1
|
Jia H, Liu S, Rao G, Liu Q, Wu J, Cao S, Gong P. An evolutionarily unique viral RdRP suggests a common dual-function feature of the priming element. SCIENCE ADVANCES 2025; 11:eadv9640. [PMID: 40249801 PMCID: PMC12007564 DOI: 10.1126/sciadv.adv9640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Many RNA-dependent RNA polymerases (RdRPs) encoded by RNA viruses use de novo initiation strategy to start RNA synthesis, and they usually contain a priming element (PE) to interact with template RNA and priming nucleoside triphosphate to facilitate initiation. Upon transition to elongation in dengue virus 2 (DENV2) RdRP, PE refolds and contributes to elongation complex stability by interacting with the upstream RNA duplex. However, whether this PE dual-function feature commonly exists in viral RdRPs remains elusive, as PE is highly diverse among the entire RNA virus group. Here, a more complexed PE refolding is observed in RdRP crystal structures of Aspergillus fumigatus polymycovirus-1 (AfuPmV-1), a polymycovirus evolutionarily connecting positive-strand and double-stranded RNA viruses. Although structural details and enzymology features are very different in transition from initiation to elongation in DENV2 and AfuPmV-1 RdRPs, what is in common is the PE dual-function feature that demonstrates functional conservation beyond sequence and structure.
Collapse
Affiliation(s)
- Hengxia Jia
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunli Liu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibo Rao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Qiaojie Liu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Jiqin Wu
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Sheng Cao
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| | - Peng Gong
- State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, No. 262 Jin Long Street, Wuhan, Hubei 430207, China
| |
Collapse
|
2
|
Mahdi S, Beuning PJ, Korzhnev DM. Functional asymmetry in processivity clamp proteins. Biophys J 2025:S0006-3495(25)00241-3. [PMID: 40247618 DOI: 10.1016/j.bpj.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
Symmetric homo-oligomeric proteins comprising multiple copies of identical subunits are abundant in all domains of life. To fulfill their biological function, these complexes undergo conformational changes, binding events, or posttranslational modifications, leading to loss of symmetry. Processivity clamp proteins that encircle DNA and play multiple roles in DNA replication and repair are archetypical homo-oligomeric symmetric protein complexes. The symmetrical nature of processivity clamps enables simultaneous interactions with multiple protein binding partners; such interactions result in asymmetric changes that facilitate the transition between clamp loading and DNA replication and between DNA replication and repair. The ring-shaped processivity clamps are opened and loaded onto DNA by clamp-loader complexes via asymmetric intermediates with one of the intermonomer interfaces disrupted, undergo spontaneous opening events, and bind heterogeneous partners. Eukaryotic clamp proteins are subject to ubiquitylation, SUMOylation, and acetylation, affecting their biological functions. There is increasing evidence of the functional asymmetry of the processivity clamp proteins from structural, biophysical, and computational studies. Here, we review the symmetry and asymmetry of processivity clamps and their roles in regulating the various functions of the clamps.
Collapse
Affiliation(s)
- Sam Mahdi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts; Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut.
| |
Collapse
|
3
|
Blackstock C, Walters-Freke C, Richards N, Williamson A. Nucleic acid joining enzymes: biological functions and synthetic applications beyond DNA. Biochem J 2025; 482:39-56. [PMID: 39840831 DOI: 10.1042/bcj20240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025]
Abstract
DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA. In particular, enzymes able to join UBP-XNA will be essential for generating large assemblies and also hold promise in the synthesis of single-stranded oligonucleotides. Here, we review recent and emerging advances in the DNA-joining enzymes, DNA polymerases and DNA ligases, and describe their applications to UBP-XNA manipulation. We also discuss the future directions of this field which we consider will involve two-pronged approaches of enzyme biodiscovery for natural UBP-XNA compatible enzymes, coupled with improvement by structure-guided engineering.
Collapse
Affiliation(s)
- Chelsea Blackstock
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| | | | - Nigel Richards
- Foundation for Applied Molecular Evolution, Alachua, FL, 32615, U.S.A
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Adele Williamson
- School of Science, University of Waikato, Hamilton, Waikato, 3216, New Zealand
| |
Collapse
|
4
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. mBio 2025; 16:e0327624. [PMID: 39665531 PMCID: PMC11708018 DOI: 10.1128/mbio.03276-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for the direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread. IMPORTANCE Poliovirus (PV) and other enteroviruses hijack the cellular secretory autophagy pathway for non-lytic virus transmission. While much is known about the cellular factors required for non-lytic transmission, much less is known about viral factors contributing to transmission. We have discovered a PV nonstructural protein required for multiple steps of the pathway leading to vesicle-enclosed virions. This discovery should facilitate the identification of the specific steps of the cellular secretory autophagy pathway and corresponding factors commandeered by the virus and may uncover novel targets for antiviral therapy.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jayden M. Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mohamad S. Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer L. Gray
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Potters Bar, Herts., United Kingdom
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Mullon PJ, Maldonado-Luevano E, Mehta KPM, Mohni KN. The herpes simplex virus alkaline nuclease is required to maintain replication fork progression. J Virol 2024; 98:e0183624. [PMID: 39508568 PMCID: PMC11650972 DOI: 10.1128/jvi.01836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Herpes simplex virus is a large double-strand DNA virus that replicates in the nucleus of the host cell and interacts with host DNA replication and repair proteins. The viral 5' to 3' alkaline nuclease, UL12, is required for production of DNA that can be packaged into infectious virus. The UL12-deleted virus, AN-1, exhibits near wild-type levels of viral DNA replication, but the DNA cannot be packaged into capsids, suggesting it is structurally aberrant. To better understand the DNA replication defect observed in AN-1, we utilized isolation of proteins on nascent DNA (iPOND), a powerful tool to study all the proteins at a DNA replication fork. Combining iPOND with stable isotope labeling of amino acids in cell culture (SILAC) allows for a quantitative assessment of protein abundance when comparing wild type to mutant replication forks. We performed five replicates of iPOND-SILAC comparing AN-1 to the wild-type virus, KOS. We observed 60 proteins that were significantly lost from AN-1 forks out of over 1,000 quantified proteins. These proteins largely represent host DNA replication proteins including MCM2-7, RFC1-5, MSH2/6, MRN, and proliferating cell nuclear antigen. These observations are reminiscent of how these proteins behave at stalled human replication forks. We also observed similar protein changes when we stalled KOS forks with hydroxyurea. Additionally, we observed a decrease in the rate of AN-1 replication fork progression at the single-molecule level. These data indicate that UL12 is required for DNA replication fork progression and that forks stall in the absence of UL12. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a near-ubiquitous pathogen within the global population, causing a lifelong latent infection with sporadic reactivation throughout the life of the host. Within at-risk and immunocompromised communities, HSV-1 infection can cause serious morbidities including herpes keratitis and encephalitis. With the possibility of herpesviruses to evade established antiviral therapies and there being no approved HSV-1 vaccine, there comes a need to investigate potential targets for intervention against infection and subsequent disease. UL12 is the viral 5'-3' exonuclease, which is required for the production of infectious progeny. In this study, we show that in the absence of UL12, viral replication fork progression is abrogated. These data point to UL12 as an attractive target for intervention, which could lead to better clinical outcomes of HSV-1-associated disease in the future.
Collapse
Affiliation(s)
- Patrick J. Mullon
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kavi P. M. Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Kareem N. Mohni
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619132. [PMID: 39464037 PMCID: PMC11507938 DOI: 10.1101/2024.10.18.619132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for a direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jayden M Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Present address: Strategic Alliances and Program Management, C4 Therapeutics, Inc., Watertown, MA 02472, USA
| | - Mohamad S Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer L Gray
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Herts. EN6 3QG, UK
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Laatri S, El Khayari S, Qriouet Z. Exploring the molecular aspect and updating evolutionary approaches to the DNA polymerase enzymes for biotechnological needs: A comprehensive review. Int J Biol Macromol 2024; 276:133924. [PMID: 39033894 DOI: 10.1016/j.ijbiomac.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
DNA polymerases are essential enzymes that play a key role in living organisms, as they participate in the synthesis and maintenance of the DNA molecule. The intrinsic properties of these enzymes have been widely observed and studied to understand their functions, activities, and behavior, which has allowed their natural power in DNA synthesis to be exploited in modern biotechnology, to the point of making them true pillars of the field. In this context, the laboratory evolution of these enzymes, either by directed evolution or rational design, has led to the generation of a wide range of new DNA polymerases with novel properties, suitable for a variety of biotechnological needs. In this review, we examine DNA polymerases at the molecular level, their biotechnological use, and their evolutionary methods in relation to the novel properties sought, providing a chronological selection of evolved DNA polymerases cited in the literature that we consider to be of great interest. To our knowledge, this work is the first to bring together the molecular, functional and evolutionary aspects of the DNA polymerase enzyme. We believe it will be of great interest to researchers whose aim is to produce new lines of evolved DNA polymerases.
Collapse
Affiliation(s)
- Said Laatri
- Microbiology and Molecular Biology Laboratory, Faculty of Sciences, Mohammed V-Souissi University, Rabat 10100, Morocco.
| | | | - Zidane Qriouet
- Pharmacology and Toxicology Laboratory, Faculty of Medicine and Pharmacy, Mohammed V-Souissi University, Rabat 10100, Morocco
| |
Collapse
|
8
|
Bugallo A, Segurado M. Unraveling the complexity of asymmetric DNA replication: Advancements in ribonucleotide mapping techniques and beyond. Genomics 2024; 116:110908. [PMID: 39106913 DOI: 10.1016/j.ygeno.2024.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
DNA replication is a fundamental process for cell proliferation, governed by intricate mechanisms involving leading and lagging strand synthesis. In eukaryotes, canonical DNA replication occurs during the S phase of the cell cycle, facilitated by various components of the replicative machinery at sites known as replication origins. Leading and lagging strands exhibit distinct replication dynamics, with leading strand replication being relatively straightforward compared to the complex synthesis of lagging strands involving Okazaki fragment maturation. Central to DNA synthesis are DNA polymerases, with Polα, Polε, and Polδ playing pivotal roles, each specializing in specific tasks during replication. Notably, leading and lagging strands are replicated by different polymerases, contributing to the division of labor in DNA replication. Understanding the enzymology of asymmetric DNA replication has been challenging, with methods relying on ribonucleotide incorporation and next-generation sequencing techniques offering comprehensive insights. These methodologies, such as HydEn-seq, PU-seq, ribose-seq, and emRiboSeq, offer insights into polymerase activity and strand synthesis, aiding in understanding DNA replication dynamics. Recent advancements include novel conditional mutants for ribonucleotide excision repair, enzymatic cleavage alternatives, and unified pipelines for data analysis. Further developments in adapting techniques to different organisms, studying non-canonical polymerases, and exploring new sequencing platforms hold promise for expanding our understanding of DNA replication dynamics. Integrating strand-specific information into single-cell studies could offer novel insights into enzymology, opening avenues for future research and applications in repair and replication biology.
Collapse
Affiliation(s)
- Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain; Departamento de Microbiología y Genética (USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.
| |
Collapse
|
9
|
Ferreira da Silva J, Tou CJ, King EM, Eller ML, Rufino-Ramos D, Ma L, Cromwell CR, Metovic J, Benning FMC, Chao LH, Eichler FS, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nat Biotechnol 2024:10.1038/s41587-024-02324-x. [PMID: 39039307 PMCID: PMC11751136 DOI: 10.1038/s41587-024-02324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
Genome editing technologies based on DNA-dependent polymerases (DDPs) could offer several benefits compared with other types of editors to install diverse edits. Here, we develop click editing, a genome writing platform that couples the advantageous properties of DDPs with RNA-programmable nickases to permit the installation of a range of edits, including substitutions, insertions and deletions. Click editors (CEs) leverage the 'click'-like bioconjugation ability of HUH endonucleases with single-stranded DNA substrates to covalently tether 'click DNA' (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs and their clkDNAs, we demonstrate the ability to install precise genome edits with minimal indels in diverse immortalized human cell types and primary fibroblasts with precise editing efficiencies of up to ~30%. Editing efficiency can be improved by rapidly screening clkDNA oligonucleotides with various modifications, including repair-evading substitutions. Click editing is a precise and versatile genome editing approach for diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Connor J Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA
| | - Madeline L Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Cromwell
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jasna Metovic
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Florian S Eichler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Xiao X, Huang J. Enzyme-Responsive Supramolecular Self-Assembly in Small Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018035 DOI: 10.1021/acs.langmuir.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Enzyme-responsive molecular assemblies have recently made remarkable progress, owing to their widespread applications. As a class of catalysts with high specificity and efficiency, enzymes play a critical role in producing new molecules and maintaining metabolic stability in living organisms. Therefore, the study of enzyme-responsive assembly aids in understanding the origin of life and the physiological processes occurring within living bodies, contributing to further advancements across various disciplines. In this Review, we summarize three kinds of enzyme-responsive assembly systems in amphiphiles: enzyme-triggered assembly, disassembly, and structural transformation. Furthermore, motivated by the fact that biological macromolecules and complex structures all originated with small molecules, our focus lies on the small amphiphiles (e.g., peptides, surfactants, fluorescent molecules, and drug molecules). We also provide an outlook on the potential of enzyme-responsive assembly systems for biomimetic development and hope this Review will attract more attention to this emerging research branch at the intersection of assembly chemistry and biological science.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
11
|
Zhang S, Zhou N, Chen J, Li Q, Wang Y, Sun W, Lv C. DNA Polymerase-Endonuclease Efficiently Synthesizes DNA to Prepare DNA Materials and Develop Novel Signal Amplification System. Anal Chem 2024; 96:9285-9293. [PMID: 38768388 DOI: 10.1021/acs.analchem.4c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
DNA biosynthesis, a focus of fundamental and applied research, typically involves DNA polymerases by using templates, primers, and dNTPs. Some polymerases can polymerize dNTPs for DNA de novo synthesis, although this is generally to occur randomly. This novel synthesis method has garnered our attention and practical use. Herein, we observed that the addition of endonuclease significantly enhances the efficiency of the de novo synthesis reaction catalyzed by the DNA polymerase. We further investigated the reaction conditions that influence this efficiency. Building on the optimal reaction conditions, we developed a rapid and efficient strategy for preparing DNA hydrogel. Further, coupled with the CRISPR-Cas system, we developed a nucleic acid signal amplification system characterized by versatility, sensitivity, specificity, and no risk of aerosol contamination. We successfully detected viral nucleic acids in clinical samples. In summary, our study demonstrates the significant potential of DNA polymerase- and endonuclease-catalyzed DNA de novo synthesis in diverse applications.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Ning Zhou
- Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong 524045, P. R. China
| | - Jiao Chen
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Quan Li
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610000, P. R. China
| | - ChuanZhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, P. R. China
| |
Collapse
|
12
|
Dvořák Tomaštíková E, Vaculíková J, Štenclová V, Kaduchová K, Pobořilová Z, Paleček JJ, Pecinka A. The interplay of homology-directed repair pathways in the repair of zebularine-induced DNA-protein crosslinks in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38824612 DOI: 10.1111/tpj.16863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jitka Vaculíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
- Faculty of Science, National Center for Biomolecular Research, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Veronika Štenclová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Kateřina Kaduchová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Zuzana Pobořilová
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| | - Jan J Paleček
- Faculty of Science, National Center for Biomolecular Research, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, Olomouc, 77900, Czech Republic
| |
Collapse
|
13
|
Betancurt-Anzola L, Martínez-Carranza M, Delarue M, Zatopek KM, Gardner AF, Sauguet L. Molecular basis for proofreading by the unique exonuclease domain of Family-D DNA polymerases. Nat Commun 2023; 14:8306. [PMID: 38097591 PMCID: PMC10721889 DOI: 10.1038/s41467-023-44125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Replicative DNA polymerases duplicate entire genomes at high fidelity. This feature is shared among the three domains of life and is facilitated by their dual polymerase and exonuclease activities. Family D replicative DNA polymerases (PolD), found exclusively in Archaea, contain an unusual RNA polymerase-like catalytic core, and a unique Mre11-like proofreading active site. Here, we present cryo-EM structures of PolD trapped in a proofreading mode, revealing an unanticipated correction mechanism that extends the repertoire of protein domains known to be involved in DNA proofreading. Based on our experimental structures, mutants of PolD were designed and their contribution to mismatch bypass and exonuclease kinetics was determined. This study sheds light on the convergent evolution of structurally distinct families of DNA polymerases, and the domain acquisition and exchange mechanism that occurred during the evolution of the replisome in the three domains of life.
Collapse
Affiliation(s)
- Leonardo Betancurt-Anzola
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA
- New England Biolabs France, 5 Rue Henri Auguste Desbruères, 91000, Évry-Courcouronnes, France
- Sorbonne Université, Collège Doctoral, ED 515, Paris, France
| | - Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Marc Delarue
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France
| | - Kelly M Zatopek
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Andrew F Gardner
- New England Biolabs Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS, UMR 3528, Paris, France.
| |
Collapse
|
14
|
da Silva JF, Tou CJ, King EM, Eller ML, Ma L, Rufino-Ramos D, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557440. [PMID: 37745481 PMCID: PMC10515857 DOI: 10.1101/2023.09.12.557440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genome editing technologies that install diverse edits can widely enable genetic studies and new therapeutics. Here we develop click editing, a genome writing platform that couples the advantageous properties of DNA-dependent DNA polymerases with RNA-programmable nickases (e.g. CRISPR-Cas) to permit the installation of a range of edits including substitutions, insertions, and deletions. Click editors (CEs) leverage the "click"-like bioconjugation ability of HUH endonucleases (HUHes) with single stranded DNA substrates to covalently tether "click DNA" (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs (DNA polymerase and HUHe orthologs, architectural modifications, etc.) and their clkDNAs (template configurations, repair evading substitutions, etc.), we demonstrate the ability to install precise genome edits with minimal indels and no unwanted byproduct insertions. Since clkDNAs can be ordered as simple DNA oligonucleotides for cents per base, it is possible to screen many different clkDNA parameters rapidly and inexpensively to maximize edit efficiency. Together, click editing is a precise and highly versatile platform for modifying genomes with a simple workflow and broad utility across diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Connor J. Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily M. King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, 02115, USA
| | - Madeline L. Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
15
|
Mehawej C, Chouery E, Azar-Atallah S, Shebaby W, Delague V, Mansour I, Mustapha M, Lefranc G, Megarbane A. POLD3 deficiency is associated with severe combined immunodeficiency, neurodevelopmental delay, and hearing impairment. Clin Immunol 2023; 251:109326. [PMID: 37030525 DOI: 10.1016/j.clim.2023.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Combined immunodeficiency diseases (CID) represent the most severe forms of inborn errors of immunity. Defective T cell development and/or function, leading to an impairment in adaptive immunity are responsible for these diseases. The DNA polymerase δ complex is important for genome duplication and maintenance and consists of the catalytic subunit POLD1, and the accessory subunits POLD2 and POLD3 which stabilizes the complex. Mutations in POLD1 and POLD2 have been recently shown to be associated with a syndromic CID characterized by T cell lymphopenia with or without intellectual deficiency and sensorineural hearing loss. Here we report a homozygous POLD3 variant (NM_006591.3; p.Ile10Thr) in a Lebanese patient, the product of a consanguineous family, presenting with a syndromic severe combined immunodeficiency (SCID) with neurodevelopmental delay and hearing loss. The homozygous POLD3Ile10Thr variant abolishes POLD3 as well as POLD1 and POLD2 expression. Our findings implicate POLD3 deficiency as a novel cause of syndromic SCID.
Collapse
Affiliation(s)
- Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon.
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Shirine Azar-Atallah
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Shebaby
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | | | - Issam Mansour
- Molecular Biology Laboratory, Faculty of Health Sciences, American University of Science and Technology, Beirut, Lebanon; Flow Cytometry Departement, Inovie, Fayadieh, Lebanon
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK; Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Gerard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier, cedex 5, France
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon; Institut Jérôme Lejeune, Paris, France.
| |
Collapse
|
16
|
Popovic M. The SARS-CoV-2 Hydra, a tiny monster from the 21st century: Thermodynamics of the BA.5.2 and BF.7 variants. MICROBIAL RISK ANALYSIS 2023; 23:100249. [PMID: 36777924 PMCID: PMC9898946 DOI: 10.1016/j.mran.2023.100249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
SARS-CoV-2 resembles the ancient mythical creature Hydra. Just like with the Hydra, when one head is cut, it is followed by appearance of two more heads, suppression of one SARS-CoV-2 variant causes appearance of newer variants. Unlike Hydra that grows identical heads, newer SARS-CoV-2 variants are usually more infective, which can be observed as time evolution of the virus at hand, which occurs through acquisition of mutations during time. The appearance of new variants is followed by appearance of new COVID-19 pandemic waves. With the appearance of new pandemic waves and determining of sequences, in the scientific community and general public the question is always raised of whether the new variant will be more virulent and more pathogenic. The two variants characterized in this paper, BA.5.2 and BF.7, have caused a pandemic wave during the late 2022. This paper gives full chemical and thermodynamic characterization of the BA.5.2 and BF.7 variants of SARS-CoV-2. Having in mind that Gibbs energy of binding and biosynthesis represent the driving forces for the viral life cycle, based on the calculated thermodynamic properties we can conclude that the newer variants are more infective than earlier ones, but that their pathogenicity has not changed.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
17
|
Popovic M. Never ending story? Evolution of SARS-CoV-2 monitored through Gibbs energies of biosynthesis and antigen-receptor binding of Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants. MICROBIAL RISK ANALYSIS 2023; 23:100250. [PMID: 36777740 PMCID: PMC9896887 DOI: 10.1016/j.mran.2023.100250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
RNA viruses exhibit a great tendency to mutate. Mutations occur in the parts of the genome that encode the spike glycoprotein and less often in the rest of the genome. This is why Gibbs energy of binding changes more than that of biosynthesis. Starting from 2019, the wild type that was labeled Hu-1 has during the last 3 years evolved to produce several dozen new variants, as a consequence of mutations. Mutations cause changes in empirical formulas of new virus strains, which lead to change in thermodynamic properties of biosynthesis and binding. These changes cause changes in the rate of reactions of binding of virus antigen to the host cell receptor and the rate of virus multiplication in the host cell. Changes in thermodynamic and kinetic parameters lead to changes in biological parameters of infectivity and pathogenicity. Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has been evolving towards increase in infectivity and maintaining constant pathogenicity, or for some variants a slight decrease in pathogenicity. In the case of Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants pathogenicity is identical as in the Omicron BA.2.75 variant. On the other hand, infectivity of the Omicron BQ.1, BQ.1.1, XBB and XBB.1 variants is greater than those of previous variants. This will most likely result in the phenomenon of asymmetric coinfection, that is circulation of several variants in the population, some being dominant.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
18
|
Bivacqua R, Barreca M, Spanò V, Raimondi MV, Romeo I, Alcaro S, Andrei G, Barraja P, Montalbano A. Insight into non-nucleoside triazole-based systems as viral polymerases inhibitors. Eur J Med Chem 2023; 249:115136. [PMID: 36708678 DOI: 10.1016/j.ejmech.2023.115136] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Viruses have been recognized as the etiological agents responsible for many pathological conditions ranging from asymptomatic infections to serious diseases, even leading to death. For this reason, many efforts have been made to identify selective viral targets with the aim of developing efficient therapeutic strategies, devoid of drug-resistance issues. Considering their crucial role in the viral life cycle, polymerases are very attractive targets. Among the classes of compounds explored as viral polymerases inhibitors, here we present an overview of non-nucleoside triazole-based compounds identified in the last fifteen years. Furthermore, the structure-activity relationships (SAR) of the different chemical entities are described in order to highlight the key chemical features required for the development of effective antiviral agents.
Collapse
Affiliation(s)
- Roberta Bivacqua
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Marilia Barreca
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia, Viale Europa, 88100, Catanzaro, Italy
| | - Graciela Andrei
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000, Belgium
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
19
|
Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022). Vaccines (Basel) 2022; 10:vaccines10122112. [PMID: 36560522 PMCID: PMC9784531 DOI: 10.3390/vaccines10122112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biothermodynamics of viruses is among the youngest but most rapidly developing scientific disciplines. During the COVID-19 pandemic, it closely followed the results published by molecular biologists. Empirical formulas were published for 50 viruses and thermodynamic properties for multiple viruses and virus variants, including all variants of concern of SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola virus, Vaccinia and Monkeypox virus. A review of the development of biothermodynamics of viruses during the last several decades and intense development during the last 3 years is described in this paper.
Collapse
|
20
|
Singh M, Zhang S, Perez AM, Lee EYC, Lee MYWT, Zhang D. POLDIP3: At the Crossroad of RNA and DNA Metabolism. Genes (Basel) 2022; 13:1921. [PMID: 36360158 PMCID: PMC9690394 DOI: 10.3390/genes13111921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
POLDIP3 was initially identified as a DNA polymerase delta (Pol δ) interacting protein almost twenty years ago. Intriguingly, it also interacts with proteins involved in a variety of RNA related biological processes, such as transcription, pre-mRNA splicing, mRNA export, and translation. Studies in recent years revealed that POLDIP3 also plays critical roles in disassembling genome wide R-loop formation and activating the DNA damage checkpoint in vivo. Here, we review the functions of POLDIP3 in various RNA and DNA related cellular processes. We then propose a unified model to illustrate how POLDIP3 plays such a versatile role at the crossroad of the RNA and DNA metabolism.
Collapse
Affiliation(s)
- Manrose Singh
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Alexis M. Perez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| | - Ernest Y. C. Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Marietta Y. W. T. Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Northern Blvd, Old Westbury, NY 11568, USA
| |
Collapse
|
21
|
Zhang S, Lee EYC, Lee MYWT, Zhang D. DNA polymerase delta interacting protein 3 facilitates the activation and maintenance of DNA damage checkpoint in response to replication stress. Animal Model Exp Med 2022; 5:461-469. [PMID: 36168146 PMCID: PMC9610138 DOI: 10.1002/ame2.12274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 01/22/2023] Open
Abstract
Background Replication stress response is crucial for the maintenance of a stable genome. POLDIP3 (DNA polymerase delta interacting protein 3) was initially identified as one of the DNA polymerase δ (Pol δ) interacting proteins almost 20 years ago. Using a variety of in vitro biochemical assays, we previously established that POLDIP3 is a key regulator of the enzymatic activity of Pol δ. However, the in vivo function of POLDIP3 in DNA replication and DNA damage response has been elusive. Methods We first generated POLDIP3 knockout (KO) cells using the CRISPR/Cas9 technology. We then investigated its biological functions in vivo using a variety of biochemical and cell biology assays. Results We showed that although the POLDIP3‐KO cells manifest no pronounced defect in global DNA synthesis under nonstress conditions, they are sensitive to a variety of replication fork blockers. Intriguingly, we found that POLDIP3 plays a crucial role in the activation and maintenance of the DNA damage checkpoint in response to exogenous as well as endogenous replication stress. Conclusion Our results indicate that when the DNA replication fork is blocked, POLDIP3 can be recruited to the stalled replication fork and functions to bridge the early DNA damage checkpoint response and the later replication fork repair/restart.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, New York, USA
| | - Dong Zhang
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, New York, USA
| |
Collapse
|
22
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
23
|
Qian X, Li Z, Zhou Z, Qian J, Yao Y, Shao C, Tang Q, Xie J. Investigation of Linear Amplification Using Abasic Site-Containing Primers Coupled to Routine STR Typing for LT-DNA Analysis. Genes (Basel) 2022; 13:genes13081386. [PMID: 36011297 PMCID: PMC9407227 DOI: 10.3390/genes13081386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Obtaining a full short tandem repeat (STR) profile from a low template DNA (LT-DNA) still presents a challenge for conventional methods due to significant stochastic effects and polymerase slippage. A novel amplification method with a lower cost and higher accuracy is required to improve the DNA amount. Previous studies suggested that DNA polymerases without bypass activity could not perform processive DNA synthesis beyond abasic sites in vitro and our results showed a lack of bypass activity for Phusion, Pfu and KAPA DNA polymerases in this study. Based on this feature, we developed a novel linear amplification method, termed Linear Aamplification for double-stranded DNA using primers with abasic sites near 3′ end (abLAFD), to limit the replication error. The amplification efficiency was evaluated by qPCR analysis with a result of approximately a 130-fold increase in target DNA. In a LT-DNA analysis, the abLAFD method can be employed as a pre-PCR. Similar to nested PCRs, primer sets used for the abLAFD method were designed as external primers suitable for commercial multiplex STR amplification assays. The practical performance of the abLAFD method was evaluated by coupling it to a routine PP21 STR analysis using 50 pg and 25 pg DNA. Compared to reference profiles, all abLAFD profiles showed significantly recovered alleles, increased average peak height and heterozygote balance with a comparable stutter ratio. Altogether, our results support the theory that the abLAFD method is a promising strategy coupled to STR typing for forensic LT-DNA analysis.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhimin Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhihan Zhou
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jinglei Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yining Yao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chengchen Shao
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiqun Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianhui Xie
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel.: +86-021-54237403
| |
Collapse
|
24
|
Dahl JM, Thomas N, Tracy MA, Hearn BL, Perera L, Kennedy SR, Herr AJ, Kunkel TA. Probing the mechanisms of two exonuclease domain mutators of DNA polymerase ϵ. Nucleic Acids Res 2022; 50:962-974. [PMID: 35037018 DOI: 10.1093/nar/gkab1255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/21/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022] Open
Abstract
We report the properties of two mutations in the exonuclease domain of the Saccharomyces cerevisiae DNA polymerase ϵ. One, pol2-Y473F, increases the mutation rate by about 20-fold, similar to the catalytically dead pol2-D290A/E290A mutant. The other, pol2-N378K, is a stronger mutator. Both retain the ability to excise a nucleotide from double-stranded DNA, but with impaired activity. pol2-Y473F degrades DNA poorly, while pol2-N378K degrades single-stranded DNA at an elevated rate relative to double-stranded DNA. These data suggest that pol2-Y473F reduces the capacity of the enzyme to perform catalysis in the exonuclease active site, while pol2-N378K impairs partitioning to the exonuclease active site. Relative to wild-type Pol ϵ, both variants decrease the dNTP concentration required to elicit a switch between proofreading and polymerization by more than an order of magnitude. While neither mutation appears to alter the sequence specificity of polymerization, the N378K mutation stimulates polymerase activity, increasing the probability of incorporation and extension of a mismatch. Considered together, these data indicate that impairing the primer strand transfer pathway required for proofreading increases the probability of common mutations by Pol ϵ, elucidating the association of homologous mutations in human DNA polymerase ϵ with cancer.
Collapse
Affiliation(s)
- Joseph M Dahl
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Natalie Thomas
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Maxwell A Tracy
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Brady L Hearn
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Lalith Perera
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Alan J Herr
- Department of Laboratory Medicine and Pathology, UW Medicine, Seattle, WA 98195, USA
| | - Thomas A Kunkel
- Genome Integrity Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
25
|
Morcinek-Orłowska J, Zdrojewska K, Węgrzyn A. Bacteriophage-Encoded DNA Polymerases-Beyond the Traditional View of Polymerase Activities. Int J Mol Sci 2022; 23:635. [PMID: 35054821 PMCID: PMC8775771 DOI: 10.3390/ijms23020635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
DNA polymerases are enzymes capable of synthesizing DNA. They are involved in replication of genomes of all cellular organisms as well as in processes of DNA repair and genetic recombination. However, DNA polymerases can also be encoded by viruses, including bacteriophages, and such enzymes are involved in viral DNA replication. DNA synthesizing enzymes are grouped in several families according to their structures and functions. Nevertheless, there are examples of bacteriophage-encoded DNA polymerases which are significantly different from other known enzymes capable of catalyzing synthesis of DNA. These differences are both structural and functional, indicating a huge biodiversity of bacteriophages and specific properties of their enzymes which had to evolve under certain conditions, selecting unusual properties of the enzymes which are nonetheless crucial for survival of these viruses, propagating as special kinds of obligatory parasites. In this review, we present a brief overview on DNA polymerases, and then we discuss unusual properties of different bacteriophage-encoded enzymes, such as those able to initiate DNA synthesis using the protein-priming mechanisms or even start this process without any primer, as well as able to incorporate untypical nucleotides. Apart from being extremely interesting examples of biochemical biodiversity, bacteriophage-encoded DNA polymerases can also be useful tools in genetic engineering and biotechnology.
Collapse
Affiliation(s)
- Joanna Morcinek-Orłowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Karolina Zdrojewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (J.M.-O.); (K.Z.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
26
|
Luo G, Zhang J, Yang M, He H, Huang Z. Selenium atom on phosphate enhances specificity and sensitivity of DNA polymerization and detection. J Mater Chem B 2021; 9:5636-5644. [PMID: 34196647 DOI: 10.1039/d1tb00428j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA polymerization is of high specificity in vivo. However, its specificity is much lower in vitro, which limits advanced applications of DNA polymerization in ultrasensitive nucleic acid detection. Herein, we report a unique mechanism of single selenium-atom modified dNTP (dNTPαSe) to enhance polymerization specificity. We have found that both dNTPαSe (approximately 660 fold) and Se-DNA (approximately 2.8 fold) have lower binding affinity to DNA polymerase than canonical ones, and the Se-DNA duplex has much lower melting-temperature (Tm) than the corresponding canonical DNA duplex. The reduced affinity and Tm can destabilize the substrate-primer-template-enzyme assembly, thereby largely slowing down the mismatch of DNA polymerization and enhancing the amplification specificity and in turn detection sensitivity. Furthermore, the Se-strategy enables us to develop the selenium enhanced specific isothermal amplification (SEA) for nucleic acid detection with high specificity and sensitivity (up to detection of single-digit copies), allowing convenient detection of clinical HPV and COVID-19 viruses in the low-copy number. Clearly, we have discovered the exciting mechanism for enhancing DNA polymerization accuracy, amplification specificity and detection sensitivity by SEA, up to two orders of magnitude higher.
Collapse
Affiliation(s)
- Guangcheng Luo
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China. and Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jun Zhang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Mei Yang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hongfei He
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China. and SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Pellicanò G, Al Mamun M, Jurado-Santiago D, Villa-Hernández S, Yin X, Giannattasio M, Lanz MC, Smolka MB, Yeeles J, Shirahige K, García-Díaz M, Bermejo R. Checkpoint-mediated DNA polymerase ε exonuclease activity curbing counteracts resection-driven fork collapse. Mol Cell 2021; 81:2778-2792.e4. [PMID: 33932350 PMCID: PMC7612761 DOI: 10.1016/j.molcel.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 02/01/2023]
Abstract
DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.
Collapse
Affiliation(s)
- Grazia Pellicanò
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Mohammed Al Mamun
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Dolores Jurado-Santiago
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Sara Villa-Hernández
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain
| | - Xingyu Yin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Michele Giannattasio
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Michael C Lanz
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, USA
| | - Marcus B Smolka
- Weill Institute for Cell and Molecular Biology Cornell University, Ithaca, NY, USA
| | | | | | - Miguel García-Díaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Rodrigo Bermejo
- Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain.
| |
Collapse
|
28
|
Gao Y, He Y, Chen L, Liu X, Ivanov I, Yang X, Tian H. Chimeric Phi29 DNA polymerase with helix-hairpin-helix motifs shows enhanced salt tolerance and replication performance. Microb Biotechnol 2021; 14:1642-1656. [PMID: 34009743 PMCID: PMC8313265 DOI: 10.1111/1751-7915.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/29/2022] Open
Abstract
Phi29 DNA polymerase (Phi29 Pol) has been successfully applied in DNA nanoball-based sequencing, real-time DNA sequencing from single polymerase molecules and nanopore sequencing employing the sequencing by synthesis (SBS) method. Among these, polymerase-assisted nanopore sequencing technology analyses nucleotide sequences as a function of changes in electrical current. This ionic, current-based sequencing technology requires polymerases to perform replication at high salt concentrations, for example 0.3 M KCl. Nonetheless, the salt tolerance of wild-type Phi29 Pol is relatively low. Here, we fused helix-hairpin-helix (HhH)2 domains E-L (eight repeats in total) of topoisomerase V (Topo V) from the hyperthermophile Methanopyrus kandleri to the Phi29 Pol COOH terminus, designated Phi29EL DNA polymerase (Phi29EL Pol). Domain fusion increased the overall enzyme replication efficiency by fourfold. Phi29EL Pol catalysed rolling circle replication in a broader range of salt concentrations than did Phi29 Pol, extending the KCl concentration range for activity up to 0.3 M. In addition, the mutation of Glu375 to Ser or Gln increased Phi29EL Pol activity in the presence of KCl. In this work, we produced a salt-tolerant Phi29 Pol derivative by means of (HhH)2 domain insertion. The multiple advantages of this insertion make it a good substitute for Phi29 Pol, especially for use in nanopore sequencing or other circumstances that require high salt concentrations.
Collapse
Affiliation(s)
- Yaping Gao
- Research Center of Molecular Diagnostics and SequencingResearch Institute of Tsinghua University in ShenzhenShenzhenGuangdong518057China
| | - Yun He
- Research Center of Molecular Diagnostics and SequencingResearch Institute of Tsinghua University in ShenzhenShenzhenGuangdong518057China
| | - Liyi Chen
- Research Center of Molecular Diagnostics and SequencingResearch Institute of Tsinghua University in ShenzhenShenzhenGuangdong518057China
| | - Xing Liu
- Research Center of Molecular Diagnostics and SequencingResearch Institute of Tsinghua University in ShenzhenShenzhenGuangdong518057China
| | - Igor Ivanov
- Research Center of Molecular Diagnostics and SequencingResearch Institute of Tsinghua University in ShenzhenShenzhenGuangdong518057China
| | - Xuerui Yang
- MOE Key Lab of BioinformaticsSchool of Life SciencesTsinghua UniversityBeijing100101China
| | - Hui Tian
- Research Center of Molecular Diagnostics and SequencingResearch Institute of Tsinghua University in ShenzhenShenzhenGuangdong518057China
| |
Collapse
|
29
|
Fan Y, Köberlin MS, Ratnayeke N, Liu C, Deshpande M, Gerhardt J, Meyer T. LRR1-mediated replisome disassembly promotes DNA replication by recycling replisome components. J Cell Biol 2021; 220:212186. [PMID: 34037657 PMCID: PMC8160578 DOI: 10.1083/jcb.202009147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
After two converging DNA replication forks meet, active replisomes are disassembled and unloaded from chromatin. A key process in replisome disassembly is the unloading of CMG helicases (CDC45–MCM–GINS), which is initiated in Caenorhabditis elegans and Xenopus laevis by the E3 ubiquitin ligase CRL2LRR1. Here, we show that human cells lacking LRR1 fail to unload CMG helicases and accumulate increasing amounts of chromatin-bound replisome components as cells progress through S phase. Markedly, we demonstrate that the failure to disassemble replisomes reduces the rate of DNA replication increasingly throughout S phase by sequestering rate-limiting replisome components on chromatin and blocking their recycling. Continued binding of CMG helicases to chromatin during G2 phase blocks mitosis by activating an ATR-mediated G2/M checkpoint. Finally, we provide evidence that LRR1 is an essential gene for human cell division, suggesting that CRL2LRR1 enzyme activity is required for the proliferation of cancer cells and is thus a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yilin Fan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Marielle S Köberlin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Nalin Ratnayeke
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| | - Chad Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Madhura Deshpande
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Jeannine Gerhardt
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
30
|
Feldman T, Bercovich A, Moskovitz Y, Chapal-Ilani N, Mitchell A, Medeiros JJF, Biezuner T, Kaushansky N, Minden MD, Gupta V, Milyavsky M, Livneh Z, Tanay A, Shlush LI. Recurrent deletions in clonal hematopoiesis are driven by microhomology-mediated end joining. Nat Commun 2021; 12:2455. [PMID: 33911081 PMCID: PMC8080710 DOI: 10.1038/s41467-021-22803-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
The mutational mechanisms underlying recurrent deletions in clonal hematopoiesis are not entirely clear. In the current study we inspect the genomic regions around recurrent deletions in myeloid malignancies, and identify microhomology-based signatures in CALR, ASXL1 and SRSF2 loci. We demonstrate that these deletions are the result of double stand break repair by a PARP1 dependent microhomology-mediated end joining (MMEJ) pathway. Importantly, we provide evidence that these recurrent deletions originate in pre-leukemic stem cells. While DNA polymerase theta (POLQ) is considered a key component in MMEJ repair, we provide evidence that pre-leukemic MMEJ (preL-MMEJ) deletions can be generated in POLQ knockout cells. In contrast, aphidicolin (an inhibitor of replicative polymerases and replication) treatment resulted in a significant reduction in preL-MMEJ. Altogether, our data indicate an association between POLQ independent MMEJ and clonal hematopoiesis and elucidate mutational mechanisms involved in the very first steps of leukemia evolution.
Collapse
Affiliation(s)
- Tzah Feldman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoni Moskovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Chapal-Ilani
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Jessie J F Medeiros
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tamir Biezuner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Michael Milyavsky
- Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada.
- Division of Hematology, Rambam Healthcare Campus, Haifa, Israel.
| |
Collapse
|
31
|
Miyabayashi H, Sakai HD, Kurosawa N. DNA Polymerase B1 Binding Protein 1 Is Important for DNA Repair by Holoenzyme PolB1 in the Extremely Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Microorganisms 2021; 9:microorganisms9020439. [PMID: 33672533 PMCID: PMC7923795 DOI: 10.3390/microorganisms9020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
DNA polymerase B1 (PolB1) is a member of the B-family DNA polymerase family and is a replicative DNA polymerase in Crenarchaea. PolB1 is responsible for the DNA replication of both the leading and lagging strands in the thermophilic crenarchaeon Sulfolobus acidocaldarius. Recently, two subunits, PolB1-binding protein (PBP)1 and PBP2, were identified in Saccharolobus solfataricus. Previous in vitro studies suggested that PBP1 and PBP2 influence the core activity of apoenzyme PolB1 (apo-PolB1). PBP1 contains a C-terminal acidic tail and modulates the strand-displacement synthesis activity of PolB1 during the synthesis of Okazaki fragments. PBP2 modestly enhances the DNA polymerase activity of apo-PolB1. These subunits are present in Sulfolobales, Acidilobales, and Desulfurococcales, which belong to Crenarchaea. However, it has not been determined whether these subunits are essential for the activity of apo-PolB1. In this study, we constructed a pbp1 deletion strain in S. acidocaldarius and characterized its phenotypes. However, a pbp2 deletion strain was not obtained, indicating that PBP2 is essential for replication by holoenzyme PolB1. A pbp1 deletion strain was sensitive to various types of DNA damage and exhibited an increased mutation rate, suggesting that PBP1 contribute to the repair or tolerance of DNA damage by holoenzyme PolB1. The results of our study suggest that PBP1 is important for DNA repair by holoenzyme PolB1 in S. acidocaldarius.
Collapse
Affiliation(s)
- Hiroka Miyabayashi
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
| | - Hiroyuki D. Sakai
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
| | - Norio Kurosawa
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan;
- Correspondence: ; Tel.: +81-42-691-8175
| |
Collapse
|
32
|
Miyabayashi H, Jain R, Suzuki S, Grogan DW, Kurosawa N. PolB1 Is Sufficient for DNA Replication and Repair Under Normal Growth Conditions in the Extremely Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Front Microbiol 2020; 11:613375. [PMID: 33424816 PMCID: PMC7785828 DOI: 10.3389/fmicb.2020.613375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
The thermophilic crenarchaeon Sulfolobus acidocaldarius has four DNA polymerases (DNAPs): PolB1, PolB2, PolB3, and Dbh (PolY). Previous in vitro studies suggested that PolB1 is the main replicative DNAP of Sulfolobales whereas PolB2 and Y-family polymerases Dpo4 (Saccharolobus solfataricus) or Dbh are involved in DNA repair and translesion DNA synthesis. On the other hand, there are various opinions about the role of PolB3, which remains to be clearly resolved. In order to examine the roles of the DNAPs of S. acidocaldarius through in vivo experiments, we constructed polB2, polB3, and dbh deletion strains and characterized their phenotypes. Efforts to construct a polB1 deletion strain were not successful; in contrast, it was possible to isolate triple gene-deletion strains lacking polB2, polB3, and dbh. The growth of these strains was nearly the same as that of the parent strains under normal growth conditions. The polB2, polB3, and dbh single-deletion strains were sensitive to some types of DNA-damaging treatments, but exhibited normal sensitivity to UV irradiation and several other damaging treatments. Overall, the genotype which exhibited the greatest sensitivity to the DNA-damaging treatments we tested was the ΔpolB2 ΔpolB3 combination, providing the first evidence of overlapping function for these two DNAPs in vivo. The results of our study strongly suggest that PolB1 is responsible for the DNA replication of both the leading and lagging strands and is sufficient to complete the repair of most DNA damage under normal growth conditions in S. acidocaldarius.
Collapse
Affiliation(s)
- Hiroka Miyabayashi
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| | - Rupal Jain
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Shoji Suzuki
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| | - Dennis W. Grogan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Norio Kurosawa
- Department of Environmental Engineering for Symbiosis, Graduate School of Science and Engineering, Soka University, Tokyo, Japan
| |
Collapse
|
33
|
Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution. Biomolecules 2020; 10:biom10121647. [PMID: 33302546 PMCID: PMC7763228 DOI: 10.3390/biom10121647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively cross-pair with DNA and RNA. This capacity is essential to allow the transmission of information between different chemistries of nucleic acid molecules. Variants of the archaeal polymerase from Thermococcus gorgonarius, TgoT, that can either generate HNA from DNA (TgoT_6G12) or DNA from HNA (TgoT_RT521) have been previously identified. To understand how DNA and HNA are recognized and selected by these two laboratory-evolved polymerases, we report six X-ray structures of these variants, as well as an in silico model of a ternary complex with HNA. Structural comparisons of the apo form of TgoT_6G12 together with its binary and ternary complexes with a DNA duplex highlight an ensemble of interactions and conformational changes required to promote DNA or HNA synthesis. MD simulations of the ternary complex suggest that the HNA-DNA hybrid duplex remains stable in the A-DNA helical form and help explain the presence of mutations in regions that would normally not be in contact with the DNA if it were not in the A-helical form. One complex with two incorporated HNA nucleotides is surprisingly found in a one nucleotide-backtracked form, which is new for a DNA polymerase. This information can be used for engineering a new generation of more efficient HNA polymerase variants.
Collapse
|
34
|
Sun X, Hou W, Liu X, Chai J, Guo H, Yu J. Targeting REV7 effectively reverses 5-FU and oxaliplatin resistance in colorectal cancer. Cancer Cell Int 2020; 20:580. [PMID: 33292253 PMCID: PMC7713438 DOI: 10.1186/s12935-020-01668-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Despite an enormous research effort, patients diagnosed with advanced colorectal cancer (CRC) still have low prognosis after surgical resection and chemotherapy. The major obstacle for CRC treatment is chemoresistance to front line anti-cancer drugs, such as 5-fluorouracil (5-FU) and oxaliplatin. However, the mechanism of chemoresistance to these drugs remains unclear. Methods Cell viability to 5-FU and oxaliplatin was measured by the CellTiter-Glo® 2.0 Cell Viability Assay. The endogenous REV7 protein in CRC cells was detected by western blotting. The translesion synthesis (TLS) events were measured by plasmid-based TLS efficiency assay. Cell apoptosis was evaluated by caspase3/7 activity assay. The in vivo tumor progression was analyzed by HT29 xenograft mice model. Results In this study, we found that expression of REV7, which is a key component of translesion synthesis (TLS) polymerase ζ (POL ζ), is significantly increased in both 5-FU and oxaliplatin resistant CRC cells. TLS efficiency analysis revealed that upregulated REV7 protein level results in enhanced TLS in response to 5-FU and oxaliplatin. Importantly, inhibition of REV7 by CRISPR/Cas9 knockout exhibited significant synergy with 5-FU and oxaliplatin in cell culture and murine xenograft model. Conclusion These results suggest that combination of REV7 deficiency and 5-FU or oxaliplatin has strong inhibitory effects on CRC cells and identified REV7 as a promising target for chemoresistant CRC treatment.
Collapse
Affiliation(s)
- Xianjun Sun
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academic Sciences, Jinan, Shandong, China
| | - Wenhou Hou
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academic Sciences, 440 Jiyan Rd., Jinan, 250117, Shandong, China
| | - Xin Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academic Sciences, Jinan, Shandong, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academic Sciences, Jinan, Shandong, China
| | - Hongliang Guo
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academic Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academic Sciences, 440 Jiyan Rd., Jinan, 250117, Shandong, China.
| |
Collapse
|
35
|
Selective Metal Ion Utilization Contributes to the Transformation of the Activity of Yeast Polymerase η from DNA Polymerization toward RNA Polymerization. Int J Mol Sci 2020; 21:ijms21218248. [PMID: 33158019 PMCID: PMC7672554 DOI: 10.3390/ijms21218248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Polymerase eta (Polη) is a translesion synthesis DNA polymerase directly linked to cancer development. It can bypass several DNA lesions thereby rescuing DNA damage-stalled replication complexes. We previously presented evidence implicating Saccharomyces cerevisiae Polη in transcription elongation, and identified its specific RNA extension and translesion RNA synthetic activities. However, RNA synthesis by Polη proved rather inefficient under conditions optimal for DNA synthesis. Searching for factors that could enhance its RNA synthetic activity, we have identified the divalent cation of manganese. Here, we show that manganese triggers drastic changes in the activity of Polη. Kinetics experiments indicate that manganese increases the efficiency of ribonucleoside incorporation into RNA by ~400–2000-fold opposite undamaged DNA, and ~3000 and ~6000-fold opposite TT dimer and 8oxoG, respectively. Importantly, preference for the correct base is maintained with manganese during RNA synthesis. In contrast, activity is strongly impaired, and base discrimination is almost lost during DNA synthesis by Polη with manganese. Moreover, Polη shows strong preference for manganese during RNA synthesis even at a 25-fold excess magnesium concentration. Based on this, we suggest that a new regulatory mechanism, selective metal cofactor utilization, modulates the specificity of Polη helping it to perform distinct activities needed for its separate functions during replication and transcription.
Collapse
|
36
|
Dodd T, Botto M, Paul F, Fernandez-Leiro R, Lamers MH, Ivanov I. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path. Nat Commun 2020; 11:5379. [PMID: 33097731 PMCID: PMC7584608 DOI: 10.1038/s41467-020-19165-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022] Open
Abstract
Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3'-5' exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the polymerization site, imposing stringent structural and kinetic requirements for efficient primer strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an optimal free energy path connecting the polymerization and exonuclease states of E. coli replicative DNA polymerase Pol III. We identify structures for all intermediates, in which the transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments.
Collapse
Affiliation(s)
- Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Margherita Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fabian Paul
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
37
|
Murat P, Guilbaud G, Sale JE. DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats. Genome Biol 2020; 21:209. [PMID: 32819438 PMCID: PMC7441554 DOI: 10.1186/s13059-020-02124-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Short tandem repeats (STRs) contribute significantly to de novo mutagenesis, driving phenotypic diversity and genetic disease. Although highly diverse, their repetitive sequences induce DNA polymerase slippage and stalling, leading to length and sequence variation. However, current studies of DNA synthesis through STRs are restricted to a handful of selected sequences, limiting our broader understanding of their evolutionary behaviour and hampering the characterisation of the determinants of their abundance and stability in eukaryotic genomes. RESULTS We perform a comprehensive analysis of DNA synthesis at all STR permutations and interrogate the impact of STR sequence and secondary structure on their genomic representation and mutability. To do this, we developed a high-throughput primer extension assay that allows monitoring of the kinetics and fidelity of DNA synthesis through 20,000 sequences comprising all STR permutations in different lengths. By combining these measurements with population-scale genomic data, we show that the response of a model replicative DNA polymerase to variously structured DNA is sufficient to predict the complex genomic behaviour of STRs, including abundance and mutational constraints. We demonstrate that DNA polymerase stalling at DNA structures induces error-prone DNA synthesis, which constrains STR expansion. CONCLUSIONS Our data support a model in which STR length in eukaryotic genomes results from a balance between expansion due to polymerase slippage at repeated DNA sequences and point mutations caused by error-prone DNA synthesis at DNA structures.
Collapse
Affiliation(s)
- Pierre Murat
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Guillaume Guilbaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
38
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Structure of the polymerase ε holoenzyme and atomic model of the leading strand replisome. Nat Commun 2020; 11:3156. [PMID: 32572031 PMCID: PMC7308368 DOI: 10.1038/s41467-020-16910-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
The eukaryotic leading strand DNA polymerase (Pol) ε contains 4 subunits, Pol2, Dpb2, Dpb3 and Dpb4. Pol2 is a fusion of two B-family Pols; the N-terminal Pol module is catalytic and the C-terminal Pol module is non-catalytic. Despite extensive efforts, there is no atomic structure for Pol ε holoenzyme, critical to understanding how DNA synthesis is coordinated with unwinding and the DNA path through the CMG helicase-Pol ε-PCNA clamp. We show here a 3.5-Å cryo-EM structure of yeast Pol ε revealing that the Dpb3–Dpb4 subunits bridge the two DNA Pol modules of Pol2, holding them rigid. This information enabled an atomic model of the leading strand replisome. Interestingly, the model suggests that an OB fold in Dbp2 directs leading ssDNA from CMG to the Pol ε active site. These results complete the DNA path from entry of parental DNA into CMG to exit of daughter DNA from PCNA. DNA polymerase epsilon (Pol ε) is responsible for leading strand synthesis during DNA replication. Here the authors use Cryo-EM to describe the architecture of the Pol ε holoenzyme and to provide an atomic model for the leading strand replisome.
Collapse
|
40
|
Singh A, Pandey M, Nandakumar D, Raney KD, Yin YW, Patel SS. Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles. EMBO J 2020; 39:e103367. [PMID: 32037587 PMCID: PMC7073461 DOI: 10.15252/embj.2019103367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022] Open
Abstract
The proofreading exonuclease activity of replicative DNA polymerase excises misincorporated nucleotides during DNA synthesis, but these events are rare. Therefore, we were surprised to find that T7 replisome excised nearly 7% of correctly incorporated nucleotides during leading and lagging strand syntheses. Similar observations with two other DNA polymerases establish its generality. We show that excessive excision of correctly incorporated nucleotides is not due to events such as processive degradation of nascent DNA or spontaneous partitioning of primer‐end to the exonuclease site as a “cost of proofreading”. Instead, we show that replication hurdles, including secondary structures in template, slowed helicase, or uncoupled helicase–polymerase, increase DNA reannealing and polymerase backtracking, and generate frayed primer‐ends that are shuttled to the exonuclease site and excised efficiently. Our studies indicate that active‐site shuttling occurs at a high frequency, and we propose that it serves as a proofreading mechanism to protect primer‐ends from mutagenic extensions.
Collapse
Affiliation(s)
- Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Manjula Pandey
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Y Whitney Yin
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
41
|
Jackson LN, Chim N, Shi C, Chaput JC. Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Res 2020; 47:6973-6983. [PMID: 31170294 PMCID: PMC6649750 DOI: 10.1093/nar/gkz513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Replicative DNA polymerases are highly efficient enzymes that maintain stringent geometric control over shape and orientation of the template and incoming nucleoside triphosphate. In a surprising twist to this paradigm, a naturally occurring bacterial DNA polymerase I member isolated from Geobacillus stearothermophilus (Bst) exhibits an innate ability to reverse transcribe RNA and other synthetic congeners (XNAs) into DNA. This observation raises the interesting question of how a replicative DNA polymerase is able to recognize templates of diverse chemical composition. Here, we present crystal structures of natural Bst DNA polymerase that capture the post-translocated product of DNA synthesis on templates composed entirely of 2′-deoxy-2′-fluoro-β-d-arabino nucleic acid (FANA) and α-l-threofuranosyl nucleic acid (TNA). Analysis of the enzyme active site reveals the importance of structural plasticity as a possible mechanism for XNA-dependent DNA synthesis and provides insights into the construction of variants with improved activity.
Collapse
Affiliation(s)
- Lynnette N Jackson
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - Nicholas Chim
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - Changhua Shi
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, CA 92697-3958, USA
| |
Collapse
|
42
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
43
|
Charman M, Herrmann C, Weitzman MD. Viral and cellular interactions during adenovirus DNA replication. FEBS Lett 2019; 593:3531-3550. [PMID: 31764999 DOI: 10.1002/1873-3468.13695] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022]
Abstract
Adenoviruses represent ubiquitous and clinically significant human pathogens, gene-delivery vectors, and oncolytic agents. The study of adenovirus-infected cells has long been used as an excellent model to investigate fundamental aspects of both DNA virus infection and cellular biology. While many key details supporting a well-established model of adenovirus replication have been elucidated over a period spanning several decades, more recent findings suggest that we have only started to appreciate the complex interplay between viral genome replication and cellular processes. Here, we present a concise overview of adenovirus DNA replication, including the biochemical process of replication, the spatial organization of replication within the host cell nucleus, and insights into the complex plethora of virus-host interactions that influence viral genome replication. Finally, we identify emerging areas of research relating to the replication of adenovirus genomes.
Collapse
Affiliation(s)
- Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christin Herrmann
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
44
|
Primo LMF, Teixeira LK. DNA replication stress: oncogenes in the spotlight. Genet Mol Biol 2019; 43:e20190138. [PMID: 31930281 PMCID: PMC7197996 DOI: 10.1590/1678-4685gmb-2019-0138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M. F. Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| |
Collapse
|
45
|
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M F Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Leonardo K Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
46
|
Meng X, Wei L, Peng XP, Zhao X. Sumoylation of the DNA polymerase ε by the Smc5/6 complex contributes to DNA replication. PLoS Genet 2019; 15:e1008426. [PMID: 31765372 PMCID: PMC6876774 DOI: 10.1371/journal.pgen.1008426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022] Open
Abstract
DNA polymerase epsilon (Pol ε) is critical for genome duplication, but little is known about how post-translational modification regulates its function. Here we report that the Pol ε catalytic subunit Pol2 in yeast is sumoylated at a single lysine within a catalytic domain insertion uniquely possessed by Pol2 family members. We found that Pol2 sumoylation occurs specifically in S phase and is increased under conditions of replication fork blockade. Analyses of the genetic requirements of this modification indicate that Pol2 sumoylation is associated with replication fork progression and dependent on the Smc5/6 SUMO ligase known to promote DNA synthesis. Consistently, the pol2 sumoylation mutant phenotype suggests impaired replication progression and increased levels of gross chromosomal rearrangements. Our findings thus indicate a direct role for SUMO in Pol2-mediated DNA synthesis and a molecular basis for Smc5/6-mediated regulation of genome stability. DNA replication factors are tightly regulated to ensure genome duplication accuracy and efficiency. Among these factors, the Pol ε replicative polymerase plays a vital role by copying half of the genome every cell cycle. However, little is known about how this critical enzyme is regulated. Here we describe SUMO-based regulation of the catalytic subunit of Pol ε, Pol2. Our data suggest that Pol2 sumoylation occurs during replication elongation, particularly when replication forks encounter template obstacles. This modification is mediated by the conserved Smc5/6 SUMO ligase complex and occurs at a single site within the Pol2 catalytic domain. Several observations suggest that Pol2 sumoylation makes positive contributions to the synthesis of DNA regions enriched with template barriers and helps to prevent large-scale genomic alterations. Our work thus provides new insights into DNA polymerase regulation, specifically the role played by contributions from SUMO and the Smc5/6 complex.
Collapse
Affiliation(s)
- Xiangzhou Meng
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Lei Wei
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Xiao P. Peng
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Trimpert J, Osterrieder N. Herpesvirus DNA Polymerase Mutants—How Important Is Faithful Genome Replication? CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Kottur J, Nair DT. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction. Nucleic Acids Res 2019; 46:5875-5885. [PMID: 29850882 PMCID: PMC6159520 DOI: 10.1093/nar/gky402] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/15/2018] [Indexed: 11/14/2022] Open
Abstract
DNA synthesis by DNA polymerases (dPols) is central to duplication and maintenance of the genome in all living organisms. dPols catalyze the formation of a phosphodiester bond between the incoming deoxynucleoside triphosphate and the terminal primer nucleotide with the release of a pyrophosphate (PPi) group. It is believed that formation of the phosphodiester bond is an endergonic reaction and PPi has to be hydrolyzed by accompanying pyrophosphatase enzymes to ensure that the free energy change of the DNA synthesis reaction is negative and it can proceed in the forward direction. The fact that DNA synthesis proceeds in vitro in the absence of pyrophosphatases represents a long-standing conundrum regarding the thermodynamics of the DNA synthesis reaction. Using time-resolved crystallography, we show that hydrolysis of PPi is an intrinsic and critical step of the DNA synthesis reaction catalyzed by dPols. The hydrolysis of PPi occurs after the formation of the phosphodiester bond and ensures that the DNA synthesis reaction is energetically favorable without the need for additional enzymes. Also, we observe that DNA synthesis is a two Mg2+ ion assisted stepwise associative SN2 reaction. Overall, this study provides deep temporal insight regarding the primary enzymatic reaction responsible for genome duplication.
Collapse
Affiliation(s)
- Jithesh Kottur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121 001, India
| |
Collapse
|
49
|
Phi KK, Smith MC, Tokarsky EJ, Suo Z. Kinetic Investigation of Translesion Synthesis across a 3-Nitrobenzanthrone-Derived DNA Lesion Catalyzed by Human DNA Polymerase Kappa. Chem Res Toxicol 2019; 32:1699-1706. [PMID: 31286773 DOI: 10.1021/acs.chemrestox.9b00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3-Nitrobenzanthrone (3-NBA) is a byproduct of diesel exhaust and is highly present in industrial and populated areas. Inhalation of 3-NBA results in formation of N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA), a bulky DNA lesion that is of concern due to its mutagenic and carcinogenic potential. If dGC8-N-ABA is not bypassed during genomic replication, the lesion can stall cellular DNA replication machinery, leading to senescence or apoptosis. We have previously used running start assays to demonstrate that human DNA polymerases eta (hPolη) and kappa (hPolκ) are able to catalyze translesion DNA synthesis (TLS) across a site-specifically placed dGC8-N-ABA in a DNA template. Consistently, gene knockdown of hPolη and hPolκ in HEK293T cells reduces the efficiency of TLS across dGC8-N-ABA by ∼25 and ∼30%, respectively. Here, we kinetically investigated why hPolκ paused when bypassing and extending from dGC8-N-ABA. Our kinetic data show that correct dCTP incorporation efficiency of hPolκ dropped by 116-fold when opposite dGC8-N-ABA relative to undamaged dG, leading to hPolκ pausing at the lesion site observed in the running start assays. The already low nucleotide incorporation fidelity of hPolκ was further decreased by 10-fold during lesion bypass, and thus, incorrect nucleotides, especially dATP, were incorporated opposite dGC8-N-ABA with comparable efficiencies as correct dCTP. With regard to the dGC8-N-ABA bypass product extension step, hPolκ incorporated correct dGTP onto the damaged DNA substrate with a 786-fold lower efficiency than onto the corresponding undamaged DNA substrate, which resulted in hPolκ pausing at the site in the running start assays. Furthermore, hPolκ extended the primer-terminal matched base pair dC:dGC8-N-ABA with a 100-1000-fold lower fidelity than it extended the undamaged dC:dG base pair. Together, our kinetic results strongly indicate that hPolκ was error-prone during TLS of dGC8-N-ABA.
Collapse
Affiliation(s)
| | | | | | - Zucai Suo
- Department of Biomedical Sciences , Florida State University College of Medicine , Tallahassee , Florida 32306 , United States
| |
Collapse
|
50
|
Arbel‐Eden A, Simchen G. Elevated Mutagenicity in Meiosis and Its Mechanism. Bioessays 2019; 41:e1800235. [DOI: 10.1002/bies.201800235] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/31/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Giora Simchen
- Department of GeneticsThe Hebrew University of JerusalemJerusalem 91904 Israel
| |
Collapse
|