1
|
Downs KM. The mouse allantois: new insights at the embryonic-extraembryonic interface. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210251. [PMID: 36252214 PMCID: PMC9574631 DOI: 10.1098/rstb.2021.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
During the early development of Placentalia, a distinctive projection emerges at the posterior embryonic-extraembryonic interface of the conceptus; its fingerlike shape presages maturation into the placental umbilical cord, whose major role is to shuttle fetal blood to and from the chorion for exchange with the mother during pregnancy. Until recently, the biology of the cord's vital vascular anlage, called the body stalk/allantois in humans and simply the allantois in rodents, has been largely unknown. Here, new insights into the development of the mouse allantois are featured, from its origin and mechanism of arterial patterning through its union with the chorion. Key to generating the allantois and its critical functions are the primitive streak and visceral endoderm, which together are sufficient to create the entire fetal-placental connection. Their newly discovered roles at the embryonic-extraembryonic interface challenge conventional wisdom, including the physical limits of the primitive streak, its function as sole purveyor of mesoderm in the mouse, potency of visceral endoderm, and the putative role of the allantois in the germ line. With this working model of allantois development, understanding a plethora of hitherto poorly understood orphan diseases in humans is now within reach. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
2
|
Nusanti S, Sari RI, Siregar NC, Sidik M. The Effect of Citicoline on Ethambutol Optic Neuropathy: Histopathology and Immunohistochemistry Analysis of Retina Ganglion Cell Damage Level in Rat Model. J Ocul Pharmacol Ther 2022; 38:584-589. [PMID: 36074092 DOI: 10.1089/jop.2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Ethambutol therapy in certain doses and period can cause bilateral ocular intoxication. There is no definitive therapy that has been found to prevent damage to retina neuronal cells in ethambutol optic neuropathy (EON) cases. Citicoline is thought to have a potential effect to maintain retinal neuron cells. This study aimed to analyze the effect of citicoline on damaged rat ganglion cells in EON. Methods: An experimental study of 15 Wistar rats was divided into 3 groups: the nontreatment group (A), the ethambutol (35 mg/kg/day) group (B), and the ethambutol (35 mg/kg/day) and citicoline (1 g/kg/day) group (C). Groups B and C were given treatment orally for 30 days, then a histopathology examination was performed to analyze retinal ganglion cell (RGC) density, and immunohistochemistry to assess bcl-2 and caspase-3 expression. Results: RGC density of rat with ethambutol intoxication that received citicoline was higher than those who did not get citicoline (P < 0.001). The rat retina ganglion layer without citicoline administration is thicker than the one with citicoline, the increase in thickness is due to the formation of vacuoles in the cytoplasm of ganglion cells. Rat with citicoline obtained higher bcl-2 ganglion expression, and lower caspase-3 expression compared with rat without citicoline. Conclusions: The ganglion cells damage process caused by EON can be suppressed by citicoline administration. It was proven by analyzing RGC density, ganglion layer thickness, and expression level of bcl-2 and caspase-3 on rat model.
Collapse
Affiliation(s)
- Syntia Nusanti
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rani Indira Sari
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Nurjati Chaerani Siregar
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Muhamad Sidik
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
3
|
Xu DC, Wang L, Yamada KM, Baena-Lopez LA. Non-apoptotic activation of Drosophila caspase-2/9 modulates JNK signaling, the tumor microenvironment, and growth of wound-like tumors. Cell Rep 2022; 39:110718. [PMID: 35443185 PMCID: PMC9082238 DOI: 10.1016/j.celrep.2022.110718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/15/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Resistance to apoptosis due to caspase deregulation is considered one of the main hallmarks of cancer. However, the discovery of novel non-apoptotic caspase functions has revealed unknown intricacies about the interplay between these enzymes and tumor progression. To investigate this biological problem, we capitalized on a Drosophila tumor model with human relevance based on the simultaneous overactivation of the EGFR and the JAK/STAT signaling pathways. Our data indicate that widespread non-apoptotic activation of initiator caspases limits JNK signaling and facilitates cell fate commitment in these tumors, thus preventing the overgrowth and exacerbation of malignant features of transformed cells. Intriguingly, caspase activity also reduces the presence of macrophage-like cells with tumor-promoting properties in the tumor microenvironment. These findings assign tumor-suppressing activities to caspases independent of apoptosis, while providing molecular details to better understand the contribution of these enzymes to tumor progression.
Collapse
Affiliation(s)
- Derek Cui Xu
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA; Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire OX1 3RE, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.
| | | |
Collapse
|
4
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
The role of caspases as executioners of apoptosis. Biochem Soc Trans 2021; 50:33-45. [PMID: 34940803 DOI: 10.1042/bst20210751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Caspases are a family of cysteine aspartyl proteases mostly involved in the execution of apoptotic cell death and in regulating inflammation. This article focuses primarily on the evolutionarily conserved function of caspases in apoptosis. We summarise which caspases are involved in apoptosis, how they are activated and regulated, and what substrates they target for cleavage to orchestrate programmed cell death by apoptosis.
Collapse
|
6
|
Mondal T, Shivange GN, Tihagam RGT, Lyerly E, Battista M, Talwar D, Mosavian R, Urbanek K, Rashid NS, Harrell JC, Bos PD, Stelow EB, Stack MS, Bhatnagar S, Tushir‐Singh J. Unexpected PD-L1 immune evasion mechanism in TNBC, ovarian, and other solid tumors by DR5 agonist antibodies. EMBO Mol Med 2021; 13:e12716. [PMID: 33587338 PMCID: PMC7933954 DOI: 10.15252/emmm.202012716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Lack of effective immune infiltration represents a significant barrier to immunotherapy in solid tumors. Thus, solid tumor-enriched death receptor-5 (DR5) activating antibodies, which generates tumor debulking by extrinsic apoptotic cytotoxicity, remains a crucial alternate therapeutic strategy. Over past few decades, many DR5 antibodies moved to clinical trials after successfully controlling tumors in immunodeficient tumor xenografts. However, DR5 antibodies failed to significantly improve survival in phase-II trials, leading in efforts to generate second generation of DR5 agonists to supersize apoptotic cytotoxicity in tumors. Here we have discovered that clinical DR5 antibodies activate an unexpected immunosuppressive PD-L1 stabilization pathway, which potentially had contributed to their limited success in clinics. The DR5 agonist stimulated caspase-8 signaling not only activates ROCK1 but also undermines proteasome function, both of which contributes to increased PD-L1 stability on tumor cell surface. Targeting DR5-ROCK1-PD-L1 axis markedly increases immune effector T-cell function, promotes tumor regression, and improves overall survival in animal models. These insights have identified a potential clinically viable combinatorial strategy to revive solid cancer immunotherapy using death receptor agonism.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
| | - Gururaj N Shivange
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
| | - Rachisan GT Tihagam
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
| | - Evan Lyerly
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
- Undergraduate Research ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Michael Battista
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
- Undergraduate Research ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Divpriya Talwar
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
- Undergraduate Research ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Roxanna Mosavian
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
- Undergraduate Research ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Karol Urbanek
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
| | | | - J Chuck Harrell
- Department of PathologyMassey Cancer Center, VCURichmondVAUSA
| | - Paula D Bos
- Department of PathologyMassey Cancer Center, VCURichmondVAUSA
| | - Edward B Stelow
- Department of PathologyUniversity of VirginiaCharlottesvilleVAUSA
| | - M Sharon Stack
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameINUSA
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
- University of Virginia Cancer Center and Medical SchoolCharlottesvilleVAUSA
| | - Jogender Tushir‐Singh
- Laboratory of Novel BiologicsUniversity of VirginiaCharlottesvilleVAUSA
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVAUSA
- University of Virginia Cancer Center and Medical SchoolCharlottesvilleVAUSA
- DoD Ovarian Cancer Academy Early Career InvestigatorCharlottesvilleVAUSA
| |
Collapse
|
7
|
Félix LM, Luzio A, Antunes L, Coimbra AM, Valentim AM. Malformations and mortality in zebrafish early stages associated with elevated caspase activity after 24 h exposure to MS-222. Toxicol Appl Pharmacol 2020; 412:115385. [PMID: 33370555 DOI: 10.1016/j.taap.2020.115385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
Tricaine methanesulfonate (MS-222) is a commonly used anaesthetic agent for immobilization of aquatic species. However, delayed development and malformations have been observed in 24 hpf (hours post-fertilization) zebrafish embryos after long-term immobilization. Still, no comprehensive study has been described regarding zebrafish exposure to MS-222 during the first hours of development, which are one of the most sensitive life stages to toxicants. Therefore, this research aimed to assess the toxicity of a 24 h exposure to MS-222 on zebrafish embryonic development. Based on the MS-222 LC50, early blastula stage embryos (~2 hpf) were exposed to 0, 12.5, 25 and 50 mg L-1 for 24 h and then allowed to develop up to 144 hpf. The chromatographic analysis showed that this anaesthetic agent bioaccumulates in 26 hpf zebrafish larvae in a concentration-dependent manner. In addition, increased mortalities and skeletal abnormalities were observed at 144 hpf, namely in the highest tested concentration. Yet, no craniofacial anomalies were observed either by alcian blue or calcein staining methods. Independently of the tested concentration, decreased speed and distance travelled were perceived in 144 hpf larvae. At the biochemical level, decreased in vivo reactive oxygen species (ROS) generation and apoptosis was observed. Additionally, catalase activity was increased at 26 hpf while results of mRNA expression showed a decreased gclc transcript content at the same time-point. Overall, data obtained highlight the toxicological risk of MS-222 and support ROS-mediated cell death signalling changes through the elevation of catalase activity as an adaptative or protective response.
Collapse
Affiliation(s)
- Luís M Félix
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Laboratory Animal Science, IBMC - Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Laboratory Animal Science, IBMC - Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
8
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
9
|
Kabigting JET, Toyama Y. Interplay between caspase, Yes-associated protein, and mechanics: A possible switch between life and death? Curr Opin Cell Biol 2020; 67:141-146. [PMID: 33189987 DOI: 10.1016/j.ceb.2020.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023]
Abstract
Organism development requires fine-tuning of the cell number by apoptosis and cell division, as well as proper cell fate specification. These processes are achieved through the integration of intracellular signals and intercellular interactions with neighboring cells as well as the extracellular environment. Apoptosis, a form of cell death typically associated with development and homeostasis, is mainly regulated by the caspase family of proteases. Although caspases are known to initiate and execute apoptosis, it is also known that low caspase levels have a broad spectrum of nonapoptotic functions, including differentiation and organ growth. These different roles of caspases raise intriguing questions: how are caspase levels regulated and what defines the balance between life and death? In this review, we focus on some recent findings that highlight how nonlethal levels of caspase activity, transcriptional coregulator Yes-associated protein (YAP), and mechanical factors influence each other in determining cell fate. We further discuss a possibility that the mechanical signals encountered by cells could regulate the level of caspase activity by mechanics through YAP and, in turn, how this determines whether a cell is susceptible or resistant to undergoing apoptosis in response to cell death stimuli.
Collapse
Affiliation(s)
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543.
| |
Collapse
|
10
|
Vrolyk V, Desmarais MJ, Lambert D, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Göttingen Minipigs and Domestic Pigs: A Histomorphological and Immunohistochemical Study. Vet Pathol 2020; 57:889-914. [PMID: 33021158 DOI: 10.1177/0300985820954551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigs are considered one of the relevant animal models for ocular research as they share several histological and anatomical similarities with the human eye. With the increasing interest in juvenile animal models, this study aimed to describe the postnatal development of ocular structures in 16 Göttingen minipigs and 25 F2 domestic pigs, between birth and 6 months of age, using histopathology and immunohistochemistry against Ki-67, caspase-3, calbindin, glial fibrillary acidic protein, rhodopsin, and synaptophysin. All ocular structures in both pig breeds were incompletely developed at birth and for variable periods postnatally. Noteworthy histological features of immaturity included vascularization in the corneal stroma in neonatal Göttingen minipigs, increased cellularity in different substructures, remnants of the hyaloid vasculature, short and poorly ramified ciliary body processes, and a poorly developed cone inner segment. Increased cellular proliferation, highlighted by abundant Ki-67 immunolabeling, was observed in almost all developing structures of the pig eye for variable periods postnatally. Apoptosis, highlighted with caspase-3 immunolabeling, was observed in the retinal inner nuclear layer at birth and in the regressing hyaloid vasculature remnants. Immunohistochemistry against rhodopsin, synaptophysin, and calbindin demonstrated the short size of the developing photoreceptors and the immature cone inner segment morphology. Calbindin labeling revealed significant differences in the amount of positively labeled cone nuclei between the retinal area centralis and the non-area centralis regions. The elongation of Müller cell processes in the developing retina was shown with glial fibrillary acidic protein. In both pig breeds, the eyes reached histomorphological and immunohistochemical maturity at 6 months of age.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | | | - Daniel Lambert
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Julius Haruna
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Marie-Odile Benoit-Biancamano
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
11
|
Rahul, Naz F, Jyoti S, Siddique YH. Effect of kaempferol on the transgenic Drosophila model of Parkinson's disease. Sci Rep 2020; 10:13793. [PMID: 32796885 PMCID: PMC7429503 DOI: 10.1038/s41598-020-70236-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
The present study was aimed to study the effect of kaempferol, on the transgenic Drosophila model of Parkinson's disease. Kaempferol was added in the diet at final concentration of 10, 20, 30 and 40 µM and the effect was studied on various cognitive and oxidative stress markers. The results of the study showed that kaempferol, delayed the loss of climbing ability as well as the activity of PD flies in a dose dependent manner compared to unexposed PD flies. A dose-dependent reduction in oxidative stress markers was also observed. Histopathological examination of fly brains using anti-tyrosine hydroxylase immunostaining has revealed a significant dose-dependent increase in the expression of tyrosine hydroxylase in PD flies exposed to kaempferol. Molecular docking results revealed that kaempferol binds to human alpha synuclein at specific sites that might results in the inhibition of alpha synuclein aggregation and prevents the formation of Lewy bodies.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
12
|
Lubawy J, Słocińska M. Characterization of Gromphadorhina coquereliana hemolymph under cold stress. Sci Rep 2020; 10:12076. [PMID: 32694601 PMCID: PMC7374602 DOI: 10.1038/s41598-020-68941-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Low temperatures in nature occur together with desiccation conditions, causing changes in metabolic pathways and cellular dehydration, affecting hemolymph volume, water content and ion homeostasis. Although some research has been conducted on the effect of low temperature on Gromphadorhina coquereliana, showing that it can survive exposures to cold or even freezing, no one has studied the effect of cold on the hemolymph volume and the immune response of this cockroach. Here, we investigated the effect of low temperature (4 °C) on the abovementioned parameters, hemocyte morphology and total number. Cold stress affected hemocytes and the immune response, but not hemolymph volume. After stress, the number of circulating hemocytes decreased by 44.7%, but the ratio of apoptotic cells did not differ significantly between stressed and control individuals: 8.06% and 7.18%, respectively. The number of phagocyting hemocytes decreased by 16.66%, the hemocyte morphology drastically changed, and the F-actin cytoskeleton differed substantially in cold-stressed insects compared to control insects. Moreover, the surface area of the cells increased from 393.69 µm2 in the control to 458.38 µm2 in cold-treated animals. Together, our results show the links between cold stress and the cellular immune response, which probably results in the survival capability of this species.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
13
|
Naz F, Rahul, Fatima M, Naseem S, Khan W, Mondal AC, Siddique YH. Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson's disease. Neuropharmacology 2020; 177:108216. [PMID: 32707222 DOI: 10.1016/j.neuropharm.2020.108216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease due to the degeneration of dopaminergic neurons in substantia nigra pars compacta of the mid brain. The present study investigates the neuro-protective role of synthesized ropinirole silver nanocomposite (RPAgNC) in Drosophila model of PD. α-synuclein accumulation in the brain of flies (PD flies) leads to the damage of dopaminergic neurons, dopamine depletion, impaired muscular coordination, memory decline and increase in oxidative stress. Ingestion of the RPAgNC by Drosophila significantly prevented the neuronal degeneration compared to only ropinirole. The results confirm that the RPAgNC exerts more neuro-protective effect compared to dopamine agonist i.e. ropinirole as such drug in experimental PD flies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Mahino Fatima
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swaleha Naseem
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Wasi Khan
- Department of Physics, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Semaphorin-Mediated Corticospinal Axon Elimination Depends on the Activity-Induced Bax/Bak-Caspase Pathway. J Neurosci 2020; 40:5402-5412. [PMID: 32471877 DOI: 10.1523/jneurosci.3190-18.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Axon guidance molecules and neuronal activity have been implicated in the establishment and refinement of neural circuits during development. It is unclear, however, whether these guidance molecule- and activity-dependent mechanisms interact with one another to shape neural circuit formation. The formation of corticospinal (CS) circuits, which are essential for voluntary movements, involves both guidance molecule- and activity-dependent components during development. We previously showed that semaphorin6D (Sema6D)-plexinA1 (PlexA1) signaling eliminates ipsilateral projections of CS neurons in the spinal cord, while other studies demonstrate that CS projections to the spinal cord are eliminated in an activity-dependent manner. Here we show that inhibition of cortical neurons during postnatal development causes defects in elimination of ipsilateral CS projections in mice. We further show that mice that lack the activity-dependent Bax/Bak pathway or caspase-9 similarly exhibit defects in elimination of ipsilateral CS projections, suggesting that the activity-dependent Bax/Bak-caspase-9 pathway is essential for the removal of ipsilateral CS projections. Interestingly, either inhibition of neuronal activity in the cortex or deletion of Bax/Bak in mice causes a reduction in PlexA1 protein expression in corticospinal neurons. Finally, intracortical microstimulation induces activation of only contralateral forelimb muscles in control mice, whereas it induces activation of both contralateral and ipsilateral muscles in mice with cortical inhibition, suggesting that the ipsilaterally projecting CS axons that have been maintained in mice with cortical inhibition form functional connections. Together, these results provide evidence of a potential link between the repellent signaling of Sema6D-PlexA1 and neuronal activity to regulate axon elimination.SIGNIFICANCE STATEMENT Both axon guidance molecules and neuronal activity regulate axon elimination to refine neuronal circuits during development. However, the degree to which these mechanisms operate independently or cooperatively to guide network generation is unclear. Here, we show that neuronal activity-driven Bax/Bak-caspase signaling induces expression of the PlexA1 receptor for the repellent Sema6D molecule in corticospinal neurons (CSNs). This cascade eliminates ipsilateral projections of CSNs in the spinal cord during early postnatal development. The absence of PlexA1, neuronal activity, Bax and Bak, or caspase-9 leads to the maintenance of ipsilateral projections of CSNs, which can form functional connections with spinal neurons. Together, these studies reveal how the Sema6D-PlexA1 signaling and neuronal activity may play a cooperative role in refining CS axonal projections.
Collapse
|
15
|
Tyra LK, Nandi N, Tracy C, Krämer H. Yorkie Growth-Promoting Activity Is Limited by Atg1-Mediated Phosphorylation. Dev Cell 2020; 52:605-616.e7. [PMID: 32032548 DOI: 10.1016/j.devcel.2020.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/26/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023]
Abstract
The expression of multiple growth-promoting genes is coordinated by the transcriptional co-activator Yorkie with its major regulatory input provided by the Hippo-Warts kinase cascade. Here, we identify Atg1/ULK1-mediated phosphorylation of Yorkie as an additional inhibitory input independent of the Hippo-Warts pathway. Two serine residues in Yorkie, S74 and S97, are Atg1/ULK1 consensus target sites and are phosphorylated by ULK1 in vitro, thereby preventing its binding to Scalloped. In vivo, gain of function of Atg1, or its activator Acinus, caused elevated Yorkie phosphorylation and inhibited Yorkie's growth-promoting activity. Loss of function of Atg1 or Acinus raised expression of Yorkie target genes and increased tissue size. Unlike Atg1's role in autophagy, Atg1-mediated phosphorylation of Yorkie does not require Atg13. Atg1 is activated by starvation and other cellular stressors and therefore can impose temporary stress-induced constraints on the growth-promoting gene networks under the control of Hippo-Yorkie signaling.
Collapse
Affiliation(s)
- Lauren K Tyra
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nilay Nandi
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Charles Tracy
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Helmut Krämer
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
16
|
Kim BW, Jeong YE, Wong M, Martin LJ. DNA damage accumulates and responses are engaged in human ALS brain and spinal motor neurons and DNA repair is activatable in iPSC-derived motor neurons with SOD1 mutations. Acta Neuropathol Commun 2020; 8:7. [PMID: 32005289 PMCID: PMC6995159 DOI: 10.1186/s40478-019-0874-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
DNA damage is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, relationships between DNA damage accumulation, DNA damage response (DDR), and upper and lower motor neuron vulnerability in human ALS are unclear; furthermore, it is unknown whether epigenetic silencing of DNA repair pathways contributes to ALS pathogenesis. We tested the hypotheses that DNA damage accumulates in ALS motor neurons along with diminished DDR, and that DNA repair genes undergo hypermethylation. Human postmortem CNS tissue was obtained from ALS cases (N = 34) and age-matched controls without neurologic disease (N = 15). Compared to age-matched controls, abasic sites accumulated in genomic DNA of ALS motor cortex and laser capture microdissection-acquired spinal motor neurons but not in motor neuron mitochondrial DNA. By immunohistochemistry, DNA damage accumulated significantly in upper and lower motor neurons in ALS cases as single-stranded DNA and 8-hydroxy-deoxyguanosine (OHdG) compared to age-matched controls. Significant DDR was engaged in ALS motor neurons as evidenced by accumulation of c-Abl, nuclear BRCA1, and ATM activation. DNA damage and DDR were present in motor neurons at pre-attritional stages and throughout the somatodendritic attritional stages of neurodegeneration. Motor neurons with DNA damage were also positive for activated p53 and cleaved caspase-3. Gene-specific promoter DNA methylation pyrosequencing identified the DNA repair genes Ogg1, Apex1, Pnkp and Aptx as hypomethylated in ALS. In human induced-pluripotent stem cell (iPSC)-derived motor neurons with familial ALS SOD1 mutations, DNA repair capacity was similar to isogenic control motor neurons. Our results show that vulnerable neurons in human ALS accumulate DNA damage, and contrary to our hypothesis, strongly activate and mobilize response effectors and DNA repair genes. This DDR in ALS motor neurons involves recruitment of c-Abl and BRCA1 to the nucleus in vivo, and repair of DNA double-strand breaks in human ALS motor neurons with SOD1 mutations in cell culture.
Collapse
Affiliation(s)
- Byung Woo Kim
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Eun Jeong
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA
| | - Lee J Martin
- Department of Pathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD, 21205-2196, USA.
- Division of Neuropathology, the Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Choi EO, Hwang HJ, Choi YH. Induction of Apoptosis Scutellaria baicalensis Georgi Root Extract by Inactivation of the Phosphatidyl Inositol 3-kinase/Akt Signaling Pathway in Human Leukemia U937 Cells. J Cancer Prev 2019; 24:11-19. [PMID: 30993090 PMCID: PMC6453591 DOI: 10.15430/jcp.2019.24.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/03/2022] Open
Abstract
Background The roots of Scutellaria baicalensis Georgi (Labiatae) have been widely used in traditional medicine for treatment of various diseases. In this study, we investigated the effects of ethanol extracts of S. baicalensis roots (EESB) on the growth ofn human leukemia U937 cells. Methods The effect of EESB on cell viability was measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apoptosis was determined using 4,6-diamidino-2-phenyllindile staining and flow cytometry. The effects of EESB on the expression of regulatory proteins of apoptosis and phosphatidyl inositol 3-kinase (PI3K)/Akt signaling were determined by Western blotting. Caspase activity and mitochondrial membrane potential (MMP) were measured using flow cytometric analysis. Results EESB significantly inhibited the growth of U937 cells and induced apoptosis, which was associated with down-regulation of anti-apoptotic Bcl-2, up-regulation of pro-apoptotic Bax, the loss of MMP and activation of caspase-9 and -3. We also found that EESB enhanced the expression of death receptors (DRs) and their associated ligands and induced the activation of caspase-8 and truncation of Bid. In addition, EESB suppressed PI3K/Akt signaling and EESB-induced apoptosis and growth inhibition were further increased by inhibition of PI3K activity. Conclusions Our results indicated that the pro-apoptotic effect of EESB was mediated through the activation of DR-mediated intrinsic and mitochondria-mediated extrinsic apoptosis pathways and inhibition of the PI3K/Akt signaling in U937 cells.
Collapse
Affiliation(s)
- Eun Ok Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dong-Eui University, Busan, Korea
| | - Hye-Jin Hwang
- Anti-Aging Research Center, Dong-Eui University, Busan, Korea.,Department of Food and Nutrition, College of Nursing, Healthcare Sciences & Human Ecology, Dong-Eui University, Busan, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan, Korea.,Anti-Aging Research Center, Dong-Eui University, Busan, Korea
| |
Collapse
|
18
|
Verleih M, Borchel A, Rebl A, Brenmoehl J, Kühn C, Goldammer T. A molecular survey of programmed cell death in rainbow trout: Structural and functional specifications of apoptotic key molecules. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:57-69. [DOI: 10.1016/j.cbpb.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/24/2022]
|
19
|
Rady H, Salem S, Ez El-Arab M. Primmorph extracts and mesohyls of marine sponges inhibit proliferation and migration of hepatocellular carcinoma cells in vitro. J Pharm Anal 2019; 9:284-291. [PMID: 31452967 PMCID: PMC6704043 DOI: 10.1016/j.jpha.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer recurrence and severe side effects of currently being used chemotherapeutic agents reduce their clinical efficacy. Thus, there is a constant need to develop alternative anticancer drugs. Sustainable supply is an important challenge facing marine-based drug discovery. Primmorph, a 3D cell culture system, could provide a sustainable source to produce metabolites for anticancer drugs from marine sponges. In the present work, the anticancer activity of primmorph extracts and mesohyls of Negombata magnifica, Hemimycle arabica, Crella spinulata, and Stylissa carteri sponges was evaluated. Antiproliferative activity was studied in terms of cytotoxicity, colony formation, cell cycle, and apoptosis. Migration was assessed by migration assay and matrix metalloproteinase activity. The expression of proliferation and migration-related genes was analyzed using real time PCR. Migration and proliferation activities of HepG2 cells were inhibited by treatment with primmorph extracts and mesohyls of N. magnifica, H. arabica, and C. spinulata. The mesohyl of S. carteri did not show any anticancer activity although the primmorph extract led to cell cycle arrest. Among the selected sponge species, the primmorph extract of C. spinulata was the most promising anticancer agent regarding antiproliferative and antimigratory activities. In addition, primmorph extracts have the advantage of working under well-defined and controlled conditions, which allows the easy application as a bioreactor.
Collapse
Affiliation(s)
- Hanaa Rady
- Chemistry of Natural Compound Department, National Research Centre, Cairo, Egypt
| | - Sohair Salem
- Molecular Genetics and Enzymology Department, National Research Centre, Cairo, Egypt
| | - Mohamed Ez El-Arab
- National Institute of Oceanography and Fisheries (NIOF), Hurghada, Egypt
| |
Collapse
|
20
|
Qiu GH, Que W, Yan S, Zheng X, Xie X, Huang C, Yang X, Hooi SC. The pro-survival function of DLEC1 and its protection of cancer cells against 5-FU-induced apoptosis through up-regulation of BCL-XL. Cytotechnology 2019; 71:23-33. [PMID: 30607648 DOI: 10.1007/s10616-018-0258-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor DLEC1 has been shown to promote cell proliferation when AP-2α2 is down-regulated in HCT116 stable clones, suggesting its pro-survival nature. However, the pro-survival function of DLEC1 has not been confirmed in other cells and its underlying mechanisms remain elusive. Therefore, we knocked down DLEC1 in a panel of cell lines and found that DLEC1 depletion caused various extents of cell death through intrinsic pathway. DLEC1 overexpression promoted cell survival and reduced cell death in cancer cells after 5-FU treatment, while DLEC1 down-regulation sensitized cancer cells to 5-FU. Further studies demonstrated that DLEC1 attenuated the increase in cleaved PARP, caspase-3 and caspase-7, the activity of caspase-9 and the diffusion of cytosolic cytochrome c from mitochondria. Our data also showed that BCL-XL was up-regulated by DLEC1 in stable clones after 5-FU treatment. Altogether, these results indicated that DLEC1 protects cells against cell death induced by 5-FU through the attenuation of active proteins in caspase cascade and the up-regulation of BCL-XL. Therefore, DLEC1 can be a pro-survival protein under certain circumstances and a potential therapeutic target for increasing sensitivity of cancer cells to 5-FU.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China.
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wutang Que
- Orthopedics Department, Longyan First Hospital, Longyan, 364000, Fujian, People's Republic of China
| | - Shanying Yan
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xiaojin Xie
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province Universities, Longyan University, Longyan, 364012, Fujian, People's Republic of China
- College of Life Sciences, Longyan University, Longyan, 364012, Fujian, People's Republic of China
| | - Shing Chuan Hooi
- Department of Physiology, Faculty of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
21
|
Baena-Lopez LA, Arthurton L, Bischoff M, Vincent JP, Alexandre C, McGregor R. Novel initiator caspase reporters uncover previously unknown features of caspase-activating cells. Development 2018; 145:dev170811. [PMID: 30413561 PMCID: PMC6288387 DOI: 10.1242/dev.170811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
The caspase-mediated regulation of many cellular processes, including apoptosis, justifies the substantial interest in understanding all of the biological features of these enzymes. To complement functional assays, it is crucial to identify caspase-activating cells in live tissues. Our work describes novel initiator caspase reporters that, for the first time, provide direct information concerning the initial steps of the caspase activation cascade in Drosophila tissues. One of our caspase sensors capitalises on the rapid subcellular localisation change of a fluorescent marker to uncover novel cellular apoptotic events relating to the actin-mediated positioning of the nucleus before cell delamination. The other construct benefits from caspase-induced nuclear translocation of a QF transcription factor. This feature enables the genetic manipulation of caspase-activating cells and reveals the spatiotemporal patterns of initiator caspase activity. Collectively, our sensors offer experimental opportunities not available by using previous reporters and have proven useful to illuminate previously unknown aspects of caspase-dependent processes in apoptotic and non-apoptotic cellular scenarios.
Collapse
Affiliation(s)
- Luis Alberto Baena-Lopez
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, UK
| | - Lewis Arthurton
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxfordshire, OX1 3RE, UK
| | - Marcus Bischoff
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9ST, UK
| | | | | | - Reuben McGregor
- Faculty of Medical and Health Sciences, Molecular Medicine & Pathology, The University of Auckland, M&HS Building 502, 85 Park Road, Grafton, Auckland 1023, New Zealand
| |
Collapse
|
22
|
Caspases orchestrate microglia instrumental functions. Prog Neurobiol 2018; 171:50-71. [DOI: 10.1016/j.pneurobio.2018.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022]
|
23
|
Baena-Lopez LA, Arthurton L, Xu DC, Galasso A. Non-apoptotic Caspase regulation of stem cell properties. Semin Cell Dev Biol 2018; 82:118-126. [PMID: 29102718 PMCID: PMC6191935 DOI: 10.1016/j.semcdb.2017.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
The evolutionarily conserved family of proteins called caspases are the main factors mediating the orchestrated programme of cell suicide known as apoptosis. Since this protein family was associated with this essential biological function, the majority of scientific efforts were focused towards understanding their molecular activation and function during cell death. However, an emerging body of evidence has highlighted a repertoire of non-lethal roles within a large variety of cell types, including stem cells. Here we intend to provide a comprehensive overview of the key role of caspases as regulators of stem cell properties. Finally, we briefly discuss the possible pathological consequences of caspase malfunction in stem cells, and the therapeutic potential of caspase regulation applied to this context.
Collapse
Affiliation(s)
| | - Lewis Arthurton
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Derek Cui Xu
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| | - Alessia Galasso
- University of Oxford, Sir William Dunn School of Pathology, Oxford, OX13RE, United Kingdom
| |
Collapse
|
24
|
Forsberg J, Li X, Akpinar B, Salvatori R, Ott M, Zhivotovsky B, Olsson M. A caspase-2-RFXANK interaction and its implication for MHC class II expression. Cell Death Dis 2018; 9:80. [PMID: 29362422 PMCID: PMC5833739 DOI: 10.1038/s41419-017-0144-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022]
Abstract
Despite recent achievements implicating caspase-2 in tumor suppression, the enzyme stands out from the apoptotic caspase family as a factor whose function requires further clarification. To specify enzyme characteristics through the definition of interacting proteins in apoptotic or non-apoptotic settings, a yeast 2-hybrid (Y2H) screen was performed using the full-length protein as bait. The current report describes the analysis of a captured prey and putative novel caspase-2 interacting factor, the regulatory factor X-associated ankyrin-containing protein (RFXANK), previously associated with CIITA, the transactivator regulating cell-type specificity and inducibility of MHC class II gene expression. The interaction between caspase-2 and RFXANK was verified by co-immunoprecipitations using both exogenous and endogenous proteins, where the latter approach suggested that binding of the components occurs in the cytoplasm. Cellular co-localization was confirmed by transfection of fluorescently conjugated proteins. Enhanced caspase-2 processing in RFXANK-overexpressing HEK293T cells treated with chemotherapeutic agents further supported Y2H data. Yet, no distinct differences with respect to MHC class II expression were observed in plasma membranes of antigen-presenting cells derived from wild type and caspase-2-/- mice. In contrast, increased levels of the total MHC class II protein was evident in protein lysates from caspase-2 RNAi-silenced leukemia cell lines and B-cells isolated from gene-targeted mice. Together, these data identify a novel caspase-2-interacting factor, RFXANK, and indicate a potential non-apoptotic role for the enzyme in the control of MHC class II gene regulation.
Collapse
Affiliation(s)
- Jeremy Forsberg
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xinge Li
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Birce Akpinar
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Boris Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| | - Magnus Olsson
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Rodriguez AM, Downs KM. Visceral endoderm and the primitive streak interact to build the fetal-placental interface of the mouse gastrula. Dev Biol 2017; 432:98-124. [PMID: 28882402 PMCID: PMC5980994 DOI: 10.1016/j.ydbio.2017.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
Hypoblast/visceral endoderm assists in amniote nutrition, axial positioning and formation of the gut. Here, we provide evidence, currently limited to humans and non-human primates, that hypoblast is a purveyor of extraembryonic mesoderm in the mouse gastrula. Fate mapping a unique segment of axial extraembryonic visceral endoderm associated with the allantoic component of the primitive streak, and referred to as the "AX", revealed that visceral endoderm supplies the placentae with extraembryonic mesoderm. Exfoliation of the AX was dependent upon contact with the primitive streak, which modulated Hedgehog signaling. Resolution of the AX's epithelial-to-mesenchymal transition (EMT) by Hedgehog shaped the allantois into its characteristic projectile and individualized placental arterial vessels. A unique border cell separated the delaminating AX from the yolk sac blood islands which, situated beyond the limit of the streak, were not formed by an EMT. Over time, the AX became the hindgut lip, which contributed extensively to the posterior interface, including both embryonic and extraembryonic tissues. The AX, in turn, imparted antero-posterior (A-P) polarity on the primitive streak and promoted its elongation and differentiation into definitive endoderm. Results of heterotopic grafting supported mutually interactive functions of the AX and primitive streak, showing that together, they self-organized into a complete version of the fetal-placental interface, forming an elongated structure that exhibited A-P polarity and was composed of the allantois, an AX-derived rod-like axial extension reminiscent of the embryonic notochord, the placental arterial vasculature and visceral endoderm/hindgut.
Collapse
Affiliation(s)
- Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
26
|
Nzuza S, Zondi S, Owira PMO. Naringin prevents HIV-1 protease inhibitors-induced metabolic complications in vivo. PLoS One 2017; 12:e0183355. [PMID: 29121676 PMCID: PMC5679664 DOI: 10.1371/journal.pone.0183355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022] Open
Abstract
Background Insulin resistance, glucose intolerance and overt diabetes are known metabolic complications associated with chronic use of HIV-Protease Inhibitors. Naringin is a grapefruit-derived flavonoid with anti-diabetic, anti-dyslipidemia, anti-inflammatory and anti-oxidant activities. Objectives The study investigated the protective effects of naringin on glucose intolerance and impaired insulin secretion and signaling in vivo. Methods Male Wistar rats were divided into six groups (n = 6) and were daily orally treated with distilled water {3.0 ml/kg body weight (BW)}, atazanavir (133 mg/kg BW), saquinavir (333 mg/kg BW) with or without naringin (50 mg/kg BW), respectively for 56 days. Body weights and water consumption were recorded daily. Glucose tolerance tests were carried out on day 55 of the treatment and thereafter, the rats were sacrificed by halothane overdose. Results Atazanavir (ATV)- or saquinavir (SQV)-treated rats exhibited significant weight loss, polydipsia, elevated Fasting blood glucose (FBG), reduced Fasting Plasma Insulin (FPI) and expression of phosphorylated, Insulin Receptor Substrate-1 (IRS-1) and Akt proteins, hepatic and pancreatic glucokinase levels, and also increasing pancreatic caspase-3 and -9 as well as UCP2 protein expressions compared to controls, respectively. These effects were completely reversed by naringin treatment. Conclusion Naringin prevents PI-induced glucose intolerance and impairment of insulin signaling and as nutritional supplement it could therefore alleviate metabolic complications associated with antiretroviral therapy.
Collapse
Affiliation(s)
- Sanelisiwe Nzuza
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, School of Health Sciences, University of KwaZulu–Natal, Westville, Durban, South Africa
| | - Sindiswa Zondi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, School of Health Sciences, University of KwaZulu–Natal, Westville, Durban, South Africa
| | - Peter M. O. Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Science, School of Health Sciences, University of KwaZulu–Natal, Westville, Durban, South Africa
- * E-mail:
| |
Collapse
|
27
|
Modulation of apoptotic response by LAR family phosphatases-cIAP1 signaling during urinary tract morphogenesis. Proc Natl Acad Sci U S A 2017; 114:E9016-E9025. [PMID: 29073098 DOI: 10.1073/pnas.1707229114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The elimination of unwanted cells by apoptosis is necessary for tissue morphogenesis. However, the cellular control of morphogenetic apoptosis is poorly understood, notably the modulation of cell sensitivity to apoptotic stimuli. Ureter maturation, the process by which the ureter is displaced to the bladder wall, represents an exquisite example of morphogenetic apoptosis, requiring the receptor protein tyrosine phosphatases (RPTPs): LAR and RPTPσ. Here we show that LAR-RPTPs act through cellular inhibitor of apoptosis protein 1 (cIAP1) to modulate caspase 3,7-mediated ureter maturation. Pharmacologic or genetic inactivation of cIAP1 reverts the apoptotic deficit of LAR-RPTP-deficient embryos. Moreover, Birc2 (cIAP1) inactivation generates excessive apoptosis leading to vesicoureteral reflux in newborns, which underscores the importance of apoptotic modulation during urinary tract morphogenesis. We finally demonstrate that LAR-RPTP deficiency increases cIAP1 stability during apoptotic cell death. Together these results identify a mode of cIAP1 regulation playing a critical role in the cellular response to apoptotic pathway activation in the embryo.
Collapse
|
28
|
Elsherbini AM, Mohammed MAR, Ibrahim FM. Effect of Biochanin A versus 17β estradiol in rat submandibular salivary gland. J Oral Sci 2017; 59:579-588. [PMID: 28993577 DOI: 10.2334/josnusd.16-0651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The epigenetic nature of development mandates the observation of the effect of any exogenous substance, especially those with estrogenic activities, during critical phases of development. The submandibular gland (SMG) presents as a great model due to extensive postnatal development, and is known to be regulated and affected by hormones as well as growth factors. Herein, we observed postnatal development following low doses of Biochanin A (BCA) and 17β estradiol (E2) in rats. The pups were randomly divided into four groups: control, BCA, E2, and dimethyl sulfoxide (DMSO), and euthanized at the 6th, 15th, 30th, and 60th postnatal days (PND). SMG morphogenesis was assessed. The nuclear expression of estrogen receptor beta (ERβ) was evaluated immunohistochemically; ERβ expression was up-regulated by BCA and down-regulated by E2. Similarly, caspase three gene expression, assessed by real time polymerase chain reaction was increased in the BCA group but decreased in the E2 group. A significant decrease in epidermal growth factor gene expression was noted at PND 30. The results presented by this study provide evidence that the effect of a postnatal exposure of the SMG to Biochanin A during development could be linked to sex hormone-dependent disorders.
Collapse
Affiliation(s)
| | | | - Fatma M Ibrahim
- Oral Biology Department, Faculty of Dentistry, Mansoura University
| |
Collapse
|
29
|
Bonyadi Rad E, Mostofi S, Katschnig M, Schmutz P, Pawelkiewicz M, Willumeit-Römer R, Schäfer U, Weinberg A. Differential apoptotic response of MC3T3-E1 pre-osteoblasts to biodegradable magnesium alloys in an in vitro direct culture model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:155. [PMID: 28875381 PMCID: PMC5585274 DOI: 10.1007/s10856-017-5969-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/24/2017] [Indexed: 06/01/2023]
Abstract
The biodegradable magnesium-based implants have been widely utilized in medical orthopedic applications in recent years. We have recently shown that direct culture on Pure Mg and Mg2Ag alloys lead to a progressive differentiation impairment of MC3T3-E1 pre-osteoblasts. In this study, we aimed to analyze the apoptotic reaction of MC3T3-E1 cells in response to the direct culture on Pure Mg, Mg2Ag and Extreme High Pure Mg (XHP Mg) alloy samples. Our results demonstrated that long-term culturing of MC3T3-E1 cells on Pure Mg and Mg2Ag alloys induce time-dependent expression of active caspase-3 (active casp-3) and cleaved PARP-1 (cl. PARP-1), the hallmark of apoptosis reactions concomitant with a significant increase in the number of dead cells. However, direct culture on XHP Mg material results in a lower number of dead cells in comparison to Pure Mg and Mg2Ag alloys. Furthermore, XHP Mg materials influence expression of apoptotic markers in a process resembles that of observed in osteogenic condition apparently indicative of MC3T3-E1 osteodifferentiation. This study indicates that Mg alloy samples mediated differential apoptotic reactions of MC3T3-E1 cells can be ascribed to factors such as distinct topography and hydrophobicity features of Mg material surfaces, contrasting nature/composition of corrosion products as well as different impurities of these materials. Therefore, initial Mg alloys surface preparation, controlling the growth and composition of corrosion products and Mg alloys purity enhancement are necessary steps towards optimizing the Mg alloys usage in medical orthopedic applications.
Collapse
Affiliation(s)
- Ehsan Bonyadi Rad
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Graz, Austria.
| | - Sepideh Mostofi
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Graz, Austria
| | - Matthias Katschnig
- Department of Polymer Engineering and Science, Montanuniversitaet Leoben, Leoben, Austria
| | - Patrik Schmutz
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland
| | - Magdalena Pawelkiewicz
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Ute Schäfer
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Annelie Weinberg
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Graz, Austria
| |
Collapse
|
30
|
Skilled Movements Require Non-apoptotic Bax/Bak Pathway-Mediated Corticospinal Circuit Reorganization. Neuron 2017; 94:626-641.e4. [PMID: 28472660 DOI: 10.1016/j.neuron.2017.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/04/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Early postnatal mammals, including human babies, can perform only basic motor tasks. The acquisition of skilled behaviors occurs later, requiring anatomical changes in neural circuitry to support the development of coordinated activation or suppression of functionally related muscle groups. How this circuit reorganization occurs during postnatal development remains poorly understood. Here we explore the connectivity between corticospinal (CS) neurons in the motor cortex and muscles in mice. Using trans-synaptic viral and electrophysiological assays, we identify the early postnatal reorganization of CS circuitry for antagonistic muscle pairs. We further show that this synaptic rearrangement requires the activity-dependent, non-apoptotic Bax/Bak-caspase signaling cascade. Adult Bax/Bak mutant mice exhibit aberrant co-activation of antagonistic muscle pairs and skilled grasping deficits but normal reaching and retrieval behaviors. Our findings reveal key cellular and molecular mechanisms driving postnatal motor circuit reorganization and the resulting impacts on muscle activation patterns and the execution of skilled movements.
Collapse
|
31
|
Huang JL, Liu W, Tian LH, Chai TT, Liu Y, Zhang F, Fu HY, Zhou HR, Shen JZ. Upregulation of long non-coding RNA MALAT-1 confers poor prognosis and influences cell proliferation and apoptosis in acute monocytic leukemia. Oncol Rep 2017; 38:1353-1362. [PMID: 28713913 PMCID: PMC5549035 DOI: 10.3892/or.2017.5802] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), a long non-coding RNA, has been documented to be a new prognostic marker and gene regulator in several types of cancer, but its potential involvement in acute myeloid leukemia (AML) remains unclear. This study investigated the expression and functional role of MALAT-1 in AML. MALAT-1 expression was assessed by real-time quantitative PCR. After lentiviral-mediated MALAT-1 knockdown, the proliferation of AML cells was determined by CCK-8 and colony formation assays. Cell cycle progression and apoptosis were evaluated by flow cytometry and the expression of caspase-3, −8 and −9 was assessed by western blot analysis. We found that MALAT-1 expression in patients with acute monocytic leukemia (M5) was significantly increased when compared with that of healthy controls, and the overall survival of M5 patients with high MALAT-1 expression was markedly reduced when compared with the overall survival of patients with low MALAT-1 expression. The analysis of cellular experiments showed that MALAT-1 silencing decreased the proliferation of M5 cells (U-937 and THP-1), inhibited cell cycle progression and increased apoptosis. Taken together, these findings suggest that high MALAT-1 expression is closely associated with poor prognosis in M5 patients and may play a role in leukemia cell proliferation and apoptosis, and may serve as a promising theranostic marker.
Collapse
Affiliation(s)
- Jin-Long Huang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Wei Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Li-Hong Tian
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Ting-Ting Chai
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yang Liu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Feng Zhang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Hai-Ying Fu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Hua-Rong Zhou
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jian-Zhen Shen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
32
|
Tsapras P, Nezis IP. Caspase involvement in autophagy. Cell Death Differ 2017; 24:1369-1379. [PMID: 28574508 DOI: 10.1038/cdd.2017.43] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
Caspases are a family of cysteine proteases widely known as the principal mediators of the apoptotic cell death response, but considerably less so as the contributors to the regulation of pathways outside cellular demise. In regards to autophagy, the modulatory roles of caspases have only recently begun to be adequately described. In contrast to apoptosis, autophagy promotes cell survival by providing energy and nutrients through the lysosomal degradation of cytoplasmic constituents. Under basal conditions autophagy and apoptosis cross-regulate each other through an elaborate network of interconnections which also includes the interplay between autophagy-related proteins (ATGs) and caspases. In this review we focus on the effects of this crosstalk at the cellular level, as we aim to concentrate the main observations from research conducted so far on the fine-tuning of autophagy by caspases. Several members of this protease-family have been found to directly interact with key ATGs involved in different tiers across the autophagic cascade. Therefore, we firstly outline the core mechanism of macroautophagy in brief. In an effort to emphasize the importance of the intricate cross-regulation of ATGs and caspases, we also present examples of autophagy's contribution to apoptotic cell death during development.
Collapse
Affiliation(s)
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
33
|
Kamber Kaya HE, Ditzel M, Meier P, Bergmann A. An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways. PLoS Genet 2017; 13:e1006438. [PMID: 28207763 PMCID: PMC5313150 DOI: 10.1371/journal.pgen.1006438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc’s apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells. Apoptosis is a programmed cell death mechanism which is conserved from flies to humans. Apoptosis is mediated by proteases, termed caspases that cleave cellular proteins and trigger the death of the cell. Activation of caspases is regulated at various levels such as protein-protein interaction for initiator caspases and ubiquitylation. Caspase 9 in mammals and its Drosophila ortholog Dronc carry a protein-protein interaction domain (CARD) in their prodomain which interacts with scaffolding proteins to form the apoptosome, a cell-death platform. Here, we show that Dronc is mono-ubiquitylated at Lysine 78 in its CARD domain. This ubiquitylation interferes with the formation of the apoptosome, causing inhibition of apoptosis. In addition to its apoptotic function, Dronc also participates in events where caspase activity is not required for cell killing, but for regulating other functions, so-called non-apoptotic functions of caspases such as apoptosis-induced proliferation. We found that mono-ubiquitylation of Lysine 78 plays an inhibitory role for these non-apoptotic functions of Dronc. Interestingly, we demonstrate that the catalytic activity of Dronc is not strictly required in these processes. Our in vivo study sheds light on how a single mono-ubiquitylation event could inhibit both apoptotic and non-apoptotic functions of a caspase.
Collapse
Affiliation(s)
- Hatem Elif Kamber Kaya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mark Ditzel
- Institute for Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, United Kingdom
| | - Andreas Bergmann
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Larsen BD, Sørensen CS. The caspase-activated DNase: apoptosis and beyond. FEBS J 2016; 284:1160-1170. [PMID: 27865056 DOI: 10.1111/febs.13970] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023]
Abstract
Organismal development and function requires multiple and accurate signal transduction pathways to ensure that proper balance between cell proliferation, differentiation, inactivation, and death is achieved. Cell death via apoptotic caspase signal transduction is extensively characterized and integral to this balance. Importantly, the view of apoptotic signal transduction has expanded over the previous decades. Subapoptotic caspase signaling has surfaced as mechanism that can promote the adoption of a range of cellular fates. An emerging mechanism of subapoptotic caspase signaling is the activation of the caspase-activated DNase (CAD) through controlled cleavage of the inhibitor of CAD (ICAD). CAD-induced DNA breaks incite a DNA damage response, frequently invoking p53 signaling, that transduces a change in cell fate. Cell differentiation and senescence are fates demonstrated to arise from CAD-induced DNA breaks. Furthermore, an apparent consequence of CAD activity is also emerging, as a potential source of oncogenic mutations. This review will discuss the mechanisms underlying CAD-induced DNA breaks and highlight how CAD activity promotes diverse cell fates.
Collapse
Affiliation(s)
- Brian D Larsen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, University of Copenhagen, Denmark
| |
Collapse
|
35
|
Teng X, Qin L, Le Borgne R, Toyama Y. Remodeling of adhesion and modulation of mechanical tensile forces during apoptosis in Drosophila epithelium. Development 2016; 144:95-105. [PMID: 27888195 DOI: 10.1242/dev.139865] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/10/2016] [Indexed: 02/01/2023]
Abstract
Apoptosis is a mechanism of eliminating damaged or unnecessary cells during development and tissue homeostasis. During apoptosis within a tissue, the adhesions between dying and neighboring non-dying cells need to be remodeled so that the apoptotic cell is expelled. In parallel, contraction of actomyosin cables formed in apoptotic and neighboring cells drives cell extrusion. To date, the coordination between the dynamics of cell adhesion and the progressive changes in tissue tension around an apoptotic cell is not fully understood. Live imaging of histoblast expansion, which is a coordinated tissue replacement process during Drosophila metamorphosis, shows remodeling of adherens junctions (AJs) between apoptotic and non-dying cells, with a reduction in the levels of AJ components, including E-cadherin. Concurrently, surrounding tissue tension is transiently released. Contraction of a supra-cellular actomyosin cable, which forms in neighboring cells, brings neighboring cells together and further reshapes tissue tension toward the completion of extrusion. We propose a model in which modulation of tissue tension represents a mechanism of apoptotic cell extrusion.
Collapse
Affiliation(s)
- Xiang Teng
- Department of Biological Sciences, National University of Singapore, Singapore 117543.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Lei Qin
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Roland Le Borgne
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, F-35043 Rennes, France.,Université Rennes 1, Faculté de Médecine, F35043 Rennes, France
| | - Yusuke Toyama
- Department of Biological Sciences, National University of Singapore, Singapore 117543 .,Mechanobiology Institute, National University of Singapore, Singapore 117411.,Temasek Life Sciences Laboratory, Singapore 117604
| |
Collapse
|
36
|
Krishnan P, Purushothaman KR, Purushothaman M, Turnbull IC, Tarricone A, Vasquez M, Jain S, Baber U, Lascano RA, Kini AS, Sharma SK, Moreno PR. Enhanced neointimal fibroblast, myofibroblast content and altered extracellular matrix composition: Implications in the progression of human peripheral artery restenosis. Atherosclerosis 2016; 251:226-233. [PMID: 27399649 DOI: 10.1016/j.atherosclerosis.2016.06.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS Neointimal cellular proliferation of fibroblasts and myofibroblasts is documented in coronary artery restenosis, however, their role in peripheral arterial disease (PAD) restenosis remains unclear. Our aim was to investigate the role of fibroblasts, myofibroblasts, and collagens in restenotic PAD. METHODS Nineteen PAD restenotic plaques were compared with 13 de novo plaques. Stellate cells (H&E), fibroblasts (FSP-1), myofibroblasts (α-actin/vimentin/FSP-1), cellular proliferation (Ki-67), and apoptosis (caspase-3 with poly ADP-ribose polymerase) were evaluated by immunofluorescence. Collagens were evaluated by picro-sirius red stain with polarization microscopy. Smooth muscle myosin heavy chain (SMMHC), IL-6 and TGF-β cytokines were analyzed by immunohistochemistry. RESULTS Restenotic plaques demonstrated increased stellate cells (2.7 ± 0.15 vs.1.3 ± 0.15) fibroblasts (2282.2 ± 85.9 vs. 906.4 ± 134.5) and myofibroblasts (18.5 ± 1.2 vs.10.6 ± 1.0) p = 0.0001 for all comparisons. In addition, fibroblast proliferation (18.4% ± 1.2 vs.10.4% ± 1.1; p = 0.04) and apoptosis (14.6% ± 1.3 vs.11.2% ± 0.6; p = 0.03) were increased in restenotic plaques. Finally, SMMHC (2.6 ± 0.12 vs.1.4 ± 0.15; p = 0.0001), type III collagen density (0.33 ± 0.06 vs. 0.17 ± 0.07; p = 0.0001), IL-6 (2.08 ± 1.7 vs.1.03 ± 2.0; p = 0.01), and TGF-β (1.80 ± 0.27 vs. 1.11 ± 0.18; p = 0.05) were increased in restenotic plaques. CONCLUSIONS Our study suggests proliferation and apoptosis of fibroblast and myofibroblast with associated increase in type III collagen may play a role in restenotic plaque progression. Understanding pathways involved in proliferation and apoptosis in neointimal cells, may contribute to future therapeutic interventions for the prevention of restenosis in PAD.
Collapse
Affiliation(s)
- Prakash Krishnan
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K-Raman Purushothaman
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Meerarani Purushothaman
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene C Turnbull
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Tarricone
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Vasquez
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sachin Jain
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Usman Baber
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rheoneil A Lascano
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Annapoorna S Kini
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samin K Sharma
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pedro R Moreno
- The Zena and Michael A. Weiner Cardiovascular Institute, The Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Department of Medicine/Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
37
|
Teshima THN, Ianez RCF, Coutinho-Camillo CM, Tucker AS, Lourenço SV. Apoptosis-associated protein expression in human salivary gland morphogenesis. Arch Oral Biol 2016; 69:71-81. [PMID: 27270224 DOI: 10.1016/j.archoralbio.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 05/13/2016] [Accepted: 05/15/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Salivary gland (SG) development is based on branching morphogenesis, in which programmed cell death has been proposed to play a role in cell signalling and organ shaping. In the mouse salivary gland apoptosis has been suggested to play a key role in lumen formation, removing the central cells of the epithelial stalks. Here we analyse the expression of several anti- and pro-regulators of apoptosis during human SG development in a range of developmental stages. DESIGN Foetal SGs obtained from the University of São Paulo were analysed by immunohistochemistry to assess the expression of apoptosis-associated proteins: caspases (caspase-6, -7, -9 and cleaved caspase-3), Bcl-2 family members (Bax, Bak, Bad, Bid, Bcl-2, Bcl-x and Bcl-xL), Survivin (BIRC5), Cytochrome C and Apaf-1. RESULTS Nuclear expression of Bax and Bak was identified in presumptive luminal areas at initial stages, while Bcl-xL showed the most relevant anti-apoptotic activity. Caspase-6, -7 and -9 were expressed during all stages, while interestingly cleaved caspase-3 showed no prominent expression, indicating that caspase-7 is the main effector. Apoptosome complex components Apaf-1 and Cytochrome C, as well as survivin were all positive in developing glands. CONCLUSIONS The particular expression pattern of several apoptotic regulators in human SG development suggests the existence of a fundamental role for apoptosis during duct formation. The absence of Bad and Bid expressions indicates that the instrinsic pathway is more active then the extrinsic during human gland formation. The subcellular localisation of intrinsic-apoptosis proteins correlated with apoptotic activity, but also suggested additional non-apoptotic functions.
Collapse
Affiliation(s)
- Tathyane H N Teshima
- Department of Stomatology, Dental School, University of Sao Paulo, Brazil Av Professor Lineu Prestes, 2227, Cidade Universitária, 05508-000 São Paulo, SP, Brazil.
| | - Renata C F Ianez
- Department of Pathology, A.C. Camargo Hospital, Sao Paulo, Brazil R. Taguá, 400, Liberdade, 01508-010 São Paulo, SP, Brazil, Brazil.
| | - Claudia M Coutinho-Camillo
- Department of Pathology, A.C. Camargo Hospital, Sao Paulo, Brazil R. Taguá, 400, Liberdade, 01508-010 São Paulo, SP, Brazil, Brazil.
| | - Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, UK Guy's Hospital, London Bridge, SE1 9RT London, United Kingdom, United Kingdom.
| | - Silvia V Lourenço
- Department of Stomatology, Dental School, University of Sao Paulo, Brazil Av Professor Lineu Prestes, 2227, Cidade Universitária, 05508-000 São Paulo, SP, Brazil; Department of Pathology, A.C. Camargo Hospital, Sao Paulo, Brazil R. Taguá, 400, Liberdade, 01508-010 São Paulo, SP, Brazil, Brazil.
| |
Collapse
|
38
|
Ding X, Sun G, Argaw YG, Wong JO, Easwaran S, Montell DJ. CasExpress reveals widespread and diverse patterns of cell survival of caspase-3 activation during development in vivo. eLife 2016; 5:e10936. [PMID: 27058168 PMCID: PMC4865370 DOI: 10.7554/elife.10936] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
Caspase-3 carries out the executioner phase of apoptosis, however under special circumstances, cells can survive its activity. To document systematically where and when cells survive caspase-3 activation in vivo, we designed a system, CasExpress, which drives fluorescent protein expression, transiently or permanently, in cells that survive caspase-3 activation in Drosophila. We discovered widespread survival of caspase-3 activity. Distinct spatial and temporal patterns emerged in different tissues. Some cells activated caspase-3 during their normal development in every cell and in every animal without evidence of apoptosis. In other tissues, such as the brain, expression was sporadic both temporally and spatially and overlapped with periods of apoptosis. In adults, reporter expression was evident in a large fraction of cells in most tissues of every animal; however the precise patterns varied. Inhibition of caspase activity in wing discs reduced wing size demonstrating functional significance. The implications of these patterns are discussed.
Collapse
Affiliation(s)
- Xun Ding
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, United States
| | - Gongping Sun
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Yewubdar G Argaw
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Jessica O Wong
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Sreesankar Easwaran
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
| | - Denise J Montell
- Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, United States
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
39
|
Abstract
The growth and patterning of anatomical structures from specific cellular fields in developing organisms relies on organizing centers that instruct surrounding cells to modify their behavior, namely migration, proliferation, and differentiation. We discuss here how organizers can form in adult organisms, a process of utmost interest for regenerative medicine. Animals like Hydra and planarians, which maintain their shape and fitness thanks to a highly dynamic homeostasis, offer a useful paradigm to study adult organizers in steady-state conditions. Beside the homeostatic context, these model systems also offer the possibility to study how organizers form de novo from somatic adult tissues. Both extracellular matrix remodeling and caspase activation play a key role in this transition, acting as promoters of organizer formation in the vicinity of the wound. Their respective roles and the crosstalk between them just start to be deciphered.
Collapse
Affiliation(s)
- Matthias C Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (IGe3), Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
40
|
Gregory CD, Ford CA, Voss JJLP. Microenvironmental Effects of Cell Death in Malignant Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:51-88. [PMID: 27558817 DOI: 10.1007/978-3-319-39406-0_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although apoptosis is well recognized as a cell death program with clear anticancer roles, accumulating evidence linking apoptosis with tissue repair and regeneration indicates that its relationship with malignant disease is more complex than previously thought. Here we review how the responses of neighboring cells in the microenvironment of apoptotic tumor cells may contribute to the cell birth/cell death disequilibrium that provides the basis for cancerous tissue emergence and growth. We describe the bioactive properties of apoptotic cells and consider, in particular, how apoptosis of tumor cells can engender a range of responses including pro-oncogenic signals having proliferative, angiogenic, reparatory, and immunosuppressive features. Drawing on the parallels between wound healing, tissue regeneration and cancer, we propose the concept of the "onco-regenerative niche," a cell death-driven generic network of tissue repair and regenerative mechanisms that are hijacked in cancer. Finally, we consider how the responses to cell death in tumors can be targeted to provide more effective and long-lasting therapies.
Collapse
Affiliation(s)
- Christopher D Gregory
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK.
| | - Catriona A Ford
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Jorine J L P Voss
- MRC Centre for Inflammation Research, University of Edinburgh Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
41
|
Apoptotic Caspases in Promoting Cancer: Implications from Their Roles in Development and Tissue Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:89-112. [PMID: 27558818 DOI: 10.1007/978-3-319-39406-0_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis, a major form of programmed cell death, is an important mechanism to remove extra or unwanted cells during development. In tissue homeostasis apoptosis also acts as a monitoring machinery to eliminate damaged cells in response to environmental stresses. During these processes, caspases, a group of proteases, have been well defined as key drivers of cell death. However, a wealth of evidence is emerging which supports the existence of many other non-apoptotic functions of these caspases, which are essential not only in proper organism development but also in tissue homeostasis and post-injury recovery. In particular, apoptotic caspases in stress-induced dying cells can activate mitogenic signals leading to proliferation of neighbouring cells, a phenomenon termed apoptosis-induced proliferation. Apparently, such non-apoptotic functions of caspases need to be controlled and restrained in a context-dependent manner during development to prevent their detrimental effects. Intriguingly, accumulating studies suggest that cancer cells are able to utilise these functions of caspases to their advantage to enable their survival, proliferation and metastasis in order to grow and progress. This book chapter will review non-apoptotic functions of the caspases in development and tissue homeostasis with focus on how these cellular processes can be hijacked by cancer cells and contribute to tumourigenesis.
Collapse
|
42
|
BOLKENT Ş, ÖZTAY F, GEZGİNCİ OKTAYOĞLU S, SANCAR BAŞ S, KARATUĞ A. A matter of regeneration and repair: caspases as the key molecules. Turk J Biol 2016. [DOI: 10.3906/biy-1507-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
43
|
Teshima T, Wells K, Lourenço S, Tucker A. Apoptosis in Early Salivary Gland Duct Morphogenesis and Lumen Formation. J Dent Res 2015; 95:277-83. [DOI: 10.1177/0022034515619581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salivary glands are essential for the maintenance of oral health by providing lubrication and antimicrobial protection to the mucosal and tooth surfaces. Saliva is modified and delivered to the oral cavity by a complex multifunctional ductal system. During development, these ducts form as solid tubes, which undergo cavitation to create lumens. Apoptosis has been suggested to play a role in this cavitation process along with changes in cell polarity. Here, we show that apoptosis occurs from the very earliest stages of mouse salivary gland development, much earlier than previously reported. Apoptotic cells were observed in the center of the first epithelial stalk at early-stage embryonic day 12.5 (E12.5) according to both TUNEL staining and cleaved caspase 3 immunofluorescence. The presumptive lumen space was highlighted by the colocalization of a predictive lumen marker, cytokeratin 7. At E14.5, as lumens start to form throughout the glands, apoptotic expression decreased while cytokeratin 7 remained positive. In vitro inhibition of all caspases in E12.5 and E13.5 salivary glands resulted in wider ducts, as compared with the controls, and a defect in lumen formation. In contrast, no such defect in lumen formation was observed at E14.5. Our data indicate that apoptosis is involved during early stages of gland formation (E12.5 onward) and appears important for shaping the forming ducts.
Collapse
Affiliation(s)
- T.H.N. Teshima
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - K.L. Wells
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, UK
| | - S.V. Lourenço
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo, Brazil
| | - A.S. Tucker
- Department of Craniofacial Development and Stem Cell Biology, King’s College London, London, UK
| |
Collapse
|
44
|
Hochreiter B, Garcia AP, Schmid JA. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. SENSORS 2015; 15:26281-314. [PMID: 26501285 PMCID: PMC4634415 DOI: 10.3390/s151026281] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
Abstract
Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Institute for Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße17, Vienna A-1090, Austria.
| | - Alan Pardo Garcia
- Institute for Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße17, Vienna A-1090, Austria.
| | - Johannes A Schmid
- Institute for Vascular Biology and Thrombosis Research, Medical University Vienna, Schwarzspanierstraße17, Vienna A-1090, Austria.
| |
Collapse
|
45
|
Obata F, Tanaka S, Kashio S, Tsujimura H, Sato R, Miura M. Induction of rapid and selective cell necrosis in Drosophila using Bacillus thuringiensis Cry toxin and its silkworm receptor. BMC Biol 2015; 13:48. [PMID: 26152191 PMCID: PMC4495774 DOI: 10.1186/s12915-015-0160-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/19/2015] [Indexed: 12/27/2022] Open
Abstract
Background Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Results Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. Conclusions With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a “proteinous drill” for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0160-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Shiho Tanaka
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - Soshiro Kashio
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hidenobu Tsujimura
- Developmental Biology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryoichi Sato
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,CREST, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
46
|
Abstract
The canonical role of p53 in preserving genome integrity and limiting carcinogenesis has been well established. In the presence of acute DNA-damage, oncogene deregulation and other forms of cellular stress, p53 orchestrates a myriad of pleiotropic processes to repair cellular damages and maintain homeostasis. Beside these well-studied functions of p53, recent studies in Drosophila have unraveled intriguing roles of Dmp53 in promoting cell division in apoptosis-induced proliferation, enhancing fitness and proliferation of the winner cell in cell competition and coordinating growth at the organ and organismal level in the presence of stress. In this review, we describe these new functions of Dmp53 and discuss their relevance in the context of carcinogenesis.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France,
| | | |
Collapse
|
47
|
Tait SWG, Ichim G, Green DR. Die another way--non-apoptotic mechanisms of cell death. J Cell Sci 2015; 127:2135-44. [PMID: 24833670 DOI: 10.1242/jcs.093575] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death.
Collapse
Affiliation(s)
- Stephen W G Tait
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Gabriel Ichim
- Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
48
|
Teng X, Hardwick JM. Cell death in genome evolution. Semin Cell Dev Biol 2015; 39:3-11. [PMID: 25725369 PMCID: PMC4410082 DOI: 10.1016/j.semcdb.2015.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/23/2022]
Abstract
Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that any early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis.
Collapse
Affiliation(s)
- Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, PR China; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - J Marie Hardwick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
49
|
|
50
|
Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 2014; 35:631-640. [PMID: 25457353 DOI: 10.1016/j.it.2014.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023]
Abstract
The caspase family of cysteine proteases has been functionally divided into two groups: those involved in apoptosis and those involved in innate immune signalling. Recent findings have identified 'apoptotic' caspases within inflammasome complexes and revealed that 'inflammatory' caspases are capable of inducing cell death, suggesting that the earlier view of caspase function may have been overly simplistic. Here, I review evidence attributing nonclassical functions to many caspases and propose that caspases serve as critical mediators in the integration of apoptotic and inflammatory pathways, thereby forming an integrated signalling system that regulates cell death and innate immune responses during development, infection, and homeostasis.
Collapse
Affiliation(s)
- Emma M Creagh
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland.
| |
Collapse
|