene rs20541 (R130Q) polymorphism in MS participants and its association with MS clinical subsets in the Polish population. We conducted a case‒control study including 94 relapsing remitting MS patients and 160 healthy volunteers. We genotyped the rs20541 polymorphism in the IL-13 gene and analysed the genotype frequency, age of MS onset and clinical condition (EDSS values) of the MS participants. Fisher's exact test was used for statistical analysis, and the log-linear model was applied to test for associations. Allele A, as well as the AA and AG genotypes, was observed to be significantly more common in the MS subjects. The OR (odds ratio) for the A compared to the G allele was 1.71 (1.14-2.56), whereas OR 2.33 (0.86-6.26) and OR 1.92 (1.11-3.30) were obtained for the AA and AG genotypes, respectively. We did not identify any significant associations of the studied IL-13 SNP with the investigated clinical parameters of the MS participants. Our results suggest that the rs20541 polymorphism in the IL-13 gene may play an important role in MS predisposition but not in investigated clinical parameters in MS subjects of the Polish population.
Collapse
Affiliation(s)
- Cezary Grunwald
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland.
| | - Edyta Adamska-Patruno
- Clinical Research Support Centre, Medical University of Bialystok, Białystok, Poland.
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Białystok, Poland.
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
- Department of Clinical Genetics, Medical University of Bialystok, Białystok, Poland
| | - Agata Czarnowska
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Katarzyna Snarska
- Department of Clinical Medicine, Medical University of Bialystok, Białystok, Poland
| | - Agnieszka Dardzińska-Głębocka
- Department of Mechanics and Computer Science, Faculty of Mechanical Engineering, Bialystok University of Technology, Białystok, Poland
| | - Katarzyna Kapica-Topczewska
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Anna Mirończuk
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland
| | - Marcin Bazylewicz
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Support Centre, Medical University of Bialystok, Białystok, Poland
- Department of Nutriomics, Clinical Research Centre, Medical University of Bialystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Białystok, Poland
| | - Alina Kułakowska
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland
- Department of Neurology, Medical University of Bialystok, Białystok, Poland
| | - Monika Chorąży
- Department of Neurology and Stroke Department, University Clinical Hospital in Bialystok, Białystok, Poland.
- Department of Neurology, Medical University of Bialystok, Białystok, Poland.
| |
Collapse
|
4
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Abdallah HY, Faisal S, Tawfik NZ, Soliman NH, Kishk RM, Ellawindy A. Expression Signature of Immune-Related MicroRNAs in Autoimmune Skin Disease: Psoriasis and Vitiligo Insights. Mol Diagn Ther 2023; 27:405-423. [PMID: 37016095 PMCID: PMC10151313 DOI: 10.1007/s40291-023-00646-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Psoriasis and vitiligo are both chronic, skin-specific diseases classified as autoimmune diseases due to the involvement of several biochemical pathways in their pathogenesis, similar to those altered in other autoimmune diseases. The role of miRNAs in regulating skin autoimmune function has yet to be fully characterized. AIM The aim of this study was to assess the expression profile of a panel of 11 circulating immune-related miRNAs in patients with autoimmune skin diseases, specifically psoriasis and vitiligo, and correlate their expression signature with the clinicopathological features of the diseases. SUBJECTS AND METHODS Relative gene expression quantification for 11 immune-related circulating miRNAs in plasma was done for 300 subjects-100 patients with psoriasis, 100 patients with vitiligo and 100 normal healthy volunteers-followed by different modalities of bioinformatics analysis for the results. RESULTS The expression levels of all the studied immune-related miRNAs were elevated in both autoimmune skin disorders, with much higher levels of expression in psoriasis than in vitiligo patients. There was a significant correlation between most of the studied miRNAs, suggesting shared target genes and/or pathways. Moreover, all the studied miRNAs showed significant results as biomarkers for autoimmune skin disease, with miRNA-145 being the best candidate. Regarding the clinicopathological data, miRNA-7, miRNA-9, miRNA-145, miRNA-148a, and miRNA-148b were positively correlated with age. All the miRNAs were inversely correlated with obesity and disease duration. CONCLUSION This study highlights the critical role of miRNAs in skin-specific autoimmune diseases that proved to be potential biomarkers for autoimmune skin disorders, warranting their exploration as therapeutic targets.
Collapse
Affiliation(s)
- Hoda Y Abdallah
- Medical Genetics Unit, Histology & Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
- Faculty of Medicine, Center of Excellence in Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt.
| | - Salwa Faisal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha Z Tawfik
- Dermatology, Venereology, and Andrology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nourhan Hassan Soliman
- Clinical Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Rania M Kishk
- Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Alia Ellawindy
- Medical Genetics Unit, Histology & Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Afrashteh Nour M, Ghorbaninezhad F, Asadzadeh Z, Baghbanzadeh A, Hassanian H, Leone P, Jafarlou M, Alizadeh N, Racanelli V, Baradaran B. The emerging role of noncoding RNAs in systemic lupus erythematosus: new insights into the master regulators of disease pathogenesis. Ther Adv Chronic Dis 2023; 14:20406223231153572. [PMID: 37035097 PMCID: PMC10074641 DOI: 10.1177/20406223231153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/11/2023] [Indexed: 04/11/2023] Open
Abstract
Auto-immune diseases are a form of chronic disorders in which the immune system destroys the body's cells due to a loss of tolerance to self-antigens. Systemic lupus erythematosus (SLE), identified by the production of autoantibodies in different body parts, is one of the most well-known examples of these diseases. Although the etiology of SLE is unclear, the disease's progression may be affected by genetic and environmental factors. As studies in twins provide adequate evidence for genetic involvement in the SLE, other phenomena such as metallization, histone modifications, and alterations in the expression of noncoding RNAs (ncRNAs) also indicate the involvement of epigenetic factors in this disease. Among all the epigenetic alterations, ncRNAs appear to have the most crucial contribution to the pathogenesis of SLE. The ncRNAs' length and size are divided into three main classes: micro RNAs, long noncoding RNAs (LncRNA), and circular RNAs (circRNAs). Accumulating evidence suggests that dysregulations in these ncRNAs contributed to the pathogenesis of SLE. Hence, clarifying the function of these groups of ncRNAs in the pathophysiology of SLE provides a deeper understanding of the disease. It also opens up new opportunities to develop targeted therapies for this disease.
Collapse
Affiliation(s)
- Mina Afrashteh Nour
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine,
Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Student Research Committee, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Patrizia Leone
- Department of Interdisciplinary Medicine,
University of Bari ‘Aldo Moro’, Bari, Italy
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University
of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
7
|
Yegorov YE, Poznyak AV, Bezsonov EE, Zhuravlev AD, Nikiforov NG, Vishnyakova KS, Orekhov AN. Somatic Mutations of Hematopoietic Cells Are an Additional Mechanism of Body Aging, Conducive to Comorbidity and Increasing Chronification of Inflammation. Biomedicines 2022; 10:biomedicines10040782. [PMID: 35453534 PMCID: PMC9028317 DOI: 10.3390/biomedicines10040782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
It is known that the development of foci of chronic inflammation usually accompanies body aging. In these foci, senescent cells appear with a pro-inflammatory phenotype that helps maintain inflammation. Their removal with the help of senolytics significantly improves the general condition of the body and, according to many indicators, contributes to rejuvenation. The cells of the immune system participate in the initiation, development, and resolution of inflammation. With age, the human body accumulates mutations, including the cells of the bone marrow, giving rise to the cells of the immune system. We assume that a number of such mutations formed with age can lead to the appearance of “naive” cells with an initially pro-inflammatory phenotype, the migration of which to preexisting foci of inflammation contributes not to the resolution of inflammation but its chronicity. One of such cell variants are monocytes carrying mitochondrial mutations, which may be responsible for comorbidity and deterioration in the prognosis of the course of pathologies associated with aging, such as atherosclerosis, arthritis, osteoporosis, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 105043 Moscow, Russia
| | - Alexander D. Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 119334 Moscow, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, 119334 Moscow, Russia
| | - Khava S. Vishnyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (E.E.B.); (A.D.Z.); (N.G.N.)
- Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (Y.E.Y.); (A.V.P.); (A.N.O.)
| |
Collapse
|
8
|
Clarelli F, Barizzone N, Mangano E, Zuccalà M, Basagni C, Anand S, Sorosina M, Mascia E, Santoro S, Guerini FR, Virgilio E, Gallo A, Pizzino A, Comi C, Martinelli V, Comi G, De Bellis G, Leone M, Filippi M, Esposito F, Bordoni R, Martinelli Boneschi F, D'Alfonso S. Contribution of Rare and Low-Frequency Variants to Multiple Sclerosis Susceptibility in the Italian Continental Population. Front Genet 2022; 12:800262. [PMID: 35047017 PMCID: PMC8762330 DOI: 10.3389/fgene.2021.800262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies identified over 200 risk loci for multiple sclerosis (MS) focusing on common variants, which account for about 50% of disease heritability. The goal of this study was to investigate whether low-frequency and rare functional variants, located in MS-established associated loci, may contribute to disease risk in a relatively homogeneous population, testing their cumulative effect (burden) with gene-wise tests. We sequenced 98 genes in 588 Italian patients with MS and 408 matched healthy controls (HCs). Variants were selected using different filtering criteria based on allelic frequency and in silico functional impacts. Genes showing a significant burden (n = 17) were sequenced in an independent cohort of 504 MS and 504 HC. The highest signal in both cohorts was observed for the disruptive variants (stop-gain, stop-loss, or splicing variants) located in EFCAB13, a gene coding for a protein of an unknown function (p < 10-4). Among these variants, the minor allele of a stop-gain variant showed a significantly higher frequency in MS versus HC in both sequenced cohorts (p = 0.0093 and p = 0.025), confirmed by a meta-analysis on a third independent cohort of 1298 MS and 1430 HC (p = 0.001) assayed with an SNP array. Real-time PCR on 14 heterozygous individuals for this variant did not evidence the presence of the stop-gain allele, suggesting a transcript degradation by non-sense mediated decay, supported by the evidence that the carriers of the stop-gain variant had a lower expression of this gene (p = 0.0184). In conclusion, we identified a novel low-frequency functional variant associated with MS susceptibility, suggesting the possible role of rare/low-frequency variants in MS as reported for other complex diseases.
Collapse
Affiliation(s)
- Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia Barizzone
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Miriam Zuccalà
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Chiara Basagni
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Santosh Anand
- Department of Informatics, Systems and Communications (DISCo), University of Milano-Bicocca, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Eleonora Virgilio
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Antonio Gallo
- MS Center, I Division of Neurology, Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pizzino
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Section of Neurology and IRCAD, UNIUPO, Novara, Italy
| | - Vittorio Martinelli
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Maurizio Leone
- Neurology Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Filippi
- Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Bordoni
- Institute for Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Filippo Martinelli Boneschi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, University of Milan, Milan, Italy.,Neurology Unit, MS Centre, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, UPO, University of Eastern Piedmont, and CAAD (Center for Translational Research on Autoimmune and Allergic Disease), Novara, Italy
| |
Collapse
|
9
|
Teaw S, Hinchcliff M, Cheng M. A review and roadmap of the skin, lung and gut microbiota in systemic sclerosis. Rheumatology (Oxford) 2021; 60:5498-5508. [PMID: 33734316 PMCID: PMC8643452 DOI: 10.1093/rheumatology/keab262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/12/2022] Open
Abstract
As our understanding of the genetic underpinnings of SSc increases, questions regarding the environmental trigger(s) that induce and propagate SSc in the genetically predisposed individual emerge. The interplay between the environment, the immune system, and the microbial species that inhabit the patient's skin and gastrointestinal tract is a pathobiological frontier that is largely unexplored in SSc. The purpose of this review is to provide an overview of the methodologies, experimental study results and future roadmap for elucidating the relationship between the SSc host and his/her microbiome.
Collapse
Affiliation(s)
- Shannon Teaw
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Monique Hinchcliff
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Michelle Cheng
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| |
Collapse
|
10
|
Rathor R, Suryakumar G, Singh SN. Diet and redox state in maintaining skeletal muscle health and performance at high altitude. Free Radic Biol Med 2021; 174:305-320. [PMID: 34352371 DOI: 10.1016/j.freeradbiomed.2021.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
High altitude exposure leads to compromised physical performance with considerable weight loss. The major stressor at high altitude is hypobaric hypoxia which leads to disturbance in redox homeostasis. Oxidative stress is a well-known trigger for many high altitude illnesses and regulates several key signaling pathways under stressful conditions. Altered redox homeostasis is considered the prime culprit of high altitude linked skeletal muscle atrophy. Hypobaric hypoxia disturbs redox homeostasis through increased RONS production and compromised antioxidant system. Increased RONS disturbs the cellular homeostasis via multiple ways such as inflammation generation, altered protein anabolic pathways, redox remodeling of RyR1 that contributed to dysregulated calcium homeostasis, enhanced protein degradation pathways via activation calcium-regulated protein, calpain, and apoptosis. Ultimately, all the cellular signaling pathways aggregately result in skeletal muscle atrophy. Dietary supplementation of phytochemicals could become a safe and effective intervention to ameliorate skeletal muscle atrophy and enhance the physical performance of the personnel who are staying at high altitude regions. The present evidence-based review explores few dietary supplementations which regulate several signaling mechanisms and ameliorate hypobaric hypoxia induced muscle atrophy and enhances physical performance. However, a clinical research trial is required to establish proof-of-concept.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|
11
|
Maglione A, Zuccalà M, Tosi M, Clerico M, Rolla S. Host Genetics and Gut Microbiome: Perspectives for Multiple Sclerosis. Genes (Basel) 2021; 12:1181. [PMID: 34440354 PMCID: PMC8394267 DOI: 10.3390/genes12081181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
As a complex disease, Multiple Sclerosis (MS)'s etiology is determined by both genetic and environmental factors. In the last decade, the gut microbiome has emerged as an important environmental factor, but its interaction with host genetics is still unknown. In this review, we focus on these dual aspects of MS pathogenesis: we describe the current knowledge on genetic factors related to MS, based on genome-wide association studies, and then illustrate the interactions between the immune system, gut microbiome and central nervous system in MS, summarizing the evidence available from Experimental Autoimmune Encephalomyelitis mouse models and studies in patients. Finally, as the understanding of influence of host genetics on the gut microbiome composition in MS is in its infancy, we explore this issue based on the evidence currently available from other autoimmune diseases that share with MS the interplay of genetic with environmental factors (Inflammatory Bowel Disease, Rheumatoid Arthritis and Systemic Lupus Erythematosus), and discuss avenues for future research.
Collapse
Affiliation(s)
- Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy; (A.M.); (M.C.)
| | - Miriam Zuccalà
- Department of Health Sciences, Center on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy; (M.Z.); (M.T.)
| | - Martina Tosi
- Department of Health Sciences, Center on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale, 28100 Novara, Italy; (M.Z.); (M.T.)
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy; (A.M.); (M.C.)
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy; (A.M.); (M.C.)
| |
Collapse
|
12
|
Kairuz CA, Casanelia LM, Bennett-Brook K, Coombes J, Yadav UN. Impact of racism and discrimination on physical and mental health among Aboriginal and Torres Strait islander peoples living in Australia: a systematic scoping review. BMC Public Health 2021; 21:1302. [PMID: 34217243 PMCID: PMC8254223 DOI: 10.1186/s12889-021-11363-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/24/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Racism is increasingly recognised as a significant health determinant that contributes to health inequalities. In Australia efforts have been made to bridge the recognised health gap between Aboriginal and Torres Strait Islander people and other Australians. This systematic scoping review aimed to assess, synthesise, and analyse the evidence in Australia about the impacts of racism on the mental and physical health of Aboriginal and Torrens Strait Islander peoples. METHODS A systematic search was conducted to locate Australian studies in English published between 2000 and 2020. Five electronic databases were used: PubMed, CINAHL, Embase, Web of Science and the Australia's National Institute for Aboriginal and Torres Strait Islander Health Research. The search strategy included a combination of key words related with racism, mental health, physical health and Indigenous people. Data were extracted based on review questions and findings were synthesized in a narrative summary. RESULTS Of total 338 searched studies from five databases, 12 studies met the inclusion criteria for narrative synthesis where eight were cross-sectional studies and four prospective cohorts. General mental health and general health perception were the most frequently studied outcomes followed by child behaviour, smoking and substance consumption and specific health conditions. The prevalence of racism varied between 6.9 and 97%. The most common health outcomes associated with racism were general poor mental health and poor general health perception. More specific health outcomes such as anxiety, depression, child behaviour, asthma, increased BMI and smoking were also associated with racism but were analysed by a limited number of studies. Three studies analysed psychological distress, negative mental health, sleeping difficulties and negative perceived mental health according to severity of exposition to racism. CONCLUSION Racism is associated with negative overall mental and negative general health outcomes among Aboriginal and Torres Strait Islander peoples. Strategies to prevent all forms and sources of racism are necessary to move forward to bridging the health gap between Aboriginal and Torres Strait Islander peoples and non-Indigenous Australians. Further research is needed to understand in more detail the impact of racism from an Aboriginal and Torres Strait Islander definition of health and wellbeing.
Collapse
Affiliation(s)
- Camila A Kairuz
- Department of Public Health, Torrens University, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Lisa M Casanelia
- Department of Public Health, Torrens University, Sydney, Australia
| | | | | | - Uday Narayan Yadav
- Department of Public Health, Torrens University, Sydney, Australia.
- Centre for Primary Health Care and Equity, Faculty of Medicine and Health, UNSW, Sydney, Australia.
- Center for Research Policy and Implementation, Biratnagar, Nepal.
| |
Collapse
|
13
|
Bellando-Randone S, Russo E, Venerito V, Matucci-Cerinic M, Iannone F, Tangaro S, Amedei A. Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach. J Pers Med 2021; 11:625. [PMID: 34209167 PMCID: PMC8306274 DOI: 10.3390/jpm11070625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
The oral microbiome is receiving growing interest from the scientific community, as the mouth is the gateway for numerous potential etiopathogenetic factors in different diseases. In addition, the progression of niches from the mouth to the gut, defined as "oral-gut microbiome axis", affects several pathologies, as rheumatic diseases. Notably, rheumatic disorders (RDs) are conditions causing chronic, often intermittent pain affecting the joints or connective tissue. In this review, we examine evidence which supports a role for the oral microbiome in the etiology and progression of various RDs, including rheumatoid arthritis (RA), Sjogren's syndrome (SS), and systemic lupus erythematosus (SLE). In addition, we address the most recent studies endorsing the oral microbiome as promising diagnostic biomarkers for RDs. Lastly, we introduce the concepts of artificial intelligence (AI), in particular, machine learning (ML) and their general application for understanding the link between oral microbiota and rheumatic diseases, speculating the application of a possible AI approach-based that can be applied to personalized medicine in the future.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| | - Vincenzo Venerito
- Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, 70121 Bari, Italy; (V.V.); (F.I.)
| | - Marco Matucci-Cerinic
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Florenzo Iannone
- Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, 70121 Bari, Italy; (V.V.); (F.I.)
| | - Sabina Tangaro
- Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70121 Bari, Italy;
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (S.B.-R.); (E.R.); (M.M.-C.)
| |
Collapse
|
14
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
15
|
Chorazy M, Wawrusiewicz-Kurylonek N, Adamska-Patruno E, Czarnowska A, Zajkowska O, Kapica-Topczewska K, Posmyk R, Kretowski AJ, Kochanowicz J, Kułakowska A. Variants of Novel Immunomodulatory Fc Receptor Like 5 Gene Are Associated With Multiple Sclerosis Susceptibility in the Polish Population. Front Neurol 2021; 12:631134. [PMID: 33889124 PMCID: PMC8055847 DOI: 10.3389/fneur.2021.631134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Fc receptors have been shown to play a role in several autoimmune diseases. We aimed to test, for the first time, whether some of the single nucleotide variants in the FCRL5 gene were associated with multiple sclerosis (MS) susceptibility and clinical manifestations in the Polish population. The case-control study included 94 individuals with MS and 160 healthy subjects. We genotyped two single nucleotide variants of the FCRL5 gene: rs2012199 and rs6679793. The age of onset, disease duration, and clinical condition of the MS subjects were analyzed. For statistical analysis, we used the chi-squared test confirmed with Fisher's exact test. We observed the significant differences in the distribution of investigated FCRL5 genotypes between MS subjects and healthy controls. The CC and CT genotypes, as well as the C allele of rs2012199, were significantly more common in the MS subjects, as were genotypes AA and AG, and allele A of rs6679793. We noted that decreased MS susceptibility was associated with the T allele rs2012199 (OR = 0.37, p = 0.0002) and G allele rs6679793 (OR = 0.6, p = 0.02). Our results support the role of the FCRL5 locus in MS predisposition and extend the evidence of its influence on autoimmunity.
Collapse
Affiliation(s)
- Monika Chorazy
- Department of Neurology, Medical University of Bialystok, Bialystok, Poland
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland.,Department of Clinical Genetics, Medical University of Bialystok, Bialystok, Poland
| | | | - Agata Czarnowska
- Department of Neurology, Medical University of Bialystok, Bialystok, Poland
| | - Olga Zajkowska
- Faculty of Economic Sciences, University of Warsaw, Warsaw, Poland
| | | | - Renata Posmyk
- Department of Clinical Genetics, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Kretowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Bialystok, Poland
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
De Haan P, Van Diemen FR, Toscano MG. Viral gene delivery vectors: the next generation medicines for immune-related diseases. Hum Vaccin Immunother 2021; 17:14-21. [PMID: 32412865 PMCID: PMC7872028 DOI: 10.1080/21645515.2020.1757989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses have evolved to efficiently express their genes in host cells, which makes them ideally suited as gene delivery vectors for gene and immunotherapies. Replication competent (RC) viral vectors encoding foreign or self-proteins induce strong T-cell responses that can be used for the development of effective cancer treatments. Replication-defective (RD) viral vectors encoding self-proteins are non-immunogenic when introduced in a host naïve for the cognate virus. RD viral vectors can be used to develop gene replacement therapies for genetic disorders and tolerization therapies for autoimmune diseases and allergies. Degenerative/inflammatory diseases are associated with chronic inflammation and immune responses that damage the tissues involved. These diseases therefore strongly resemble autoimmune diseases. This review deals with the use of RC and RD viral vectors for unraveling the pathogenesis of immune-related diseases and their application to the development of the next generation prophylactics and therapeutics for todays' major diseases.
Collapse
Affiliation(s)
- Peter De Haan
- Department of R&D, Amarna Therapeutics B.V, Leiden, The Netherlands
| | | | | |
Collapse
|
17
|
Cao F, Cheng MH, Hu LQ, Shen HH, Tao JH, Li XM, Pan HF, Gao J. Natural products action on pathogenic cues in autoimmunity: Efficacy in systemic lupus erythematosus and rheumatoid arthritis as compared to classical treatments. Pharmacol Res 2020; 160:105054. [PMID: 32645358 DOI: 10.1016/j.phrs.2020.105054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023]
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), which are characterized by self-perpetuating inflammation and tissue/organ damage, resulting from the failure of lymphocyte auto-tolerance, cause morbidity and mortality worldwide. The current drugs or therapies including conventional non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs), as well as several biologic therapies such as B cell-targeted, T cell-targeted, cytokines-targeted and cytokines receptors-targeted therapy, cannot completely cure SLE and RA, and are always accompanied by unexpected side effects. Therefore, more studies have explored new methods for therapy and found that the herbal medicine as well as its natural products (NPs) exhibited promising therapeutic value through exerting effects of immunomodulation, anti-inflammation, anti-oxidation, and anti-apoptosis, etc. via regulating abnormal responses in kidney, innate and adaptive immune systems, intestine, synoviocytes, as well as bone system including chondrocytes, osteoclasts, joints and paw tissues. In the present review, we will elucidate the current mainstream drugs and therapies for SLE and RA, and summarize the efficacy and mechanisms of NPs in the treatment of SLE and RA based on available findings including in vitro and in vivo animal models, as well as clinical studies, and further analyze the existing challenges, in order to provide comprehensive evidence for improvement of SLE and RA therapy by NPs and to promote management of these two autoimmune diseases.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Ming-Han Cheng
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Li-Qin Hu
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Jian Gao
- The Second Affiliated Hospital and School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
18
|
Safari-Alighiarloo N, Taghizadeh M, Mohammad Tabatabaei S, Namaki S, Rezaei-Tavirani M. Identification of common key genes and pathways between type 1 diabetes and multiple sclerosis using transcriptome and interactome analysis. Endocrine 2020; 68:81-92. [PMID: 31912409 DOI: 10.1007/s12020-019-02181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/27/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE Type 1 diabetes (T1D) and multiple sclerosis (MS) are classified as T cell-mediated autoimmune diseases. Although convergent evidence proposed common genetic architecture for autoimmune diseases, it remains a challenge to identify them. This study aimed to determine common gene signature and pathways in T1D and MS via systems biology approach. METHODS Gene expression profiles of peripheral blood mononuclear cells (PBMCs) and pancreatic-β cells in T1D as well as PBMCs and cerebrospinal fluid (CSF) in MS were analyzed in our previous published data, and differential expressed genes were integrated with protein-protein interactions data to construct Query-Query PPI (QQPPI) networks. In this study, QQPPI networks were further analyzed to investigate more central genes, functional modules and complexes shared in T1D and MS progression. Lastly, the interaction of common genes with drugs was also explored. RESULTS Several cytokines such as IL-23A, IL-32, IL-34, and IL-37 tend to be differentially expressed in both diseases. In addition, PSMA1, MYC, SRPK1, YBX1, HNRNPM, NF-κB2, IKBKE, RAC1, FN1, ARRB2, ESR1, HSP90AB1, and PPP1CA were common high central genes in QQPPI networks corresponding to each disease. Proteasome, spliceosome, immune responses, apoptosis, cellular communication/signaling transduction mechanism, interaction with environment, and activity of intercellular mediators were shared biological processes in T1D and MS. Finally, azathioprine, melatonin, resveratrol, and geldanamycin identified as prioritized drugs for the treatment of patients with T1D and MS. CONCLUSIONS This study represented novel key genes and pathways shared between T1D and MS, which may facilitate the identification of potential therapeutic targets in these diseases.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Namaki
- Immunology Department, Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Abstract
Microbial contributions to the immunopathogenesis of autoimmune rheumatic diseases have been studied since the advent of germ theory in the 19th century. With the exception of Group A Streptococcus in rheumatic fever, early studies failed to establish causal relationships between specific pathobionts and rheumatic disease. Today, systemic autoimmune diseases are thought to result from a complex interplay of environmental factors, individual genetic risk, and stochastic events. Interactions of microbiota and the immune system have been shown to promote and sustain chronic inflammation and autoimmunity. In mechanistic studies, microbe-immune cell interactions have been implicated in the initiation of autoimmune rheumatic diseases, e.g., through the posttranslational modification of autoantigens in rheumatoid arthritis or through neutrophil cell death and cross-reactivity with commensal orthologs in systemic lupus erythematosus. In parallel, modern molecular techniques have catalyzed the study of the microbiome in systemic autoimmune diseases. Here, I review current insights gained into the skin, oral, gut, lung, and vascular microbiome in connective tissue diseases and vasculitis. Mechanism relevant to the development and propagation of autoimmunity will be discussed whenever explored. While studies on autoimmune rheumatic disease have almost invariably shown abnormal microbiome structure (dysbiosis), substantial variability in microbial composition between studies makes generalization difficult. Moreover, an etiopathogenic role of specific pathobionts cannot be inferred by association alone. Integrating descriptive studies of microbial communities with hypothesis-driven research informed by immunopathogenesis will be important in elucidating targetable mechanisms in preclinical and established rheumatic disease.
Collapse
Affiliation(s)
- Maximilian F Konig
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Xu T, Jin P, Qin ZS. Regulatory annotation of genomic intervals based on tissue-specific expression QTLs. Bioinformatics 2019; 36:690-697. [PMID: 31504167 PMCID: PMC8215915 DOI: 10.1093/bioinformatics/btz669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 05/14/2019] [Accepted: 08/23/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Annotating a given genomic locus or a set of genomic loci is an important yet challenging task. This is especially true for the non-coding part of the genome which is enormous yet poorly understood. Since gene set enrichment analyses have demonstrated to be effective approach to annotate a set of genes, the same idea can be extended to explore the enrichment of functional elements or features in a set of genomic intervals to reveal potential functional connections. RESULTS In this study, we describe a novel computational strategy named loci2path that takes advantage of the newly emerged, genome-wide and tissue-specific expression quantitative trait loci (eQTL) information to help annotate a set of genomic intervals in terms of transcription regulation. By checking the presence or the absence of millions of eQTLs in a set of input genomic intervals, combined with grouping eQTLs by the pathways or gene sets that their target genes belong to, loci2path build a bridge connecting genomic intervals to functional pathways and pre-defined biological-meaningful gene sets, revealing potential for regulatory connection. Our method enjoys two key advantages over existing methods: first, we no longer rely on proximity to link a locus to a gene which has shown to be unreliable; second, eQTL allows us to provide the regulatory annotation under the context of specific tissue types. To demonstrate its utilities, we apply loci2path on sets of genomic intervals harboring disease-associated variants as query. Using 1 702 612 eQTLs discovered by the Genotype-Tissue Expression (GTEx) project across 44 tissues and 6320 pathways or gene sets cataloged in MSigDB as annotation resource, our method successfully identifies highly relevant biological pathways and revealed disease mechanisms for psoriasis and other immune-related diseases. Tissue specificity analysis of associated eQTLs provide additional evidence of the distinct roles of different tissues played in the disease mechanisms. AVAILABILITY AND IMPLEMENTATION loci2path is published as an open source Bioconductor package, and it is available at http://bioconductor.org/packages/release/bioc/html/loci2path.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tianlei Xu
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
21
|
Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, Devkota HP, Ullah H, Aschner M. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 2019; 18:647-657. [PMID: 31059841 PMCID: PMC6588481 DOI: 10.1016/j.autrev.2019.05.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
In addition to protecting body from infections and diseases, the immune system produces auto-antibodies that can cause complex autoimmune disorders, such as Type I diabetes, primary biliary cirrhosis, rheumatoid arthritis, and multiple sclerosis, to name a few. In such cases, the immune system fails to recognize between foreign agents and its own body cells. Different factors, such as genetic factors (CD25, STAT4), epigenetic factors (DNA methylation, histone modifications) and environmental factors (xenobiotics, drugs, hormones) trigger autoimmunity. Glucocorticoids, non-steroidal anti-inflammatory drugs (NSAIDs), immunosuppressive and biological agents are currently used to manage autoimmune diseases of different origins. However, complete cure remains elusive. Many dietary and natural products including polyphenols have been widely studied as possible alternative treatment strategies for the management of autoimmune disorders. Polyphenols possess a wide-range of pharmacological and therapeutic properties, including antioxidant and anti-inflammatory activities. As immunomodulatory agents, polyphenols are emerging pharmaceutical tools for management of various autoimmune disorders including vitiligo, ulcerative colitis and multiple sclerosis (MS). Polyphenols activate intracellular pathways such as arachidonic acid dependent pathway, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, mitogen-activated protein kinases (MAPKs) pathway, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway and epigenetic modulation, which regulate the host's immune response. This timely review discusses putative points of action of polyphenols in autoimmune diseases, characterizing their efficacy and safety as therapeutic agents in managing autoimmune disorders.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, KPK, Pakistan; University of Balearic Islands, E-07122 Palma de Mallorca, Spain.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Tarun Belwal
- G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330, Yenimahalle, Ankara, Turkey
| | - İpek Süntar
- Department of Pharmacognosy Faculty of Pharmacy Gazi University, 06330 Etiler Ankara, Turkey
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department & CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools, Health life science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, KPK, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Webb GJ, Hirschfield GM, Krawitt EL, Gershwin ME. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:247-292. [PMID: 29140756 DOI: 10.1146/annurev-pathol-020117-043534] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoimmune hepatitis is an uncommon idiopathic syndrome of immune-mediated destruction of hepatocytes, typically associated with autoantibodies. The disease etiology is incompletely understood but includes a clear association with human leukocyte antigen (HLA) variants and other non-HLA gene variants, female sex, and the environment. Pathologically, there is a CD4+ T cell-rich lymphocytic inflammatory infiltrate with variable hepatocyte necrosis and subsequent hepatic fibrosis. Attempts to understand pathogenesis are informed by several monogenetic syndromes that may include autoimmune liver injury, by several drug and environmental agents that have been identified as triggers in a minority of cases, by human studies that point toward a central role for CD4+ effector and regulatory T cells, and by animal models of the disease. Nonspecific immunosuppression is the current standard therapy. Further understanding of the disease's cellular and molecular mechanisms may assist in the design of better-targeted therapies, aid the limitation of adverse effects from therapy, and inform individualized risk assessment and prognostication.
Collapse
Affiliation(s)
- G J Webb
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - G M Hirschfield
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - E L Krawitt
- Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA; .,Department of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, California 95817, USA;
| |
Collapse
|
23
|
Islam T, Rahman MR, Karim MR, Huq F, Quinn JM, Moni MA. Detection of multiple sclerosis using blood and brain cells transcript profiles: Insights from comprehensive bioinformatics approach. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
An Increased Frequency in HLA Class I Alleles and Haplotypes Suggests Genetic Susceptibility to Influenza A (H1N1) 2009 Pandemic: A Case-Control Study. J Immunol Res 2018; 2018:3174868. [PMID: 29682588 PMCID: PMC5845504 DOI: 10.1155/2018/3174868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 01/16/2023] Open
Abstract
Background The influenza A H1N1/09 pandemic infected a small number of exposed individuals, which suggests the involvement of genetic factors. There are scarce data available on classical HLA class I association with the influenza A H1N1/09 pandemic. Methods We analyzed the frequency of classical HLA class I alleles and haplotypes in A H1N1/09 influenza in a case-control study including 138 influenza patients (INF-P) and 225 asymptomatic healthy contacts (INF-C) simultaneously recruited. HLA class I typing was performed by high-resolution sequence-based typing method. Results Our analysis revealed higher frequency of C∗07:02:01, B∗39:06:02, C∗03:02:01, B∗44:03:01, B∗51:01:05, and B∗73:01 (p < 0.05; OR = 1.84–9.98) and of two haplotypes—A∗68:01:02-C∗07:02:01 (p = 1.05E − 05; OR = 23.99) and B∗35:01:01-C∗07:02.01 (p = 4.15E − 04, OR = 2.15)—in A H1N1/09 influenza subjects. A∗68:01:01 was exclusively present only in the INF-P group (5/138). A decrease in the frequency of C∗03:03:01, A∗11:01:01, B∗39:01:01, A∗24:02:01, C∗03:04:01, B∗51:01:01, and C∗07:01:01 (p < 0.05; OR = 0.12–0.52) and of haplotypes A∗02:01:01-B∗35:01:01-C∗04:01:01, A∗24:02:01-B∗35:01:01, B∗39:01:01-C∗07:02:01, and B∗40:02:01-C∗03:04:01 (p < 0.05; OR = 0.08–0.22) were observed in INF-P group. Conclusion Selective classical HLA class I allele and haplotype combinations predispose individuals towards susceptibility or protection against the influenza A H1N1/09 pandemic. This work has significant implications for accessing population transmission risk for A H1N1/09 or a similar strain breakout in the future.
Collapse
|
25
|
Pytel V, Matías-Guiu JA, Torre-Fuentes L, Montero P, Gómez-Graña Á, García-Ramos R, Moreno-Ramos T, Oreja-Guevara C, Fernández-Arquero M, Gómez-Pinedo U, Matías-Guiu J. Familial multiple sclerosis and association with other autoimmune diseases. Brain Behav 2018; 8:e00899. [PMID: 29568694 PMCID: PMC5853641 DOI: 10.1002/brb3.899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Autoimmune diseases (AID) follow a complex, probably polygenic, pattern of inheritance and often cluster in families of patients with multiple sclerosis (MS). Our objective was to analyze family patterns and characteristics in families including more than one patient with MS. MATERIALS AND METHODS We analyzed personal and family history of neurological, systemic, and autoimmune diseases in 84 MS patients from 40 different families. Families were classified in two groups: families with cases of MS in at least two different generations (15 families) and families in which cases of MS belonged to only one generation (25 families). RESULTS The two previously established groups presented different clinical patterns and frequency of association with another AID. In one group, the second generation displayed a higher annual relapse rate than the first generation, higher frequency of progressive forms of MS, and more patients with another AID in addition to MS. Relapsing-remitting forms of MS (RRMS) were more frequent in the other group. CONCLUSIONS Families that include more than one MS patient may show two distinct patterns. This finding seems important for the compression and analysis of genetic information on MS.
Collapse
Affiliation(s)
- Vanesa Pytel
- Department of Neurology Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain.,Neurobiology Laboratory Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Jordi A Matías-Guiu
- Department of Neurology Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Laura Torre-Fuentes
- Neurobiology Laboratory Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Paloma Montero
- Department of Neurology Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Álvaro Gómez-Graña
- Neurobiology Laboratory Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Rocío García-Ramos
- Department of Neurology Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Teresa Moreno-Ramos
- Department of Neurology Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Celia Oreja-Guevara
- Department of Neurology Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Miguel Fernández-Arquero
- Department of Immunology Hospital Clínico San Carlos Instituto de Investigación Sanitaria San Carlos Universidad Complutense de Madrid Madrid Spain
| | - Ulises Gómez-Pinedo
- Neurobiology Laboratory Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| | - Jorge Matías-Guiu
- Department of Neurology Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain.,Neurobiology Laboratory Institute of Neurosciences Hospital Clínico San Carlos Madrid Spain
| |
Collapse
|
26
|
Yu C, Xi J, Li M, An M, Liu H. Bioconjugate Strategies for the Induction of Antigen-Specific Tolerance in Autoimmune Diseases. Bioconjug Chem 2017; 29:719-732. [PMID: 29165988 DOI: 10.1021/acs.bioconjchem.7b00632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antigen-specific immunotherapy (ASI) holds great promise for the treatment of autoimmune diseases. In mice, administration of major histocompatibility complex (MHC) binding synthetic peptides which modulate T cell receptor (TCR) signaling under subimmunogenic conditions induces selective tolerance without suppressing the global immune responses. However, clinical translation has yielded limited success. It has become apparent that the TCR signaling pathway via synthetic peptide antigen alone is inadequate to induce an effective tolerogenic immunity in autoimmune diseases. Bioconjugate strategies combining additional immunomodulatory functions with TCR signaling can amplify the antigen-specific immune tolerance and possibly lead to the development of new treatments in autoimmune diseases. In this review, we provide a summary of recent advances in the development of bioconjugates to achieve antigen-specific immune tolerance in vivo, with the discussion focused on the underlying design principles and challenges that must be overcome to target these therapies to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Chunsong Yu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Jingchao Xi
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Meng Li
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Myunggi An
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science , Wayne State University , Detroit , Michigan 48202 , United States.,Department of Oncology , Wayne State University , Detroit , Michigan 48201 , United States.,Tumor Biology and Microenvironment Program , Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
27
|
Grubor NM, Jovanova-Nesic KD, Shoenfeld Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: A review. World J Hepatol 2017; 9:1176-1189. [PMID: 29109850 PMCID: PMC5666304 DOI: 10.4254/wjh.v9.i30.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cystic echinococcosis (CE) is an infectious disease caused by the larvae of parasite Echinococcus granulosus (E. granulosus). To successfully establish an infection, parasite release some substances and molecules that can modulate host immune functions, stimulating a strong anti-inflammatory reaction to carry favor to host and to reserve self-survival in the host. The literature was reviewed using MEDLINE, and an open access search for immunology of hydatidosis was performed. Accumulating data from animal experiments and human studies provided us with exciting insights into the mechanisms involved that affect all parts of immunity. In this review we used the existing scientific data and discuss how these findings assisted with a better understanding of the immunology of E. granulosus infection in man. The aim of this study is to point the several facts that challenge immune and autoimmune responses to protect E. granulosus from elimination and to minimize host severe pathology. Understanding the immune mechanisms of E. granulosus infection in an intermediate human host will provide, we believe, a more useful treatment with immunomodulating molecules and possibly better protection from parasitic infections. Besides that, the diagnosis of CE has improved due to the application of a new molecular tool for parasite identification by using of new recombinant antigens and immunogenic peptides. More studies for the better understanding of the mechanisms of parasite immune evasion is necessary. It will enable a novel approach in protection, detection and improving of the host inflammatory responses. In contrast, according to the "hygiene hypothesis", clinical applications that decrease the incidence of infection in developed countries and recently in developing countries are at the origin of the increasing incidence of both allergic and autoimmune diseases. Thus, an understanding of the immune mechanisms of E. granulosus infection is extremely important.
Collapse
Affiliation(s)
- Nikica M Grubor
- Department of Hepatobiliary and Pancreatic Surgery, First Surgical University Hospital, Clinical Center of Serbia, School of Medicine University of Belgrade, 11000 Belgrade, Serbia
| | - Katica D Jovanova-Nesic
- Immunology Research Center, Institute of Virology, Vaccine and Sera-Torlak, 11221 Belgrade, Serbia
- European Center for Peace and Development, University for Peace in the United Nation established in Belgrade, 11000 Belgrade, Serbia.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, 5265601 Tel-Hashomer, Tel Aviv, Israel
| |
Collapse
|
28
|
Raza A, Crothers JW, McGill MM, Mawe GM, Teuscher C, Krementsov DN. Anti-inflammatory roles of p38α MAPK in macrophages are context dependent and require IL-10. J Leukoc Biol 2017; 102:1219-1227. [PMID: 28877953 DOI: 10.1189/jlb.2ab0116-009rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 12/31/2022] Open
Abstract
The p38 MAPK pathway was originally identified as a master regulator of proinflammatory cytokine production by myeloid cells. Numerous drugs targeting this kinase showed promise in preclinical models of inflammatory disease, but so far, none have shown efficacy in clinical trials. The reasons behind this are unclear, but may, in part, be explained by emerging anti-inflammatory functions of this kinase or overly refined selectivity of second-generation pharmacologic inhibitors. Here, we show that p38α signaling in macrophages plays pro- and anti-inflammatory functions in vivo and in vitro, with the outcome depending on the stimulus, output, kinetics, or mode of kinase inhibition (genetic vs. pharmacologic). Different pharmacologic inhibitors of p38 exhibit opposing effects, with second-generation inhibitors acting more specifically but inhibiting anti-inflammatory functions. Functionally, we show that the anti-inflammatory functions of p38α in macrophages are critically dependent on production of IL-10. Accordingly, in the absence of IL-10, inhibition of p38α signaling in macrophages is protective in a spontaneous model of colitis. Taken together, our results shed light on the limited clinical efficacy of drugs targeting p38 and suggest that their therapeutic efficacy can be significantly enhanced by simultaneous modulation of p38-dependent anti-inflammatory mediators, such as IL-10.
Collapse
Affiliation(s)
- Abbas Raza
- Division of Immunobiology, Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jessica W Crothers
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA; and
| | - Mahalia M McGill
- Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Gary M Mawe
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Cory Teuscher
- Division of Immunobiology, Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA.,Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont, USA; and
| | - Dimitry N Krementsov
- Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
29
|
SIAE Rare Variants in Juvenile Idiopathic Arthritis and Primary Antibody Deficiencies. J Immunol Res 2017; 2017:1514294. [PMID: 28900629 PMCID: PMC5576406 DOI: 10.1155/2017/1514294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023] Open
Abstract
Sialic acid acetylesterase (SIAE) deficiency was suggested to lower the levels of ligands for sialic acid-binding immunoglobulin-like receptors, decreasing the threshold for B-cell activation. In humans, studies of rare heterozygous loss-of-function mutations in SIAE gene in common autoimmune diseases, including juvenile idiopathic arthritis (JIA), yielded inconsistent results. Considering the distinct pathogenesis of the two main subtypes of JIA, autoinflammatory systemic (sJIA) and autoimmune oligo/polyarticular (aJIA), and a predisposition to autoimmunity displayed by patients and families with primary antibody deficiencies (PADs), the aim of our study was to analyze whether SIAE rare variants are associated with both the phenotype of JIA and the autoimmunity risk in families with PADs. A cohort of 69 patients with JIA, 117 healthy children, 54 patients, and family members with PADs were enrolled in the study. Three novel SIAE variants (p.Q343P, p.Y495X, and c.1320+33T>C) were found only in patients with aJIA but interestingly also in their healthy relatives without autoimmunity, while none of PAD patients or their relatives carried SIAE defects. Our results show that SIAE rare variants are not causative of autoimmunity as single defects.
Collapse
|
30
|
Prinz JC. Autoimmune aspects of psoriasis: Heritability and autoantigens. Autoimmun Rev 2017; 16:970-979. [PMID: 28705779 DOI: 10.1016/j.autrev.2017.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/10/2017] [Indexed: 12/28/2022]
Abstract
Chronic immune-mediated disorders (IMDs) constitute a major health burden. Understanding IMD pathogenesis is facing two major constraints: Missing heritability explaining familial clustering, and missing autoantigens. Pinpointing IMD risk genes and autoimmune targets, however, is of fundamental importance for developing novel causal therapies. The strongest association of all IMDs is seen with human leukocyte antigen (HLA) alleles. Using psoriasis as an IMD model this article reviews the pathogenic role HLA molecules may have within the polygenic predisposition of IMDs. It concludes that disease-associated HLA alleles account for both missing heritability and autoimmune mechanisms by facilitating tissue-specific autoimmune responses through autoantigen presentation.
Collapse
Affiliation(s)
- Jörg Christoph Prinz
- Department of Dermatology, University Clinics, Ludwig-Maximilian-University of Munich, Munich, Germany.
| |
Collapse
|
31
|
Ramakrishnan V, Akram Husain RS, Ahmed SS. Genetic predisposition of IL-10 promoter polymorphisms with risk of multiple sclerosis: A meta-analysis. J Neuroimmunol 2017; 306:11-18. [PMID: 28385181 DOI: 10.1016/j.jneuroim.2017.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/20/2017] [Accepted: 02/21/2017] [Indexed: 12/14/2022]
Abstract
Interleukin-10 (IL-10) is a anti-inflammatory cytokine, which controls inflammation by inhibiting the synthesis of several cytokines produced by Th1 cells and macrophages. The association between Interleukin-10 promoter polymorphisms with the risk of multiple sclerosis (MS) remains inconclusive. In this study, a meta-analysis has been performed to assess the relationship between IL-10 gene polymorphisms rs1800896, rs1800871 and rs1800872 with the risk of MS. Nine case-control studies were selected involving 2755 participants. The association between the polymorphisms and MS was examined by the pooled odds ratios (ORs) with 95% confidence intervals (CIs) in allelic, homozygote, heterozygote, dominant and recessive genetic models. Of analyzed genetic models, the pooled ORs and CIs of each SNPs calculated based on random (I2>50) or fixed effects (I2<50) methods, which showed no significant association (p-value>0.05) of genetic predisposition with MS susceptibility across Asian and Caucasian populations. In addition, assessment based on funnel plot and Egger's linear regression test suggests no publication bias in all analyzed genetic models. Overall, our results demonstrated that rs1800896, rs1800871 and rs1800872 polymorphisms may not be the risk factor for the development of MS in both the populations.
Collapse
Affiliation(s)
- V Ramakrishnan
- Genetics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - R S Akram Husain
- Genetics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Shiek Ssj Ahmed
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
32
|
Devarapu SK, Lorenz G, Kulkarni OP, Anders HJ, Mulay SR. Cellular and Molecular Mechanisms of Autoimmunity and Lupus Nephritis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:43-154. [PMID: 28526137 DOI: 10.1016/bs.ircmb.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autoimmunity involves immune responses directed against self, which are a result of defective self/foreign distinction of the immune system, leading to proliferation of self-reactive lymphocytes, and is characterized by systemic, as well as tissue-specific, inflammation. Numerous mechanisms operate to ensure the immune tolerance to self-antigens. However, monogenetic defects or genetic variants that weaken immune tolerance render susceptibility to the loss of immune tolerance, which is further triggered by environmental factors. In this review, we discuss the phenomenon of immune tolerance, genetic and environmental factors that influence the immune tolerance, factors that induce autoimmunity such as epigenetic and transcription factors, neutrophil extracellular trap formation, extracellular vesicles, ion channels, and lipid mediators, as well as costimulatory or coinhibitory molecules that contribute to an autoimmune response. Further, we discuss the cellular and molecular mechanisms of autoimmune tissue injury and inflammation during systemic lupus erythematosus and lupus nephritis.
Collapse
Affiliation(s)
- S K Devarapu
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - G Lorenz
- Klinikum rechts der Isar, Abteilung für Nephrologie, Technische Universität München, Munich, Germany
| | | | - H-J Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - S R Mulay
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
33
|
Valkema PA, Luymes CH, Witteveen JE, le Cessie S, Appelman-Dijkstra NM, Hogendoorn PCW, Hamdy NAT. High prevalence of autoimmune disease in the rare inflammatory bone disorder sternocostoclavicular hyperostosis: survey of a Dutch cohort. Orphanet J Rare Dis 2017; 12:20. [PMID: 28122596 PMCID: PMC5267408 DOI: 10.1186/s13023-017-0573-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/18/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sternocostoclavicular hyperostosis (SCCH; ORPHA178311) is a rare inflammatory disorder of the axial skeleton, the precise pathophysiology of which remains to be established. We addressed the potential association of SCCH with autoimmune processes by evaluating the lifetime prevalence of autoimmune disease in 70 patients with adult-onset SCCH and 518 SCCH-unaffected first-degree relatives (parents, siblings and children). Danish hospital registry data for autoimmune diseases were used as reference data. RESULTS The mean age of interviewed patients was 56.3 years (range 26-80 years) and 86% were female. Interviewed patients belonged to 63 families, with four families having clusters of 2-3 patients. A diagnosis of at least one autoimmune disease was reported in 20 SCCH patients (29%) and in 47 relatives (9.1%), compared to an estimated 3.9% prevalence of autoimmune disease in the Danish reference population. A diversity of autoimmune diseases was reported in SCCH patients and relatives, most frequently psoriasis vulgaris (14%). Palmoplantar pustulosis was reported by 28 patients (40%). In SCCH patients, inclusion of palmoplantar pustulosis as putative autoimmune disease increased the overall prevalence to 54%. CONCLUSIONS The high prevalence of autoimmune disease in patients with sternocostoclavicular hyperostosis and their first-degree relatives suggests that autoimmunity may play a role in the still elusive pathophysiology of the intriguing osteogenic response to inflammation observed in this rare bone disorder.
Collapse
Affiliation(s)
- Pieter A Valkema
- Department of Medicine, Division of Endocrinology & Centre for Bone Quality, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, The Netherlands
| | - Clare H Luymes
- Department of Medicine, Division of Endocrinology & Centre for Bone Quality, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, The Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Janneke E Witteveen
- Department of Medicine, Division of Endocrinology & Centre for Bone Quality, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, The Netherlands
| | - Saskia le Cessie
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Natasha M Appelman-Dijkstra
- Department of Medicine, Division of Endocrinology & Centre for Bone Quality, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, The Netherlands
| | | | - Neveen A T Hamdy
- Department of Medicine, Division of Endocrinology & Centre for Bone Quality, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333ZA, The Netherlands.
| |
Collapse
|
34
|
Safari-Alighiarloo N, Rezaei-Tavirani M, Taghizadeh M, Tabatabaei SM, Namaki S. Network-based analysis of differentially expressed genes in cerebrospinal fluid (CSF) and blood reveals new candidate genes for multiple sclerosis. PeerJ 2016; 4:e2775. [PMID: 28028462 PMCID: PMC5183126 DOI: 10.7717/peerj.2775] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The involvement of multiple genes and missing heritability, which are dominant in complex diseases such as multiple sclerosis (MS), entail using network biology to better elucidate their molecular basis and genetic factors. We therefore aimed to integrate interactome (protein-protein interaction (PPI)) and transcriptomes data to construct and analyze PPI networks for MS disease. METHODS Gene expression profiles in paired cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) samples from MS patients, sampled in relapse or remission and controls, were analyzed. Differentially expressed genes which determined only in CSF (MS vs. control) and PBMCs (relapse vs. remission) separately integrated with PPI data to construct the Query-Query PPI (QQPPI) networks. The networks were further analyzed to investigate more central genes, functional modules and complexes involved in MS progression. RESULTS The networks were analyzed and high centrality genes were identified. Exploration of functional modules and complexes showed that the majority of high centrality genes incorporated in biological pathways driving MS pathogenesis. Proteasome and spliceosome were also noticeable in enriched pathways in PBMCs (relapse vs. remission) which were identified by both modularity and clique analyses. Finally, STK4, RB1, CDKN1A, CDK1, RAC1, EZH2, SDCBP genes in CSF (MS vs. control) and CDC37, MAP3K3, MYC genes in PBMCs (relapse vs. remission) were identified as potential candidate genes for MS, which were the more central genes involved in biological pathways. DISCUSSION This study showed that network-based analysis could explicate the complex interplay between biological processes underlying MS. Furthermore, an experimental validation of candidate genes can lead to identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Nahid Safari-Alighiarloo
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Taghizadeh
- Bioinformatics Department, Institute of Biochemistry and Biophysics, Tehran University , Tehran , Iran
| | - Seyyed Mohammad Tabatabaei
- Medical Informatics Department, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeed Namaki
- Immunology Department, Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
35
|
Restrepo NA, Butkiewicz M, McGrath JA, Crawford DC. Shared Genetic Etiology of Autoimmune Diseases in Patients from a Biorepository Linked to De-identified Electronic Health Records. Front Genet 2016; 7:185. [PMID: 27812365 PMCID: PMC5071319 DOI: 10.3389/fgene.2016.00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 01/15/2023] Open
Abstract
Autoimmune diseases represent a significant medical burden affecting up to 5–8% of the U.S. population. While genetics is known to play a role, studies of common autoimmune diseases are complicated by phenotype heterogeneity, limited sample sizes, and a single disease approach. Here we performed a targeted genetic association study for cases of multiple sclerosis (MS), rheumatoid arthritis (RA), and Crohn's disease (CD) to assess which common genetic variants contribute individually and pleiotropically to disease risk. Joint modeling and pathway analysis combining the three phenotypes were performed to identify common underlying mechanisms of risk of autoimmune conditions. European American cases of MS, RA, and CD, (n = 119, 53, and 129, respectively) and 1924 controls were identified using de-identified electronic health records (EHRs) through a combination of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) billing codes, Current Procedural Terminology (CPT) codes, medication lists, and text matching. As expected, hallmark SNPs in MS, such as DQA1 rs9271366 (OR = 1.91; p = 0.008), replicated in the present study. Both MS and CD were associated with TIMMDC1 rs2293370 (OR = 0.27, p = 0.01; OR = 0.25, p = 0.02; respectively). Additionally, PDE2A rs3781913 was significantly associated with both CD and RA (OR = 0.46, p = 0.02; OR = 0.32, p = 0.02; respectively). Joint modeling and pathway analysis identified variants within the KEGG NOD-like receptor signaling pathway and Shigellosis pathway as being correlated with the combined autoimmune phenotype. Our study replicated previously-reported genetic associations for MS and CD in a population derived from de-identified EHRs. We found evidence to support a shared genetic etiology between CD/MS and CD/RA outside of the major histocompatibility complex region and identified KEGG pathways indicative of a bacterial pathogenesis risk for autoimmunity in a joint model. Future work to elucidate this shared etiology will be key in the development of risk models as envisioned in the era of precision medicine.
Collapse
Affiliation(s)
- Nicole A Restrepo
- Department of Epidemiology and Biostatistics, Case Western Reserve University Cleveland, OH, USA
| | - Mariusz Butkiewicz
- Department of Epidemiology and Biostatistics, Case Western Reserve University Cleveland, OH, USA
| | - Josephine A McGrath
- Vanderbilt Eye Institute, Vanderbilt University Medical Center Nashville, TN, USA
| | - Dana C Crawford
- Department of Epidemiology and Biostatistics, Case Western Reserve UniversityCleveland, OH, USA; Institute for Computational Biology, Case Western Reserve UniversityCleveland, OH, USA
| |
Collapse
|
36
|
Harris JE. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev 2016; 269:11-25. [PMID: 26683142 DOI: 10.1111/imr.12369] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For decades, research in autoimmunity has focused primarily on immune contributions to disease. Yet recent studies report elevated levels of reactive oxygen species and abnormal activation of the unfolded protein response in cells targeted by autoimmunity, implicating cellular stress originating from the target tissue as a contributing factor. A better understanding of this contribution may help to answer important lingering questions in organ-specific autoimmunity, as to what factors initiate disease and what directs its tissue specificity. Vitiligo, an autoimmune disease of the skin, has been the focus of translational research for over 30 years, and both melanocyte stress and immune mechanisms have been thought to be mutually exclusive explanations for pathogenesis. Chemical-induced vitiligo is a unique clinical presentation that reflects the importance of environmental influences on autoimmunity, provides insight into a new paradigm linking cell stress to the immune response, and serves as a template for other autoimmune diseases. In this review, I will discuss the evidence for cell stress contributions to a number of autoimmune diseases, the questions that remain, and how vitiligo, an underappreciated example of organ-specific autoimmunity, helps to answer them.
Collapse
Affiliation(s)
- John E Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
37
|
Abstract
The development of multiple disease-relevant autoantibodies is a hallmark of autoimmune diseases. In autoimmune type 1 diabetes (T1D), a variable time frame of autoimmunity precedes the clinically overt disease. The relevance of T follicular helper (TFH) cells for the immune system is increasingly recognized. Their pivotal contribution to antibody production by providing help to germinal center (GC) B cells facilitates the development of a long-lived humoral immunity. Their complex differentiation process, involving various stages and factors like B cell lymphoma 6 (Bcl6), is strictly controlled, as anomalous regulation of TFH cells is connected with immunopathologies. While the adverse effects of a TFH cell-related insufficient humoral immunity are obvious, the role of increased TFH frequencies in autoimmune diseases like T1D is currently highlighted. High levels of autoantigen trigger an excessive induction of TFH cells, consequently resulting in the production of autoantibodies. Therefore, TFH cells might provide promising approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Martin G Scherm
- Institute for Diabetes Research, Independent Young Investigator Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, Munich, 80939, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Verena B Ott
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München and Division of Metabolic Diseases, Technische Universität München, Parkring 13, Garching, 85748, Germany
- Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 2a, Garching, 85748, Germany
| | - Carolin Daniel
- Institute for Diabetes Research, Independent Young Investigator Group Immune Tolerance in Type 1 Diabetes, Helmholtz Diabetes Center at Helmholtz Zentrum München, Heidemannstrasse 1, Munich, 80939, Germany.
- Deutsches Zentrum für Diabetesforschung (DZD), am Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.
| |
Collapse
|
38
|
Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection. Vet Immunol Immunopathol 2016; 171:17-20. [PMID: 26964713 PMCID: PMC7112786 DOI: 10.1016/j.vetimm.2016.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 11/23/2022]
Abstract
Laboratory cats resistant to primary FIPV infection were purposely inbred. P, F1 and F1/P backcross cats were tested for resistance to primary and secondary FIPV exposures. Resistance to primary and secondary FIPV infection decreased as a result of inbreeding. Loss of heterozygosity is a risk factor for FIP. Resistance to FIPV infection is genetically complex.
A previous study demonstrated the existence of a natural resistance to feline infectious peritonitis virus (FIPV) among 36% of randomly bred laboratory cats. A genome wide association study (GWAS) on this population suggested that resistance was polygenic but failed to identify any strong specific associations. In order to enhance the power of GWAS or whole genome sequencing to identify strong genetic associations, a decision was made to positively select for resistance over three generations. The inbreeding experiment began with a genetically related parental (P) population consisting of three toms and four queens identified from among the survivors of the earlier study and belonging to a closely related subgroup (B). The subsequent effects of inbreeding were measured using 42 genome-wide STR markers. P generation cats produced 57 first filial (F1) kittens, only five of which (9.0%) demonstrated a natural resistance to FIPV infection. One of these five F1 survivors was then used to produce six F1/P-backcrosses kittens, only one of which proved resistant to FIP. Six of eight of the F1 and F1/P survivors succumbed to a secondary exposure 4–12 months later. Therefore, survival after both primary and secondary infection was decreased rather than increased by positive selection for resistance. The common genetic factor associated with this diminished resistance was a loss of heterozygosity.
Collapse
|
39
|
Abstract
Our understanding of epigenetics in complex diseases is rapidly advancing and increasingly influencing the practice of medicine. Much is known about disruption of chromatin-modifying enzymes in malignant disease, but knowledge of irregular epigenetics in immune-driven disorders is just emerging. Epigenetic factors, such as DNA or histone modifications, are indispensable for precise gene expression in diverse immune cell types. Thus a disruption of epigenetic landscapes likely has a large impact on immune homeostasis. Moreover, the low concordance rates for most autoimmune diseases suggest that epigenetics contribute to immune tolerance disturbance. Here we review the important role of epigenetics for initiation, maintenance, tolerance, and training of immune responses. We discuss evolving evidence that DNA/histone modifications and chromatin-modifying enzymes are altered in immune-based diseases. Furthermore, we explore the potential of small molecules targeting epigenetic machinery, some of which are already used in oncology, as a way to reset the immune response in disease.
Collapse
|
40
|
Castiblanco J, Sarmiento-Monroy JC, Mantilla RD, Rojas-Villarraga A, Anaya JM. Familial Aggregation and Segregation Analysis in Families Presenting Autoimmunity, Polyautoimmunity, and Multiple Autoimmune Syndrome. J Immunol Res 2015; 2015:572353. [PMID: 26697508 PMCID: PMC4677210 DOI: 10.1155/2015/572353] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022] Open
Abstract
Studies documenting increased risk of developing autoimmune diseases (ADs) have shown that these conditions share several immunogenetic mechanisms (i.e., the autoimmune tautology). This report explored familial aggregation and segregation of AD, polyautoimmunity, and multiple autoimmune syndrome (MAS) in 210 families. Familial aggregation was examined for first-degree relatives. Segregation analysis was implemented as in S.A.G.E. release 6.3. Data showed differences between late- and early-onset families regarding their age, age of onset, and sex. Familial aggregation of AD in late- and early-onset families was observed. For polyautoimmunity as a trait, only aggregation was observed between sibling pairs in late-onset families. No aggregation was observed for MAS. Segregation analyses for AD suggested major gene(s) with no clear discernible classical known Mendelian transmission in late-onset families, while for polyautoimmunity and MAS no model was implied. Data suggest that polyautoimmunity and MAS are not independent traits and that gender, age, and age of onset are interrelated factors influencing autoimmunity.
Collapse
Affiliation(s)
- John Castiblanco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan Camilo Sarmiento-Monroy
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Ruben Dario Mantilla
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Adriana Rojas-Villarraga
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63-C-69, Bogotá, Colombia
| |
Collapse
|
41
|
Pedersen NC, Liu H, Leonard A, Griffioen L. A search for genetic diversity among Italian Greyhounds from Continental Europe and the USA and the effect of inbreeding on susceptibility to autoimmune disease. Canine Genet Epidemiol 2015; 2:17. [PMID: 26526059 PMCID: PMC4628233 DOI: 10.1186/s40575-015-0030-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies documented the problem of inbreeding among Italian Greyhounds (IG) from the USA and its possible role in a multiple autoimmune disease syndrome. The present study is an extension of these earlier experiments and had two objectives: 1) to identify pockets of additional genetic diversity that might still exist among IG from the USA and Continental Europe, and 2) to determine how loss of genetic diversity within the genome and in the dog leukocyte antigen (DLA) complex relates to the problem of autoimmune disease in IG from the USA. Genetic testing was conducted using 33 short tandem repeat (STR) loci across 25 chromosomes and 7 STR loci that associated with specific dog leukocyte antigen (DLA) class I and II haplotypes. Standard genetic assessment tests based on allele frequencies and internal relatedness (IR) were used as measures of breed-wide and individual heterozygosity. Results The results of these tests demonstrated that IG from the USA and Continental Europe belonged to a single breed but were genetically distinguishable by genomic allele frequencies, DLA class I and II haplotypes, and principal coordinate analysis (PCoA). In the second part of the study, 85 IG from the USA that had suffered various autoimmune disorders (case) and 104 healthy dogs (control) of comparable age were studied for genetic associations with disease. Case dogs were found to be significantly more homozygous in the DLA regions than control dogs. Principal coordinate analysis did not differentiate case from control populations. No specific STR-associated DLA-class I or II haplotype was associated with increased autoimmune disease risks. Reasons for the loss of genetic diversity and increased homozygosity among IG from the USA were studied using registration data and deep pedigrees. The breed in the USA started from a small number of founders from Europe and has remained relatively isolated and small in numbers, limiting breeding choices especially in the period before modern transportation and artificial insemination. An additional cause of lost diversity and increased homozygosity has been the influence of famous sires and their show-winning progeny. The most influential of these sires was Ch. Dasa’s King of the Mountain (King) born in 1978. Virtually all contemporary IG from the USA have King at least once in 10 generation pedigrees and 18 % of the genome of contemporary IG from the USA is shared with King. Conclusions It was concluded that artificial genetic bottlenecks have concentrated numerous genetic polymorphisms responsible for autoimmune disease and that these risk factors did not originate in a specific individual or bloodline of the breed. Rather, they were of ancestral origin in both purebred and random bred dogs and inherited by descent. Italian Greyhound breeders in the USA have several options to improve breed health: 1) breed against homozygosity within the genome and in the DLA region, 2) avoid breeding dogs that have suffered an autoimmune disorder, 3) increase diversity by incorporating the genetic differences that exist in IG from Continental Europe, or 4) outcross to other small sighthound breeds. The latter two approaches must be undertaken with care to avoid introduction of new deleterious traits and to maximize retention and dissemination of new genetic diversity.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616 USA
| | | | | |
Collapse
|
42
|
Wenzlau JM, Fain PR, Gardner TJ, Frisch LM, Annibale B, Hutton JC. ATPase4A Autoreactivity and Its Association With Autoimmune Phenotypes in the Type 1 Diabetes Genetics Consortium Study. Diabetes Care 2015; 38 Suppl 2:S29-S36. [PMID: 26405069 PMCID: PMC4582907 DOI: 10.2337/dcs15-2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/04/2015] [Indexed: 02/05/2023]
Abstract
Autoantibodies targeting the H+/K+-ATPase proton pump of the gastric parietal cell (parietal cell antibodies [PCA]) are diagnostic of atrophic body gastritis (ABG) leading to pernicious anemia (PA). PCA, ABG, and PA occur in increased frequency in patients with type 1 diabetes and their relatives and are considered "minor" components of forms of autoimmune polyglandular syndrome (APS). A customized radioimmunoprecipitation assay was applied to 6,749 samples from the Type 1 Diabetes Genetics Consortium to measure ATP4A autoreactivity. Autoantibody prevalence was correlated with variants in HLA class II, PTPN22, and CTLA4 genes. With an ATP4A radioimmunoprecipitation assay, PCA were detected in sera from 20.9% of affected individuals. PCA prevalence increased with age and was greater in females (25.3%) than males (16.5%) and among Hispanics (36.3%) and blacks (26.2%) compared with non-Hispanic whites (20.8%) and Asians (16.7%). PCA and other organ-specific autoantibodies GAD65, IA-2, thyroid peroxidase (TPO), 21-hydroxylase (21-OH), and transglutaminase (TG) clustered within families with heritability estimates from 71 to 95%. PCA clustered with TPO, 21-OH, and persistent GAD65 autoantibodies but not with celiac (TG) or IA-2 autoantibodies. PCA-positive subjects showed an increased frequency of DRB1*0404, DPB1*0201, and PTPN22 R620W (rs2476601-T) and a decreased frequency of DRB1*0101, DPB1*0301, and CTLA4 CT60 (rs3087243-T). Genetic variants accounted for 4-5% of the heritable risk for PCA. The same alleles were associated with other autoantibody phenotypes in a consistent pattern. Whereas most of the heritable risk for PCA and other antibodies reflects genetic effects that are tissue specific, parietal cell autoimmunity is a major pathogenetic contributor in APS2.
Collapse
Affiliation(s)
- Janet M Wenzlau
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Pamela R Fain
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Thomas J Gardner
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Lisa M Frisch
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Bruno Annibale
- Digestive and Liver Disease Unit, University "La Sapienza," Sant'Andrea Hospital, Rome, Italy
| | - John C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| |
Collapse
|
43
|
Wang L, Wu LF, Lu X, Mo XB, Tang ZX, Lei SF, Deng FY. Integrated Analyses of Gene Expression Profiles Digs out Common Markers for Rheumatic Diseases. PLoS One 2015; 10:e0137522. [PMID: 26352601 PMCID: PMC4564267 DOI: 10.1371/journal.pone.0137522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/18/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Rheumatic diseases have some common symptoms. Extensive gene expression studies, accumulated thus far, have successfully identified signature molecules for each rheumatic disease, individually. However, whether there exist shared factors across rheumatic diseases has yet to be tested. METHODS We collected and utilized 6 public microarray datasets covering 4 types of representative rheumatic diseases including rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, and osteoarthritis. Then we detected overlaps of differentially expressed genes across datasets and performed a meta-analysis aiming at identifying common differentially expressed genes that discriminate between pathological cases and normal controls. To further gain insights into the functions of the identified common differentially expressed genes, we conducted gene ontology enrichment analysis and protein-protein interaction analysis. RESULTS We identified a total of eight differentially expressed genes (TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, PRF1), each associated with at least 3 of the 4 studied rheumatic diseases. Meta-analysis warranted the significance of the eight genes and highlighted the general significance of four genes (CX3CR1, LY96, TLR5, and PRF1). Protein-protein interaction and gene ontology enrichment analyses indicated that the eight genes interact with each other to exert functions related to immune response and immune regulation. CONCLUSION The findings support that there exist common factors underlying rheumatic diseases. For rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and osteoarthritis diseases, those common factors include TNFSF10, CX3CR1, LY96, TLR5, TXN, TIA1, PRKCH, and PRF1. In-depth studies on these common factors may provide keys to understanding the pathogenesis and developing intervention strategies for rheumatic diseases.
Collapse
Affiliation(s)
- Lan Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Zai-Xiang Tang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
- * E-mail:
| |
Collapse
|
44
|
Pedersen NC, Brucker L, Tessier NG, Liu H, Penedo MCT, Hughes S, Oberbauer A, Sacks B. The effect of genetic bottlenecks and inbreeding on the incidence of two major autoimmune diseases in standard poodles, sebaceous adenitis and Addison's disease. Canine Genet Epidemiol 2015; 2:14. [PMID: 26401342 PMCID: PMC4579369 DOI: 10.1186/s40575-015-0026-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/06/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sebaceous adenitis (SA) and Addison's disease (AD) increased rapidly in incidence among Standard Poodles after the mid-twentieth century. Previous attempts to identify specific genetic causes using genome wide association studies and interrogation of the dog leukocyte antigen (DLA) region have been non-productive. However, such studies led us to hypothesize that positive selection for desired phenotypic traits that arose in the mid-twentieth century led to intense inbreeding and the inadvertent amplification of AD and SA associated traits. RESULTS This hypothesis was tested with genetic studies of 761 Standard, Miniature, and Miniature/Standard Poodle crosses from the USA, Canada and Europe, coupled with extensive pedigree analysis of thousands more dogs. Genome-wide diversity across the world-wide population was measured using a panel of 33 short tandem repeat (STR) loci. Allele frequency data were also used to determine the internal relatedness of individual dogs within the population as a whole. Assays based on linkage between STR genomic loci and DLA genes were used to identify class I and II haplotypes and disease associations. Genetic diversity statistics based on genomic STR markers indicated that Standard Poodles from North America and Europe were closely related and reasonably diverse across the breed. However, genetic diversity statistics, internal relatedness, principal coordinate analysis, and DLA haplotype frequencies showed a marked imbalance with 30 % of the diversity in 70 % of the dogs. Standard Poodles with SA and AD were strongly linked to this inbred population, with dogs suffering with SA being the most inbred. No single strong association was found between STR defined DLA class I or II haplotypes and SA or AD in the breed as a whole, although certain haplotypes present in a minority of the population appeared to confer moderate degrees of risk or protection against either or both diseases. Dogs possessing minor DLA class I haplotypes were half as likely to develop SA or AD as dogs with common haplotypes. Miniature/Standard Poodle crosses being used for outcrossing were more genetically diverse than Standard Poodles and genetically distinguishable across the genome and in the DLA class I and II region. CONCLUSIONS Ancestral genetic polymorphisms responsible for SA and AD entered Standard Poodles through separate lineages, AD earlier and SA later, and were increasingly fixed by a period of close linebreeding that was related to popular bloodlines from the mid-twentieth century. This event has become known as the midcentury bottleneck or MCB. Sustained positive selection resulted in a marked imbalance in genetic diversity across the genome and in the DLA class I and II region. Both SA and AD were concentrated among the most inbred dogs, with genetic outliers being relatively disease free. No specific genetic markers other than those reflecting the degree of inbreeding were consistently associated with either disease. Standard Poodles as a whole remain genetically diverse, but steps should be taken to rebalance diversity using genetic outliers and if necessary, outcrosses to phenotypically similar but genetically distinct breeds.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - Lynn Brucker
- 1635 Grange Hall Road, 45432 Beavercreek, OH USA
| | | | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - Maria Cecilia T Penedo
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - Shayne Hughes
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - Anita Oberbauer
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - Ben Sacks
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, One Shields Avenue, 95616 Davis, CA USA
| |
Collapse
|
45
|
Abstract
Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Studies in humans and experimental animal models are revealing the genetic and environmental factors that contribute to autoimmunity. A major goal of research in this area is to exploit this knowledge to better understand the pathogenesis of autoimmune diseases and to develop strategies for reestablishing the normal balance between effector and regulatory immune responses.
Collapse
|
46
|
Zhou Y, Liu M, Li J, Hashmi F, Mao Z, Zhang N, Zhou L, Lv W, Zheng J, Nie X, Li C. Impact of V-ets Erythroblastosis Virus E26 Oncogene Homolog 1 Gene Polymorphisms Upon Susceptibility to Autoimmune Diseases: A Meta-Analysis. Medicine (Baltimore) 2015; 94:e923. [PMID: 26039128 PMCID: PMC4616355 DOI: 10.1097/md.0000000000000923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
V-ets erythroblastosis virus E26 oncogene homolog 1 (ETS1) is recognized as a gene of risk to autoimmune diseases (ADs). Two single nucleotide polymorphisms (SNPs) in ETS1 (rs1128334 G>A and rs10893872 T>C) were considered associated with ADs risk. However, the results remain conflicting.We performed a meta-analysis to evaluate more precise estimations of any relationship. We searched PubMed, OvidSP, and Chinese National Knowledge Infrastructure databases (papers published prior to September 12, 2014) and extracted data from eligible studies. Meta-analysis was performed using the STATA 12.0 software. Random effect model or fixed effect model were chosen according to the study heterogeneities.A total of 11 studies including 7359 cases (9660 controls) for rs1128334 and 8 studies including 5419 cases (7122 controls) for rs10893872 were involved in this meta-analysis. Overall, our results showed that there were significant associations for rs1128334 with AD risk in 5 genetic models, both in pooled analysis and in systemic lupus erythematous (SLE) subgroup, and in 3 genetic models of the uveitis subgroup. Although for rs10893872, the results showed that there were significant associations in allele model both in pooled analysis and in SLE subgroup. As a conclusion, this meta-analysis demonstrated that these 2 SNPs (rs1128334 and rs10893872) in ETS1 were associated with ADs risk.
Collapse
Affiliation(s)
- Ye Zhou
- From the School of Biotechnology (YZ), Southern Medical University, Guangzhou, China; Department of Physiology and Biophysics (ML, FH), Virginia Commonwealth University School of Medicine, Richmond, VA; Nanfang Hospital (JL, WL, XN, CL), Southern Medical University, Guangzhou; Department of Intensive Care Unit (ZM), Chinese PLA General Hospital, Beijing; First College of Clinical Medicine (NZ), Shandong University of Traditional Chinese Medicine, Jinan, China; Department of Medicine (LZ), Virginia Commonwealth University, Richmond, VA; The Eye Hospital (JZ), Wenzhou Medical University, Wenzhou; and School of Traditional Chinese Medicine (XN, CL), Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Autoimmune/inflammatory syndrome induced by adjuvant (ASIA) evolution after silicone implants. Who is at risk? Clin Rheumatol 2015; 34:1661-6. [DOI: 10.1007/s10067-015-2931-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 12/28/2022]
|
48
|
Evoli A, Caliandro P, Iorio R, Alboini PE, Damato V, LaTorre G, Provenzano C, Marino M, Lauriola L, Scuderi F, Bartoccioni E. Poly-autoimmunity in patients with myasthenia gravis: A single-center experience. Autoimmunity 2015; 48:412-7. [PMID: 25868386 DOI: 10.3109/08916934.2015.1031890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We evaluated the co-occurrence of autoimmune diseases (ADs) in a large population of myasthenia gravis (MG) patients from a single center. Our survey included 984 patients, 904 with anti-acetylcholine receptor antibodies and 80 with anti-muscle specific kinase antibodies. The anti-acetylcholine receptor positive population included patients with early-onset (age at onset ≤ 50 years), late-onset and thymoma-associated disease. Follow-up ranged 2-40 years. Two-hundred and fourteen ADs were diagnosed in 185 patients; 26 of them had two or more ADs in association with MG. Thyroid disorders were the most common and, together with vitiligo and thrombocytopenia, occurred in all disease subsets. Otherwise, there was a broad variability with partial overlap among patient groups. The highest rate of ADs was observed in early-onset patients, while clusters, i.e. 2 or more ADs other than MG in the same individual, were more common among thymoma cases. Thirty-four diseases were diagnosed at the same time, 88 occurred before and 92 after the onset of MG. On multivariate analysis, immunosuppressive treatment was the only independent variable which negatively influenced the risk of developing other ADs in our cohort.
Collapse
Affiliation(s)
- Amelia Evoli
- a Institute of Neurology, Catholic University , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li C, Fu W, Zhang Y, Zhou L, Mao Z, Lv W, Li J, Zhou Y. Meta-analysis of microRNA-146a rs2910164 G>C polymorphism association with autoimmune diseases susceptibility, an update based on 24 studies. PLoS One 2015; 10:e0121918. [PMID: 25830862 PMCID: PMC4382023 DOI: 10.1371/journal.pone.0121918] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/05/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Published data showed that the susceptibility of autoimmune diseases (ADs) was associated with the polymorphism rs2910164 in microRNA-146a (miR-146a). However, the results remain controversial so far. Two meta-analyses published in 2013 and 2014 came to opposite conclusions. In order to derive a more precise estimation of the relationship, we performed this meta-analysis. METHODS We searched the PubMed, OvidSP and CNKI databases (published prior to September 8th, 2014) and extracted data from eligible studies. The procedure of meta-analysis was performed by using the Stata 12.0 software. Random effect model or fixed effect model were chosen respectively, according to the between study heterogeneities. RESULTS A total of 24 case-control studies, 11 more than previous meta-analysis on this topic, were involved. We took stratified analyses by different ethnicities and different types of diseases in different genetic models. In Caucasian subgroup, significant increased risks of GC genotype and GC+CC genotype with ADs susceptibility were found in heterozygote model (GC vs GG, OR = 1.38, 95% CI 1.04-1.83, p = 0.024) and dominant model (GC+CC vs GG, OR = 1.37, 95% CI 1.01-1.85, p = 0.041), respectively. Meanwhile, in other disease subgroup, significant increased risks of C allele, CC genotype and GC+CC genotype were found in allele model (C vs G, OR = 1.16, 95% CI 1.04-1.31, p = 0.010), homozygote model (CC vs GG, OR = 1.42, 95% CI 1.10-1.84, p = 0.006) and dominant model (GC+CC vs GG, OR = 1.25, 95% CI 1.04-1.51, p = 0.020), respectively. CONCLUSIONS MiR-146a rs2910164 G>C polymorphism was associated with the susceptibility of ADs.
Collapse
Affiliation(s)
- Changzheng Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijun Fu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Zhang
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Liang Zhou
- Department of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhi Mao
- Department of Intensive Care Unit, Chinese PLA General Hospital, Beijing, China
| | - Weiran Lv
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Juan Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (YZ); (JL)
| | - Ye Zhou
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (YZ); (JL)
| |
Collapse
|
50
|
Abstract
Substantial progress in molecular immunology, coupled with an increasing focus on translational research and an enthusiasm for personalized medicine, has resulted in a rapid expansion in the field of immune biomarkers in recent years. In this Science and Society article, we provide a conceptual overview of the field and discuss the progress that has been made so far, as well as the future potential in the context of the scientific, logistical, financial, legal and ethical framework within which this research is being carried out and translated into clinical use.
Collapse
|