1
|
Chaudhary B, Arya P, Sharma V, Kumar P, Singla D, Grewal AS. Targeting anti-apoptotic mechanisms in tumour cells: Strategies for enhancing Cancer therapy. Bioorg Chem 2025; 159:108388. [PMID: 40107036 DOI: 10.1016/j.bioorg.2025.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Anti-cancer drug's cytotoxicity is determined by their ability to induce predetermined cell demise, commonly called apoptosis. The cancer-causing cells are able to evade cell death, which has been affiliated with both malignancy as well as resistance to cancer treatments. In order to avoid cell death, cancerous tumour cells often produce an abundance of anti-apoptotic proteins, becoming "dependent" on them. Consequently, protein inhibitors of cell death may prove to be beneficial as pharmacological targets for the future creation of cancer therapies. This article examines the molecular routes of apoptosis, its clinical manifestations, anti-cancer therapy options that target the intrinsic mechanism of apoptosis, proteins that prevent cell death, and members of the B-lymphoma-2 subset. In addition, novel approaches to cell death are highlighted, including how curcumin mitigates chemotherapy-induced apoptosis in healthy tissues and the various ways melatonin modifies apoptosis to improve cancer treatment efficacy, particularly through the TNF superfamily. Cancer treatment-induced increases in anti-apoptotic proteins lead to drug resistance; yet, ligands that trigger cell death by inhibiting these proteins are expected to improve chemotherapy's efficacy. The potential of frequency-modulated dietary phytochemicals as a cancer therapeutic pathway, including autophagy and apoptosis, is also explored. This approach may be more efficient than inhibition alone in overcoming drug resistance. Consequently, this method has the potential to allow for lower medication concentrations, reducing cytotoxicity and unwanted side effects.
Collapse
Affiliation(s)
- Benu Chaudhary
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Preeti Arya
- Shri Ram College of Pharmacy, Ramba, Karnal, Haryana, India
| | - Vikas Sharma
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | - Parveen Kumar
- NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Deepak Singla
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, India
| | | |
Collapse
|
2
|
Ren N, Chen H, Huang Y, Jin J, Zhang S, Yan R, Li M, Zheng L, Zou S, Li Y, Tan W, Lin D. MDM1 overexpression promotes p53 expression and cell apoptosis to enhance therapeutic sensitivity to chemoradiotherapy in patients with colorectal cancer. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0540. [PMID: 40200809 PMCID: PMC11976705 DOI: 10.20892/j.issn.2095-3941.2024.0540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE Identifying biomarkers that predict the efficacy and prognosis of chemoradiotherapy is important for individualized clinical treatment. We previously reported that high murine double minute 1 (MDM1) expression in patients with rectal cancer is linked to a favorable chemoradiation response. In this study the role of MDM1 in the chemoradiotherapy response in colorectal cancer (CRC) patients was evaluated. METHODS Colony formation and cell proliferation assays as well as xenograft models were used to determine if MDM1 expression affects the sensitivity of CRC cells to chemoradiation. RNA sequencing revealed that MDM1 regulates tumor protein 53 (TP53) expression and apoptosis. A series of molecular biology experiments were performed to determine how MDM1 affects p53 expression. The effects of inhibitors targeting apoptosis on MDM1 knockout cells were evaluated. RESULTS Gene expression profiling revealed that MDM1 is a potential chemoradiotherapy sensitivity marker. The sensitivity of CRC cells to chemoradiation treatment decreased after MDM1 knockout and increased after MDM1 overexpression. MDM1 affected p53 expression, thereby regulating apoptosis. MDM1 overexpression limited YBX1 binding to TP53 promoter, regulated TP53 expression, and rendered CRC cells more sensitive to chemoradiation. In CRC cells with low MDM1 expression, a combination of apoptosis-inducing inhibitors and chemoradiation treatment restored sensitivity to cancer therapy. CONCLUSIONS The current study showed that MDM1 expression influences the sensitivity of CRC cells to chemoradiation by influencing p53 and apoptosis pathways, which is the basis for the underlying molecular mechanism, and serves as a possible predictive marker for chemoradiotherapy prognosis.
Collapse
Affiliation(s)
- Ningxin Ren
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongxia Chen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Huang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518100, China
| | - Shaosen Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ruoqing Yan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mengjie Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Linlin Zheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| |
Collapse
|
3
|
Aranjuez GF, Patel O, Patel D, Jewett TJ. The N-terminus of the Chlamydia trachomatis effector Tarp engages the host Hippo pathway. Microbiol Spectr 2025; 13:e0259624. [PMID: 40062849 PMCID: PMC11960468 DOI: 10.1128/spectrum.02596-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate, intracellular Gram-negative bacteria and the leading bacterial sexually transmitted infection in the United States. Chlamydia manipulates the host cell biology using various secreted bacterial effectors during its intracellular development. The early effector translocated actin-recruiting phosphoprotein (Tarp), important for Chlamydia entry, has a well-characterized C-terminal region which can polymerize and bundle F-actin. In contrast, not much is known about the function of the N-terminus of Tarp (N-Tarp), though present in many Chlamydia spp. To address this, we use Drosophila melanogaster as an in vivo cell biology platform to study N-Tarp-host interactions. Transgenic expression of N-Tarp in Drosophila results in developmental phenotypes consistent with altered host Salvador-Warts-Hippo signaling, a conserved signaling cascade that regulates host cell proliferation and survival. We studied the N-Tarp function in larval imaginal wing discs, which are sensitive to perturbations in Hippo signaling. N-Tarp causes wing disc overgrowth and a concomitant increase in adult wing size, phenocopying overexpression of the Hippo co-activator Yorkie. N-Tarp also causes upregulation of Hippo target genes. Last, N-Tarp-induced phenotypes can be rescued by reducing the levels of Yorkie or the Hippo target genes CycE and Drosophila inhibitor of apoptosis 1 (Diap1). Thus, we provide evidence that the N-terminal region of the Chlamydia effector Tarp is sufficient to alter host Hippo signaling and acts upstream of the co-activator Yorkie. IMPORTANCE The survival of obligate intracellular bacteria like Chlamydia depends on the survival of the host cell itself. It is not surprising that Chlamydia-infected cells are resistant to cell death, though the exact molecular mechanism is largely unknown. Here, we establish that the N-terminal region of the well-known Ct early effector Tarp can alter Hippo signaling in vivo. Only recently implicated in Chlamydia infection, the Hippo pathway is known to promote cell survival. Our findings illuminate one possible mechanism for Chlamydia to promote host cell survival during infection. We further demonstrate the utility of Drosophila melanogaster as a tool in the study of effector function.
Collapse
Affiliation(s)
- George F. Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Om Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Dev Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J. Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Ibrahim S, Khan MU, Noreen S, Firdous S, Khurram I, Rehman R, Javed MA, Ali Q. Advancing brain tumor therapy: unveiling the potential of PROTACs for targeted protein degradation. Cytotechnology 2025; 77:54. [PMID: 39897109 PMCID: PMC11785894 DOI: 10.1007/s10616-025-00716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
The long-term treatment of malignancies, particularly brain tumors, is challenged by abnormal protein expression and drug resistance. In terms of potency, selectivity, and overcoming drug resistance, Proteolysis Targeting Chimeras (PROTACs), a cutting-edge method used to selectively degrade target proteins, beats traditional inhibitors. This review summarizes recent research on using PROTACs as a therapeutic strategy for brain tumors, focusing on their mechanism, benefits, limitations, and the need for optimization. The review draws from a comprehensive search of peer-reviewed literature, scientific databases, and clinical trial databases. Articles published up to the knowledge cutoff date up to 14 April 2023 were included. Inclusion criteria covered PROTAC-based brain tumor therapies, including preclinical and early clinical studies, with no restrictions on design or publication type. We included studies using in vitro, in vivo brain tumor models, and human subjects. Eligible treatments involved PROTACs targeting proteins linked to brain tumor progression. We evaluated the selected studies for methodology, including design, sample size, and data analysis techniques. A narrative synthesis summarized key outcomes and trends in PROTAC-based brain tumor therapy. Recent research shows PROTACs selectively degrade brain tumor-related proteins with minimal off-target effects. They offer enhanced potency, selectivity, and the ability to combat resistance compared to traditional inhibitors. PROTACs hold promise for brain tumor treatment offering advantages over traditional inhibitors, but more research is needed to refine their mechanisms, efficacy, and safety. Larger-scale trials and translational studies are essential for assessing their clinical utility.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Saadia Noreen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Safia Firdous
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Raima Rehman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Wang H, Meng L, Otaegi-Ugartemendia S, Condezo GN, Blanc-Mathieu R, Stokke R, Langvad MR, Brandt D, Kalinowski J, Dahle H, San Martín C, Ogata H, Sandaa RA. Haptophyte-infecting viruses change the genome condensing proteins of dinoflagellates. Commun Biol 2025; 8:510. [PMID: 40155463 PMCID: PMC11953307 DOI: 10.1038/s42003-025-07905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Giant viruses are extraordinary members of the virosphere due to their structural complexity and high diversity in gene content. Haptophytes are ecologically important primary producers in the ocean, and all known viruses that infect haptophytes are giant viruses. However, little is known about the specifics of their infection cycles and the responses they trigger in their host cells. Our in-depth electron microscopic, phylogenomic and virion proteomic analyses of two haptophyte-infecting giant viruses, Haptolina ericina virus RF02 (HeV RF02) and Prymnesium kappa virus RF02 (PkV RF02), unravel their large capacity for host manipulation and arsenals that function during the infection cycle from virus entry to release. The virus infection induces significant morphological changes in the host cell that is manipulated to build a virus proliferation factory. Both viruses' genomes encode a putative nucleoprotein (dinoflagellate/viral nucleoprotein; DVNP), which was also found in the virion proteome of PkV RF02. Phylogenetic analysis suggests that DVNPs are widespread in marine giant metaviromes. Furthermore, the analysis shows that the dinoflagellate homologues were possibly acquired from viruses of the order Imitervirales. These findings enhance our understanding of how viruses impact the biology of microalgae, providing insights into evolutionary biology, ecosystem dynamics, and nutrient cycling in the ocean.
Collapse
Affiliation(s)
- Haina Wang
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Lingjie Meng
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | | | | | - Runar Stokke
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - David Brandt
- Bielefeld University, CeBiTec, Bielefeld, Germany
| | | | - Håkon Dahle
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Ruth-Anne Sandaa
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Wootton LM, Morgan EL. Ubiquitin and ubiquitin-like proteins in HPV-driven carcinogenesis. Oncogene 2025; 44:713-723. [PMID: 40011575 PMCID: PMC11888991 DOI: 10.1038/s41388-025-03310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Persistent infection with high-risk (HR) human papillomaviruses (HPVs) is responsible for approximately 5% of cancer cases worldwide, including a growing number of oropharyngeal and anogenital cancers. The major HPV oncoproteins, E6 and E7, act together to manipulate cellular pathways involved in the regulation of proliferation, the cell cycle and cell survival, ultimately driving malignant transformation. Protein ubiquitination and the ubiquitin proteasome system (UPS) is often deregulated upon viral infection and in oncogenesis. HPV E6 and E7 interact with and disrupt multiple components of the ubiquitination machinery to promote viral persistence, which can also result in cellular transformation and the formation of tumours. This review highlights the ways in which HPV manipulates protein ubiquitination and the ubiquitin-like protein pathways and how this contributes to tumour development. Furthermore, we discuss how understanding the interactions between HPV and the protein ubiquitination could lead to novel therapeutic targets that are of urgent need in HPV+ carcinomas.
Collapse
Affiliation(s)
| | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
7
|
Tioka L, Diez RC, Sönnerborg A, van de Klundert MAA. Latency Reversing Agents and the Road to a HIV Cure. Pathogens 2025; 14:232. [PMID: 40137717 PMCID: PMC11944434 DOI: 10.3390/pathogens14030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
HIV-1 infection cannot be cured due to the presence of HIV-1 latently infected cells. These cells do not produce the virus, but they can resume virus production at any time in the absence of antiretroviral therapy. Therefore, people living with HIV (PLWH) need to take lifelong therapy. Strategies have been coined to eradicate the viral reservoir by reactivating HIV-1 latently infected cells and subsequently killing them. Various latency reversing agents (LRAs) that can reactivate HIV-1 in vitro and ex vivo have been identified. The most potent LRAs also strongly activate T cells and therefore cannot be applied in vivo. Many LRAs that reactivate HIV in the absence of general T cell activation have been identified and have been tested in clinical trials. Although some LRAs could reduce the reservoir size in clinical trials, so far, they have failed to eradicate the reservoir. More recently, immune modulators have been applied in PLWH, and the first results seem to indicate that these may reduce the reservoir and possibly improve immunological control after therapy interruption. Potentially, combinations of LRAs and immune modulators could reduce the reservoir size, and in the future, immunological control may enable PLWH to live without developing HIV-related disease in the absence of therapy.
Collapse
Affiliation(s)
- Louis Tioka
- Faculty of Medicine, Erlangen-Nürnberg, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rafael Ceña Diez
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
8
|
Choi H, An YK, Lee CJ, Song CU, Kim EJ, Lee CE, Cho SJ, Eyun SI. Genome assembly, gene content, and plastic gene expression responses to salinity changes in the Brackishwater Clam (Corbicula japonica) from a dynamic estuarine environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136627. [PMID: 39616841 DOI: 10.1016/j.jhazmat.2024.136627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 01/28/2025]
Abstract
Estuaries are dynamic transition zones between marine and freshwater environments, where salinity varies greatly on spatial and temporal scales. The temporal salinity fluctuations of these habitats require organisms to rapidly regulate ionic concentrations and osmotic pressure to survive in these dynamic conditions. Understanding the extent of plasticity of euryhaline animals is vital for predicting their responses and resilience to salinity change. We generated the first high-resolution genome and transcriptome sequences of C. japonica. In comparison with 11 other molluscan genomes, the C. japonica genome displayed striking expansions of putative neuron-related genes and gene families. The involvement of these genes in the glutamate/GABA-glutamine and glycine cycle suggests a possible contribution to the excitation of neuronal networks, particularly under high salinity conditions. This study contributes to our understanding of mechanisms underlying the rapid responses of estuarine species to changing conditions and raises many intriguing hypotheses and questions for future investigation.
Collapse
Affiliation(s)
- Hyeongwoo Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Yun Keun An
- Division of Marine Technology, Chonnam National University, Yeosu 59626, Korea
| | - Chan-Jun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea
| | - Chi-Une Song
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
9
|
Kochen Rossi J, Nuevo-Tapioles C, O'Keefe RA, Hunkeler M, Schmoker AM, Fissore-O'Leary M, Su W, Ahearn IM, Branco C, Cheong H, Esposito D, Clotea I, Ueberheide B, Fischer ES, Philips MR. The differential interactomes of the KRAS splice variants identify BIRC6 as a ubiquitin ligase for KRAS4A. Cell Rep 2025; 44:115087. [PMID: 39705142 DOI: 10.1016/j.celrep.2024.115087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024] Open
Abstract
Transcripts of the KRAS locus are alternatively spliced to generate two proteins, KRAS4A and KRAS4B, which differ in their membrane-targeting sequences. These splice variants have been conserved for more than 450 million years, suggesting non-overlapping functions driven by differential membrane association. Here, we use proximity labeling to map the differential interactomes of the KRAS splice variants. We find 24 and 10 proteins that interact specifically with KRAS4A or KRAS4B, respectively. The KRAS interacting protein most specific to KRAS4A is BIRC6, a large member of the inhibitor of apoptosis protein family unique in possessing E2/E3 ubiquitin ligase activity. We find that this interaction takes place on the Golgi apparatus and results in the mono- and di-ubiquitination of KRAS4A at lysines 128 and 147. Silencing BIRC6 diminishes GTP loading of and growth stimulation by KRAS4A but not KRAS4B. Thus, BIRC6 is a ubiquitin ligase that inhibits apoptosis and also modifies KRAS4A.
Collapse
Affiliation(s)
- Juan Kochen Rossi
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Rachel A O'Keefe
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenjuan Su
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ian M Ahearn
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cristina Branco
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hakyung Cheong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Dominic Esposito
- Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ioana Clotea
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Laurino S, Russi S, Sabato C, Luongo M, Laurenziello P, Vagliasindi A, Di Stefano G, Vita GAC, Patitucci G, Amendola E, Zoppoli P, Albano F, Balzamo C, Notarangelo T, Falco G. The inhibition of SLC8A1 promotes Ca 2+-dependent cell death in Gastric Cancer. Biomed Pharmacother 2025; 182:117787. [PMID: 39731939 DOI: 10.1016/j.biopha.2024.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Intracellular Ca2+ homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na+/Ca2+ exchanger SLC8A1. Data from Kaplan-Meier plotter and The Cancer Genome Atlas were used to evaluate in silico the association of SLC8A1 expression with Gastric Cancer (GC) patients' survival, and its levels in different patient subgroups. In vitro experiments were used to explore SLC8A1 as a possible target in GC. Interestingly, SLC8A1 expression was associated with a worst prognosis, and resulted up-regulated in diffuse/poorly-cohesive histological GC type, Genomically Stable samples and in advanced TNM stages. We demonstrated that SLC8A1 selective pharmacological inhibition, through CB-DMB, significantly reduced cancer proliferation and induced Ca2+-dependent cell death in GC cells, both alone and synergically with cisplatin treatment. SLC8A1 inhibition could represents a potential subgroup-specific therapeutic approach for GC patients based on its ability to induce Ca2+-dependent cell death.
Collapse
Affiliation(s)
- Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy.
| | - Claudia Sabato
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Margherita Luongo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Pasqualina Laurenziello
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Alessio Vagliasindi
- Unit of Abdominal Oncological Surgery, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Greta Di Stefano
- Unit of Abdominal Oncological Surgery, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Giulia Anna Carmen Vita
- Anatomical Pathology Department, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Giuseppe Patitucci
- Anatomical Pathology Department, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Elena Amendola
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Pietro Zoppoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Francesco Albano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Balzamo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notarangelo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy
| |
Collapse
|
11
|
Hase N, Misiak D, Taubert H, Hüttelmaier S, Gekle M, Köhn M. APOBEC3C-mediated NF-κB activation enhances clear cell renal cell carcinoma progression. Mol Oncol 2025; 19:114-132. [PMID: 39183666 PMCID: PMC11705732 DOI: 10.1002/1878-0261.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Renowned as the predominant form of kidney cancer, clear cell renal cell carcinoma (ccRCC) exhibits susceptibility to immunotherapies due to its specific expression profile as well as notable immune cell infiltration. Despite this, effectively treating metastatic ccRCC remains a significant challenge, necessitating a more profound comprehension of the underlying molecular mechanisms governing its progression. Here, we unveil that the enhanced expression of the RNA-binding protein DNA dC → dU-editing enzyme APOBEC-3C (APOBEC3C; also known as A3C) in ccRCC tissue and ccRCC-derived cell lines serves as a catalyst for tumor growth by amplifying nuclear factor-kappa B (NF-κB) activity. By employing RNA-sequencing and cell-based assays in ccRCC-derived cell lines, we determined that A3C is a stress-responsive factor and crucial for cell survival. Furthermore, we identified that A3C binds and potentially stabilizes messenger RNAs (mRNAs) encoding positive regulators of the NF-κB pathway. Upon A3C depletion, essential subunits of the NF-κB family are abnormally restrained in the cytoplasm, leading to deregulation of NF-κB target genes. Our study illuminates the pivotal role of A3C in promoting ccRCC tumor development, positioning it as a prospective target for future therapeutic strategies.
Collapse
Affiliation(s)
- Nora Hase
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| | - Danny Misiak
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Helge Taubert
- Department of Urology and Pediatric UrologyUniversity Hospital Erlangen, Friedrich Alexander University Erlangen/NürnbergGermany
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Institute of Molecular MedicineMartin Luther University Halle/WittenbergGermany
| | - Michael Gekle
- Julius‐Bernstein‐Institute of PhysiologyMartin Luther University Halle/WittenbergGermany
| | - Marcel Köhn
- Junior Group ‘Non‐Coding RNAs and RBPs in Human Diseases’, Medical FacultyMartin Luther University Halle/WittenbergGermany
| |
Collapse
|
12
|
Mosadegh M, Noori Goodarzi N, Erfani Y. A Comprehensive Insight into Apoptosis: Molecular Mechanisms, Signaling Pathways, and Modulating Therapeutics. Cancer Invest 2025; 43:33-58. [PMID: 39760426 DOI: 10.1080/07357907.2024.2445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Apoptosis, or programmed cell death, is a fundamental biological process essential for maintaining tissue homeostasis. Dysregulation of apoptosis is implicated in a variety of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions. This review provides an in-depth insight into the molecular mechanisms and signaling pathways that regulate apoptosis, highlighting both intrinsic and extrinsic pathways. Additionally, the review explains the tumor microenvironment's influence on apoptosis and its implications for cancer therapy resistance. Understanding the complex interplay between apoptotic signaling and cellular responses is crucial for developing targeted therapies that can effectively manage diseases associated with apoptosis dysregulation. The effects of conventional therapeutics and alternative substances with natural sources such as herbal compounds, alongside vitamins, minerals, and trace elements on cellular homeostasis and disease pathogenesis have been thoroughly investigated. Moreover, recent advances in therapeutic strategies aimed at modulating apoptosis are discussed, with a focus on novel interventions such as nutrition bio shield dietary supplement. These emerging approaches offer potential benefits beyond conventional treatments by selectively targeting apoptotic pathways to inhibit cancer progression and metastasis. By integrating insights from recent studies, this review aims to enhance our understanding of apoptosis and guide future research in developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Wang X, Shuai W, Yang P, Liu Y, Zhang Y, Wang G. Targeted protein degradation: expanding the technology to facilitate the clearance of neurotoxic proteins in neurodegenerative diseases. Ageing Res Rev 2024; 102:102584. [PMID: 39551160 DOI: 10.1016/j.arr.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In neurodegenerative diseases (NDDs), disruptions in protein homeostasis hinder the clearance of misfolded proteins, causing the formation of misfolded protein oligomers and multimers. The accumulation of these abnormal proteins results in the onset and progression of NDDs. Removal of non-native protein is essential for cell to maintain proteostasis. In recent years, targeted protein degradation (TPD) technologies have become a novel means of treating NDDs by removing misfolded proteins through the intracellular protein quality control system. The TPD strategy includes the participation of two primary pathways, namely the ubiquitin-proteasome pathway (for instance, PROTAC, molecular glue and hydrophobic tag), and the autophagy-lysosome pathway (such as LYTAC, AUTAC and ATTEC). In this review, we systematically present the mechanisms of various TPD strategies employed for neurotoxic protein degradation in NDDs. The article provides an overview of the design, in vitro and in vivo anti-NDD activities and pharmacokinetic properties of these small-molecular degraders. Finally, the advantages, challenges and perspectives of these TPD technologies in NDDs therapy are discussed, providing ideas for further development of small molecule degraders in the realm of NDDs.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yinyang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Abrehdari-Tafreshi Z, Arefian E, Rakhshani N, Najafi SMA. The Role of miR-29a and miR-143 on the Anti-apoptotic MCL-1/cIAP-2 Genes Expression in EGFR Mutated Non-small Cell Lung Carcinoma Patients. Biochem Genet 2024; 62:4929-4951. [PMID: 38379036 DOI: 10.1007/s10528-024-10740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
The survival rate of lung cancer is low due to the high frequency of drug resistance in patients with mutations in the driver genes. Overexpression of anti-apoptotic genes is one of the most prominent features of tumor drug resistance. EGFR signaling induces the expression of anti-apoptotic genes. Also, microRNAs (miRNAs) have a critical role in regulating biological functions such as apoptosis; a process mostly eluded in cancer progression. The mutation screening was performed on one thousand non-small cell lung carcinoma patients to enroll clinical samples in this study. Bioinformatics analysis predicted that miRNAs (miR-29a, miR-143) might regulate MCL-1 and cIAP-2 expression. We investigated the expression of MCL-1, cIAP-2, miR-29a, and miR-143 encoding genes in adenocarcinoma patients with or without EGFR mutations before treatment. The potential role of miR-29a and miR-143 on gene expression was evaluated by overexpression and luciferase assays in HEK-293T cells. EGFR mutations were found in 262 patients (26.2%) with a greater incidence in females (36.23% vs. 20.37%, P = 0.001). The expression levels of MCL-1 and cIAP-2 genes in patients with mutated EGFR were higher than those of wild-type EGFR. In contrast, compared to those of patients with wild-type EGFR, the expression levels of miR-29a and miR-143 were lower in the patients carrying EGFR mutations. In cell culture, overexpression of miR-29a and miR-143 significantly downregulated the expression of MCL-1 and cIAP-2. Dual-luciferase reporter experiments confirmed that miR-29a and miR-143 target MCL-1 and cIAP-2 mRNAs, respectively. Our results suggest that upregulation of EGFR signaling in lung cancer cells may increase anti-apoptotic MCL-1 and cIAP-2 gene expression, possibly through downregulation of miR-29a-3p and miR-143-3p.
Collapse
Affiliation(s)
- Zahra Abrehdari-Tafreshi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Sciences, University of Tehran, P.O. Box 1417614481, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Gene, Tehran, Iran
| | - Nasser Rakhshani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Firoozgar Hospital, Tehran, Iran
| | - S Mahmoud A Najafi
- Department of Cell and Molecular Biology, School of Biology, College of Sciences, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| |
Collapse
|
15
|
Pei M, Zhang J, Yu Z, Peng Y, Chen Y, Peng S, Wei X, Wu J, Huang X, Xie Y, Yang P, Hong L, Huang X, Wu X, Tang W, Chen Y, Liu S, Lin J, Xiang L, Wang J. LINC02139 interacts with and stabilizes XIAP to regulate cell proliferation and apoptosis in gastric cancer. Commun Biol 2024; 7:1497. [PMID: 39533104 PMCID: PMC11557945 DOI: 10.1038/s42003-024-07202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Previous reports showed that long non-coding RNA (lncRNA) participates in the development and progression of tumors. Nevertheless, the effect of LINC02139 and its mechanism on gastric cancer (GC) is still unknown. We revealed that LINC02139 is upregulated in GC cell lines and tissues and high LINC02139 expression was correlated with the advancement of GC in patients. Functionally, overexpression of LINC02139 promoted, while knockdown of LINC02139 impaired GC cell proliferation, migration, and invasion in vitro and impeded tumorigenesis in a tumor xenograft model in vivo. Mechanistically, LINC02139 directly bound to XIAP and increased the protein level by maintaining its protein stability through inhibition of the ubiquitination and proteasome-dependent degradation pathway. Importantly, the regulatory function of XIAP in LINC02139-mediated oncogenic effects was demonstrated. Both in vitro and in vivo experiments showed that LINC02139 and XIAP collaboratively modulate GC cell growth and apoptosis. Analysis of clinical GC tissues further confirmed the upregulation of XIAP and the positive association between LINC02139 and XIAP expression. These findings established LINC02139 as a driver of tumorigenesis and highlighted the crucial involvement of the LINC02139-XIAP axis in GC progression, suggesting its potential as a promising therapeutic target for combating GC advancement.
Collapse
Affiliation(s)
- Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yidong Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siyang Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiangyang Wei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jieke Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodong Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanci Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510515, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Jianjiao Lin
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Li Xiang
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
16
|
Ge Y, Jiang L, Yang C, Dong Q, Tang C, Xu Y, Zhong X. Interactions between tumor-associated macrophages and regulated cell death: therapeutic implications in immuno-oncology. Front Oncol 2024; 14:1449696. [PMID: 39575419 PMCID: PMC11578871 DOI: 10.3389/fonc.2024.1449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in sculpting the tumor microenvironment and influencing cancer progression, particularly through their interactions with various forms of regulated cell death (RCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis. This review examines the interplay between TAMs and these RCD pathways, exploring the mechanisms through which they interact to promote tumor growth and advancement. We examine the underlying mechanisms of these intricate interactions, emphasizing their importance in cancer progression and treatment. Moreover, we present potential therapeutic strategies for targeting TAMs and manipulating RCD to enhance anti-tumor responses. These strategies encompass reprogramming TAMs, inhibiting their recruitment, and selectively eliminating them to enhance anti-tumor functions, alongside modulating RCD pathways to amplify immune responses. These insights offer a novel perspective on tumor biology and provide a foundation for the development of more efficacious cancer therapies.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengwu Tang
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, Abbas K, Moinuddin, Hassan MI, Habib S, Islam S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024; 13:1838. [PMID: 39594587 PMCID: PMC11592877 DOI: 10.3390/cells13221838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Cell survival and death are intricately governed by apoptosis, a meticulously controlled programmed cell death. Apoptosis is vital in facilitating embryonic development and maintaining tissue homeostasis and immunological functioning. It is a complex interplay of intrinsic and extrinsic signaling pathways that ultimately converges on executing the apoptotic program. The extrinsic pathway is initiated by the binding of death ligands such as TNF-α and Fas to their respective receptors on the cell surface. In contrast, the intrinsic pathway leads to increased permeability of the outer mitochondrial membrane and the release of apoptogenic factors like cytochrome c, which is regulated by the Bcl-2 family of proteins. Once activated, these pathways lead to a cascade of biochemical events, including caspase activation, DNA fragmentation, and the dismantling of cellular components. Dysregulation of apoptosis is implicated in various disorders, such as cancer, autoimmune diseases, neurodegenerative disorders, and cardiovascular diseases. This article focuses on elucidating the molecular mechanisms underlying apoptosis regulation, to develop targeted therapeutic strategies. Modulating apoptotic pathways holds immense potential in cancer treatment, where promoting apoptosis in malignant cells could lead to tumor regression. This article demonstrates the therapeutic potential of targeting apoptosis, providing options for treating cancer and neurological illnesses. The safety and effectiveness of apoptosis-targeting drugs are being assessed in ongoing preclinical and clinical trials (phase I-III), opening the door for more effective therapeutic approaches and better patient outcomes.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Rizwan Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Irfan Qadir Tantry
- Department of Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar 190006, India;
| | - Waleem Ahmad
- Department of Medicine, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Sana Siddiqui
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202001, India; (M.A.); (K.A.)
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India; (M.M.); (R.A.); (S.S.); (M.)
| | - Sidra Islam
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Chen S, He Q, Yang H, Huang H. Endothelial Birc3 promotes renal fibrosis through modulating Drp1-mediated mitochondrial fission via MAPK/PI3K/Akt pathway. Biochem Pharmacol 2024; 229:116477. [PMID: 39128586 DOI: 10.1016/j.bcp.2024.116477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis serves as the shared pathway in chronic kidney disease (CKD) progression towards end-stage renal disease (ESRD). Endothelial-mesenchymal transition (EndMT) is a vital mechanism leading to the generation of myofibroblasts, thereby contributing to the advancement of fibrogenesis. Baculoviral IAP Repeat Containing 3(Birc3) was identified as a crucial inhibitor of cell death and a significant mediator in inflammatory signaling and immunity. However, its involvement in the development of renal interstitial fibrosis via EndMT still needs to be clarified. Herein, elevated levels of Birc3 expression along with EndMT-associated alterations, including increased α-smooth muscle actin (α-SMA) levels and decreased CD31 expression, were observed in fibrotic kidneys of Unilateral Ureteral Obstruction (UUO)-induced mouse models and transforming growth factor-β (TGF-β)-induced EndMT in Human Umbilical Vein Endothelial Cells (HUVECs). Functionally, Birc3 knockdown inhibited EndMT and mitochondrial fission mediated by dynamin-related protein 1 (Drp1) both in vivo and in vitro. Mechanistically, endothelial Birc3 exacerbated Drp-1-induced mitochondrial fission through the MAPK/PI3K/Akt signaling pathway in endothelial cell models stimulated TGF-β. Collectively, these findings illuminate the mechanisms and indicate that targeting Birc3 could offer a promising therapeutic strategy to improve endothelial cell survival and mitigate the progression of CKD.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Urology, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Qingqing He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiyu Yang
- Administrative Office, Zhongshan People's Hospital, Zhongshan 528400, China
| | - Hongxing Huang
- Department of Urology, Zhongshan People's Hospital, Zhongshan 528400, China.
| |
Collapse
|
19
|
Ramos AD, Liang YY, Surova O, Bacanu S, Gerault MA, Mandal T, Ceder S, Langebäck A, Österroos A, Ward GA, Bergh J, Wiman KG, Lehmann S, Prabhu N, Lööf S, Nordlund P. Proteome-wide CETSA reveals diverse apoptosis-inducing mechanisms converging on an initial apoptosis effector stage at the nuclear periphery. Cell Rep 2024; 43:114784. [PMID: 39365699 DOI: 10.1016/j.celrep.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024] Open
Abstract
Cellular phenotypes of apoptosis, as well as the activation of apoptosis caspase cascades, are well described. However, sequences and locations of early biochemical effector events after apoptosis initiation are still only partly understood. Here, we use integrated modulation of protein interaction states-cellular thermal shift assay (IMPRINTS-CETSA) to dissect the cellular biochemistry of early stages of apoptosis at the systems level. Using 5 families of cancer drugs and a new CETSA-based method to monitor the cleavage of caspase targets, we discover the initial biochemistry of the effector stage of apoptosis for all the studied drugs being focused on the peripheral nuclear region rather than the cytosol. Despite very different candidate apoptosis-inducing mechanisms of the drug families, as revealed by the CETSA data, they converge into related biochemical modulations in the peripheral nuclear region. This implies a higher control of the localization of the caspase cascades than previously anticipated and highlights the nuclear periphery as a critical vulnerability for cancer therapies.
Collapse
Affiliation(s)
| | - Ying Yu Liang
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Olga Surova
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Smaranda Bacanu
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marc-Antoine Gerault
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tamoghna Mandal
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sophia Ceder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anette Langebäck
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - George A Ward
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, UK
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sara Lööf
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Pär Nordlund
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore.
| |
Collapse
|
20
|
Agrawal S, Podber A, Gillespie M, Dietz N, Hansen LA, Nandipati KC. Regulation of pro-apoptotic and anti-apoptotic factors in obesity-related esophageal adenocarcinoma. Mol Biol Rep 2024; 51:1049. [PMID: 39395071 PMCID: PMC11470870 DOI: 10.1007/s11033-024-09931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/10/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Obesity is a risk factor for esophageal adenocarcinoma (EAC). It was reported that obesity -associated inflammation correlates with insulin resistance and increased risk of EAC. The objective of the study is to investigate the role of obesity associated inflammatory mediators in the development of EAC. METHODS We included 23 obese and nonobese patients with EAC or with or without Barrett's esophagus (BE) after IRB approval. We collected 23 normal, 10 BE, and 19 EAC tissue samples from endoscopy or esophagectomy. The samples were analyzed for the expression levels of pro-apoptotic and anti-apoptotic factors, PKC-δ, cIAP2, FLIP, IGF-1, Akt, NF-kB and Ki67 by immunofluorescence and RT-PCR. We compared the expression levels between normal, BE, and EAC tissue using Students' t-test between two groups. RESULTS Our results showed decreased gene and protein expression of pro-apoptotic factors (bad, bak and bax) and increased expression of anti-apoptotic factors (bcl-2, Bcl-xL) in BE and EAC compared to normal tissues. There was increased gene and protein expression of PKC-δ, cIAP2, FLIP, NF-kB, IGF-1, Akt, and Ki67 in BE and EAC samples compared to normal esophagus. Further, an increased folds changes in mRNA expression of proapoptotic factors, antiapoptotic factors, PKC-δ, IGF-1, Akt, and Ki-67 was associated with obesity. CONCLUSION Patients with EAC had increased expression of cIAP2 and FLIP, and PKC-δ which is associated with inhibition of apoptosis and possible progression of esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Swati Agrawal
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Anna Podber
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Megan Gillespie
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Nick Dietz
- Department of Pathology, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA
| | - Laura A Hansen
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Kalyana C Nandipati
- School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
- Department of Surgery, School of Medicine, Creighton University, 7710 Mercy Road, Education Building, Suite 501, Omaha, NE, 68124, USA.
| |
Collapse
|
21
|
Krzykawski K, Kubina R, Wendlocha D, Sarna R, Mielczarek-Palacz A. Multifaceted Evaluation of Inhibitors of Anti-Apoptotic Proteins in Head and Neck Cancer: Insights from In Vitro, In Vivo, and Clinical Studies (Review). Pharmaceuticals (Basel) 2024; 17:1308. [PMID: 39458950 PMCID: PMC11510346 DOI: 10.3390/ph17101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
This paper presents a multifaceted assessment of inhibitors of anti-apoptotic proteins (IAPs) in the context of head and neck squamous cell carcinoma (HNSCC). The article discusses the results of in vitro, in vivo, and clinical studies, highlighting the significance of IAPs in the resistance of cancer cells to apoptosis, which is a key factor hindering effective treatment. The main apoptosis pathways, including the intrinsic and extrinsic pathways, and the role of IAPs in their regulation, are presented. The study's findings suggest that targeting IAPs with novel therapies may offer clinical benefits in the treatment of advanced HNSCC, especially in cases resistant to conventional treatment methods. These conclusions underscore the need for further research to develop more effective and safer therapeutic strategies.
Collapse
Affiliation(s)
- Kamil Krzykawski
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| | - Robert Sarna
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 41-752 Katowice, Poland; (R.K.); (R.S.)
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (D.W.); (A.M.-P.)
| |
Collapse
|
22
|
Lee HH, Chuang HY, Lin K, Yeh CT, Wang YM, Chi HC, Lin KH. RNASE4 promotes malignant progression and chemoresistance in hypoxic glioblastoma via activation of AXL/AKT and NF-κB/cIAPs signaling pathways. Am J Cancer Res 2024; 14:4320-4336. [PMID: 39417186 PMCID: PMC11477813 DOI: 10.62347/udbj5986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous in vitro and in vivo functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes. Functional assays corroborated the pivotal influences of RNASE4 on key tumorigenic processes such as cell proliferation, migration, invasion, stemness properties and temozolomide (TMZ) resistance. Further, Gene Set Enrichment Analysis (GSEA) illuminated the involvement of RNASE4 in modulating epithelial-mesenchymal transition (EMT) via activation of AXL, AKT and NF-κB signaling pathways. Furthermore, recombinant human RNASE4 (hRNASE4)-mediated NF-κB activation through IκBα phosphorylation and degradation could result in the upregulation of inhibitors of apoptosis proteins (IAPs), such as cIAP1, cIAP2, and SURVIVIN. Notably, treating RNASE4-induced TMZ-resistant cells with the SURVIVIN inhibitor YM-155 significantly restored cellular sensitivity to TMZ therapy. Herein, this study positions RNASE4 as a potent prognostic biomarker and therapeutic target, offering new insights into molecular pathogenesis of GBM and new avenues for future therapeutic interventions.
Collapse
Affiliation(s)
- Hsun-Hua Lee
- Department of Neurology, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Dizziness and Balance Disorder Center, Taipei Medical University Hospital, Taipei Medical UniversityTaipei 110, Taiwan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
- Dizziness and Balance Disorder Center, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei 23561, Taiwan
| | - Hao-Yu Chuang
- School of Medicine, China Medical UniversityTaichung 40447, Taiwan
- Translational Cell Therapy Center, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical UniversityTainan 709204, Taiwan
- Division of Neurosurgery, China Medical University Beigang HospitalBeigang Township, Yunlin 65152, Taiwan
| | - Kent Lin
- Northern Clinical School, Faculty of Medicine and Health, The University of SydneyNSW 2006, Australia
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
| | - Yi-Min Wang
- Department of Neurosurgery, An Nan Hospital, China Medical UniversityTainan 709204, Taiwan
| | - Hsiang-Cheng Chi
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404333, Taiwan
- Chinese Medicine Research Center, China Medical UniversityTaichung 40447, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan 330, Taiwan
- Department of Biochemistry, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung UniversityTaoyuan 330, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan 330, Taiwan
| |
Collapse
|
23
|
Aranjuez GF, Patel O, Patel D, Jewett TJ. The N-terminus of the Chlamydia trachomatis effector Tarp engages the host Hippo pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612603. [PMID: 39314337 PMCID: PMC11419093 DOI: 10.1101/2024.09.12.612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chlamydia trachomatis is an obligate, intracellular Gram-negative bacteria and the leading bacterial STI in the United States. Chlamydia's developmental cycle involves host cell entry, replication within a parasitophorous vacuole called an inclusion, and induction of host cell lysis to release new infectious particles. During development, Chlamydia manipulates the host cell biology using various secreted bacterial effectors. The early effector Tarp is important for Chlamydia entry via its well-characterized C-terminal region which can polymerize and bundle F-actin. In contrast, not much is known about the function of Tarp's N-terminus (N-Tarp), though this N-terminal region is present in many Chlamydia species. To address this, we use Drosophila melanogaster as an in vivo cell biology platform to study N-Tarp-host interactions. Drosophila development is well-characterized such that developmental phenotypes can be traced back to the perturbed molecular pathway. Transgenic expression of N-Tarp in Drosophila tissues results in phenotypes consistent with altered host Hippo signaling. The Salvador-Warts-Hippo pathway is a conserved signaling cascade that regulates host cell proliferation and survival during normal animal development. We studied N-Tarp function in larval imaginal wing discs, which are sensitive to perturbations in Hippo signaling. N-Tarp causes wing disc overgrowth and a concomitant increase in adult wing size, phenocopying overexpression of the Hippo co-activator Yorkie. N-Tarp also causes upregulation of Hippo target genes. Last, N-Tarp-induced phenotypes can be rescued by reducing the levels of Yorkie, or the Hippo target genes CycE and Diap1. Thus, we provide the first evidence that the N-terminal region of the Chlamydia effector Tarp is sufficient to alter host Hippo signaling and acts upstream of the co-activator Yorkie. Chlamydia alters host cell apoptosis during infection, though the exact mechanism remains unknown. Our findings implicate the N-terminal region of Tarp as a way to manipulate the host Hippo signaling pathway, which directly influences cell survival.
Collapse
Affiliation(s)
- George F Aranjuez
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Om Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Dev Patel
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Travis J Jewett
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| |
Collapse
|
24
|
Lambrecht R, Jansen J, Rudolf F, El-Mesery M, Caporali S, Amelio I, Stengel F, Brunner T. Drug-induced oxidative stress actively prevents caspase activation and hepatocyte apoptosis. Cell Death Dis 2024; 15:659. [PMID: 39245717 PMCID: PMC11381522 DOI: 10.1038/s41419-024-06998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Cell death is a fundamental process in health and disease. Emerging research shows the existence of numerous distinct cell death modalities with similar and intertwined signaling pathways, but resulting in different cellular outcomes, raising the need to understand the decision-making steps during cell death signaling. Paracetamol (Acetaminophen, APAP)-induced hepatocyte death includes several apoptotic processes but eventually is executed by oncotic necrosis without any caspase activation. Here, we studied this paradoxical form of cell death and revealed that APAP not only fails to activate caspases but also strongly impedes their activation upon classical apoptosis induction, thereby shifting apoptosis to necrosis. While APAP intoxication results in massive drop in mitochondrial respiration, low cellular ATP levels could be excluded as an underlying cause of missing apoptosome formation and caspase activation. In contrast, we identified oxidative stress as a key factor in APAP-induced caspase inhibition. Importantly, caspase inhibition and the associated switch from apoptotic to necrotic cell death was reversible through the administration of antioxidants. Thus, exemplified by APAP-induced cell death, our study stresses that cellular redox status is a critical component in the decision-making between apoptotic and necrotic cell death, as it directly affects caspase activity.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Mohamed El-Mesery
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sabrina Caporali
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Collaborative Research Center TRR 353, Konstanz, Germany
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Collaborative Research Center TRR 353, Konstanz, Germany.
| |
Collapse
|
25
|
Li X, Li C, Kang Y, Zhang R, Li P, Zheng Q, Wang H, Xiao H, Yuan L. G protein coupled receptor in apoptosis and apoptotic cell clearance. FASEB Bioadv 2024; 6:289-297. [PMID: 39399480 PMCID: PMC11467729 DOI: 10.1096/fba.2024-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024] Open
Abstract
Apoptosis is a genetically programmed form of cell death that is substantially conserved across the evolutionary tree. Apoptotic cell elimination includes recognition, phagocytosis, and degradation. Failure to clear apoptotic cells can ultimately cause a series of human diseases, such as systemic lupus erythematosus, Alzheimer's disease, atherosclerosis, and cancer. Consequently, the timely and effective removal of apoptotic cells is crucial to maintaining the body's homeostasis. GPCRs belong to the largest membrane receptor family. Its intracellular domain exerts an effect on the trimer G protein. By combining with a variety of ligands, the extracellular domain of G protein initiates the dissociation of G protein trimers and progressively transmits signals downstream. Presently, numerous G protein-coupled receptors (GPCRs) have been identified as participants in the apoptosis signal transduction pathway and the apoptotic cell clearance pathway. Therefore, studies on the mechanism of GPCRs in the clearance of apoptotic cells is important for the development of GPCRs therapeutics.
Collapse
Affiliation(s)
- Xinyan Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Chao Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Yang Kang
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Rui Zhang
- Emergency Department The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Peiyao Li
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Qian Zheng
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University Xi'an China
| | - Lei Yuan
- College of Life Sciences, Shaanxi Normal University Xi'an China
| |
Collapse
|
26
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
27
|
Liu FR, Wei XL, Feng WN, Zhao HY, Zhang Y, Wang ZQ, Zhang DS, Wang FH, Yang S, Pan W, Tian X, Men L, Wang H, Liang E, Wang C, Yang D, Zhai Y, Qiu MZ, Xu RH. Inhibitor of apoptosis proteins (IAP) inhibitor APG-1387 monotherapy or in combination with programmed cell death 1 (PD-1) inhibitor toripalimab in patients with advanced solid tumors: results from two phase I trials. ESMO Open 2024; 9:103651. [PMID: 39059062 PMCID: PMC11338093 DOI: 10.1016/j.esmoop.2024.103651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND APG-1387 is a novel second mitochondrial-derived activator of caspases mimetic, small-molecule inhibitor targeting inhibitor of apoptosis proteins. We report results from two phase I trials evaluating the tolerability, safety, and antitumor activity of APG-1387 monotherapy and APG-1387 plus toripalimab [a programmed cell death 1 (PD-1) inhibitor] for advanced solid tumors. PATIENTS AND METHODS Participants aged ≥18 years who had histologically confirmed advanced solid tumors with no appropriate standard of care (or refractory to standard care) were eligible. Patients received escalating intravenous doses of APG-1387 alone or combined with fixed-dose toripalimab (240 mg every 3 weeks) in a '3 + 3' design. Primary endpoints were dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) in the monotherapy trial, and recommended phase II dose (RP2D) in the combination therapy trial. Secondary endpoints included the pharmacokinetic and pharmacodynamic profiles and preliminary efficacy in both trials. RESULTS In the monotherapy trial, 28 subjects were enrolled and received ≥1 treatment cycle. No DLT was reported among the 28 subjects, and the MTD was not reached. One participant (3.6%) had a grade ≥3 treatment-related adverse event (TRAE) of alanine aminotransferase elevation. In efficacy analysis of 23 participants, none achieved an objective response, and the disease control rate was 21.7%. In the combination trial, 22 subjects were enrolled and included in all analyses. There was one DLT of grade 3 lipase elevation. The MTD was not reached. Four grade ≥3 TRAEs occurred in three participants (13.6%), with the most common being lipase elevation (n = 2). The RP2D was 45 mg weekly. The objective response rate was 13.6%, with complete response achieved in one subject, and the disease control rate was 54.5%. CONCLUSIONS APG-1387 45 mg weekly plus toripalimab was well tolerated and is recommended for further study, with preliminary clinical activity observed in study participants with advanced solid tumors.
Collapse
Affiliation(s)
- F-R Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - X-L Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - W-N Feng
- Department of Pulmonary Oncology, The First People's Hospital of Foshan, Foshan
| | - H-Y Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Y Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou
| | - Z-Q Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - D-S Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - F-H Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou
| | - S Yang
- Department of Pulmonary Oncology, The First People's Hospital of Foshan, Foshan
| | - W Pan
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - X Tian
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - L Men
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - H Wang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China
| | - E Liang
- Ascentage Pharma Group Inc., Rockville, USA
| | - C Wang
- Ascentage Pharma Group Inc., Rockville, USA
| | - D Yang
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China; Department of Experimental Research, State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y Zhai
- Ascentage Pharma (Suzhou) Co., Ltd., Suzhou, China; Ascentage Pharma Group Inc., Rockville, USA.
| | - M-Z Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou.
| | - R-H Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou.
| |
Collapse
|
28
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
29
|
Yin X, Pu Y, Yuan S, Pache L, Churas C, Weston S, Riva L, Simons LM, Cisneros WJ, Clausen T, De Jesus PD, Kim HN, Fuentes D, Whitelock J, Esko J, Lord M, Mena I, García-Sastre A, Hultquist JF, Frieman MB, Ideker T, Pratt D, Martin-Sancho L, Chanda SK. Global siRNA Screen Reveals Critical Human Host Factors of SARS-CoV-2 Multicycle Replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602835. [PMID: 39026801 PMCID: PMC11257544 DOI: 10.1101/2024.07.10.602835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen. Resulting data were integrated with published datasets to reveal pathways supported by orthogonal datasets, including transcriptional regulation, epigenetic modifications, and MAPK signalling. The identified proviral host factors were mapped into the SARS-CoV-2 infectious cycle, including 27 proteins that were determined to impact assembly and release. Additionally, a subset of proteins were tested across other coronaviruses revealing 17 potential pan-coronavirus targets. Further studies illuminated a role for the heparan sulfate proteoglycan perlecan in SARS-CoV-2 viral entry, and found that inhibition of the non-canonical NF-kB pathway through targeting of BIRC2 restricts SARS-CoV-2 replication both in vitro and in vivo. These studies provide critical insight into the landscape of virus-host interactions driving SARS-CoV-2 replication as well as valuable targets for host-directed antivirals.
Collapse
Affiliation(s)
- Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Pu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christopher Churas
- Department of Medicine, University of California San Diego, La Jolla, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Laura Riva
- Calibr-Skaggs at Scripps Research Institute, La Jolla, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Departments of Medicine and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - William J. Cisneros
- Division of Infectious Diseases, Departments of Medicine and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, USA
| | - Paul D. De Jesus
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Daniel Fuentes
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - John Whitelock
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, USA
| | - Megan Lord
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ignacio Mena
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, USA; The Tisch Institute, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Departments of Medicine and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, USA
| | - Dexter Pratt
- Department of Medicine, University of California San Diego, La Jolla, USA
| | - Laura Martin-Sancho
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sumit K Chanda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| |
Collapse
|
30
|
Zhang Y, Ming A, Wang J, Chen W, Fang Z. PROTACs targeting androgen receptor signaling: Potential therapeutic agents for castration-resistant prostate cancer. Pharmacol Res 2024; 205:107234. [PMID: 38815882 DOI: 10.1016/j.phrs.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
After the initial androgen deprivation therapy (ADT), part of the prostate cancer may continuously deteriorate into castration-resistant prostate cancer (CRPC). The majority of patients suffer from the localized illness at primary diagnosis that could rapidly assault other organs. This disease stage is referred as metastatic castration-resistant prostate cancer (mCRPC). Surgery and radiation are still the treatment of CRPC, but have some adverse effects such as urinary symptoms and sexual dysfunction. Hormonal castration therapy interfering androgen receptor (AR) signaling pathway is indispensable for most advanced prostate cancer patients, and the first- and second-generation of novel AR inhibitors could effectively cure hormone sensitive prostate cancer (HSPC). However, the resistance to these chemical agents is inevitable, so many of patients may experience relapses. The resistance to AR inhibitor mainly involves AR mutation, splice variant formation and amplification, which indicates the important role in CRPC. Proteolysis-targeting chimera (PROTAC), a potent technique to degrade targeted protein, has recently undergone extensive development as a biological tool and therapeutic drug. This technique has the potential to become the next generation of antitumor therapeutics as it could overcome the shortcomings of conventional small molecule inhibitors. In this review, we summarize the molecular mechanisms on PROTACs targeting AR signaling for CRPC, hoping to provide insights into drug development and clinical medication.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Annan Ming
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China; Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Junyan Wang
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China
| | | | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Ji'nan, China.
| |
Collapse
|
31
|
Cui HS, Joo SY, Cho YS, Lee YR, Ro YM, Kwak IS, Hur GY, Seo CH. Exosomes Derived from Hypertrophic Scar Fibroblasts Suppress Melanogenesis in Normal Human Epidermal Melanocytes. Int J Mol Sci 2024; 25:7236. [PMID: 39000342 PMCID: PMC11241421 DOI: 10.3390/ijms25137236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Post-burn hypertrophic scars often exhibit abnormal pigmentation. Exosomes play important roles in maintaining normal physiological homeostasis and in the pathological development of diseases. This study investigated the effects of the exosomes derived from hypertrophic scar fibroblasts (HTSFs) on melanocytes, which are pigment-producing cells. Normal fibroblasts (NFs) and HTSFs were isolated and cultured from normal skin and hypertrophic scar (HTS) tissue. Both the NF- and HTSF-exosomes were isolated from a cell culture medium and purified using a column-based technique. The normal human epidermal melanocytes were treated with both exosomes at a concentration of 100 μg/mL at different times. The cell proliferation, melanin content in the medium, apoptotic factors, transcription factors, melanin synthesis enzymes, signaling, signal transduction pathways, and activators of transcription factors (STAT) 1, 3, 5, and 6 were investigated. Compared with the Dulbecco's phosphate-buffered saline (DPBS)-treated controls and NF-exosomes, the HTSF-exosomes decreased the melanocyte proliferation and melanin secretion. The molecular patterns of apoptosis, proliferation, melanin synthesis, Smad and non-Smad signaling, and STATs were altered by the treatment with the HTSF-exosomes. No significant differences were observed between the DPBS-treated control and NF-exosome-treated cells. HTSF-derived exosomes may play a role in the pathological epidermal hypopigmentation observed in patients with HTS.
Collapse
Affiliation(s)
- Hui Song Cui
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (H.S.C.); (Y.R.L.); (Y.M.R.)
| | - So Young Joo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (S.Y.J.); (Y.S.C.)
| | - Yoon Soo Cho
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (S.Y.J.); (Y.S.C.)
| | - You Ra Lee
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (H.S.C.); (Y.R.L.); (Y.M.R.)
| | - Yu Mi Ro
- Burn Institute, Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (H.S.C.); (Y.R.L.); (Y.M.R.)
| | - In Suk Kwak
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea;
| | - Gi Yeun Hur
- Department of Plastic and Reconstructive Surgery, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea
| | - Cheong Hoon Seo
- Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07247, Republic of Korea; (S.Y.J.); (Y.S.C.)
| |
Collapse
|
32
|
Yang X, Zeng Q, İnam MG, İnam O, Lin CS, Tezel G. cFLIP in the molecular regulation of astroglia-driven neuroinflammation in experimental glaucoma. J Neuroinflammation 2024; 21:145. [PMID: 38824526 PMCID: PMC11143607 DOI: 10.1186/s12974-024-03141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.
Collapse
Affiliation(s)
- Xiangjun Yang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Qun Zeng
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Maide Gözde İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Onur İnam
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gülgün Tezel
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
34
|
Chang X, Li Z, Tian M, Deng Z, Zhu L, Li G. Rotenone activates the LKB1-AMPK-ULK1 signaling pathway to induce autophagy and apoptosis in rat thoracic aortic endothelial cells. BMC Pharmacol Toxicol 2024; 25:33. [PMID: 38783387 PMCID: PMC11118107 DOI: 10.1186/s40360-024-00755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The specific mechanism by which rotenone impacts thoracic aortic autophagy and apoptosis is unknown. We aimed to investigate the regulatory effects of rotenone on autophagy and apoptosis in rat thoracic aortic endothelial cells (RTAEC) via activation of the LKB1-AMPK-ULK1 signaling pathway and to elucidate the molecular mechanisms of rotenone on autophagy and apoptosis in vascular endothelial cells. METHODS In vivo, 60 male SD rats were randomly selected and divided into 5 groups: control (Con), DMSO, 1, 2, and 4 mg/kg groups, respectively. After 28 days of treatment, histopathological and ultrastructural changes in each group were observed using HE and transmission electron microscopy; Autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related proteins were detected by Western blot; Apoptosis levels in the thoracic aorta were detected by TUNEL. In vitro, RTAEC were cultured and divided into control (Con), DMSO, 20, 100, 500, and 1000 nM groups. After 24 h of intervention, autophagy, apoptosis, and LKB1-AMPK-ULK1 pathway-related factors were detected by Western blot and qRT-PCR; Flow cytometry to detect apoptosis levels; Autophagy was inhibited with 3-MA and CQ to detect apoptosis levels, and changes in autophagy, apoptosis, and downstream factors were detected by the AMPK inhibitor CC intervention. RESULTS Gavage in SD rats for 28 days, some degree of damage was observed in the thoracic aorta and heart of the rotenone group, as well as the appearance of autophagic vesicles was observed in the thoracic aorta. TUNEL analysis revealed higher apoptosis in the rotenone group's thoracic aorta; RTAEC cultured in vitro, after 24 h of rotenone intervention, showed increased ROS production and significantly decreased ATP production. The flow cytometry data suggested an increase in the number of apoptotic RTAEC. The thoracic aorta and RTAEC in the rotenone group displayed elevated levels of autophagy and apoptosis, and the LKB1-AMPK-ULK1 pathway proteins were activated and expressed at higher levels. Apoptosis and autophagy were both suppressed by the autophagy inhibitors 3-MA and CQ. The AMPK inhibitor CC reduced autophagy and apoptosis in RTAEC and suppressed the production of the AMPK downstream factors ULK1 and P-ULK1. CONCLUSIONS Rotenone may promote autophagy in the thoracic aorta and RTAEC by activating the LKB1-AMPK-ULK1 signaling pathway, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Xiaoyu Chang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Zeyuan Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Mi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziwei Deng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, China.
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
35
|
Meier P, Legrand AJ, Adam D, Silke J. Immunogenic cell death in cancer: targeting necroptosis to induce antitumour immunity. Nat Rev Cancer 2024; 24:299-315. [PMID: 38454135 DOI: 10.1038/s41568-024-00674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.
Collapse
Affiliation(s)
- Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK.
| | - Arnaud J Legrand
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - John Silke
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Boccellato C, Rehm M. TRAIL-induced apoptosis and proteasomal activity - Mechanisms, signalling and interplay. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119688. [PMID: 38368955 DOI: 10.1016/j.bbamcr.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Programmed cell death, in particular apoptosis, is essential during development and tissue homeostasis, and also is the primary strategy to induce cancer cell death by cytotoxic therapies. Precision therapeutics targeting TRAIL death receptors are being evaluated as novel anti-cancer agents, while in parallel highly specific proteasome inhibitors have gained approval as drugs. TRAIL-dependent signalling and proteasomal control of cellular proteostasis are intricate processes, and their interplay can be exploited to enhance therapeutic killing of cancer cells in combination therapies. This review provides detailed insights into the complex signalling of TRAIL-induced pathways and the activities of the proteasome. It explores their core mechanisms of action, pharmaceutical druggability, and describes how their interplay can be strategically leveraged to enhance cell death responses in cancer cells. Offering this comprehensive and timely overview will allow to navigate the complexity of the processes governing cell death mechanisms in TRAIL- and proteasome inhibitor-based treatment conditions.
Collapse
Affiliation(s)
- Chiara Boccellato
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany.
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart 70569, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart 70569, Germany.
| |
Collapse
|
37
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
38
|
Yu X, Cao W, Yang X, Yu C, Jiang W, Guo H, He X, Mei C, Ou C. Prognostic value and therapeutic potential of IAP family in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:3674-3693. [PMID: 38364254 PMCID: PMC10929838 DOI: 10.18632/aging.205551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) ranks as the eighth most prevalent malignancy globally and has the eighth greatest fatality rate when compared to all other forms of cancer. The inhibitor of apoptosis protein (IAP) family comprises a collection of apoptosis-negative modulators characterized by at least one single baculovirus IAP repeat (BIR) domain in its N-terminal region. While the involvement of the IAP family is associated with the initiation and progression of numerous tumours, its specific role in HNSCC remains poorly understood. Thus, this study aimed to comprehensively examine changes in gene expression, immunomodulatory effects, prognosis, and functional enrichment of HNSCC utilising bioinformatics analysis. Elevated levels of distinct IAP family members were observed to varying degrees in HNSCC, with high BIRC2 expression indicating a worse prognosis. Additionally, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to probe the enrichment of gene expression and biological processes related to the IAP family in HNSCC. The infiltration levels of immune cells were shown to be strongly associated with the IAP gene expression, as determined by subsequent analysis. Hence, BIRC2 could be an effective immunotherapy target for HNSCC. Collectively, novel knowledge of the biological roles and prognostic implications of IAP family members in HNSCC is presented in this study.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Weiwei Cao
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha 410008, Hunan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Canping Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenying Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
39
|
Baena-Lopez LA, Wang L, Wendler F. Cellular stress management by caspases. Curr Opin Cell Biol 2024; 86:102314. [PMID: 38215516 DOI: 10.1016/j.ceb.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cellular stress plays a pivotal role in the onset of numerous human diseases. Consequently, the removal of dysfunctional cells, which undergo excessive stress-induced damage via various cell death pathways, including apoptosis, is essential for maintaining organ integrity and function. The evolutionarily conserved family of cysteine-aspartic-proteases, known as caspases, has been a key player in orchestrating apoptosis. However, recent research has unveiled the capability of these enzymes to govern fundamental cellular processes without triggering cell death. Remarkably, some of these non-lethal functions of caspases may contribute to restoring cellular equilibrium in stressed cells. This manuscript discusses how caspases can function as cellular stress managers and their potential impact on human health and disease. Additionally, it sheds light on the limitations of caspase-based therapies, given our still incomplete understanding of the biology of these enzymes, particularly in non-apoptotic contexts.
Collapse
Affiliation(s)
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK
| | - Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK. https://twitter.com/wendlerfranz
| |
Collapse
|
40
|
Hu JL, Huang AL. Classifying hepatitis B therapies with insights from covalently closed circular DNA dynamics. Virol Sin 2024; 39:9-23. [PMID: 38110037 PMCID: PMC10877440 DOI: 10.1016/j.virs.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
The achievement of a functional cure for chronic hepatitis B (CHB) remains limited to a minority of patients treated with currently approved drugs. The primary objective in developing new anti-HBV drugs is to enhance the functional cure rates for CHB. A critical prerequisite for the functional cure of CHB is a substantial reduction, or even eradication of covalently closed circular DNA (cccDNA). Within this context, the changes in cccDNA levels during treatment become as a pivotal concern. We have previously analyzed the factors influencing cccDNA dynamics and introduced a preliminary classification of hepatitis B treatment strategies based on these dynamics. In this review, we employ a systems thinking perspective to elucidate the fundamental aspects of the HBV replication cycle and to rationalize the classification of treatment strategies according to their impact on the dynamic equilibrium of cccDNA. Building upon this foundation, we categorize current anti-HBV strategies into two distinct groups and advocate for their combined use to significantly reduce cccDNA levels within a well-defined timeframe.
Collapse
Affiliation(s)
- Jie-Li Hu
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
41
|
Hou G, Wang X, Wang A, Yuan L, Zheng Q, Xiao H, Wang H. The role of secreted proteins in efferocytosis. Front Cell Dev Biol 2024; 11:1332482. [PMID: 38259511 PMCID: PMC10800375 DOI: 10.3389/fcell.2023.1332482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The clearance of apoptotic cells known as efferocytosis is the final stage of apoptosis, and includes the recognition, phagocytosis, and degradation of apoptotic cells. The maintenance of tissue homeostasis requires the daily elimination of billions of apoptotic cells from the human body via the process of efferocytosis. Accordingly, aberrations in efferocytosis underlie a growing list of diseases, including atherosclerosis, cancer, and infections. During the initial phase of apoptosis, "Eat-Me" signals are exposed and recognized by phagocytes either directly through phagocyte receptors or indirectly through secreted proteins that function as bridge molecules that cross-link dying cells to phagocytes. Here, we set out to provide a comprehensive review of the molecular mechanisms and biological significance of secreted proteins in apoptotic cell clearance. Specifically, it focuses on how these secreted proteins act as bridging molecules to facilitate the clearance process.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hui Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
42
|
Noguchi T, Sekiguchi Y, Shimada T, Suzuki W, Yokosawa T, Itoh T, Yamada M, Suzuki M, Kurokawa R, Hirata Y, Matsuzawa A. LLPS of SQSTM1/p62 and NBR1 as outcomes of lysosomal stress response limits cancer cell metastasis. Proc Natl Acad Sci U S A 2023; 120:e2311282120. [PMID: 37847732 PMCID: PMC10614216 DOI: 10.1073/pnas.2311282120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Liquid droplet has emerged as a flexible intracellular compartment that modulates various cellular processes. Here, we uncover an antimetastatic mechanism governed by the liquid droplets formed through liquid-liquid phase separation (LLPS) of SQSTM1/p62 and neighbor of BRCA1 gene 1 (NBR1). Some of the tyrosine kinase inhibitors (TKIs) initiated lysosomal stress response that promotes the LLPS of p62 and NBR1, resulting in the spreading of p62/NBR1 liquid droplets. Interestingly, in the p62/NBR1 liquid droplet, degradation of RAS-related C3 botulinum toxin substrate 1 was accelerated by cellular inhibitor of apoptosis protein 1, which limits cancer cell motility. Moreover, the antimetastatic activity of the TKIs was completely overridden in p62/NBR1 double knockout cells both in vitro and in vivo. Thus, our results demonstrate a function of the p62/NBR1 liquid droplet as a critical determinant of cancer cell behavior, which may provide insight into both the clinical and biological significance of LLPS.
Collapse
Affiliation(s)
- Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yuto Sekiguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tatsuya Shimada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Wakana Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Takumi Yokosawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Tamaki Itoh
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Mayuka Yamada
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Midori Suzuki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Reon Kurokawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8578, Japan
| |
Collapse
|
43
|
Bae CH, Kim HY, Seo JE, Lee H, Kim S. In Silico Analysis of Pyeongwi-San Involved in Inflammatory Bowel Disease Treatment Using Network Pharmacology, Molecular Docking, and Molecular Dynamics. Biomolecules 2023; 13:1322. [PMID: 37759722 PMCID: PMC10526905 DOI: 10.3390/biom13091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGOUND Pyeongwi-san (PWS) is a widely used formula for treating digestive disorders in Korea and China. Inflammatory bowel disease (IBD) is characterized by progressive inflammation of the gastrointestinal tract. Emerging evidence supports the protective effect of PWS against IBD, but specific mechanisms are still elusive. METHODS Active compounds of PWS were screened from the medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC) in the consideration of drug-likeness and oral bioavailability. Target candidates of active compounds were predicted using the ChEMBL database. IBD-related targets were obtained from the GeneCards and DisGeNET databases. The network of composition-targets-disease was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed. Molecular docking was used to simulate the binding affinity of active compounds on target proteins and molecular dynamics was used to validate the molecular docking result. RESULTS A total of 26 core target proteins of PWS were related to IBD. Enrichment analysis suggested that PWS is highly associated with tumor necrosis factor signaling pathway, apoptosis, and the collapse of tight junctions. Moreover, molecular docking and molecular dynamics simulation proposed β-eudesmol and (3R,6R,7S)-1,10-bisaboladien-3-ol to ameliorate IBD through the binding to TNF and MMP9, respectively. CONCLUSION Present in silico analysis revealed potential pathways and insight of PWS to regulate IBD. These results imply that the therapeutic effect of PWS might be achieved via an inhibitory effect.
Collapse
Affiliation(s)
- Chang-Hwan Bae
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Hee-Young Kim
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Ji Eun Seo
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Hanul Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
| | - Seungtae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (C.-H.B.); (J.E.S.); (H.L.)
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea;
| |
Collapse
|
44
|
Rizk J, Mörbe UM, Agerholm R, Baglioni MV, Catafal Tardos E, Fares da Silva MGF, Ulmert I, Kadekar D, Viñals MT, Bekiaris V. The cIAP ubiquitin ligases sustain type 3 γδ T cells and ILC during aging to promote barrier immunity. J Exp Med 2023; 220:e20221534. [PMID: 37440178 PMCID: PMC10345214 DOI: 10.1084/jem.20221534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Early-life cues shape the immune system during adulthood. However, early-life signaling pathways and their temporal functions are not well understood. Herein, we demonstrate that the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2), which are E3 ubiquitin ligases, sustain interleukin (IL)-17-producing γ δ T cells (γδT17) and group 3 innate lymphoid cells (ILC3) during late neonatal and prepubescent life. We show that cell-intrinsic deficiency of cIAP1/2 at 3-4 wk of life leads to downregulation of the transcription factors cMAF and RORγt and failure to enter the cell cycle, followed by progressive loss of γδT17 cells and ILC3 during aging. Mice deficient in cIAP1/2 have severely reduced γδT17 cells and ILC3, present with suboptimal γδT17 responses in the skin, lack intestinal isolated lymphoid follicles, and cannot control intestinal bacterial infection. Mechanistically, these effects appear to be dependent on overt activation of the non-canonical NF-κB pathway. Our data identify cIAP1/2 as early-life molecular switches that establish effective type 3 immunity during aging.
Collapse
Affiliation(s)
- John Rizk
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Urs M. Mörbe
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Elisa Catafal Tardos
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Isabel Ulmert
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Darshana Kadekar
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
45
|
Li P, Gong X, Yuan L, Mu L, Zheng Q, Xiao H, Wang H. Palmitoylation in apoptosis. J Cell Physiol 2023; 238:1641-1650. [PMID: 37260091 DOI: 10.1002/jcp.31047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Palmitoylation, a critical lipid modification of proteins, is involved in various physiological processes such as altering protein localization, transport, and stability, which perform essential roles in protein function. Palmitoyltransferases are specific enzymes involved in the palmitoylation modification of substrates. S-palmitoylation, as the only reversible palmitoylation modification, is able to be deacylated by deacyltransferases. As an important mode of programmed cell death, apoptosis functions in the maintenance of organismal homeostasis as well as being associated with inflammatory and immune diseases. Recently, studies have found that palmitoylation and apoptosis have been demonstrated to be related in many human diseases. In this review, we will focus on the role of palmitoylation modifications in apoptosis.
Collapse
Affiliation(s)
- Peiyao Li
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaoyi Gong
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lei Yuan
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lina Mu
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian Zheng
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Xiao
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hui Wang
- Department of Cell and Development Biology, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
46
|
Nelson VK, Nuli MV, Mastanaiah J, Saleem T. S. M, Birudala G, Jamous YF, Alshargi O, Kotha KK, Sudhan HH, Mani RR, Muthumanickam A, Niranjan D, Jain NK, Agrawal A, Jadon AS, Mayasa V, Jha NK, Kolesarova A, Slama P, Roychoudhury S. Reactive oxygen species mediated apoptotic death of colon cancer cells: therapeutic potential of plant derived alkaloids. Front Endocrinol (Lausanne) 2023; 14:1201198. [PMID: 37560308 PMCID: PMC10408138 DOI: 10.3389/fendo.2023.1201198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most deaths causing diseases worldwide. Several risk factors including hormones like insulin and insulin like growth factors (e.g., IGF-1) have been considered responsible for growth and progression of colon cancer. Though there is a huge advancement in the available screening as well as treatment techniques for CRC. There is no significant decrease in the mortality of cancer patients. Moreover, the current treatment approaches for CRC are associated with serious challenges like drug resistance and cancer re-growth. Given the severity of the disease, there is an urgent need for novel therapeutic agents with ideal characteristics. Several pieces of evidence suggested that natural products, specifically medicinal plants, and derived phytochemicals may serve as potential sources for novel drug discovery for various diseases including cancer. On the other hand, cancer cells like colon cancer require a high basal level of reactive oxygen species (ROS) to maintain its own cellular functions. However, excess production of intracellular ROS leads to cancer cell death via disturbing cellular redox homeostasis. Therefore, medicinal plants and derived phytocompounds that can enhance the intracellular ROS and induce apoptotic cell death in cancer cells via modulating various molecular targets including IGF-1 could be potential therapeutic agents. Alkaloids form a major class of such phytoconstituents that can play a key role in cancer prevention. Moreover, several preclinical and clinical studies have also evidenced that these compounds show potent anti-colon cancer effects and exhibit negligible toxicity towards the normal cells. Hence, the present evidence-based study aimed to provide an update on various alkaloids that have been reported to induce ROS-mediated apoptosis in colon cancer cells via targeting various cellular components including hormones and growth factors, which play a role in metastasis, angiogenesis, proliferation, and invasion. This study also provides an individual account on each such alkaloid that underwent clinical trials either alone or in combination with other clinical drugs. In addition, various classes of phytochemicals that induce ROS-mediated cell death in different kinds of cancers including colon cancer are discussed.
Collapse
Affiliation(s)
- Vinod K. Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Juturu Mastanaiah
- Department of Pharmacology, Balaji College of Pharmacy, Anantapur, India
| | | | - Geetha Birudala
- Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Yahya F. Jamous
- Vaccines and Bioprocessing Centre, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Omar Alshargi
- College of Pharmacy, Riyadh ELM University, Riyadh, Saudi Arabia
| | - Kranthi Kumar Kotha
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | | | | | | | | | | | | | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Adriana Kolesarova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | | |
Collapse
|
47
|
Wang X, Li J, Chen R, Li T, Chen M. Active Ingredients from Chinese Medicine for Combination Cancer Therapy. Int J Biol Sci 2023; 19:3499-3525. [PMID: 37497002 PMCID: PMC10367560 DOI: 10.7150/ijbs.77720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/26/2023] [Indexed: 07/28/2023] Open
Abstract
Combination therapy against cancer has gained increasing attention because it can help to target multiple pathways to tackle oncologic progression and improve the limited antitumor effect of single-agent therapy. Chinese medicine has been studied extensively in cancer therapy and proven to be efficacious in many cases due to its wide spectrum of anticancer activities. In this review, we aim to summarize the recent progress of active ingredients from Chinese medicine (AIFCM) in combination with various cancer therapeutic modalities, including chemotherapy, gene therapy, radiotherapy, phototherapy and immunotherapy. In addition to highlighting the potential contribution of AIFCM in combination cancer therapy, we also elucidate the underlying mechanisms behind their synergistic effect and improved anticancer efficacy, thereby encouraging the inclusion of these AIFCM as part of effective armamentarium in fighting intractable cancers. Finally, we present the challenges and future perspectives of AIFCM combination therapy as a feasible and promising strategy for the optimization of cancer treatment and better clinical outcomes.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jing Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Ruie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, 999078, China
| |
Collapse
|
48
|
Spasovski V, Andjelkovic M, Parezanovic M, Komazec J, Ugrin M, Klaassen K, Stojiljkovic M. The Role of Autophagy and Apoptosis in Affected Skin and Lungs in Patients with Systemic Sclerosis. Int J Mol Sci 2023; 24:11212. [PMID: 37446389 DOI: 10.3390/ijms241311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune inflammatory disorder with multiple organ involvement. Skin changes present the hallmark of SSc and coincide with poor prognosis. Interstitial lung diseases (ILD) are the most widely reported complications in SSc patients and the primary cause of death. It has been proposed that the processes of autophagy and apoptosis could play a significant role in the pathogenesis and clinical course of different autoimmune diseases, and accordingly in SSc. In this manuscript, we review the current knowledge of autophagy and apoptosis processes in the skin and lungs of patients with SSc. Profiling of markers involved in these processes in skin cells can be useful to recognize the stage of fibrosis and can be used in the clinical stratification of patients. Furthermore, the knowledge of the molecular mechanisms underlying these processes enables the repurposing of already known drugs and the development of new biological therapeutics that aim to reverse fibrosis by promoting apoptosis and regulate autophagy in personalized treatment approach. In SSc-ILD patients, the molecular signature of the lung tissues of each patient could be a distinctive criterion in order to establish the correct lung pattern, which directly impacts the course and prognosis of the disease. In this case, resolving the role of tissue-specific markers, which could be detected in the circulation using sensitive molecular methods, would be an important step toward development of non-invasive diagnostic procedures that enable early and precise diagnosis and preventing the high mortality of this rare disease.
Collapse
Affiliation(s)
- Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jovana Komazec
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
49
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
50
|
Neverov AM, Panchin AY, Mikhailov KV, Batueva MD, Aleoshin VV, Panchin YV. Apoptotic gene loss in Cnidaria is associated with transition to parasitism. Sci Rep 2023; 13:8015. [PMID: 37198195 PMCID: PMC10192318 DOI: 10.1038/s41598-023-34248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
The phylum Cnidaria consists of several morphologically diverse classes including Anthozoa, Cubozoa, Hydrozoa, Polypodiozoa, Scyphozoa, Staurozoa, and Myxozoa. Myxozoa comprises two subclasses of obligate parasites-Myxosporea and Malacosporea, which demonstrate various degrees of simplification. Myxosporea were previously reported to lack the majority of core protein domains of apoptotic proteins including caspases, Bcl-2, and APAF-1 homologs. Other sequenced Cnidaria, including the parasite Polypodium hydriforme from Polypodiozoa do not share this genetic feature. Whether this loss of core apoptotic proteins is unique to Myxosporea or also present in its sister subclass Malacosporea was not previously investigated. We show that the presence of core apoptotic proteins gradually diminishes from free-living Cnidaria to Polypodium to Malacosporea to Myxosporea. This observation does not favor the hypothesis of catastrophic simplification of Myxosporea at the genetic level, but rather supports a stepwise adaptation to parasitism that likely started from early parasitic ancestors that gave rise to Myxozoa.
Collapse
Affiliation(s)
- Alexander M Neverov
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation, 119234.
| | - Alexander Y Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
| | - Kirill V Mikhailov
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, Russian Federation, 119991
| | - Marina D Batueva
- Institute of General and Experimental Biology Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Russian Federation, 670047
| | - Vladimir V Aleoshin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, Russian Federation, 119991
| | - Yuri V Panchin
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation, 127994
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow, Russian Federation, 119991
| |
Collapse
|