1
|
Basu B, Dutta S, Rahaman M, Bose A, Das S, Prajapati J, Prajapati B. The Future of Cystic Fibrosis Care: Exploring AI's Impact on Detection and Therapy. CURRENT RESPIRATORY MEDICINE REVIEWS 2024; 20:302-321. [DOI: 10.2174/011573398x283365240208195944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/03/2025]
Abstract
:
Cystic Fibrosis (CF) is a fatal hereditary condition marked by thicker mucus production,
which can cause problems with the digestive and respiratory systems. The quality of life and
survival rates of CF patients can be improved by early identification and individualized therapy
measures. With an emphasis on its applications in diagnosis and therapy, this paper investigates
how Artificial Intelligence (AI) is transforming the management of Cystic Fibrosis (CF). AI-powered
algorithms are revolutionizing CF diagnosis by utilizing huge genetic, clinical, and imaging
data databases. In order to identify CF mutations quickly and precisely, machine learning methods
evaluate genomic profiles. Furthermore, AI-driven imaging analysis helps to identify lung and gastrointestinal
issues linked to cystic fibrosis early and allows for prompt treatment. Additionally,
AI aids in individualized CF therapy by anticipating how patients will react to already available
medications and enabling customized treatment regimens. Drug repurposing algorithms find
prospective candidates from already-approved drugs, advancing treatment choices. Additionally,
AI supports the optimization of pharmacological combinations, enhancing therapeutic results
while minimizing side effects. AI also helps with patient stratification by connecting people with
CF mutations to therapies that are best for their genetic profiles. Improved treatment effectiveness
is promised by this tailored strategy. The transformational potential of artificial intelligence (AI)
in the field of cystic fibrosis is highlighted in this review, from early identification to individualized
medication, bringing hope for better patient outcomes, and eventually prolonging the lives of
people with this difficult ailment.
Collapse
Affiliation(s)
- Biswajit Basu
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Srabona Dutta
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Monosiz Rahaman
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Anirbandeep Bose
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat,
Kolkata, West Bengal, 700126. India
| | - Sourav Das
- School of Pharmacy, The Neotia University, Sarisha, Diamond Harbour, West
Bengal, India
| | - Jigna Prajapati
- Achaya Motibhai Patel Institute of Computer Studies, Ganpat University, Mehsana, Gujarat, 384012,
India
| | - Bhupendra Prajapati
- S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012,
India
| |
Collapse
|
2
|
Trouvé P, Saint Pierre A, Férec C. Cystic Fibrosis: A Journey through Time and Hope. Int J Mol Sci 2024; 25:9599. [PMID: 39273547 PMCID: PMC11394767 DOI: 10.3390/ijms25179599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Just over thirty years is the span of a generation. It is also the time that has passed since the discovery of the gene responsible for cystic fibrosis. Today, it is safe to say that this discovery has revolutionized our understanding, research perspectives, and management of this disease, which was, thirty years ago, a pediatric condition with a grim prognosis. The aim of this review is to present the advances that science and medicine have brought to our understanding of the pathophysiology of the disease and its management, which in many ways, epitomizes modern molecular genetic research. Since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, modeling the CFTR protein, deciphering its function as an ion channel, and identifying its molecular partners have led to numerous therapeutic advances. The most significant advancement in this field has been the discovery of protein modulators that can target its membrane localization and chloride channel activity. However, further progress is needed to ensure that all patients can benefit from a therapy tailored to their mutations, with the primary challenge being the development of treatments for mutations leading to a complete absence of the protein. The present review delves into the history of the multifaceted world of CF, covering main historical facts, current landscape, clinical management, emerging therapies, patient perspectives, and the importance of ongoing research, bridging science and medicine in the fight against the disease.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Aude Saint Pierre
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
3
|
张 继, 孙 林, 段 效, 张 子, 肖 政, 陈 艳, 游 洁. [Cystic fibrosis primarily presenting with pseudo-Bartter syndrome: a report of three cases and literature review]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:506-511. [PMID: 38802912 PMCID: PMC11135068 DOI: 10.7499/j.issn.1008-8830.2310080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES To summarize the clinical characteristics and genetic variations in children with cystic fibrosis (CF) primarily presenting with pseudo-Bartter syndrome (CF-PBS), with the aim to enhance understanding of this disorder. METHODS A retrospective analysis was performed on the clinical data of three children who were diagnosed with CF-PBS in Hunan Children's Hospital from January 2018 to August 2023, and a literature review was performed. RESULTS All three children had the onset of the disease in infancy. Tests after admission showed hyponatremia, hypokalemia, hypochloremia, and metabolic alkalosis, and genetic testing showed the presence of compound heterozygous mutation in the CFTR gene. All three children were diagnosed with CF. Literature review obtained 33 Chinese children with CF-PBS, with an age of onset of 1-36 months and an age of diagnosis of 3-144 months. Among these children, there were 29 children with recurrent respiratory infection or persistent pneumonia (88%), 26 with malnutrition (79%), 23 with developmental retardation (70%), and 18 with pancreatitis or extrapancreatic insufficiency (55%). Genetic testing showed that c.2909G>A was the most common mutation site of the CFTR gene, with a frequency of allelic variation of 23% (15/66). CONCLUSIONS CF may have no typical respiratory symptoms in the early stage. The possibility of CF-PBS should be considered for infants with recurrent hyponatremia, hypokalemia, hypochloremia, and metabolic alkalosis, especially those with malnutrition and developmental retardation. CFTR genetic testing should be performed as soon as possible to help with the diagnosis of CF.
Collapse
|
4
|
Angyal D, Kleinfelder K, Ciciriello F, Groeneweg TA, De Marchi G, de Pretis N, Bernardoni L, Rodella L, Tomba F, De Angelis P, Surace C, Pintani E, Alghisi F, de Jonge HR, Melotti P, Sorio C, Lucidi V, Bijvelds MJC, Frulloni L. CFTR function is impaired in a subset of patients with pancreatitis carrying rare CFTR variants. Pancreatology 2024; 24:394-403. [PMID: 38493004 DOI: 10.1016/j.pan.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Many affected by pancreatitis harbor rare variants of the cystic fibrosis (CF) gene, CFTR, which encodes an epithelial chloride/bicarbonate channel. We investigated CFTR function and the effect of CFTR modulator drugs in pancreatitis patients carrying CFTR variants. METHODS Next-generation sequencing was performed to identify CFTR variants. Sweat tests and nasal potential difference (NPD) assays were performed to assess CFTR function in vivo. Intestinal current measurement (ICM) was performed on rectal biopsies. Patient-derived intestinal epithelial monolayers were used to evaluate chloride and bicarbonate transport and the effects of a CFTR modulator combination: elexacaftor, tezacaftor and ivacaftor (ETI). RESULTS Of 32 pancreatitis patients carrying CFTR variants, three had CF-causing mutations on both alleles and yielded CF-typical sweat test, NPD and ICM results. Fourteen subjects showed a more modest elevation in sweat chloride levels, including three that were provisionally diagnosed with CF. ICM indicated impaired CFTR function in nine out of 17 non-CF subjects tested. This group of nine included five carrying a wild type CFTR allele. In epithelial monolayers, a reduction in CFTR-dependent chloride transport was found in six out of 14 subjects tested, whereas bicarbonate secretion was reduced in only one individual. In epithelial monolayers of four of these six subjects, ETI improved CFTR function. CONCLUSIONS CFTR function is impaired in a subset of pancreatitis patients carrying CFTR variants. Mutations outside the CFTR locus may contribute to the anion transport defect. Bioassays on patient-derived intestinal tissue and organoids can be used to detect such defects and to assess the effect of CFTR modulators.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Karina Kleinfelder
- Department of Medicine, University of Verona, Division of General Pathology, Verona, Italy
| | - Fabiana Ciciriello
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Giulia De Marchi
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Nicolò de Pretis
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Laura Bernardoni
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Luca Rodella
- Endoscopy Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Francesco Tomba
- Endoscopy Surgery Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126, Verona, Italy
| | - Paola De Angelis
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cecilia Surace
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Emily Pintani
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Federico Alghisi
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Division of General Pathology, Verona, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza di Sant'Onofrio 4, 00165, Rome, Italy
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P.O. Box 2040, 3000, CA, Rotterdam, the Netherlands.
| | - Luca Frulloni
- Gastroenterology Unit, Department of Medicine, Borgo Roma Hospital, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
5
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
6
|
Angyal D, Groeneweg TA, Leung A, Desain M, Dulla K, de Jonge HR, Bijvelds MJC. Pro-inflammatory cytokines stimulate CFTR-dependent anion secretion in pancreatic ductal epithelium. Cell Mol Biol Lett 2024; 29:18. [PMID: 38262945 PMCID: PMC10807165 DOI: 10.1186/s11658-024-00537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Loss of CFTR-dependent anion and fluid secretion in the ducts of the exocrine pancreas is thought to contribute to the development of pancreatitis, but little is known about the impact of inflammation on ductal CFTR function. Here we used adult stem cell-derived cell cultures (organoids) obtained from porcine pancreas to evaluate the effects of pro-inflammatory cytokines on CFTR function. METHODS Organoids were cultured from porcine pancreas and used to prepare ductal epithelial monolayers. Monolayers were characterized by immunocytochemistry. Epithelial bicarbonate and chloride secretion, and the effect of IL-1β, IL-6, IFN-γ, and TNF-α on CFTR function was assessed by electrophysiology. RESULTS Immunolocalization of ductal markers, including CFTR, keratin 7, and zonula occludens 1, demonstrated that organoid-derived cells formed a highly polarized epithelium. Stimulation by secretin or VIP triggered CFTR-dependent anion secretion across epithelial monolayers, whereas purinergic receptor stimulation by UTP, elicited CFTR-independent anion secretion. Most of the anion secretory response was attributable to bicarbonate transport. The combination of IL-1β, IL-6, IFN-γ, and TNF-α markedly enhanced CFTR expression and anion secretion across ductal epithelial monolayers, whereas these cytokines had little effect when tested separately. Although TNF-α triggered apoptotic signaling, epithelial barrier function was not significantly affected by cytokine exposure. CONCLUSIONS Pro-inflammatory cytokines enhance CFTR-dependent anion secretion across pancreatic ductal epithelium. We propose that up-regulation of CFTR in the early stages of the inflammatory response, may serve to promote the removal of pathogenic stimuli from the ductal tree, and limit tissue injury.
Collapse
Affiliation(s)
- Dora Angyal
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Tessa A Groeneweg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Anny Leung
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Max Desain
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Kalyan Dulla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Strasse 173, 55216, Ingelheim Am Rhein, Germany
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Patel D, Jose F, Baker J, Moshiree B. Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract in Cystic Fibrosis. Curr Gastroenterol Rep 2024; 26:9-19. [PMID: 38057499 DOI: 10.1007/s11894-023-00906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW To discuss all the various motility disorders impacting people with Cystic Fibrosis (PwCF) and provide diagnostic and management approaches from a group of pediatric and adult CF and motility experts and physiologists with experience in the management of this disease. RECENT FINDINGS Gastrointestinal (GI) symptoms coexist with pulmonary symptoms in PwCF regardless of age and sex. The GI manifestations include gastroesophageal reflux disease, esophageal dysmotility gastroparesis, small bowel dysmotility, small intestinal bacterial overgrowth syndrome, distal idiopathic obstruction syndrome, constipation, and pelvic floor disorders. They are quite debilitating, limiting the patients' quality of life and affecting their nutrition and ability to socialize. This genetic disorder affects many organ systems and is chronic, potentially impacting fertility and future family planning, requiring a multidisciplinary approach. Our review discusses the treatments of motility disorders in CF, their prevalence and pathophysiology. We have provided a framework for clinicians who care for these patients that can help to guide their clinical management.
Collapse
Affiliation(s)
- Dhiren Patel
- Department of Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition, SSM Cardinal Glennon Children's Medical Center, Saint Louis University, St Louis, MO, USA
| | - Folashade Jose
- Pediatric Gastroenterology, Hepatology, and Nutrition, Clinical Associate Professor, Levine Childrens Hospital, Carolina Pediatric Gastroenterology, Charlotte, NC, USA
| | | | - Baha Moshiree
- Division of Gastroenterology, Atrium Health Wake Forest Medical University, Charlotte, NC, USA.
| |
Collapse
|
8
|
Siddiqui A, Saxena A, Echols J, Havasi V, Fu L, Keeling KM. RNA binding proteins PTBP1 and HNRNPL regulate CFTR mRNA decay. Heliyon 2023; 9:e22281. [PMID: 38045134 PMCID: PMC10692906 DOI: 10.1016/j.heliyon.2023.e22281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Background CFTR nonsense alleles generate negligible CFTR protein due to the nonsense mutation: 1) triggering CFTR mRNA degradation by nonsense-mediated mRNA decay (NMD), and 2) terminating CFTR mRNA translation prematurely. Thus, people with cystic fibrosis (PwCF) who carry nonsense alleles cannot benefit from current modulator drugs, which target CFTR protein. In this study, we examined whether PTBP1 and HNRNPL, two RNA binding proteins that protect a subset of mRNAs with a long 3' untranslated region (UTR) from NMD, similarly affect CFTR mRNA.Silencing RNAs were used to deplete PTBP1 or HNRNPL in 16HBE14o- human bronchial epithelial cells expressing WT, G542X, or W1282X CFTR. CFTR mRNA abundance was measured relative to controls by quantitative PCR. PTBP1 and HNRNPL were also exogenously expressed in each cell line and CFTR mRNA levels were similarly quantified. Results PTBP1 depletion reduced CFTR mRNA abundance in all three 16HBE14o- cell lines; HRNPL depletion reduced CFTR mRNA abundance in only the G542X and W1282X cell lines. Notably, decreased CFTR mRNA abundance correlated with increased mRNA decay. Exogenous expression of PTBP1 or HNRNPL increased CFTR mRNA abundance in all three cell lines; HNRNPL overexpression generally increased CFTR to a greater extent in G542X and W1282X 16HBE14o- cells.Our data indicate that PTBP1 and HNRNPL regulate CFTR mRNA abundance by protecting CFTR transcripts from NMD. This suggests that PTBP1 and/or HNRNPL may represent potential therapeutic targets to increase CFTR mRNA abundance and enhance responses to CFTR modulators and other therapeutic approaches in PwCF.
Collapse
Affiliation(s)
- Amna Siddiqui
- Department of Biochemistry and Molecular Genetics and, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
- Comprehensive Cancer Center and, USA
| | - Arpit Saxena
- Department of Biochemistry and Molecular Genetics and, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Joshua Echols
- Department of Biochemistry and Molecular Genetics and, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
- Department of Pediatrics, Infectious Diseases Division, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Viktoria Havasi
- Department of Biochemistry and Molecular Genetics and, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
- Comprehensive Cancer Center and, USA
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics and, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Kim M. Keeling
- Department of Biochemistry and Molecular Genetics and, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Kozawa Y, Yamamoto A, Nakakuki M, Fujiki K, Kondo S, Okada T, Fukuyasu T, Yamaguchi M, Taniguchi I, Nomura N, Liu L, Higuchi M, Niwa E, Sohma Y, Naruse S, Takeyama Y, Ishiguro H. Clinical and genetic features of cystic fibrosis in Japan. J Hum Genet 2023; 68:671-680. [PMID: 37217688 DOI: 10.1038/s10038-023-01160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by pathogenic variants in CF transmembrane conductance regulator (CFTR). While CF is the most common hereditary disease in Caucasians, it is rare in East Asia. In the present study, we have examined clinical features and the spectrum of CFTR variants of CF patients in Japan. Clinical data of 132 CF patients were obtained from the national epidemiological survey since 1994 and CF registry. From 2007 to 2022, 46 patients with definite CF were analyzed for CFTR variants. All exons, their boundaries, and part of promoter region of CFTR were sequenced and the presence of large deletion and duplications were examined by multiplex ligation-dependent probe amplification. CF patients in Japan were found to have chronic sinopulmonary disease (85.6%), exocrine pancreatic insufficiency (66.7%), meconium ileus (35.6%), electrolyte imbalance (21.2%), CF-associated liver disease (14.4%), and CF-related diabetes (6.1%). The median survival age was 25.0 years. The mean BMI percentile was 30.3%ile in definite CF patients aged < 18 years whose CFTR genotypes were known. In 70 CF alleles of East Asia/Japan origin, CFTR-dele16-17a-17b was detected in 24 alleles, the other variants were novel or very rare, and no pathogenic variants were detected in 8 alleles. In 22 CF alleles of Europe origin, F508del was detected in 11 alleles. In summary, clinical phenotype of Japanese CF patients is similar to European patients, but the prognosis is worse. The spectrum of CFTR variants in Japanese CF alleles is entirely different from that in European CF alleles.
Collapse
Affiliation(s)
- Yuka Kozawa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Yamamoto
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotoyo Fujiki
- Department of Nutrition, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Shiho Kondo
- Department of Health and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Takuto Okada
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoya Fukuyasu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Food and Nutrition, Tsu City College, Tsu, Japan
| | - Makoto Yamaguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itsuka Taniguchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Nomura
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Libin Liu
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayuko Higuchi
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Erina Niwa
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiro Sohma
- Division of Molecular Therapy, Department of Pharmaceutical Sciences, School of Pharmacy and Center for Basic Medical Research, International University of Health and Welfare, Otawara, Japan
| | | | - Yoshifumi Takeyama
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
10
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by variants in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR dysfunction results in abnormal chloride and bicarbonate transport in epithelial cells, leading to a multiorgan disease dominated by respiratory and digestive manifestations. The respiratory disease, which is characterized by airway mucus plugging, chronic bacterial infection and progressive development of bronchiectasis, may lead to chronic respiratory failure, which is the main cause of premature death in people with CF. Over the past 50 years, major progress has been obtained by implementing multidisciplinary care, including nutritional support, airway clearance techniques and antibiotics in specialized CF centers. The past 10 years have further seen the progressive development of oral medications, called CFTR modulators, that partially restore ion transport and lead to a major improvement in clinical manifestations and lung function, presumably resulting in longer survival. Although an increasing proportion of people with CF are being treated with CFTR modulators, challenges remain regarding access to CFTR modulators due to their high cost, and their lack of marketing approval and/or effectiveness in people with rare CFTR variants. The anticipated increase in the number of adults with CF and their aging also challenge the current organization of CF care. The purpose of this review article is to describe current status and future perspective of CF disease and care.
Collapse
Affiliation(s)
- Isabelle Fajac
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Centre, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 rue du faubourg Saint-Jacques, 75014 Paris, France; Université Paris Cité, Inserm U1016, Institut Cochin, 24 rue du faubourg Saint-Jacques, 75014 Paris, France; ERN-LUNG, CF Core Network, Frankfurt, Germany.
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and National Cystic Fibrosis Reference Centre, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 rue du faubourg Saint-Jacques, 75014 Paris, France; Université Paris Cité, Inserm U1016, Institut Cochin, 24 rue du faubourg Saint-Jacques, 75014 Paris, France; ERN-LUNG, CF Core Network, Frankfurt, Germany.
| |
Collapse
|
11
|
Kurbessoian T, Murante D, Crocker A, Hogan DA, Stajich JE. In host evolution of Exophiala dermatitidis in cystic fibrosis lung micro-environment. G3 (BETHESDA, MD.) 2023; 13:jkad126. [PMID: 37293838 PMCID: PMC10484061 DOI: 10.1093/g3journal/jkad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/26/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Individuals with cystic fibrosis (CF) are susceptible to chronic lung infections that lead to inflammation and irreversible lung damage. While most respiratory infections that occur in CF are caused by bacteria, some are dominated by fungi such as the slow-growing black yeast Exophiala dermatitidis. Here, we analyze isolates of E. dermatitidis cultured from two samples, collected from a single subject 2 years apart. One isolate genome was sequenced using long-read Nanopore technology as an in-population reference to use in comparative single nucleotide polymorphism and insertion-deletion variant analyses of 23 isolates. We then used population genomics and phylo-genomics to compare the isolates to each other as well as the reference genome strain E. dermatitidis NIH/UT8656. Within the CF lung population, three E. dermatitidis clades were detected, each with varying mutation rates. Overall, the isolates were highly similar suggesting that they were recently diverged. All isolates were MAT 1-1, which was consistent with their high relatedness and the absence of evidence for mating or recombination between isolates. Phylogenetic analysis grouped sets of isolates into clades that contained isolates from both early and late time points indicating there are multiple persistent lineages. Functional assessment of variants unique to each clade identified alleles in genes that encode transporters, cytochrome P450 oxidoreductases, iron acquisition, and DNA repair processes. Consistent with the genomic heterogeneity, isolates showed some stable phenotype heterogeneity in melanin production, subtle differences in antifungal minimum inhibitory concentrations, and growth on different substrates. The persistent population heterogeneity identified in lung-derived isolates is an important factor to consider in the study of chronic fungal infections, and the analysis of changes in fungal pathogens over time may provide important insights into the physiology of black yeasts and other slow-growing fungi in vivo.
Collapse
Affiliation(s)
- Tania Kurbessoian
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Alex Crocker
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Xue T, Kong X, Ma L. Trends in the Epidemiology of Pneumocystis Pneumonia in Immunocompromised Patients without HIV Infection. J Fungi (Basel) 2023; 9:812. [PMID: 37623583 PMCID: PMC10455156 DOI: 10.3390/jof9080812] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The increasing morbidity and mortality of life-threatening Pneumocystis pneumonia (PCP) in immunocompromised people poses a global concern, prompting the World Health Organization to list it as one of the 19 priority invasive fungal diseases, calling for increased research and public health action. In response to this initiative, we provide this review on the epidemiology of PCP in non-HIV patients with various immunodeficient conditions, including the use of immunosuppressive agents, cancer therapies, solid organ and stem cell transplantation, autoimmune and inflammatory diseases, inherited or primary immunodeficiencies, and COVID-19. Special attention is given to the molecular epidemiology of PCP outbreaks in solid organ transplant recipients; the risk of PCP associated with the increasing use of immunodepleting monoclonal antibodies and a wide range of genetic defects causing primary immunodeficiency; the trend of concurrent infection of PCP in COVID-19; the prevalence of colonization; and the rising evidence supporting de novo infection rather than reactivation of latent infection in the pathogenesis of PCP. Additionally, we provide a concise discussion of the varying effects of different immunodeficient conditions on distinct components of the immune system. The objective of this review is to increase awareness and knowledge of PCP in non-HIV patients, thereby improving the early identification and treatment of patients susceptible to PCP.
Collapse
Affiliation(s)
- Ting Xue
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Zacarias S, Batista MSP, Ramalho SS, Victor BL, Farinha CM. Rescue of Rare CFTR Trafficking Mutants Highlights a Structural Location-Dependent Pattern for Correction. Int J Mol Sci 2023; 24:ijms24043211. [PMID: 36834620 PMCID: PMC9961391 DOI: 10.3390/ijms24043211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Currently, more than 2100 variants have been identified in the gene, with a large number being very rare. The approval of modulators that act on mutant CFTR protein, correcting its molecular defect and thus alleviating the burden of the disease, revolutionized the field of CF. However, these drugs do not apply to all patients with CF, especially those with rare mutations-for which there is a lack of knowledge on the molecular mechanisms of the disease and the response to modulators. In this work, we evaluated the impact of several rare putative class II mutations on the expression, processing, and response of CFTR to modulators. Novel cell models consisting of bronchial epithelial cell lines expressing CFTR with 14 rare variants were created. The variants studied are localized at Transmembrane Domain 1 (TMD1) or very close to the signature motif of Nucleotide Binding Domain 1 (NBD1). Our data show that all mutations analyzed significantly decrease CFTR processing and while TMD1 mutations respond to modulators, those localized in NBD1 do not. Molecular modeling calculations confirm that the mutations in NBD1 induce greater destabilization of CFTR structure than those in TMD1. Furthermore, the structural proximity of TMD1 mutants to the reported binding site of CFTR modulators such as VX-809 and VX-661, make them more efficient in stabilizing the CFTR mutants analyzed. Overall, our data suggest a pattern for mutation location and impact in response to modulators that correlates with the global effect of the mutations on CFTR structure.
Collapse
|
14
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
15
|
Molecular mechanisms of Cystic Fibrosis - how mutations lead to misfunction and guide therapy. Biosci Rep 2022; 42:231430. [PMID: 35707985 PMCID: PMC9251585 DOI: 10.1042/bsr20212006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis, the most common autosomal recessive disorder in Caucasians, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated chloride and bicarbonate channel that regulates ion and water transport in secretory epithelia. Although all mutations lead to the lack or reduction in channel function, the mechanisms through which this occurs are diverse – ranging from lack of full-length mRNA, reduced mRNA levels, impaired folding and trafficking, targeting to degradation, decreased gating or conductance, and reduced protein levels to decreased half-life at the plasma membrane. Here, we review the different molecular mechanisms that cause cystic fibrosis and detail how these differences identify theratypes that can inform the use of directed therapies aiming at correcting the basic defect. In summary, we travel through CFTR life cycle from the gene to function, identifying what can go wrong and what can be targeted in terms of the different types of therapeutic approaches.
Collapse
|
16
|
Kavanagh EW, Green JJ. Toward Gene Transfer Nanoparticles as Therapeutics. Adv Healthc Mater 2022; 11:e2102145. [PMID: 35006646 DOI: 10.1002/adhm.202102145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Genetic medicine has great potential to treat the underlying causes of many human diseases with exquisite precision, but the field has historically been stymied by delivery as the central challenge. Nanoparticles, engineered constructs the size of natural viruses, are being designed to more closely mimic the delivery efficiency of viruses, while enabling the advantages of increased safety, cargo-carrying flexibility, specific targeting, and ease in manufacturing. The speed in which nonviral gene transfer nanoparticles are making progress in the clinic is accelerating, with clinical validation of multiple nonviral nucleic acid delivery nanoparticle formulations recently FDA approved for both expression and for silencing of genes. While much of this progress has been with lipid nanoparticle formulations, significant development is being made with other nanomaterials for gene transfer as well, with favorable attributes such as biodegradability, scalability, and cell targeting. This review highlights the state of the field, current challenges in delivery, and opportunities for engineered nanomaterials to meet these challenges, including enabling long-term therapeutic gene editing. Delivery technology utilizing different kinds of nanomaterials and varying cargos for gene transfer (DNA, mRNA, and ribonucleoproteins) are discussed. Clinical applications are presented, including for the treatment of genetic diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Erin W. Kavanagh
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering Translational Tissue Engineering Center and Institute for NanoBioTechnology Johns Hopkins University School of Medicine 400 North Broadway, Smith Building 5017 Baltimore MD 21231 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering Translational Tissue Engineering Center and Institute for NanoBioTechnology Johns Hopkins University School of Medicine 400 North Broadway, Smith Building 5017 Baltimore MD 21231 USA
| |
Collapse
|
17
|
Dilernia D, Amin P, Flores J, Stecenko A, Sorscher E. Mutation profiling of the c.1521_1523delCTT (p.Phe508del, F508del) CFTR allele using haplotype-resolved long-read next generation sequencing. Hum Mutat 2022; 43:595-603. [PMID: 35170824 DOI: 10.1002/humu.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Current approaches to characterize the mutational profile of the cystic fibrosis transmembrane conductance regulator (CFTR) gene are based on targeted mutation analysis (TMA) or whole gene studies derived from short-read next generation sequencing (NGS). However, these methods lack phasing capability which, in certain scenarios, can provide clinically valuable information. In the present work, we performed near-full length CFTR using Single-Molecule Real-Time Sequencing to produce haplotype-resolved data from both homozygous and heterozygous individuals for mutation c.1521_1523delCTT (p.Phe508del, F508del). This approach utilizes target enrichment of the CFTR gene using biotinylated probes, facilitates multiplexing samples in the same sequencing run, and utilizes fully-automated bioinformatics pipelines for error correction and variant calling. We show a remarkable conservation of F508del haplotype, consistent with the single gene founder effect, as well as diverse mutational profiles in non-F508del alleles. By the same method, 105 single nucleotide polymorphisms (SNPs) exhibiting invariant linkage to F508del CFTR (which better define the founder haplotype) were identified. High level homology between F508del sequences derived from heterozygotes, and those obtained from homozygous individuals, demonstrate accuracy of this method to produce haplotype resolved sequencing. The studies provide a new diagnostic technology for detailed analysis of complex CFTR alleles linked to disease severity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dario Dilernia
- Department of Pathology, School of Medicine, Emory University.,Emory Vaccine Center, Emory University
| | | | - Julie Flores
- Department of Pediatrics, School of Medicine, Emory University, and the Emory + Children's Center for Cystic Fibrosis and Airways Disease Research
| | - Arlene Stecenko
- Department of Pediatrics, School of Medicine, Emory University, and the Emory + Children's Center for Cystic Fibrosis and Airways Disease Research
| | - Eric Sorscher
- Department of Pediatrics, School of Medicine, Emory University, and the Emory + Children's Center for Cystic Fibrosis and Airways Disease Research
| |
Collapse
|
18
|
Luo K, Ogawa M, Ayer A, Britton WJ, Stocker R, Kikuchi K, Oehlers SH. Zebrafish Heme Oxygenase 1a Is Necessary for Normal Development and Macrophage Migration. Zebrafish 2022; 19:7-17. [PMID: 35108124 DOI: 10.1089/zeb.2021.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heme oxygenase function is highly conserved between vertebrates where it plays important roles in normal embryonic development and controls oxidative stress. Expression of the zebrafish heme oxygenase 1 genes is known to be responsive to oxidative stress suggesting a conserved physiological function. In this study, we generate a knockout allele of zebrafish hmox1a and characterize the effects of hmox1a and hmox1b loss on embryonic development. We find that loss of hmox1a or hmox1b causes developmental defects in only a minority of embryos, in contrast to Hmox1 gene deletions in mice that cause loss of most embryos. Using a tail wound inflammation assay we find a conserved role for hmox1a, but not hmox1b, in normal macrophage migration to the wound site. Together our results indicate that zebrafish hmox1a has clearly a partitioned role from hmox1b that is more consistent with conserved functions of mammalian Heme oxygenase 1.
Collapse
Affiliation(s)
- Kaiming Luo
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Masahito Ogawa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,National Cerebral and Cardiovascular Center, Suita, Japan
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Camperdown, Australia
| |
Collapse
|
19
|
Kim YJ, Sivetz N, Layne J, Voss DM, Yang L, Zhang Q, Krainer AR. Exon-skipping antisense oligonucleotides for cystic fibrosis therapy. Proc Natl Acad Sci U S A 2022; 119:e2114858118. [PMID: 35017301 PMCID: PMC8784140 DOI: 10.1073/pnas.2114858118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), and the CFTR-W1282X nonsense mutation causes a severe form of CF. Although Trikafta and other CFTR-modulation therapies benefit most CF patients, targeted therapy for patients with the W1282X mutation is lacking. The CFTR-W1282X protein has residual activity but is expressed at a very low level due to nonsense-mediated messenger RNA (mRNA) decay (NMD). NMD-suppression therapy and read-through therapy are actively being researched for CFTR nonsense mutants. NMD suppression could increase the mutant CFTR mRNA, and read-through therapies may increase the levels of full-length CFTR protein. However, these approaches have limitations and potential side effects: because the NMD machinery also regulates the expression of many normal mRNAs, broad inhibition of the pathway is not desirable, and read-through drugs are inefficient partly because the mutant mRNA template is subject to NMD. To bypass these issues, we pursued an exon-skipping antisense oligonucleotide (ASO) strategy to achieve gene-specific NMD evasion. A cocktail of two splice-site-targeting ASOs induced the expression of CFTR mRNA without the premature-termination-codon-containing exon 23 (CFTR-Δex23), which is an in-frame exon. Treatment of human bronchial epithelial cells with this cocktail of ASOs that target the splice sites flanking exon 23 results in efficient skipping of exon 23 and an increase in CFTR-Δex23 protein. The splice-switching ASO cocktail increases the CFTR-mediated chloride current in human bronchial epithelial cells. Our results set the stage for developing an allele-specific therapy for CF caused by the W1282X mutation.
Collapse
Affiliation(s)
- Young Jin Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY 11794
| | - Nicole Sivetz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Jessica Layne
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dillon M Voss
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY 11794
| | - Lucia Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Stony Brook University School of Medicine, Stony Brook, NY 11794
| | - Qian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Graduate Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | | |
Collapse
|
20
|
Lee AJ, Huffmyer JL, Thiele EL, Zeitlin PL, Chatterjee D. The Changing Face of Cystic Fibrosis: An Update for Anesthesiologists. Anesth Analg 2022; 134:1245-1259. [PMID: 35020677 DOI: 10.1213/ane.0000000000005856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cystic fibrosis (CF) is the most common fatal genetic disease in North America. While CF is more common among Whites, it is increasingly being recognized in other races and ethnicities. Although there is no cure, life expectancy has steadily improved, with the median survival exceeding 46 years in the United States. There are now more adults than children with CF in the United States. CF is caused by mutations in a gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein, expressed in many epithelial cells. More than 2100 CFTR mutations have been linked to CF, and newer CFTR modulator drugs are being used to improve the production, intracellular processing, and function of the defective CFTR protein. CF is a multisystem disease that affects primarily the lungs, pancreas, hepatobiliary system, and reproductive organs. Anesthesiologists routinely encounter CF patients for various surgical and medical procedures, depending on the age group. This review article focuses on the changing epidemiology of CF, advances in the classification of CFTR mutations, the latest innovations in CFTR modulator therapies, the impact of the coronavirus disease pandemic, and perioperative considerations that anesthesiologists must know while caring for patients with CF.
Collapse
Affiliation(s)
- Amy J Lee
- From the Department of Anesthesiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | - Julie L Huffmyer
- Department of Anesthesiology, University of Virginia Health, Charlottesville, Virginia
| | - Eryn L Thiele
- Department of Anesthesiology, University of Virginia Health, Charlottesville, Virginia
| | - Pamela L Zeitlin
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Debnath Chatterjee
- From the Department of Anesthesiology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
21
|
Hoffmann P, Schnepel N, Langeheine M, Künnemann K, Grassl GA, Brehm R, Seeger B, Mazzuoli-Weber G, Breves G. Intestinal organoid-based 2D monolayers mimic physiological and pathophysiological properties of the pig intestine. PLoS One 2021; 16:e0256143. [PMID: 34424915 PMCID: PMC8382199 DOI: 10.1371/journal.pone.0256143] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal infectious diseases remain an important issue for human and animal health. Investigations on gastrointestinal infectious diseases are classically performed in laboratory animals leading to the problem that species-specific models are scarcely available, especially when it comes to farm animals. The 3R principles of Russel and Burch were achieved using intestinal organoids of porcine jejunum. These organoids seem to be a promising tool to generate species-specific in vitro models of intestinal epithelium. 3D Organoids were grown in an extracellular matrix and characterized by qPCR. Organoids were also seeded on permeable filter supports in order to generate 2D epithelial monolayers. The organoid-based 2D monolayers were characterized morphologically and were investigated regarding their potential to study physiological transport properties and pathophysiological processes. They showed a monolayer structure containing different cell types. Moreover, their functional activity was demonstrated by their increasing transepithelial electrical resistance over 18 days and by an active glucose transport and chloride secretion. Furthermore, the organoid-based 2D monolayers were also confronted with cholera toxin derived from Vibrio cholerae as a proof of concept. Incubation with cholera toxin led to an increase of short-circuit current indicating an enhanced epithelial chloride secretion, which is a typical characteristic of cholera infections. Taken this together, our model allows the investigation of physiological and pathophysiological mechanisms focusing on the small intestine of pigs. This is in line with the 3R principle and allows the reduction of classical animal experiments.
Collapse
Affiliation(s)
- Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| | - Nadine Schnepel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marion Langeheine
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Katrin Künnemann
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology and German Center for Infection Research (DZIF), Partner Site Hannover, Hannover Medical School, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Sharma J, Du M, Wong E, Mutyam V, Li Y, Chen J, Wangen J, Thrasher K, Fu L, Peng N, Tang L, Liu K, Mathew B, Bostwick RJ, Augelli-Szafran CE, Bihler H, Liang F, Mahiou J, Saltz J, Rab A, Hong J, Sorscher EJ, Mendenhall EM, Coppola CJ, Keeling KM, Green R, Mense M, Suto MJ, Rowe SM, Bedwell DM. A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nat Commun 2021; 12:4358. [PMID: 34272367 PMCID: PMC8285393 DOI: 10.1038/s41467-021-24575-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Premature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs. Premature termination codons can cause early translation termination and lead to disease. Here the authors perform a screen to identify compounds with readthrough activity and show that these reduce eRF1 levels to suppress premature termination associated with cystic fibrosis.
Collapse
Affiliation(s)
- Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ming Du
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Eric Wong
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Venkateshwar Mutyam
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Yao Li
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Jianguo Chen
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Jamie Wangen
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kari Thrasher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Lianwu Fu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ning Peng
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Liping Tang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Kaimao Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | | | | | | | - Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Feng Liang
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Jerome Mahiou
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Josef Saltz
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Andras Rab
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Jeong Hong
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Eric M Mendenhall
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Candice J Coppola
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Kim M Keeling
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | | | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - David M Bedwell
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA. .,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
23
|
Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20:865-875. [PMID: 34226157 PMCID: PMC8464507 DOI: 10.1016/j.jcf.2021.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023]
Abstract
Background: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849 + 10 kb C-to-T splicing mutation in the CFTR gene. Methods: We have screened, in FRT cells expressing the 3849 + 10 kb C-to-T splicing mutation, ~30 2ʹ-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849 + 10 kb C-to-T allele. Results: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2ʹ-Methoxy Ethyl modification (2ʹMOE). Conclusion: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.
Collapse
|
24
|
Abstract
The discovery in 1989 that cystic fibrosis, the most common life-shortening hereditary disease in Caucasians, was caused by mutations in cystic fibrosis transmembrane conductance regulator (CFTR) gene, put in motion whole new areas of research, diagnosis, and therapeutic development. In this review, we focus on the most important advances in our understanding of the molecular basis of CFTR dysfunction. To date, over 2,000 CFTR mutations belonging to six protein-defect classes have been identified, increasing vastly our understanding of genotype/phenotype correlations. In the last 30 years, major achievements have been made in neonatal screening, antenatal diagnosis, and crucially with recent breakthroughs in the development of CFTR-directed therapies that may be effective for 90% of patients, paving the way for precision medicine.
Collapse
Affiliation(s)
- Claude Férec
- Univ Brest, Inserm UMR 1078, Génétique, génomique fonctionnelle et biotechnologies, Établissement français du sang - Bretagne, CHRU Brest, 22 avenue Camille Desmoulins, 29238 Brest Cedex 3 France
| |
Collapse
|
25
|
Anderson JD, Liu Z, Odom LV, Kersh L, Guimbellot JS. CFTR function and clinical response to modulators parallel nasal epithelial organoid swelling. Am J Physiol Lung Cell Mol Physiol 2021; 321:L119-L129. [PMID: 34009038 DOI: 10.1152/ajplung.00639.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vitro biomarkers to assess cystic fibrosis transmembrane conductance regulator activity are desirable for precision modulator selection and as a tool for clinical trials. Here, we describe an organoid swelling assay derived from human nasal epithelia using commercially available reagents and equipment and an automated imaging process. Cells were collected in nasal brush biopsies, expanded in vitro, and cultured as spherical organoids or as monolayers. Organoids were used in a functional swelling assay with automated measurements and analysis, whereas monolayers were used for short-circuit current measurements to assess ion channel activity. Clinical data were collected from patients on modulators. Relationships between swelling data and short-circuit current, as well as between swelling data and clinical outcome measures, were assessed. The organoid assay measurements correlated with short-circuit current measurements for ion channel activity. The functional organoid assay distinguished individual responses as well as differences between groups. The organoid assay distinguished incremental drug responses to modulator monotherapy with ivacaftor and combination therapy with ivacaftor, tezacaftor, and elexacaftor. The swelling activity paralleled the clinical response. In conclusion, an in vitro biomarker derived from patients' cells can be used to predict responses to drugs and is likely to be useful as a preclinical tool to aid in the development of novel treatments and as a clinical trial outcome measure for a variety of applications, including gene therapy or editing.
Collapse
Affiliation(s)
- Justin D Anderson
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - L Victoria Odom
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Latona Kersh
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Guimbellot
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021; 12:662110. [PMID: 33986686 PMCID: PMC8111007 DOI: 10.3389/fphar.2021.662110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.
Collapse
Affiliation(s)
- Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Angélique Mottais
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claire Detry
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D, Mark D, Strug LJ, Rommens JM, Ballmann M, Sorscher EJ, Oliver KE, Ignatova Z. Positive epistasis between disease-causing missense mutations and silent polymorphism with effect on mRNA translation velocity. Proc Natl Acad Sci U S A 2021; 118:e2010612118. [PMID: 33468668 PMCID: PMC7848603 DOI: 10.1073/pnas.2010612118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epistasis refers to the dependence of a mutation on other mutation(s) and the genetic context in general. In the context of human disorders, epistasis complicates the spectrum of disease symptoms and has been proposed as a major contributor to variations in disease outcome. The nonadditive relationship between mutations and the lack of complete understanding of the underlying physiological effects limit our ability to predict phenotypic outcome. Here, we report positive epistasis between intragenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene responsible for cystic fibrosis (CF) pathology. We identified a synonymous single-nucleotide polymorphism (sSNP) that is invariant for the CFTR amino acid sequence but inverts translation speed at the affected codon. This sSNP in cis exhibits positive epistatic effects on some CF disease-causing missense mutations. Individually, both mutations alter CFTR structure and function, yet when combined, they lead to enhanced protein expression and activity. The most robust effect was observed when the sSNP was present in combination with missense mutations that, along with the primary amino acid change, also alter the speed of translation at the affected codon. Functional studies revealed that synergistic alteration in ribosomal velocity is the underlying mechanism; alteration of translation speed likely increases the time window for establishing crucial domain-domain interactions that are otherwise perturbed by each individual mutation.
Collapse
Affiliation(s)
- Robert Rauscher
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Giovana B Bampi
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Marta Guevara-Ferrer
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Disha Joshi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - David Mark
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Lisa J Strug
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Statistical Sciences, Computer Science and Division of Biostatistics, University of Toronto, Toronto M5G 0A4, Canada
| | - Johanna M Rommens
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | | | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany;
| |
Collapse
|
28
|
Funata M, Nio Y, Erion DM, Thompson WL, Takebe T. The promise of human organoids in the digestive system. Cell Death Differ 2021; 28:84-94. [PMID: 33204011 PMCID: PMC7852589 DOI: 10.1038/s41418-020-00661-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
The advent of organoid technology has enabled scientists and clinicians to utilize cells from primary tissues or pluripotent stem cells (PSCs) to grow self-organizing tissue systems, thus attaining cellular diversity, spatial organization, and functionality as found within digestive tracts. The development of human gastrointestinal (GI) and hepato-biliary-pancreatic organoids as an in-a-dish model present novel opportunities to study humanistic mechanisms of organogenesis, regeneration and pathogenesis. Herein, we review the recent portfolios of primary tissue-derived and PSC-derived organoids in the digestive systems. We also discuss the promise and challenges in disease modeling and drug development applications for digestive disorders.
Collapse
Affiliation(s)
- Masaaki Funata
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
- Takeda-CiRA Joint Program, Fujisawa City, Kanagawa, Japan
| | - Yasunori Nio
- T-CiRA Discovery, Takeda Pharmaceutical Company Limited, Fujisawa City, Kanagawa, Japan
- Takeda-CiRA Joint Program, Fujisawa City, Kanagawa, Japan
| | - Derek M Erion
- Gastroenterology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Wendy L Thompson
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Takanori Takebe
- Takeda-CiRA Joint Program, Fujisawa City, Kanagawa, Japan.
- Division of Gastroenterology, Hepatology & Nutrition, Developmental Biology, Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
29
|
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder whose responsible gene - the CFTR gene - was discovered 30 years ago by a positional cloning strategy. This gene, which encodes a chloride channel, contains more than 2,000 mutations including a major one (p.Phe508del). This discovery has led to considerable progress in the understanding of the pathophysiology of CF as well as in the management of patients and their families. It has also paved the way for the development of specific therapies for the disease. From an epidemiological point of view, the incidence of CF, which shows loco-regional variations, is now estimated at 1/4,700 live births in France. The face of CF has dramatically changed over the past decades: CF has gradually become a disease of the adult with, today, more than 50% of the patients being 18 years old or more and a median predicted survival age that exceeds 45 years. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- C Férec
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France; CHU Brest, Hôpital Morvan, Laboratoire de génétique moléculaire et d'histocompatibilité, F-29200 Brest, France.
| | - V Scotet
- Inserm, Univ Brest, EFS, UMR 1078, GGB, F-29200 Brest, France
| |
Collapse
|
30
|
Konishi CT, Long C. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. J Biomed Res 2020; 35:148-162. [PMID: 33402545 PMCID: PMC8038532 DOI: 10.7555/jbr.34.20200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There are an estimated 10 000 monogenic diseases affecting tens of millions of individuals worldwide. The application of CRISPR/Cas genome editing tools to treat monogenic diseases is an emerging strategy with the potential to generate personalized treatment approaches for these patients. CRISPR/Cas-based systems are programmable and sequence-specific genome editing tools with the capacity to generate base pair resolution manipulations to DNA or RNA. The complexity of genomic insults resulting in heritable disease requires patient-specific genome editing strategies with consideration of DNA repair pathways, and CRISPR/Cas systems of different types, species, and those with additional enzymatic capacity and/or delivery methods. In this review we aim to discuss broad and multifaceted therapeutic applications of CRISPR/Cas gene editing systems including in harnessing of homology directed repair, non-homologous end joining, microhomology-mediated end joining, and base editing to permanently correct diverse monogenic diseases.
Collapse
Affiliation(s)
- Colin T Konishi
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chengzu Long
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Helen and Martin Kimmel Center for Stem Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Mutations of the CFTR gene and novel variants in Turkish patients with cystic fibrosis: 24-years experience. Clin Chim Acta 2020; 510:252-259. [DOI: 10.1016/j.cca.2020.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
|
32
|
Bonnet P, Le Gal S, Calderon E, Delhaes L, Quinio D, Robert-Gangneux F, Ramel S, Nevez G. Pneumocystis jirovecii in Patients With Cystic Fibrosis: A Review. Front Cell Infect Microbiol 2020; 10:571253. [PMID: 33117730 PMCID: PMC7553083 DOI: 10.3389/fcimb.2020.571253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumocystis pneumonia (PCP) remains the most frequent AIDS-defining illness in developed countries. This infection also occurs in non-AIDS immunosuppressed patients, e.g., those who have undergone an organ transplantation. Moreover, mild Pneumocystis jirovecii infections related to low pulmonary fungal burden, frequently designated as pulmonary colonization, occurs in patients with chronic pulmonary diseases, e.g., cystic fibrosis (CF). Indeed, this autosomal recessive disorder alters mucociliary clearance leading to bacterial and fungal colonization of the airways. This mini-review compiles and discusses available information on P. jirovecii and CF. It highlights significant differences in the prevalence of P. jirovecii pulmonary colonization in European and Brazilian CF patients. It also describes the microbiota associated with P. jirovecii in CF patients colonized by P. jirovecii. Furthermore, we have described P. jirovecii genomic diversity in colonized CF patients. In addition of pulmonary colonization, it appears that PCP can occur in CF patients specifically after lung transplantation, thus requiring preventive strategies. In other respects, Pneumocystis primary infection is a worldwide phenomenon occurring in non-immunosuppressed infants within their first months. The primary infection is mostly asymptomatic but it can also present as a benign self-limiting infection. It probably occurs in the same manner in CF infants. Nonetheless, two cases of severe Pneumocystis primary infection mimicking PCP in CF infants have been reported, the genetic disease appearing in these circumstances as a risk factor of PCP while the host-pathogen interaction in older children and adults with pulmonary colonization remains to be clarified.
Collapse
Affiliation(s)
- Pierre Bonnet
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
| | - Solène Le Gal
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.,Groupe d'Etude des Interactions Hôte-Pathogène (ER, GEIHP), Université d'Angers, Université de Brest, Brest, France
| | - Enrique Calderon
- CIBER de Epidemiologia y Salud Publica and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Laurence Delhaes
- Laboratory of Parasitology and Mycology, Bordeaux University Hospital, Bordeaux, France Inserm U1045 - University of Bordeaux, Bordeaux, France
| | - Dorothée Quinio
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
| | - Florence Robert-Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé Environnement Travail), UMR_S 1085, Rennes, France
| | - Sophie Ramel
- Centre de Ressources et de Compétences de la Mucoviscidose, Fondation Ildys, Roscoff, France
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France.,Groupe d'Etude des Interactions Hôte-Pathogène (ER, GEIHP), Université d'Angers, Université de Brest, Brest, France
| |
Collapse
|
33
|
Cui X, Wu X, Li Q, Jing X. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol Med Rep 2020; 22:3587-3596. [PMID: 33000223 PMCID: PMC7533508 DOI: 10.3892/mmr.2020.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is predominantly caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CBAVD accounts for 2–6% of male infertility cases and up to 25% of cases of obstructive azoospermia. With the use of pre-implantation genetic diagnosis, testicular or epididymal sperm aspiration, intracytoplasmic sperm injection and in vitro fertilization, patients affected by CBAVD are able to have children who do not carry CFTR gene mutations, thereby preventing disease. Therefore, genetic counseling should be provided to couples receiving assisted reproductive techniques to discuss the impact of CFTR gene mutations on reproductive health. In the present article, the current literature concerning the CFTR gene and its association with CBAVD is reviewed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
34
|
El Bar Aluma B, Sarouk I, Senderowitz H, Cohen-Cymberknoh M, Khazanov N, Dagan A, Bezalel Y, Ashkenazi M, Keler S, Efrati O. Phenotypic and molecular characteristics of CF patients carrying the I1234V mutation. Respir Med 2020; 170:106027. [DOI: 10.1016/j.rmed.2020.106027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 11/29/2022]
|
35
|
Sharma J, Keeling KM, Rowe SM. Pharmacological approaches for targeting cystic fibrosis nonsense mutations. Eur J Med Chem 2020; 200:112436. [PMID: 32512483 DOI: 10.1016/j.ejmech.2020.112436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder. The clinical manifestations of the disease are caused by ∼2,000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. It is unlikely that any one approach will be efficient in correcting all defects. The recent approvals of ivacaftor, lumacaftor/ivacaftor and elexacaftor/tezacaftor/ivacaftor represent the genesis of a new era of precision combination medicine for the CF patient population. In this review, we discuss targeted translational readthrough approaches as mono and combination therapies for CFTR nonsense mutations. We examine the current status of efficacy of translational readthrough/nonsense suppression therapies and their limitations, including non-native amino acid incorporation at PTCs and nonsense-mediated mRNA decay (NMD), along with approaches to tackle these limitations. We further elaborate on combining various therapies such as readthrough agents, NMD inhibitors, and corrector/potentiators to improve the efficacy and safety of suppression therapy. These mutation specific strategies that are directed towards the basic CF defects should positively impact CF patients bearing nonsense mutations.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Medicine, University of Alabama at Birmingham (UAB), USA; Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), USA
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), USA; Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham (UAB), USA; Department of Pediatrics, University of Alabama at Birmingham (UAB), USA; Department of Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), USA.
| |
Collapse
|
36
|
Geurts MH, de Poel E, Amatngalim GD, Oka R, Meijers FM, Kruisselbrink E, van Mourik P, Berkers G, de Winter-de Groot KM, Michel S, Muilwijk D, Aalbers BL, Mullenders J, Boj SF, Suen SWF, Brunsveld JE, Janssens HM, Mall MA, Graeber SY, van Boxtel R, van der Ent CK, Beekman JM, Clevers H. CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank. Cell Stem Cell 2020; 26:503-510.e7. [PMID: 32084388 DOI: 10.1016/j.stem.2020.01.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/11/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.
Collapse
Affiliation(s)
- Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Eyleen de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Rurika Oka
- Princess Maxima Center, 3584 CS Utrecht, the Netherlands; Oncode Institute, Princess Maxima Center, 3584 CS Utrecht, the Netherlands
| | - Fleur M Meijers
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Evelien Kruisselbrink
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Peter van Mourik
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Gitte Berkers
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Karin M de Winter-de Groot
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Sabine Michel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Danya Muilwijk
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Bente L Aalbers
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | | | - Sylvia F Boj
- Hubrecht Organoid Technology, 3584 CM, Utrecht, the Netherlands
| | - Sylvia W F Suen
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Hettie M Janssens
- Department of Pediatrics, division of Respiratory Medicine and Allergology, ErasmusMC-Sophia Children's Hospital, University Hospital Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Ruben van Boxtel
- Princess Maxima Center, 3584 CS Utrecht, the Netherlands; Oncode Institute, Princess Maxima Center, 3584 CS Utrecht, the Netherlands
| | - Cornelis K van der Ent
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
37
|
Forrest ME, Pinkard O, Martin S, Sweet TJ, Hanson G, Coller J. Codon and amino acid content are associated with mRNA stability in mammalian cells. PLoS One 2020; 15:e0228730. [PMID: 32053646 PMCID: PMC7018022 DOI: 10.1371/journal.pone.0228730] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Messenger RNA (mRNA) degradation plays a critical role in regulating transcript levels in the cell and is a major control point for modulating gene expression. In yeast and other model organisms, codon identity is a powerful determinant of transcript stability, contributing broadly to impact half-lives. General principles governing mRNA stability are poorly understood in mammalian systems. Importantly, however, the degradation machinery is highly conserved, thus it seems logical that mammalian transcript half-lives would also be strongly influenced by coding determinants. Herein we characterize the contribution of coding sequence towards mRNA decay in human and Chinese Hamster Ovary cells. In agreement with previous studies, we observed that synonymous codon usage impacts mRNA stability in mammalian cells. Surprisingly, however, we also observe that the amino acid content of a gene is an additional determinant correlating with transcript stability. The impact of codon and amino acid identity on mRNA decay appears to be associated with underlying tRNA and intracellular amino acid concentrations. Accordingly, genes of similar physiological function appear to coordinate their mRNA stabilities in part through codon and amino acid content. Together, these results raise the possibility that intracellular tRNA and amino acid levels interplay to mediate coupling between translational elongation and mRNA degradation rate in mammals.
Collapse
Affiliation(s)
- Megan E. Forrest
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Otis Pinkard
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Sophie Martin
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Thomas J. Sweet
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gavin Hanson
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, Burgel PR, Tullis E, Castaños C, Castellani C, Byrnes CA, Cathcart F, Chotirmall SH, Cosgriff R, Eichler I, Fajac I, Goss CH, Drevinek P, Farrell PM, Gravelle AM, Havermans T, Mayer-Hamblett N, Kashirskaya N, Kerem E, Mathew JL, McKone EF, Naehrlich L, Nasr SZ, Oates GR, O'Neill C, Pypops U, Raraigh KS, Rowe SM, Southern KW, Sivam S, Stephenson AL, Zampoli M, Ratjen F. The future of cystic fibrosis care: a global perspective. THE LANCET. RESPIRATORY MEDICINE 2020; 8:65-124. [PMID: 31570318 PMCID: PMC8862661 DOI: 10.1016/s2213-2600(19)30337-6] [Citation(s) in RCA: 633] [Impact Index Per Article: 126.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
The past six decades have seen remarkable improvements in health outcomes for people with cystic fibrosis, which was once a fatal disease of infants and young children. However, although life expectancy for people with cystic fibrosis has increased substantially, the disease continues to limit survival and quality of life, and results in a large burden of care for people with cystic fibrosis and their families. Furthermore, epidemiological studies in the past two decades have shown that cystic fibrosis occurs and is more frequent than was previously thought in populations of non-European descent, and the disease is now recognised in many regions of the world. The Lancet Respiratory Medicine Commission on the future of cystic fibrosis care was established at a time of great change in the clinical care of people with the disease, with a growing population of adult patients, widespread genetic testing supporting the diagnosis of cystic fibrosis, and the development of therapies targeting defects in the cystic fibrosis transmembrane conductance regulator (CFTR), which are likely to affect the natural trajectory of the disease. The aim of the Commission was to bring to the attention of patients, health-care professionals, researchers, funders, service providers, and policy makers the various challenges associated with the changing landscape of cystic fibrosis care and the opportunities available for progress, providing a blueprint for the future of cystic fibrosis care. The discovery of the CFTR gene in the late 1980s triggered a surge of basic research that enhanced understanding of the pathophysiology and the genotype-phenotype relationships of this clinically variable disease. Until recently, available treatments could only control symptoms and restrict the complications of cystic fibrosis, but advances in CFTR modulator therapies to address the basic defect of cystic fibrosis have been remarkable and the field is evolving rapidly. However, CFTR modulators approved for use to date are highly expensive, which has prompted questions about the affordability of new treatments and served to emphasise the considerable gap in health outcomes for patients with cystic fibrosis between high-income countries, and low-income and middle-income countries (LMICs). Advances in clinical care have been multifaceted and include earlier diagnosis through the implementation of newborn screening programmes, formalised airway clearance therapy, and reduced malnutrition through the use of effective pancreatic enzyme replacement and a high-energy, high-protein diet. Centre-based care has become the norm in high-income countries, allowing patients to benefit from the skills of expert members of multidisciplinary teams. Pharmacological interventions to address respiratory manifestations now include drugs that target airway mucus and airway surface liquid hydration, and antimicrobial therapies such as antibiotic eradication treatment in early-stage infections and protocols for maintenance therapy of chronic infections. Despite the recent breakthrough with CFTR modulators for cystic fibrosis, the development of novel mucolytic, anti-inflammatory, and anti-infective therapies is likely to remain important, especially for patients with more advanced stages of lung disease. As the median age of patients with cystic fibrosis increases, with a rapid increase in the population of adults living with the disease, complications of cystic fibrosis are becoming increasingly common. Steps need to be taken to ensure that enough highly qualified professionals are present in cystic fibrosis centres to meet the needs of ageing patients, and new technologies need to be adopted to support communication between patients and health-care providers. In considering the future of cystic fibrosis care, the Commission focused on five key areas, which are discussed in this report: the changing epidemiology of cystic fibrosis (section 1); future challenges of clinical care and its delivery (section 2); the building of cystic fibrosis care globally (section 3); novel therapeutics (section 4); and patient engagement (section 5). In panel 1, we summarise key messages of the Commission. The challenges faced by all stakeholders in building and developing cystic fibrosis care globally are substantial, but many opportunities exist for improved care and health outcomes for patients in countries with established cystic fibrosis care programmes, and in LMICs where integrated multidisciplinary care is not available and resources are lacking at present. A concerted effort is needed to ensure that all patients with cystic fibrosis have access to high-quality health care in the future.
Collapse
Affiliation(s)
- Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Marcus A Mall
- Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Lung Research, Berlin, Germany
| | | | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Susan Madge
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Jane C Davies
- Royal Brompton and Harefield NHS Foundation Trust, London, UK; National Heart and Lung Institute, Imperial College, London, UK
| | - Pierre-Régis Burgel
- Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes, Institut Cochin, Paris, France
| | - Elizabeth Tullis
- St Michael's Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Claudio Castaños
- Hospital de Pediatria "Juan P Garrahan", Buenos Aires, Argentina
| | - Carlo Castellani
- Cystic Fibrosis Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Catherine A Byrnes
- Starship Children's Hospital, Auckland, New Zealand; University of Auckland, Auckland, New Zealand
| | - Fiona Cathcart
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Isabelle Fajac
- Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Descartes, Institut Cochin, Paris, France
| | | | - Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | | | - Anna M Gravelle
- Cystic Fibrosis Clinic, British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Trudy Havermans
- Cystic Fibrosis Centre, University Hospital Leuven, Leuven, Belgium
| | - Nicole Mayer-Hamblett
- University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Joseph L Mathew
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Edward F McKone
- School of Medicine, St Vincent's University Hospital, Dublin, Ireland; University College Dublin School of Medicine, Dublin, Ireland
| | - Lutz Naehrlich
- Universities of Giessen and Marburg Lung Center, German Center of Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Samya Z Nasr
- CS Mott Children's Hospital, Ann Arbor, MI, USA; University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Steven M Rowe
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin W Southern
- Alder Hey Children's Hospital, Liverpool, UK; University of Liverpool, Liverpool, UK
| | - Sheila Sivam
- Royal Prince Alfred Hospital, Sydney, NSW, Australia; Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Anne L Stephenson
- St Michael's Hospital, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | - Marco Zampoli
- Division of Paediatric Pulmonology and MRC Unit for Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - Felix Ratjen
- University of Toronto, Toronto, ON, Canada; Division of Respiratory Medicine, Department of Paediatrics, Translational Medicine Research Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease: Will Cell-Specific Targeting Be the Key to the Cure? Chest 2019; 157:1207-1220. [PMID: 31778676 DOI: 10.1016/j.chest.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.
Collapse
|
40
|
Connett GJ. Lumacaftor-ivacaftor in the treatment of cystic fibrosis: design, development and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2405-2412. [PMID: 31409974 PMCID: PMC6650604 DOI: 10.2147/dddt.s153719] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/01/2019] [Indexed: 11/23/2022]
Abstract
Lumacaftor-ivacaftor is a combination of two small molecule therapies targeting the basic defect in cystic fibrosis (CF) at a cellular level. It is a precision medicine and its effects are specific to individuals with two copies of the p.Phe508del gene mutation. The drug combination works by restoring functioning CF transmembrane conductance regulator (CFTR) protein in cell surface membranes and was the first CFTR modulator licensed for the homozygous p.Phe508del genotype. The drug is a combination of a CFTR corrector and potentiator. Lumacaftor, the corrector, works by increasing the trafficking of CFTR proteins to the outer cell membrane. Ivacaftor, the potentiator, works by enabling the opening of what would otherwise be a dysfunctional chloride channel. In vivo lumacaftor-ivacaftor improves Phe508del-CFTR activity in airways, sweat ducts and intestine to approximately 10–20% of normal CFTR function with greater reductions in sweat chloride levels in children versus adults. Its use results in a modest improvement in lung function and a decreased rate of subsequent decline. Perhaps more importantly, those treated report increased levels of well-being and their rate of respiratory exacerbations is significantly improved. This review traces the development and use of this combination of CFTR modulators, the first licensed drug for treating the homozygous p.Phe508del CF genotype at the intracellular level by correcting the protein defect.
Collapse
Affiliation(s)
- G J Connett
- National Institute for Health Research, Southampton Respiratory Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| |
Collapse
|
41
|
Abstract
Genetic robustness, or the ability of an organism to maintain fitness in the presence of mutations, can be achieved via protein feedback loops. Recent evidence suggests that organisms may also respond to mutations by upregulating related gene(s) independently of protein feedback loops, a phenomenon called transcriptional adaptation. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analyzing several models of transcriptional adaptation in zebrafish and mouse, we show a requirement for mRNA degradation. Alleles that fail to transcribe the mutated gene do not display transcriptional adaptation and exhibit more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene’s mRNA, suggesting a sequence dependent mechanism. Besides implications for our understanding of disease-causing mutations, these findings will help design mutant alleles with minimal transcriptional adaptation-derived compensation.
Collapse
|
42
|
Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018; 31:e00019-18. [PMID: 30158299 PMCID: PMC6148191 DOI: 10.1128/cmr.00019-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lower airway infection with Pseudomonas aeruginosa is a major contributor to morbidity and mortality in individuals suffering from the genetic disease cystic fibrosis (CF). Whereas it was long presumed that each patient independently acquired unique strains of P. aeruginosa present in their living environment, multiple studies have since demonstrated that shared strains of P. aeruginosa exist among individuals with CF. Many of these shared strains, often referred to as clonal or epidemic strains, can be transmitted from one CF individual to another, potentially reaching epidemic status. Numerous epidemic P. aeruginosa strains have been described from different parts of the world and are often associated with an antibiotic-resistant phenotype. Importantly, infection with these strains often portends a worse prognosis than for infection with nonclonal strains, including an increased pulmonary exacerbation rate, exaggerated lung function decline, and progression to end-stage lung disease. This review describes the global epidemiology of clonal P. aeruginosa strains in CF and summarizes the current literature regarding the underlying biology and clinical impact of globally important CF clones. Mechanisms associated with patient-to-patient transmission are discussed, and best-evidence practices to prevent infections are highlighted. Preventing new infections with epidemic P. aeruginosa strains is of paramount importance in mitigating CF disease progression.
Collapse
Affiliation(s)
- Michael D Parkins
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Valerie J Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Improving imputation in disease-relevant regions: lessons from cystic fibrosis. NPJ Genom Med 2018; 3:8. [PMID: 29581887 PMCID: PMC5861096 DOI: 10.1038/s41525-018-0047-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 11/08/2022] Open
Abstract
Does genotype imputation with public reference panels identify variants contributing to disease? Genotype imputation using the 1000 Genomes Project (1KG; 2504 individuals) displayed poor coverage at the causal cystic fibrosis (CF) transmembrane conductance regulator (CFTR) locus for the International CF Gene Modifier Consortium. Imputation with the larger Haplotype Reference Consortium (HRC; 32,470 individuals) displayed improved coverage but low sensitivity of variants clinically relevant for CF. A hybrid reference that combined whole genome sequencing (WGS) from 101 CF individuals with the 1KG imputed a greater number of single-nucleotide variants (SNVs) that would be analyzed in a genetic association study (r2 ≥ 0.3 and MAF ≥ 0.5%) than imputation with the HRC, while the HRC excelled in the lower frequency spectrum. Using the 1KG or HRC as reference panels missed the most common CF-causing variants or displayed low imputation accuracy. Designs that incorporate population-specific WGS can improve imputation accuracy at disease-specific loci, while imputation using public data sets can omit disease-relevant genotypes.
Collapse
|
44
|
Martinovich KM, Shaw NC, Kicic A, Schultz A, Fletcher S, Wilton SD, Stick SM. The potential of antisense oligonucleotide therapies for inherited childhood lung diseases. Mol Cell Pediatr 2018; 5:3. [PMID: 29411170 PMCID: PMC5801198 DOI: 10.1186/s40348-018-0081-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Antisense oligonucleotides are an emerging therapeutic option to treat diseases with known genetic origin. In the age of personalised medicines, antisense oligonucleotides can sometimes be designed to target and bypass or overcome a patient's genetic mutation, in particular those lesions that compromise normal pre-mRNA processing. Antisense oligonucleotides can alter gene expression through a variety of mechanisms as determined by the chemistry and antisense oligomer design. Through targeting the pre-mRNA, antisense oligonucleotides can alter splicing and induce a specific spliceoform or disrupt the reading frame, target an RNA transcript for degradation through RNaseH activation, block ribosome initiation of protein translation or disrupt miRNA function. The recent accelerated approval of eteplirsen (renamed Exondys 51™) by the Food and Drug Administration, for the treatment of Duchenne muscular dystrophy, and nusinersen, for the treatment of spinal muscular atrophy, herald a new and exciting era in splice-switching antisense oligonucleotide applications to treat inherited diseases. This review considers the potential of antisense oligonucleotides to treat inherited lung diseases of childhood with a focus on cystic fibrosis and disorders of surfactant protein metabolism.
Collapse
Affiliation(s)
- Kelly M. Martinovich
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Nicole C. Shaw
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Western Australia 6008 Australia
- School of Public Health, Curtin University, Bentley, Western Australia 6102 Australia
| | - André Schultz
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Western Australia 6008 Australia
| | - Sue Fletcher
- Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Stephen M. Stick
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Western Australia 6008 Australia
| |
Collapse
|
45
|
Martinovich KM, Iosifidis T, Buckley AG, Looi K, Ling KM, Sutanto EN, Kicic-Starcevich E, Garratt LW, Shaw NC, Montgomery S, Lannigan FJ, Knight DA, Kicic A, Stick SM. Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics. Sci Rep 2017; 7:17971. [PMID: 29269735 PMCID: PMC5740081 DOI: 10.1038/s41598-017-17952-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.
Collapse
Affiliation(s)
- Kelly M Martinovich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Thomas Iosifidis
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kevin Looi
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Erika N Sutanto
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Elizabeth Kicic-Starcevich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole C Shaw
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Samuel Montgomery
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia
| | - Francis J Lannigan
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia. .,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia. .,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia. .,Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia.
| | - Stephen M Stick
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Crawley, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| |
Collapse
|
46
|
Athanazio RA, Silva Filho LVRFD, Vergara AA, Ribeiro AF, Riedi CA, Procianoy EDFA, Adde FV, Reis FJC, Ribeiro JD, Torres LA, Fuccio MBD, Epifanio M, Firmida MDC, Damaceno N, Ludwig-Neto N, Maróstica PJC, Rached SZ, Melo SFDO. Brazilian guidelines for the diagnosis and treatment of cystic fibrosis. ACTA ACUST UNITED AC 2017; 43:219-245. [PMID: 28746534 PMCID: PMC5687954 DOI: 10.1590/s1806-37562017000000065] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder characterized by dysfunction of the CFTR gene. It is a multisystem disease that most often affects White individuals. In recent decades, various advances in the diagnosis and treatment of CF have drastically changed the scenario, resulting in a significant increase in survival and quality of life. In Brazil, the current neonatal screening program for CF has broad coverage, and most of the Brazilian states have referral centers for the follow-up of individuals with the disease. Previously, CF was limited to the pediatric age group. However, an increase in the number of adult CF patients has been observed, because of the greater number of individuals being diagnosed with atypical forms (with milder phenotypic expression) and because of the increase in life expectancy provided by the new treatments. However, there is still great heterogeneity among the different regions of Brazil in terms of the access of CF patients to diagnostic and therapeutic methods. The objective of these guidelines was to aggregate the main scientific evidence to guide the management of these patients. A group of 18 CF specialists devised 82 relevant clinical questions, divided into five categories: characteristics of a referral center; diagnosis; treatment of respiratory disease; gastrointestinal and nutritional treatment; and other aspects. Various professionals working in the area of CF in Brazil were invited to answer the questions devised by the coordinators. We used the PubMed database to search the available literature based on keywords, in order to find the best answers to these questions.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | - Alberto Andrade Vergara
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | | | | | | | - Fabíola Villac Adde
- . Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Francisco José Caldeira Reis
- . Hospital Infantil João Paulo II, Rede Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - José Dirceu Ribeiro
- . Hospital de Clínicas, Universidade Estadual de Campinas, Campinas (SP) Brasil
| | - Lídia Alice Torres
- . Hospital das Clínicas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (SP) Brasil
| | - Marcelo Bicalho de Fuccio
- . Hospital Júlia Kubitschek, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | - Matias Epifanio
- . Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre (RS) Brasil
| | | | - Neiva Damaceno
- . Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo (SP) Brasil
| | - Norberto Ludwig-Neto
- . Hospital Infantil Joana de Gusmão, Florianópolis (SC) Brasil.,. Serviço de Fibrose Cística e Triagem Neonatal para Fibrose Cística, Secretaria Estadual de Saúde de Santa Catarina, Florianópolis (SC) Brasil
| | - Paulo José Cauduro Maróstica
- . Hospital de Clínicas de Porto Alegre, Porto Alegre (RS) Brasil.,. Universidade Federal do Rio Grande do Sul Porto Alegre (RS) Brasil
| | - Samia Zahi Rached
- . Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | | | | |
Collapse
|
47
|
Pranke IM, Hatton A, Simonin J, Jais JP, Le Pimpec-Barthes F, Carsin A, Bonnette P, Fayon M, Stremler-Le Bel N, Grenet D, Thumerel M, Mazenq J, Urbach V, Mesbahi M, Girodon-Boulandet E, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Correction of CFTR function in nasal epithelial cells from cystic fibrosis patients predicts improvement of respiratory function by CFTR modulators. Sci Rep 2017; 7:7375. [PMID: 28785019 PMCID: PMC5547155 DOI: 10.1038/s41598-017-07504-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/29/2017] [Indexed: 11/09/2022] Open
Abstract
Clinical studies with modulators of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein have demonstrated that functional restoration of the mutated CFTR can lead to substantial clinical benefit. However, studies have shown highly variable patient responses. The objective of this study was to determine a biomarker predictive of the clinical response. CFTR function was assessed in vivo via nasal potential difference (NPD) and in human nasal epithelial (HNE) cultures by the response to Forskolin/IBMX and the CFTR potentiator VX-770 in short-circuit-current (∆IscF/I+V) experiments. CFTR expression was evaluated by apical membrane fluorescence semi-quantification. Isc measurements discriminated CFTR function between controls, healthy heterozygotes, patients homozygous for the severe F508del mutation and patients with genotypes leading to absent or residual function. ∆IscF/I+V correlated with CFTR cellular apical expression and NPD measurements. The CFTR correctors lumacaftor and tezacaftor significantly increased the ∆IscF/I+V response to about 25% (SEM = 4.4) of the WT-CFTR level and the CFTR apical expression to about 22% (SEM = 4.6) of the WT-CFTR level in F508del/F508del HNE cells. The level of CFTR correction in HNE cultures significantly correlated with the FEV1 change at 6 months in 8 patients treated with CFTR modulators. We provide the first evidence that correction of CFTR function in HNE cell cultures can predict respiratory improvement by CFTR modulators.
Collapse
Affiliation(s)
- Iwona M Pranke
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Aurélie Hatton
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Juliette Simonin
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Jean Philippe Jais
- Biostatistics Department, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Françoise Le Pimpec-Barthes
- Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ania Carsin
- Service de Pneumo-Pédiatrie, Hôpital de la Timonne, Marseille, France
| | | | - Michael Fayon
- Service de Pneumo-Pédiatrie, Hôpital Pellegrin, Bordeaux, France
| | | | | | - Matthieu Thumerel
- Service de Chirurgie Thoracique, Hôpital Pellegrin, Bordeaux, France
| | - Julie Mazenq
- Service de Pneumo-Pédiatrie, Hôpital de la Timonne, Marseille, France
| | - Valerie Urbach
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Myriam Mesbahi
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Emanuelle Girodon-Boulandet
- Service de génétique et biologie moléculaires, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alexandre Hinzpeter
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Aleksander Edelman
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France
| | - Isabelle Sermet-Gaudelus
- Inserm U1151 - CNRS UMR 8253 - team 2, Faculté de Médecine Paris Descartes, Paris, France.
- Cystic Fibrosis Center, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
48
|
Gaikwad A, Khan S, Kadam S, Kadam K, Dighe V, Shah R, Kulkarni V, Kumaraswamy R, Gajbhiye R. The CFTR gene mild variants poly-T, TG repeats and M470V detection in Indian men with congenital bilateral absence of vas deferens. Andrologia 2017; 50. [PMID: 28776713 DOI: 10.1111/and.12858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to detect the frequency of the CFTR gene variants poly-T, TG repeats and c.1408A>G p.Met470Val (M470V) in Indian men with congenital bilateral absence of the vas deferens (CBAVD). Men diagnosed with CBAVD (n = 76), their female partners (n = 76) and healthy men from general population (n = 50) were recruited. Genomic DNA was isolated and the polymorphic regions of IVS9- c.1210-12T [5] and M470V were amplified using specific primers followed by Sanger's DNA sequencing. A statistically significant increase in the frequency of heterozygous IVS9- c.1210-12T [5] (39.4%) was observed in CBAVD men as compared to controls (14%). The allelic distribution of c.1210-12T [5], c.1210-12T [7] and c.1210-12T [9] in CBAVD men was 21%, 64.4% and 13% and that in healthy controls was 7%, 73% and 20% respectively. Longest TG repeat c.1210-34TG [13] was found in association with c.1210-12T [5] with an allelic frequency of 5.9% in CBAVD men. We found a significant association of c.1210-34TG [12]/c.1210-34TG [13] - c.1210-12[5] -V470 allele in CBAVD men. Twelve female partners harboured a heterozygous c.1210-12T [5] allele. The study emphasises the need to screen both partners for the polymorphisms M470V, poly-T, TG tract repeats in addition to population-specific known CFTR gene mutations.
Collapse
Affiliation(s)
- A Gaikwad
- Department of Clinical Research, National Institute for Research in Reproductive Health, Mumbai, India.,Department of Anatomy and Developmental Biology, Monash University, VIC, 3800, Australia
| | - S Khan
- Department of Clinical Research, National Institute for Research in Reproductive Health, Mumbai, India
| | - S Kadam
- Department of Molecular Immunodiagnostics, National Institute for Research in Reproductive Health, Mumbai, India
| | - K Kadam
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| | - V Dighe
- National Center for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Mumbai, India
| | - R Shah
- Department of Clinical Research, National Institute for Research in Reproductive Health, Mumbai, India.,Lilavati Hospital and Research Center, Mumbai, India
| | - V Kulkarni
- Department of Clinical Research, National Institute for Research in Reproductive Health, Mumbai, India
| | | | - R Gajbhiye
- Department of Clinical Research, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
49
|
Fajac I, Wainwright CE. New treatments targeting the basic defects in cystic fibrosis. Presse Med 2017; 46:e165-e175. [PMID: 28554723 DOI: 10.1016/j.lpm.2017.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic autosomal recessive disorder affecting around 75,000 individuals worldwide. It is a multi-system disease but the main morbidity and mortality is caused by chronic lung disease. Due to newborn screening, a multidisciplinary approach to care and intensive symptomatic treatment, the prognosis has dramatically improved over the last decades and there are currently more adults than children in many countries. However, CF is still a very severe disease with a current median age of life expectancy in the fourth decade of life. The disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which encodes the CFTR protein, a protein kinase A-activated ATP-gated anion channel that regulates the transport of electrolytes such as chloride and bicarbonate. More than 2000 mutations have been reported, although not all of these have functional consequences. An enormous research effort and progress has been made in understanding the consequences of these mutations on the CFTR protein structure and function, and this has led to the approval of two new drug therapies that are able to bind to defective CFTR proteins and partially restore their function. They are mutation-specific therapies and available at present for specific mutations only. They are the first personalized medicine for CF with a possible disease-modifying effect. A pipeline of other compounds is under development with different mechanisms of action. It is foreseeable that new combinations of compounds will further improve the correction of CFTR function. Other strategies including premature stop codon read-through drugs, antisense oligonucleotides that correct the basic defect at the mRNA level or gene editing to restore the defective gene as well as gene therapy approaches are all in the pipeline. All these strategies are needed to develop disease-modifying therapies for all patients with CF.
Collapse
Affiliation(s)
- Isabelle Fajac
- Université Paris Descartes, Sorbonne Paris Cité, site Cochin, 24, rue du Faubourg-Saint-Jacques, 75014 Paris, France; AP-HP, hôpital Cochin, service de physiologie et explorations fonctionnelles,27, rue du Faubourg-Saint-Jacques, 75014 Paris, France.
| | - Claire E Wainwright
- University of Queensland, St Lucia Queensland 4072,Brisbane, Australia; Lady Cilento Children's Hospital, 501 Stanley St, 4101 Brisbane, QLD, Australia
| |
Collapse
|
50
|
Abstract
Cystic fibrosis is an inherited multi-system disease associated with chronic lung infection, malabsorption, salt loss syndromes, male infertility and leading to numerous comorbidities. The landscape in cystic fibrosis care has changed markedly with currently more adult patients than children in many countries. Over 2000 different mutations in the CFTR gene have been reported and the majority are extremely rare. Understanding how CFTR mutations translate to disturbed synthesis or function of the CFTR protein has opened the way to 'personalized' treatments to correct the basic defect. The first 2 drugs have reached the clinic: a CFTR potentiator to augment CFTR channel function, and the combination of this potentiator with a corrector to increase CFTR expression at the cell membrane. To obtain robust correction of CFTR expression at the cell membrane, combinations of correctors with additive efficacy are under investigation. Other mutation type-specific treatments under clinical investigation are premature stop codon-read through drugs and antisense oligonucleotides that correct the basic defect at the mRNA level. Restoring the defective gene by gene editing can already be achieved ex vivo. Mutation agnostic treatments are explored as well: stabilizing CFTR expression at the cell membrane, circumventing the CFTR channel by blocking or activating other ion channels, and gene therapy. Combinations of these therapies can be anticipated. The pipeline of corrective strategies under clinical investigation is increasing continuously and a rising number of pharmaceutical companies are entering the field.
Collapse
Affiliation(s)
- Isabelle Fajac
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; AP-HP, Hôpital Cochin, Service de Physiologie et Explorations Fonctionnelles, Paris, France.
| | - Kris De Boeck
- University Hospital Gasthuisberg, Department of Pediatric Pulmonology, University of Leuven, Belgium.
| |
Collapse
|