1
|
Böhm M, Stegemann A, Paus R, Kleszczyński K, Maity P, Wlaschek M, Scharffetter-Kochanek K. Endocrine Controls of Skin Aging. Endocr Rev 2025; 46:349-375. [PMID: 39998423 DOI: 10.1210/endrev/bnae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 02/26/2025]
Abstract
Skin is the largest organ of the human body and undergoes both intrinsic (chronological) and extrinsic aging. While intrinsic skin aging is driven by genetic and epigenetic factors, extrinsic aging is mediated by external threats such as UV irradiation or fine particular matters, the sum of which is referred to as exposome. The clinical manifestations and biochemical changes are different between intrinsic and extrinsic skin aging, albeit overlapping features exist, eg, increased generation of reactive oxygen species, extracellular matrix degradation, telomere shortening, increased lipid peroxidation, or DNA damage. As skin is a prominent target for many hormones, the molecular and biochemical processes underlying intrinsic and extrinsic skin aging are under tight control of classical neuroendocrine axes. However, skin is also an endocrine organ itself, including the hair follicle, a fully functional neuroendocrine "miniorgan." Here we review pivotal hormones controlling human skin aging focusing on IGF-1, a key fibroblast-derived orchestrator of skin aging, of GH, estrogens, retinoids, and melatonin. The emerging roles of additional endocrine players, ie, α-melanocyte-stimulating hormone, a central player of the hypothalamic-pituitary-adrenal axis; members of the hypothalamic-pituitary-thyroid axis; oxytocin, endocannabinoids, and peroxisome proliferator-activated receptor modulators, are also reviewed. Until now, only a limited number of these hormones, mainly topical retinoids and estrogens, have found their way into clinical practice as anti-skin aging compounds. Further research into the biological properties of endocrine players or its derivatives may offer the development of novel senotherapeutics for the treatment and prevention of skin aging.
Collapse
Affiliation(s)
- Markus Böhm
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Agatha Stegemann
- Department of Dermatology, University of Münster, Münster 48149, Germany
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester M13 9PL, UK
- CUTANEON-Skin & Hair Innovations, 22335 Hamburgyi, Germany
- CUTANEON-Skin & Hair Innovations, 13125 Berlin, Germany
| | | | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
2
|
Kardeh S, Mazloomrezaei M, Hosseini A. Scaling Autologous Epidermal Cell Therapies: iPSC-Derived Keratinocytes and In Vivo Chimerism for Skin Regeneration. Exp Dermatol 2025; 34:e70107. [PMID: 40289411 DOI: 10.1111/exd.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Severe skin injuries and genetic disorders such as epidermolysis bullosa present significant clinical challenges due to limitations in current epidermal replacement therapies. While promising, cultured epithelial autografts (CEAs) suffer from prolonged culture times, cellular senescence, and low-quality clinical outcomes, limiting their widespread application. Recent advancements in iPSC-derived keratinocytes (iKeratinocytes) and in vivo chimerism offer transformative potential for scalable and personalised skin regeneration. Advances in understanding transcriptional networks, mRNA delivery, CRISPR-based genome editing, and automated biomanufacturing processes can enable improved and efficient protocols for generating iKeratinocytes. Despite these advances, there are still challenges for scaling iKeratinocytes, including optimising xeno-free culture systems and developing reproducible methods for generating multilayered skin with appendages. Interspecies chimerism utilising lineage-specific ablation systems and targeted in utero delivery of organ progenitor cells can enable human epidermal tissue development within animal hosts, offering an alternative novel platform for scaling epidermal cell and skin generation. This method, however, requires further refinements for complete ablation and detachment of target cells in the animal hosts and improved human cell integration in chimeric models. Together, iKeratinocytes and in vivo chimerism hold great promise for advancing autologous epidermal cell therapies and enabling broader clinical adoption and improved outcomes for patients with severe skin injuries and genetic disorders.
Collapse
Affiliation(s)
- Sina Kardeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Mohsen Mazloomrezaei
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Ahmad Hosseini
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Cattier B, Guignard R, Martel I, Martel C, Simard-Bisson C, Larouche D, Guiraud B, Bessou-Touya S, Germain L. Bulge-Derived Epithelial Cells Isolated from Human Hair Follicles Using Enzymatic Digestion or Explants Result in Comparable Tissue-Engineered Skin. Int J Mol Sci 2025; 26:1852. [PMID: 40076477 PMCID: PMC11899990 DOI: 10.3390/ijms26051852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Hair follicle stem cells, located in the bulge region of the outer root sheath, are multipotent epithelial stem cells capable of differentiating into epidermal, sebaceous gland, and hair shaft cells. Efficient culturing of these cells is crucial for advancements in dermatology, regenerative medicine, and skin model development. This investigation aimed to develop a protocol for isolating enriched bulge-derived epithelial cells from scalp specimens to produce tissue-engineered substitutes. The epithelium, including hair follicles, was separated from the dermis using thermolysin, followed by microdissection of the bulge region. Epithelial stem cells were isolated using enzymatic dissociation to create a single-cell suspension and compared with the direct explant culture and a benchmark method which isolates cells from the epidermis and pilosebaceous units. After 8 days of culture, the enzymatic digestion of microdissected bulges yielded 5.3 times more epithelial cells compared to explant cultures and proliferated faster than the benchmark method. Cells cultured from all methods exhibited comparable morphology and growth rates. The fully stratified epidermis of tissue-engineered skin was similar, indicating comparable differentiation potential. This enzymatic digestion method improved early-stage cell recovery and expansion while maintaining keratinocyte functionality, offering an efficient hair bulge cell-extraction technique for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Bettina Cattier
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Rina Guignard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Israël Martel
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Christian Martel
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Carolyne Simard-Bisson
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Danielle Larouche
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| | - Béatrice Guiraud
- R&D Center, Pierre Fabre Dermo-Cosmétique, 31100 Toulouse, France; (B.G.); (S.B.-T.)
| | - Sandrine Bessou-Touya
- R&D Center, Pierre Fabre Dermo-Cosmétique, 31100 Toulouse, France; (B.G.); (S.B.-T.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Quebec City, QC G1J 5B3, Canada; (B.C.); (R.G.); (I.M.); (C.M.); (C.S.-B.); (D.L.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- CHU de Québec-Université Laval Research Centre, Quebec City, QC G1J 5B3, Canada
| |
Collapse
|
4
|
Hu A, Pickup ME, Lawal MA, Patel HJ, Ahmed MI. The involvement of Elf5 in regulating keratinocyte proliferation and differentiation processes in skin. PLoS One 2025; 20:e0316134. [PMID: 39752333 PMCID: PMC11698348 DOI: 10.1371/journal.pone.0316134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025] Open
Abstract
Skin and hair development is regulated by multitude of programs of activation and silencing of gene expression to maintain normal skin and hair follicle (HF) development, homeostasis, and cycling. Here, we have identified E74-like factor 5 (Elf5) transcription factor, as a novel regulator of keratinocyte proliferation and differentiation processes in skin. Expression analysis has revealed that Elf5 expression was localised and elevated in stem/progenitor cell populations of both the epidermis (basal and suprabasal) and in HF bulge and hair germ stem cell (SCs) compartments during skin and hair development and cycling. Expressional and functional analysis using RT-qPCR, western blot and colony forming assays, revealed that Elf5 plays an important role in regulating keratinocyte proliferation and differentiation processes as well as potentially determining cell fate by regulating the stem/progenitor cell populations in skin and HFs. These data will provide a platform for pharmacological manipulation of Elf5 in skin, leading to advancements in many areas of research, including stem cell, regenerative medicine, and ageing.
Collapse
Affiliation(s)
- Anhua Hu
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maximilian E. Pickup
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maryam A. Lawal
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Hetal J. Patel
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Mohammed I. Ahmed
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
5
|
Zhang M, Lin Y, Han Z, Huang X, Zhou S, Wang S, Zhou Y, Han X, Chen H. Exploring mechanisms of skin aging: insights for clinical treatment. Front Immunol 2024; 15:1421858. [PMID: 39582871 PMCID: PMC11581952 DOI: 10.3389/fimmu.2024.1421858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
The skin is the largest organ in the human body and is made up of various cells and structures. Over time, the skin will age, which is not only influenced by internal factors, but also by external environmental factors, especially ultraviolet radiation. Aging causes immune system weakening in the elderly, which makes them more susceptible to dermatosis, such as type 2 inflammatory mediated pruritus. The immune response in this condition is marked by senescent cells consistently releasing low amounts of pro-inflammatory cytokines through a senescence-associated secretory phenotype (SASP). This continuous inflammation may accelerate immune system aging and establish a connection between immune aging and type 2 inflammatory skin diseases. In addition, two chronic pigmentation disorders, vitiligo and chloasma, are also associated with skin aging. Aged cells escape the immune system and accumulate in tissues, forming a microenvironment that promotes cancer. At the same time, "photoaging" caused by excessive exposure to ultraviolet radiation is also an important cause of skin cancer. This manuscript describes the possible links between skin aging and type 2 inflammation, chronic pigmentation disorders, and skin cancer and suggests some treatment options.
Collapse
Affiliation(s)
- Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xuewen Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yan Zhou
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- Department of Dermatology, Guangzhou Dermatology Hospital, Guangzhou, China
| | - Xuan Han
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
- First Clinical College of Changzhi Medical College, Changzhi, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
6
|
Hariton WV, Schulze K, Rahimi S, Shojaeian T, Feldmeyer L, Schwob R, Overmiller AM, Sayar BS, Borradori L, Mahoney MG, Galichet A, Müller EJ. A desmosomal cadherin controls multipotent hair follicle stem cell quiescence and orchestrates regeneration through adhesion signaling. iScience 2023; 26:108568. [PMID: 38162019 PMCID: PMC10755723 DOI: 10.1016/j.isci.2023.108568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Stem cells (SCs) are critical to maintain tissue homeostasis. However, it is currently not known whether signaling through cell junctions protects quiescent epithelial SC reservoirs from depletion during disease-inflicted damage. Using the autoimmune model disease pemphigus vulgaris (PV), this study reveals an unprecedented role for a desmosomal cadherin in governing SC quiescence and regeneration through adhesion signaling in the multipotent mouse hair follicle compartment known as the bulge. Autoantibody-mediated, mechanical uncoupling of desmoglein (Dsg) 3 transadhesion activates quiescent bulge SC which lose their multipotency and stemness, become actively cycling, and finally delaminate from their epithelial niche. This then initiates a self-organized regenerative program which restores Dsg3 function and bulge morphology including SC quiescence and multipotency. These profound changes are triggered by the sole loss of functional Dsg3, resemble major signaling events in Dsg3-/- mice, and are driven by SC-relevant EGFR activation and Wnt modulation requiring longitudinal repression of Hedgehog signaling.
Collapse
Affiliation(s)
- William V.J. Hariton
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Katja Schulze
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Siavash Rahimi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Taravat Shojaeian
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Laurence Feldmeyer
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Roman Schwob
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Andrew M. Overmiller
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Beyza S. Sayar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
| | - Mỹ G. Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Arnaud Galichet
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Eliane J. Müller
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, 3008 Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, 3008 Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
7
|
Wang Y, Shen X, Song S, Chen Y, Wang Y, Liao J, Chen N, Zeng L. Mesenchymal stem cell-derived exosomes and skin photoaging: From basic research to practical application. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:556-566. [PMID: 37605539 DOI: 10.1111/phpp.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Skin photoaging is a condition caused by long-term exposure to ultraviolet irradiation, resulting in a variety of changes in the skin, such as capillary dilation, increased or absent pigmentation, dryness, sagging, and wrinkles. Stem cells possess a remarkable antioxidant capacity and the ability to proliferate, differentiate, and migrate, and their main mode of action is through paracrine secretion, with exosomes being the primary form of secretion. Stem cell-derived exosomes contain a variety of growth factors and cytokines and may have great potential to promote skin repair and delay skin ageing. METHODS This review focuses on the mechanisms of UV-induced skin photoaging, the research progress of stem cell exosomes against skin photoaging, emerging application approaches and limitations in the application of exosome therapy. RESULT Exosomes derived from various stem cells have the potential to prevent skin photoaging. CONCLUSION The combination with novel materials may be a key step for their practical application, which could be an important direction for future basic research and practical applications.
Collapse
Affiliation(s)
- Yihao Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xu Shen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Shenghua Song
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yiping Wang
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Liao
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Nian Chen
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Li Zeng
- Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
8
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Koller U. Gene therapy advances shine the spotlight on epidermolysis bullosa, bringing hope to patients. Mol Ther 2023; 31:1860-1861. [PMID: 37369206 PMCID: PMC10362411 DOI: 10.1016/j.ymthe.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.
| |
Collapse
|
10
|
Cheng D, Zhu X, Yan S, Shi L, Liu Z, Zhou X, Bi X. New insights into inflammatory memory of epidermal stem cells. Front Immunol 2023; 14:1188559. [PMID: 37325632 PMCID: PMC10264694 DOI: 10.3389/fimmu.2023.1188559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Inflammatory memory, as one form of innate immune memory, has a wide range of manifestations, and its occurrence is related to cell epigenetic modification or metabolic transformation. When re-encountering similar stimuli, executing cells with inflammatory memory function show enhanced or tolerated inflammatory response. Studies have identified that not only hematopoietic stem cells and fibroblasts have immune memory effects, but also stem cells from various barrier epithelial tissues generate and maintain inflammatory memory. Epidermal stem cells, especially hair follicle stem cells, play an essential role in wound healing, immune-related skin diseases, and skin cancer development. In recent years, it has been found that epidermal stem cells from hair follicle can remember the inflammatory response and implement a more rapid response to subsequent stimuli. This review updates the advances of inflammatory memory and focuses on its mechanisms in epidermal stem cells. We are finally looking forward to further research on inflammatory memory, which will allow for the development of precise strategies to manipulate host responses to infection, injury, and inflammatory skin disease.
Collapse
Affiliation(s)
- Dapeng Cheng
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaochen Zhu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaochen Yan
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Linli Shi
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Liu
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xin Zhou
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xinling Bi
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Abstract
Epithelial tissues line the outer surfaces of the mammalian body and protect from external harm. In skin, the epithelium is maintained by distinct stem cell populations residing in the interfollicular epidermis and various niches of the hair follicle. These stem cells give rise to the stratified epidermal layers and the protective hair coat, while being confined to their respective niches. Upon injury, however, all stem cell progenies can leave their niche and collectively contribute to a central wound healing process, called reepithelialization, for restoring the skin's barrier function. This review explores how epithelial cells from distinct niches respond and adapt during acute wound repair. We discuss when and where cells sense and react to damage, how cellular identity is regulated at the molecular and behavioral level, and how cells memorize past experiences and their origin. This collective knowledge highlights cellular plasticity as a brilliant feature of epithelial tissues to heal.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Simon Joost
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
13
|
Zhang Z, Chai R. Hear the sounds: The role of G Protein-Coupled Receptors in the cochlea. Am J Physiol Cell Physiol 2022; 323:C1088-C1099. [PMID: 35938679 DOI: 10.1152/ajpcell.00453.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sound is converted by hair cells in the cochlea into electrical signals, which are transmitted by spiral ganglion neurons (SGNs) and heard by the auditory cortex. G protein-coupled receptors (GPCRs) are crucial receptors that regulate a wide range of physiological functions in different organ and tissues. The research of GPCRs in the cochlea is essential for the understanding of the cochlea development, hearing disorders, and the treatment for hearing loss. Recently, several GPCRs have been found to play important roles in the cochlea. Frizzleds and Lgrs are dominant GPCRs that regulate stem cell self-renew abilities. Moreover, Frizzleds and Celsrs have been demonstrated to play core roles in the modulation of cochlear planar cell polarity (PCP). In addition, hearing loss can be caused by mutations of certain GPCRs, such as Vlgr1, Gpr156, S1P2 and Gpr126. And A1, A2A and CB2 activation by agonists have protective functions on noise- or drug-induced hearing loss. Here, we review the key findings of GPCR in the cochlea, and discuss the role of GPCR in the cochlea, such as stem cell fate, PCP, hearing loss, and hearing protection.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Koren E, Feldman A, Yusupova M, Kadosh A, Sedov E, Ankawa R, Yosefzon Y, Nasser W, Gerstberger S, Kimel LB, Priselac N, Brown S, Sharma S, Gorenc T, Shalom-Feuerstein R, Steller H, Shemesh T, Fuchs Y. Thy1 marks a distinct population of slow-cycling stem cells in the mouse epidermis. Nat Commun 2022; 13:4628. [PMID: 35941116 PMCID: PMC9360001 DOI: 10.1038/s41467-022-31629-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/27/2022] [Indexed: 12/17/2022] Open
Abstract
The presence of distinct stem cells that maintain the interfollicular epidermis is highly debated. Here, we report a population of keratinocytes, marked by Thy1, in the basal layer of the interfollicular epidermis. We find that epidermal cells expressing differential levels of Thy1 display distinct transcriptional signatures. Thy1+ keratinocytes do not express T cell markers, express a unique transcriptional profile, cycle significantly slower than basal epidermal progenitors and display significant expansion potential in vitro. Multicolor lineage tracing analyses and mathematical modeling reveal that Thy1+ basal keratinocytes do not compete neutrally alike interfollicular progenitors and contribute long-term to both epidermal replenishment and wound repair. Importantly, ablation of Thy1+ cells strongly impairs these processes, thus indicating the non-redundant function of Thy1+ stem cells in the epidermis. Collectively, these results reveal a distinct stem cell population that plays a critical role in epidermal homeostasis and repair.
Collapse
Affiliation(s)
- Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alona Feldman
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Marianna Yusupova
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Avihay Kadosh
- Laboratory of Biophysics, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Egor Sedov
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Yahav Yosefzon
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Waseem Nasser
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | | | - Liam B Kimel
- Laboratory of Biophysics, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Noa Priselac
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Samara Brown
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York, 10065, USA
| | - Sam Sharma
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York, 10065, USA
| | - Travis Gorenc
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York, 10065, USA
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - Hermann Steller
- Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, New York, 10065, USA
| | - Tom Shemesh
- Laboratory of Biophysics, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel.
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel.
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
15
|
Sobkowska D, Gornowicz-Porowska J, Seraszek-Jaros A, Słomińska D, Adamski Z, Pawlaczyk M. Evaluation of Skin Biophysical Parameters and Angiogenesis Using CD34 as a Biomarker in Older Diabetic Women Treated with Radiofrequency. Clin Cosmet Investig Dermatol 2022; 15:1347-1355. [PMID: 35860609 PMCID: PMC9292815 DOI: 10.2147/ccid.s365501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Background The prevalence of type 2 diabetes mellitus (t2DM) has been steadily increasing. Patients with t2DM need to slow down the skin ageing processes and to obtain a rejuvenating effect. Treatments that do not damage the superficial layers of the epidermis could be a promising solution for those patients. Purpose The aim of this study was to evaluate the effects of radiofrequency therapy on the biophysical parameters and angiogenesis of facial skin, using CD34 as a biomarker in older diabetic women treated with metformin. Patients and Methods A total of 45 subjects with phototype 2 or 3 (Fitzpatrick scale) were investigated (25 t2DM – study group, 20 – healthy controls). A series of 6 treatments (once a week) with a Radio Frequency Skin Rejuvenation System device was used on facial skin. Measurements of skin hydration, transepidermal water loss (TEWL), melanin and erythema index, temperature, and pH, at baseline and after radiofrequency therapy were performed with the Courage + Khazaka MPA-9 device. Immunohistochemistry on paraffin-embedded sections was used to evaluate the intensity of CD34 expression. Results Radiofrequency treatment significantly improved facial skin hydration (p < 0.0001). Enhancement of the epidermal barrier observed, by reduced TEWL as a result of a series of treatments with radiofrequency on the facial skin (p < 0.0001), was observed. CD34 was more abundantly expressed after radiofrequency treatment. No side effects were observed. Conclusion Treatment with radiofrequency is an effective and non-invasive method of facial skin rejuvenation in older women with t2DM, with a relatively short post-procedure recovery time and low potential for severe adverse effects.
Collapse
Affiliation(s)
- Daria Sobkowska
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznań, 60-806, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznań, 60-806, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznań, 60-806, Poland
| | - Daria Słomińska
- Department of Pharmacology, Poznan University of Medical Sciences, Poznan, 60-806, Poland
| | - Zygmunt Adamski
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, 60-355, Poland
| | - Mariola Pawlaczyk
- Department and Division of Practical Cosmetology and Prevention of Skin Diseases, Poznan University of Medical Sciences, Poznań, 60-806, Poland
| |
Collapse
|
16
|
Stem Cell-Derived Exosomes: A New Method for Reversing Skin Aging. Tissue Eng Regen Med 2022; 19:961-968. [PMID: 35809187 DOI: 10.1007/s13770-022-00461-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 10/17/2022] Open
Abstract
Senescence is an inevitable natural life process that involves structural and functional degeneration of tissues and organs. Recently, the process of skin aging has attracted much attention. Determining a means to delay or even reverse skin aging has become a research hotspot in medical cosmetology and anti-aging. Dysfunction in the epidermis and fibroblasts and changes in the composition and content of the extracellular matrix are common pathophysiological manifestations of skin aging. Reactive oxygen species and matrix metalloproteinases play essential roles in this process. Stem cells are pluripotent cells that possess self-replication abilities and can differentiate into multiple functional cells under certain conditions. These cells also possess a strong ability to facilitate tissue repair and regeneration. Stem cell transplantation has the potential for application in anti-aging therapy. Increasing studies have demonstrated that stem cells perform functions through paracrine processes, particularly those involving exosomes. Exosomes are nano-vesicular substances secreted by stem cells that participate in cell-to-cell communication by transporting their contents into target cells. In this chapter, the biological characteristics of exosomes were reviewed, including their effects on extracellular matrix formation, epidermal cell function, fibroblast function and antioxidation. Exosomes derived from stem cells may provide a new means to reverse skin aging.
Collapse
|
17
|
Ouji Y, Misu M, Kitamura T, Okuzaki D, Yoshikawa M. Impaired differentiation potential of CD34-positive cells derived from mouse hair follicles after long-term culture. Sci Rep 2022; 12:11011. [PMID: 35773408 PMCID: PMC9247072 DOI: 10.1038/s41598-022-15354-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022] Open
Abstract
Hair follicle epithelial stem cells (HFSCs), which exist in the bulge region, have important functions for homeostasis of skin as well as hair follicle morphogenesis. Although several methods for isolation of HFSCs using a variety of stem cell markers have been reported, few investigations regarding culture methods or techniques to yield long-term maintenance of HFSCs in vitro have been conducted. In the present study, we screened different types of commercially available culture medium for culturing HFSCs. Among those tested, one type was shown capable of supporting the expression of stem cell markers in cultured HFSCs. However, both the differentiation potential and in vivo hair follicle-inducing ability of HFSCs serially passaged using that optimal medium were found to be impaired, probably because of altered responsiveness to Wnt signaling. The changes noted in HFSCs subjected to a long-term culture suggested that the Wnt signaling-related environment must be finely controlled for maintenance of the cells.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Tomotaka Kitamura
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
18
|
Liu M, Liu Z, Chen Y, Peng S, Yang J, Chen C, Wang J, Shang R, Tang Y, Huang Y, Zhang X, Hu X, Liou YC, Luo G, He W. Dendritic epidermal T cells secreting exosomes promote the proliferation of epidermal stem cells to enhance wound re-epithelialization. Stem Cell Res Ther 2022; 13:121. [PMID: 35313958 PMCID: PMC8935714 DOI: 10.1186/s13287-022-02783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Background Efficient re-epithelialization is important for successful skin wound healing. The proportion of epidermal stem cells (EpSCs) and dendritic epidermal T cells (DETCs) determines the extent of wound re-epithelialization, especially in large areas of skin tissue loss. However, it remains unknown whether and how DETCs regulate the status of EpSCs to impact wound re-epithelialization. Methods To investigate how DETCs regulate EpSCs in skin re-epithelialization, we utilized normal or full-thickness skin deficient wide type (WT) mice and Tcrσ knockout (Tcrσ−/−) mice with DETCs or DETCs-derived exosomes (Exos) treatment. Flow cytometry analysis (FCAS), BrdU labelled experiments, immunofluorescence and immunohistochemical assays were performed to detect the proportion of EpSCs in the epidermis. Wound closure rate and re-epithelialization were assayed by a macroscopical view and hematoxylin–eosin (H&E) staining. EpSCs in vitro were co-cultured with DETCs in a transwell-dependent or -independent manner, or supplement with GW4869 or Exos (5 µg/mL, 15 µg/mL and 45 µg/mL), and the proliferation of EpSCs was detected by means of FCAS and CFSE. Results Our data showed that the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the normal epidermis of Tcrδ−/− mice had no significant difference compared to WT mice. For wounded Tcrδ−/− mice, DETCs treatment increase the proportion of CD49fbriCD71dim cells, K15+ cells and BrdU+ cells in the epidermis around the wound in comparison to PBS treatment. DETCs significantly increased the number of CD49fbriCD7dim cells and K15+ cells through transwell-dependent or -independent manners relative to control group. Furthermore, Exos stimuli remarkedly promote the proliferation of EpSCs compared to control group, while the increasement was suppressed when DETCs were interfered with GW4869. Gross observation and H&E staining showed that Exos significantly accelerated wound closure and increased re-epithelialization length in Tcrδ−/− mice when compared to control mice. Additionally, we found in vivo that Exos observably facilitated the proliferation of CD49fbriCD7dim cells and K15+ cells. Conclusions We revealed that DETCs enhanced the proliferation of EpSCs in the epidermis around the wounds to accelerate re-epithelialization in which Exos played important roles in the remote regulation of EpSCs proliferation. Together, these findings suggest a mechanistic link among DETC-derived exosomes, the proliferation of EpSCs, and wound re-epithelialization in the skin.
Collapse
Affiliation(s)
- Mian Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Shiya Peng
- Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Academy of Biological Engineering, Chongqing University, Chongqing, 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Yih-Cherng Liou
- Department Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| |
Collapse
|
19
|
Sandiarini-Kamayana J. The use of adipose-derived stem cells in cell assisted lipotransfer as potential regenerative therapy in breast reconstruction. SCRIPTA MEDICA 2022. [DOI: 10.5937/scriptamed53-36491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Breast reconstruction for breast cancer patients is performed as a standard of care to improve patients' quality of life, physical and psychosocial well-being. Stem cell therapy holds a promise in regenerative medicine, including in breast reconstruction. This review explores the potential use of adipose-derived stem cells (ADSCs) in cell assisted lipotransfer (CAL) for reconstruction of the breast. The review of literature was done using electronic databases using appropriate keywords, including "adipose-derived stem cell", "stem cell therapy", "adipose-derived stem cell", "cell-assisted lipotransfer", "regenerative therapy", "breast cancer" and "breast reconstruction", with literatures limited to ten years post publication. Adipose-derived stem cells are multipotent cells with angiogenic and immunomodulatory potential. Several studies reveal ADSCs use in CAL results in long-term breast volume retention suggesting improved fat graft survival. Some conflicting outcomes are also discussed, potentially related to numbers of cells enriched and factors affecting the cells' microenvironment. The use of ADSCs in CAL may be beneficial for therapy of breast reconstruction in breast cancer patients after surgical management. Further investigation would be needed to improve the confidence of its clinical use.
Collapse
|
20
|
Ali D, Alhattab D, Jafar H, Alzubide M, Sharar N, Bdour S, Awidi A. Differential Marker Expression between Keratinocyte Stem Cells and Their Progeny Generated from a Single Colony. Int J Mol Sci 2021; 22:ijms221910810. [PMID: 34639148 PMCID: PMC8509450 DOI: 10.3390/ijms221910810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
The stemness in keratinocyte stem cells (KSCs) is determined by their gene expression patterns. KSCs are crucial in maintaining epidermal homeostasis and wound repair and are widely used candidates for therapeutic applications. Although several studies have reported their positive identifiers, unique biomarkers for KSCs remain elusive. Here, we aim to identify potential candidate stem cell markers. Human epidermal keratinocytes (HEKs) from neonatal foreskin tissues were isolated and cultured. Single-cell clonal analysis identified and characterized three types of cells: KSCs (holoclones), transient amplifying cells (TACs; meroclones), and differentiated cells (DSCs; paraclones). The clonogenic potential of KSCs demonstrated the highest proliferation potential of KSCs, followed by TACs and DSCs, respectively. Whole-transcriptome analysis using microarray technology unraveled the molecular signatures of these cells. These results were validated by quantitative real-time polymerase chain reaction and flow cytometry analysis. A total of 301 signature upregulated and 149 downregulated differentially expressed genes (DEGs) were identified in the KSCs, compared to TACs and DSCs. Furthermore, DEG analyses revealed new sets of genes related to cell proliferation, cell adhesion, surface makers, and regulatory factors. In conclusion, this study provides a useful source of information for the identification of potential SC-specific candidate markers.
Collapse
Affiliation(s)
- Dema Ali
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Laboratory for Nanomedicine, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Malak Alzubide
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
| | - Nour Sharar
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
| | - Salwa Bdour
- Department of Clinical Laboratory Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (A.A.)
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan; (D.A.); (D.A.); (H.J.); (M.A.); (N.S.)
- Department of Hematology and Oncology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
- Correspondence: (S.B.); (A.A.)
| |
Collapse
|
21
|
Yang Z, Hu X, Zhou L, He Y, Zhang X, Yang J, Ju Z, Liou YC, Shen HM, Luo G, Hamblin MR, He W, Yin R. Photodynamic therapy accelerates skin wound healing through promoting re-epithelialization. BURNS & TRAUMA 2021; 9:tkab008. [PMID: 34514005 PMCID: PMC8420953 DOI: 10.1093/burnst/tkab008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Indexed: 11/16/2022]
Abstract
Background Epidermal stem cells (EpSCs) that reside in cutaneous hair follicles and the basal layer of the epidermis are indispensable for wound healing and skin homeostasis. Little is known about the effects of photochemical activation on EpSC differentiation, proliferation and migration during wound healing. The present study aimed to determine the effects of photodynamic therapy (PDT) on wound healing in vivo and in vitro. Methods We created mouse full-thickness skin resection models and applied 5-aminolevulinic acid (ALA) for PDT to the wound beds. Wound healing was analysed by gross evaluation and haematoxylin–eosin staining in vivo. In cultured EpSCs, protein expression was measured using flow cytometry and immunohistochemistry. Cell migration was examined using a scratch model; apoptosis and differentiation were measured using flow cytometry. Results PDT accelerated wound closure by enhancing EpSC differentiation, proliferation and migration, thereby promoting re-epithelialization and angiogenesis. PDT inhibited inflammatory infiltration and expression of proinflammatory cytokines, whereas the secretion of growth factors was greater than in other groups. The proportion of transient amplifying cells was significantly greater in vivo and in vitro in the PDT groups. EpSC migration was markedly enhanced after ALA-induced PDT. Conclusions Topical ALA-induced PDT stimulates wound healing by enhancing re-epithelialization, promoting angiogenesis as well as modulating skin homeostasis. This work provides a preliminary theoretical foundation for the clinical administration of topical ALA-induced PDT in skin wound healing.
Collapse
Affiliation(s)
- Zengjun Yang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lina Zhou
- Department of Endocrinology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yaxiong He
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601 Huangpu Street, Tianhe District, Guangzhou, Guangdong Province, 510632, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
22
|
Kretzschmar K, Boonekamp KE, Bleijs M, Asra P, Koomen M, Chuva de Sousa Lopes SM, Giovannone B, Clevers H. Troy/Tnfrsf19 marks epidermal cells that govern interfollicular epidermal renewal and cornification. Stem Cell Reports 2021; 16:2379-2394. [PMID: 34358453 PMCID: PMC8452520 DOI: 10.1016/j.stemcr.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
The skin epidermis is a highly compartmentalized tissue consisting of a cornifying epithelium called the interfollicular epidermis (IFE) and associated hair follicles (HFs). Several stem cell populations have been described that mark specific compartments in the skin but none of them is specific to the IFE. Here, we identify Troy as a marker of IFE and HF infundibulum basal layer cells in developing and adult human and mouse epidermis. Genetic lineage-tracing experiments demonstrate that Troy-expressing basal cells contribute to long-term renewal of all layers of the cornifying epithelium. Single-cell transcriptomics and organoid assays of Troy-expressing cells, as well as their progeny, confirmed stem cell identity as well as the ability to generate differentiating daughter cells. In conclusion, we define Troy as a marker of epidermal basal cells that govern interfollicular epidermal renewal and cornification.
Collapse
Affiliation(s)
- Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, 97080 Würzburg, Germany.
| | - Kim E Boonekamp
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Margit Bleijs
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Priyanca Asra
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | - Mandy Koomen
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands
| | | | | | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht, 3584 CT Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
23
|
Ramos-Rodriguez DH, MacNeil S, Claeyssens F, Ortega Asencio I. Fabrication of Topographically Controlled Electrospun Scaffolds to Mimic the Stem Cell Microenvironment in the Dermal-Epidermal Junction. ACS Biomater Sci Eng 2021; 7:2803-2813. [PMID: 33905240 DOI: 10.1021/acsbiomaterials.0c01775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of microfabrication techniques for the development of innovative constructs for tissue regeneration is a growing area of research. This area comprises both manufacturing and biological approaches for the development of smart materials aiming to control and direct cell behavior to enhance tissue healing. Many groups have focused their efforts on introducing complexity within these innovative constructs via the inclusion of nano- and microtopographical cues mimicking physical and biological aspects of the native stem cell niche. Specifically, in the area of skin tissue engineering, seminal work has reported replicating the microenvironments located in the dermal-epithelial junction, which are known as rete ridges. The rete ridges are key for both stem cell control and the physiological performance of the skin. In this work, we have introduced complexity within electrospun membranes to mimic the morphology of the rete ridges in the skin. We designed and tested three different patterns, characterized them, and explored their performance in vitro, using 3D skin models. One of the studied patterns (pattern B) was shown to aid in the development of an in vitro rite-ridgelike skin model that resulted in the expression of relevant epithelial markers such as collagen IV and integrin β1. In summary, we have developed a new skin model including synthetic rete-ridgelike structures that replicate both morphology and function of the native dermal-epidermal junction and that offer new insights for the development of smart skin tissue engineering constructs.
Collapse
Affiliation(s)
- David H Ramos-Rodriguez
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, U.K
| | - Ilida Ortega Asencio
- Bioengineering and Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K
| |
Collapse
|
24
|
Lichtenberger BM, Kasper M. Cellular heterogeneity and microenvironmental control of skin cancer. J Intern Med 2021; 289:614-628. [PMID: 32976658 DOI: 10.1111/joim.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
Healthy tissues harbour a surprisingly high number of cells that carry well-known cancer-causing mutations without impacting their physiological function. In recent years, strong evidence accumulated that the immediate environment of mutant cells profoundly impact their prospect of malignant progression. In this review, focusing on the skin, we investigate potential key mechanisms that ensure tissue homeostasis despite the presence of mutant cells, as well as critical factors that may nudge the balance from homeostasis to tumour formation. Functional in vivo studies and single-cell transcriptome analyses have revealed a tremendous cellular heterogeneity and plasticity within epidermal (stem) cells and their respective niches, revealing for example wild-type epithelial cells, fibroblasts or immune-cell subsets as critical in preventing cancer formation and malignant progression. It's the same cells, however, that can drive carcinogenesis. Therefore, understanding the abundance and molecular variation of cell types in health and disease, and how they interact and modulate the local signalling environment will thus be key for new therapeutic avenues in our battle against cancer.
Collapse
Affiliation(s)
- B M Lichtenberger
- From the, Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - M Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
25
|
Wan J, Dai H, Zhang X, Liu S, Lin Y, Somani AK, Xie J, Han J. Distinct transcriptomic landscapes of cutaneous basal cell carcinomas and squamous cell carcinomas. Genes Dis 2021; 8:181-192. [PMID: 33997165 PMCID: PMC8099692 DOI: 10.1016/j.gendis.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The majority of non-melanoma skin cancer (NMSC) is cutaneous basal cell carcinoma (BCC) or squamous cell carcinoma (SCC), which are also called keratinocyte carcinomas, as both of them originate from keratinocytes. The incidence of keratinocyte carcinomas is over 5 million per year in the US, three-fold higher than the total incidence of all other types of cancer combined. While there are several reports on gene expression profiling of BCC and SCC, there are significant variations in the reported gene expression changes in different studies. One reason is that tumor-adjacent normal skin specimens were not included in many studies as matched controls. Furthermore, while numerous studies of skin stem cells in mouse models have been reported, their relevance to human skin cancer remains unknown. In this report, we analyzed gene expression profiles of paired specimens of keratinocyte carcinomas with their matched normal skin tissues as the control. Among several novel findings, we discovered a significant number of zinc finger encoding genes up-regulated in human BCC. In BCC, a novel link was found between hedgehog signaling, Wnt signaling, and the cilium. While the SCC cancer-stem-cell gene signature is shared between human and mouse SCCs, the hair follicle stem-cell signature of mice was not highly represented in human SCC. Differential gene expression (DEG) in human BCC shares gene signature with both bulge and epidermal stem cells. We have also determined that human BCCs and SCCs have distinct gene expression patterns, and some of them are not fully reflected in current mouse models.
Collapse
Affiliation(s)
- Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- School of Informatics and Computing, Indiana University – Purdue University at Indianapolis, Indianapolis, IN, 46202, USA
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300000, PR China
| | - Xiaoli Zhang
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuan Lin
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - Ally-Khan Somani
- Dermatologic Surgery & Cutaneous Oncology Division, Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jingwu Xie
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jiali Han
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| |
Collapse
|
26
|
Local Treatment of Burns with Cell-Based Therapies Tested in Clinical Studies. J Clin Med 2021; 10:jcm10030396. [PMID: 33494318 PMCID: PMC7864524 DOI: 10.3390/jcm10030396] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Effective wound management is an important determinant of the survival and prognosis of patients with severe burns. Thus, novel techniques for timely and full closure of full-thickness burn wounds are urgently needed. The purpose of this review is to present the current state of knowledge on the local treatment of burn wounds (distinguishing radiation injury from other types of burns) with the application of cellular therapies conducted in clinical studies. PubMed search engine and ClinicalTrials.gov were used to analyze the available data. The analysis covered 49 articles, assessing the use of keratinocytes (30), keratinocytes and fibroblasts (6), fibroblasts (2), bone marrow-derived cells (8), and adipose tissue cells (3). Studies on the cell-based products that are commercially available (Epicel®, Keraheal™, ReCell®, JACE, Biobrane®) were also included, with the majority of reports found on autologous and allogeneic keratinocytes. Promising data demonstrate the effectiveness of various cell-based therapies; however, there are still scientific and technical issues that need to be solved before cell therapies become standard of care. Further evidence is required to demonstrate the clinical efficacy and safety of cell-based therapies in burns. In particular, comparative studies with long-term follow-up are critical.
Collapse
|
27
|
Chou YT, Lai FJ, Chang NS, Hsu LJ. Wwox Deficiency Causes Downregulation of Prosurvival ERK Signaling and Abnormal Homeostatic Responses in Mouse Skin. Front Cell Dev Biol 2020; 8:558432. [PMID: 33195192 PMCID: PMC7652735 DOI: 10.3389/fcell.2020.558432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022] Open
Abstract
Deficiency of tumor suppressor WW domain-containing oxidoreductase (WWOX) in humans and animals leads to growth retardation and premature death during postnatal developmental stages. Skin integrity is essential for organism survival due to its protection against dehydration and hypothermia. Our previous report demonstrated that human epidermal suprabasal cells express WWOX protein, and the expression is gradually increased toward the superficial differentiated cells prior to cornification. Here, we investigated whether abnormal skin development and homeostasis occur under Wwox deficiency that may correlate with early death. We determined that keratinocyte proliferation and differentiation were decreased, while apoptosis was increased in Wwox–/– mouse epidermis and primary keratinocyte cultures and WWOX-knockdown human HaCaT cells. Without WWOX, progenitor cells in hair follicle junctional zone underwent massive proliferation in early postnatal developmental stages and the stem/progenitor cell pools were depleted at postnatal day 21. These events lead to significantly decreased epidermal thickness, dehydration state, and delayed hair development in Wwox–/– mouse skin, which is associated with downregulation of prosurvival MEK/ERK signaling in Wwox–/– keratinocytes. Moreover, Wwox depletion results in substantial downregulation of dermal collagen contents in mice. Notably, Wwox–/– mice exhibit severe loss of subcutaneous adipose tissue and significant hypothermia. Collectively, our knockout mouse model supports the validity of WWOX in assisting epidermal and adipose homeostasis, and the involvement of prosurvival ERK pathway in the homeostatic responses regulated by WWOX.
Collapse
Affiliation(s)
- Ying-Tsen Chou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chimei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Li-Jin Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Antioxidants as an Epidermal Stem Cell Activator. Antioxidants (Basel) 2020; 9:antiox9100958. [PMID: 33036398 PMCID: PMC7600937 DOI: 10.3390/antiox9100958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Antioxidants may modulate the microenvironment of epidermal stem cells by reducing the production of reactive oxygen species or by regulating the expression of extracellular matrix protein. The extracellular membrane is an important component of the stem cell niche, and microRNAs regulate extracellular membrane-mediated basal keratinocyte proliferation. In this narrative review, we will discuss several antioxidants such as ascorbic acid, plant extracts, peptides and hyaluronic acid, and their effect on the epidermal stem cell niche and the proliferative potential of interfollicular epidermal stem cells in 3D skin equivalent models.
Collapse
|
29
|
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells 2020; 38:1520-1531. [PMID: 32896043 DOI: 10.1002/stem.3273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/β-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Yang R, Yang S, Zhao J, Hu X, Chen X, Wang J, Xie J, Xiong K. Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Res Ther 2020; 11:303. [PMID: 32698863 PMCID: PMC7374856 DOI: 10.1186/s13287-020-01796-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
The epidermis, which is the outermost layer of mammalian skin, provides an essential barrier that is essential for maintenance of life. The epidermis is a stratified epithelium, which is maintained by the proliferation of epidermal stem cells (EPSCs) at the basal layer of the epidermis. As a unique cell population characterized by self-renewal and differentiation capabilities, EPSCs ensure the maintenance of adult skin homeostasis and participate in repair of the epidermis after injury. Recently, the utilization of EPSCs for wound healing and tissue regeneration has been attracting increased attention from researchers. In addition, the advances in tissue engineering have increased the interest in applying EPSCs in tissue-engineered scaffolds to further reconstitute injured tissues. In this review, we introduce research developments related to EPSCs, including methods recently used in the culture and enrichment of EPSCs, as well as advanced tools to study EPSCs. The function and mechanism of the EPSC-dermal units in the development and homeostasis of the skin are also summarized. Finally, the potential applications of EPSCs in skin tissue engineering are discussed.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 Guangdong China
| | - Shuai Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Jingling Zhao
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Ximin Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 Guangdong China
| | - Jingru Wang
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, 528000 Guangdong China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080 Guangdong China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013 Hunan China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008 Hunan China
| |
Collapse
|
31
|
Russell-Goldman E, Murphy GF. The Pathobiology of Skin Aging: New Insights into an Old Dilemma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1356-1369. [PMID: 32246919 PMCID: PMC7481755 DOI: 10.1016/j.ajpath.2020.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Long considered both physiologic and inevitable, skin aging is a degenerative phenomenon whereby both intrinsic and environmental factors conspire to produce an authentic disease. The consequences of this disorder are many and varied, ranging from atrophy and fragility to defective repair to deficient immunity and vulnerability to certain infections. The pathobiologic basis for skin aging remains poorly understood. At a cellular level, stem cell dysfunction and attrition appear to be key events, and both genetic and epigenetic factors are involved in a complex interplay that over time results in deterioration of our main protective interface with the external environment. Past and current understanding of the cellular and molecular intricacies of skin aging provide a foundation for future approaches designed to thwart the aging phenotype. Herein, the authors provide a review of current insights into skin aging, including the mechanisms of skin aging, the role of stem cells in skin aging and the implications of skin aging for the microbiome and for the development of cancer. Conquest of the oft overlooked disease of skin aging should have broad implications that transcend the integument and inform novel approaches to retarding aging and age-related dysfunction in those internal organs that youthful skin was designed to envelop and safeguard.
Collapse
Affiliation(s)
- Eleanor Russell-Goldman
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
32
|
Xiao T, Yan Z, Xiao S, Xia Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res Ther 2020; 11:232. [PMID: 32527289 PMCID: PMC7291661 DOI: 10.1186/s13287-020-01755-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
The skin, which serves as the first barrier of the human body, is particularly susceptible to exogenous injuries. Skin wounds, including acute burns and chronic non-healing ulcers, are commonly observed in clinics. Healing of skin wounds is a complex process, consisting of infiltration of inflammatory cells, cellular proliferation, and tissue remodeling phases, which restore the integrity and functions of the skin. Epithelialization is involved in wound healing through re-establishing an intact keratinocyte layer. Epidermal stem cells are indispensable for epithelialization, and they are regulated by multiple proinflammatory cytokines or growth factors. In this review, we summarize recent advances in the effect of these cytokines on migration, proliferation, and differentiation processes of epidermal stem cells. We also introduce promising therapeutic strategies targeting epidermal stem cells or related proinflammatory cytokines for patients with skin wounds.
Collapse
Affiliation(s)
- Tong Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Zhu Yan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710004, China.
| |
Collapse
|
33
|
De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW, Bondanza S, De Luca M. Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harb Perspect Biol 2020; 12:a035667. [PMID: 31653644 PMCID: PMC7197428 DOI: 10.1101/cshperspect.a035667] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Maria Carmela Latella
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Alessia Secone Seconetti
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Cecilia Cattelani
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sergio Bondanza
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
34
|
Yang GN, Strudwick XL, Bonder C, Kopecki Z, Cowin AJ. Effect of Flightless I Expression on Epidermal Stem Cell Niche During Wound Repair. Adv Wound Care (New Rochelle) 2020; 9:161-173. [PMID: 32117580 DOI: 10.1089/wound.2018.0884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: Activation of epidermal stem cells (EpSCs) from their quiescent niche is an integral component of wound reepithelialization and involves Wnt/β-catenin (β-Cat) signaling and remodeling of the actin cytoskeleton. The aim of this study was to investigate the effect of Flightless I (Flii), a cytoskeletal protein and inhibitor of wound healing, on EpSC activation during wound repair. Approach: Genetically modified Flii mice (Flii knockdown: Flii+/- , wild type: WT, Flii overexpressing: FliiTg/Tg ) received two incisional wounds along the lateral axis of the dorsal skin. Indicators of EpSC activation (epidermal growth factor receptor 1 [EGFR1], leucine-rich repeats and immunoglobulin-like domains-1 [Lrig1], K14), Wnt/β-Cat signaling (Lgr6, Flap2, β-Cat, and axis inhibition protein 2 [Axin2]), and cell proliferation (proliferating cell nuclear antigen [PCNA]) were assessed using immunohistochemistry. β-Cat stabilization was examined using western blotting with cell cycling and differentiation of isolated CD34+ITGA6high EpSCs examined using real time-quantitative polymerase chain reaction after treatment with wound-conditioned media. Results: Flii+/- led to increased numbers of activated EpSCs expressing PCNA, elevated EGFR1, and decreased Lrig1. EpSCs in Flii+/- hair follicle niches adjacent to the wounds also showed expression of Wnt-activation markers including increased β-Cat and Lgr6, and decreased Axin2. EpSCs (CD34+ITGA6high) isolated from Flii+/- unwounded skin showed elevated expression of cell-cycling genes including ΔNp63, filaggrin (Fila), involucrin (Invo), cyclin D1 (Ccnd1), and cell-division cycle protein-20 (Cdc20); and elevated ΔNp63 and Invo after treatment with wound-conditioned media compared with WT and FliiTg/Tg counterparts. Innovation: Flii was identified as an inhibitor of EpSC activation that may explain its negative effects on wound reepithelialization. Conclusion: Flii may inhibit EpSC activation by interrupting Wnt/β-Cat signaling. Strategies that reduce Flii may increase activation of EpSCs and promote reepithelialization of wounds.
Collapse
Affiliation(s)
- Gink N. Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Xanthe L. Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Claudine Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Bikle D, Christakos S. New aspects of vitamin D metabolism and action - addressing the skin as source and target. Nat Rev Endocrinol 2020; 16:234-252. [PMID: 32029884 DOI: 10.1038/s41574-019-0312-5] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Vitamin D has a key role in stimulating calcium absorption from the gut and promoting skeletal health, as well as many other important physiological functions. Vitamin D is produced in the skin. It is subsequently metabolized to its hormonally active form, 1,25-dihydroxyvitamin D (1,25(OH)2D), by the 1-hydroxylase and catabolized by the 24-hydroxylase. In this Review, we pay special attention to the effect of mutations in these enzymes and their clinical manifestations. We then discuss the role of vitamin D binding protein in transporting vitamin D and its metabolites from their source to their targets, the free hormone hypothesis for cell entry and HSP70 for intracellular transport. This is followed by discussion of the vitamin D receptor (VDR) that mediates the cellular actions of 1,25(OH)2D. Cell-specific recruitment of co-regulatory complexes by liganded VDR leads to changes in gene expression that result in distinct physiological actions by 1,25(OH)2D, which are disrupted by mutations in the VDR. We then discuss the epidermis and hair follicle, to provide a non-skeletal example of a tissue that expresses VDR that not only makes vitamin D but also can metabolize it to its hormonally active form. This enables vitamin D to regulate epidermal differentiation and hair follicle cycling and, in so doing, to promote barrier function, wound healing and hair growth, while limiting cancer development.
Collapse
Affiliation(s)
- Daniel Bikle
- Departments of Medicine and Dermatology, University of California San Francisco, San Francisco, CA, USA.
- VA Medical Center, San Francisco, CA, USA.
| | - Sylvia Christakos
- Departments of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
36
|
Abstract
Aging manifests with architectural alteration and functional decline of multiple organs throughout an organism. In mammals, aged skin is accompanied by a marked reduction in hair cycling and appearance of bald patches, leading researchers to propose that hair follicle stem cells (HFSCs) are either lost, differentiate, or change to an epidermal fate during aging. Here, we employed single-cell RNA-sequencing to interrogate aging-related changes in the HFSCs. Surprisingly, although numbers declined, aging HFSCs were present, maintained their identity, and showed no overt signs of shifting to an epidermal fate. However, they did exhibit prevalent transcriptional changes particularly in extracellular matrix genes, and this was accompanied by profound structural perturbations in the aging SC niche. Moreover, marked age-related changes occurred in many nonepithelial cell types, including resident immune cells, sensory neurons, and arrector pili muscles. Each of these SC niche components has been shown to influence HF regeneration. When we performed skin injuries that are known to mobilize young HFSCs to exit their niche and regenerate HFs, we discovered that aged skin is defective at doing so. Interestingly, however, in transplantation assays in vivo, aged HFSCs regenerated HFs when supported with young dermis, while young HFSCs failed to regenerate HFs when combined with aged dermis. Together, our findings highlight the importance of SC:niche interactions and favor a model where youthfulness of the niche microenvironment plays a dominant role in dictating the properties of its SCs and tissue health and fitness.
Collapse
|
37
|
Wang X, Xu H, Cheng C, Ji Z, Zhao H, Sheng Y, Li X, Wang J, Shu Y, He Y, Fan L, Dong B, Xue W, Wai Chua C, Wu D, Gao WQ, He Zhu H. Identification of a Zeb1 expressing basal stem cell subpopulation in the prostate. Nat Commun 2020; 11:706. [PMID: 32024836 PMCID: PMC7002669 DOI: 10.1038/s41467-020-14296-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
The basal cell compartment in many epithelial tissues is generally believed to serve as an important pool of stem cells. However, basal cells are heterogenous and the stem cell subpopulation within basal cells is not well elucidated. Here we uncover that the core epithelial-to-mesenchymal transition (EMT) inducer Zeb1 is expressed in a prostate basal cell subpopulation. The Zeb1+ prostate epithelial cells are multipotent prostate basal stem cells (PBSCs) that can self-renew and generate functional prostatic glandular structures at the single-cell level. Genetic ablation studies reveal an indispensable role for Zeb1 in prostate basal cell development. Utilizing unbiased single-cell transcriptomic analysis of over 9000 mouse prostate basal cells, we confirm the existence of the Zeb1+ basal cell subset. Moreover, Zeb1+ epithelial cells can be detected in mouse and human prostate tumors. Identification of the PBSC and its transcriptome profile is crucial to advance our understanding of prostate development and tumorigenesis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaping Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhongzhong Ji
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Huifang Zhao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yaru Sheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoxia Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liancheng Fan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Sciences, Kunming, 650223, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
38
|
Phosphatase Regulator NIPP1 Restrains Chemokine-Driven Skin Inflammation. J Invest Dermatol 2020; 140:1576-1588. [PMID: 31972250 DOI: 10.1016/j.jid.2020.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/20/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Nuclear inhibitor of protein phosphatase 1 (NIPP1) is a ubiquitously expressed nuclear protein that regulates functions of protein serine/threonine phosphatase-1 in cell proliferation and lineage specification. The role of NIPP1 in tissue homeostasis is not fully understood. This study shows that the selective deletion of NIPP1 in mouse epidermis resulted in epidermal hyperproliferation, a reduced adherence of basal keratinocytes, and a gradual decrease in the stemness of hair follicle stem cells, culminating in hair loss. This complex phenotype was associated with chronic sterile skin inflammation and could be partially rescued by dexamethasone treatment. NIPP1-deficient keratinocytes massively expressed proinflammatory chemokines and immunomodulatory proteins in a cell-autonomous manner. Chemokines subsequently induced the recruitment and activation of immune cells, in particular conventional dendritic cells and Langerhans cells, accounting for the chronic inflammation phenotype. The data identifies NIPP1 as a key regulator of epidermal homeostasis and as a potential target for the treatment of inflammatory skin diseases.
Collapse
|
39
|
Kapoor S, Shenoy SP, Bose B. CD34 cells in somatic, regenerative and cancer stem cells: Developmental biology, cell therapy, and omics big data perspective. J Cell Biochem 2019; 121:3058-3069. [PMID: 31886574 DOI: 10.1002/jcb.29571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
The transmembrane phosphoglycoprotein protein CD34 has conventionally been regarded as a marker for hematopoietic progenitors. Its expression on these cells has been leveraged for cell therapy applications in various hematological disorders. More recently, the expression of CD34 has also been reported on cells of nonhematopoietic origin. The list includes somatic cells such as endothelial cells, fibrocytes and interstitial cells and regenerative stem cells such as corneal keratocytes, muscle satellite cells, and muscle-derived stem cells. Furthermore, its expression on some cancer stem cells (CSCs) has also been reported. Till date, the functional roles of this molecule have been implicated in a multitude of cellular processes including cell adhesion, signal transduction, and maintenance of progenitor phenotype. However, the complete understanding about this molecule including its developmental origins, its embryonic connection, and associated functions is far from complete. Here, we review our present understanding of the structure and putative functions of the CD34 molecule based upon our literature survey. We also probed various biological databases to retrieve data related to the expression and associated molecular functions of CD34. Such information, upon synthesis, is hence likely to provide the suitability of such cells for cell therapy. Moreover, we have also covered the existing cell therapy and speculated cell therapy applications of CD34+ cells isolated from various lineages. We have also attempted here to speculate the role(s) of CD34 on CSCs. Finally, we discuss number of large-scale proteomics and transcriptomics studies that have been performed using CD34+ cells.
Collapse
Affiliation(s)
- Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer P Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
40
|
Beta-caryophyllene enhances wound healing through multiple routes. PLoS One 2019; 14:e0216104. [PMID: 31841509 PMCID: PMC6913986 DOI: 10.1371/journal.pone.0216104] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Beta-caryophyllene is an odoriferous bicyclic sesquiterpene found in various herbs and spices. Recently, it was found that beta-caryophyllene is a ligand of the cannabinoid receptor 2 (CB2). Activation of CB2 will decrease pain, a major signal for inflammatory responses. We hypothesized that beta-caryophyllene can affect wound healing by decreasing inflammation. Here we show that cutaneous wounds of mice treated with beta-caryophyllene had enhanced re-epithelialization. The treated tissue showed increased cell proliferation and cells treated with beta-caryophyllene showed enhanced cell migration, suggesting that the higher re-epithelialization is due to enhanced cell proliferation and cell migration. The treated tissues also had up-regulated gene expression for hair follicle bulge stem cells. Olfactory receptors were not involved in the enhanced wound healing. Transient Receptor Potential channel genes were up-regulated in the injured skin exposed to beta-caryophyllene. Interestingly, there were sex differences in the impact of beta- caryophyllene as only the injured skin of female mice had enhanced re-epithelialization after exposure to beta-caryophyllene. Our study suggests that chemical compounds included in essential oils have the capability to improve wound healing, an effect generated by synergetic impacts of multiple pathways.
Collapse
|
41
|
Köhler F, Rodríguez-Paredes M. DNA Methylation in Epidermal Differentiation, Aging, and Cancer. J Invest Dermatol 2019; 140:38-47. [PMID: 31427190 DOI: 10.1016/j.jid.2019.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022]
Abstract
The formation and maintenance of the epidermis depend on epidermal stem cell differentiation and must be tightly regulated. Epigenetic mechanisms such as DNA methylation allow the precise gene expression cascade needed during cellular differentiation. However, these mechanisms become deregulated during aging and tumorigenesis, where cellular function and identity become compromised. Here we provide a review of this rapidly developing field. We discuss recent discoveries related to epidermal homeostasis, aging, and cancer, including the functional role of DNA methyltransferases, the methylation clock, and the determination of tumor cells-of-origin. Finally, we focus on future advances, greatly influenced by single-cell sequencing technologies.
Collapse
Affiliation(s)
- Florian Köhler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
42
|
Transit amplifying cells coordinate mouse incisor mesenchymal stem cell activation. Nat Commun 2019; 10:3596. [PMID: 31399601 PMCID: PMC6689115 DOI: 10.1038/s41467-019-11611-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Stem cells (SCs) receive inductive cues from the surrounding microenvironment and cells. Limited molecular evidence has connected tissue-specific mesenchymal stem cells (MSCs) with mesenchymal transit amplifying cells (MTACs). Using mouse incisor as the model, we discover a population of MSCs neibouring to the MTACs and epithelial SCs. With Notch signaling as the key regulator, we disclose molecular proof and lineage tracing evidence showing the distinct MSCs contribute to incisor MTACs and the other mesenchymal cell lineages. MTACs can feedback and regulate the homeostasis and activation of CL-MSCs through Delta-like 1 homolog (Dlk1), which balances MSCs-MTACs number and the lineage differentiation. Dlk1's function on SCs priming and self-renewal depends on its biological forms and its gene expression is under dynamic epigenetic control. Our findings can be validated in clinical samples and applied to accelerate tooth wound healing, providing an intriguing insight of how to direct SCs towards tissue regeneration.
Collapse
|
43
|
Negri VA, Logtenberg MEW, Renz LM, Oules B, Walko G, Watt FM. Delta-like 1-mediated cis-inhibition of Jagged1/2 signalling inhibits differentiation of human epidermal cells in culture. Sci Rep 2019; 9:10825. [PMID: 31346203 PMCID: PMC6658703 DOI: 10.1038/s41598-019-47232-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
Epidermal homeostasis depends on a balance between self-renewal of stem cells and terminal differentiation of their progeny. Notch signalling is known to play a role in epidermal stem cell patterning and differentiation. However, the molecular mechanisms are incompletely understood. Here we demonstrate dynamic patterns of Notch ligand and receptor expression in cultured human epidermis. Notch2 and 3 act together to promote differentiation, while Notch1 decreases stem cell proliferation. The Notch ligand Jagged1 triggers differentiation when presented on an adhesive substrate or on polystyrene beads and over-rides the differentiation inhibitory effect of cell spreading. In contrast, Delta-like 1 (Dll1) overexpression abrogates the pro-differentiation effect of Jagged1 in a cell autonomous fashion. We conclude that Dll1 expression by stem cells not only stimulates differentiation of neighbouring cells in trans, but also inhibits differentiation cell autonomously. These results highlight the distinct roles of different Notch receptors and ligands in controlling epidermal homeostasis.
Collapse
Affiliation(s)
- Victor A Negri
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Meike E W Logtenberg
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Division of Immunology, The Netherlands Cancer Institute, Postbus 90203, 1006 BE, Amsterdam, The Netherlands
| | - Lisa M Renz
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.,Research Institute for Applied Bioanalytics and Drug Development, IMC University of Applied Sciences, A-3500, Krems an der Donau, Austria
| | - Bénédicte Oules
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK
| | - Gernot Walko
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK. .,Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, 28th Floor, Tower Wing, Guy's Hospital, SE1 9RT, London, UK.
| |
Collapse
|
44
|
Ekman AK, Bivik Eding C, Rundquist I, Enerbäck C. IL-17 and IL-22 Promote Keratinocyte Stemness in the Germinative Compartment in Psoriasis. J Invest Dermatol 2019; 139:1564-1573.e8. [PMID: 30684548 DOI: 10.1016/j.jid.2019.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
Abstract
Psoriasis is an inflammatory skin disorder characterized by the hyperproliferation of basal epidermal cells. It is regarded as T-cell mediated, but the role of keratinocytes (KCs) in the disease pathogenesis has reemerged, with genetic studies identifying KC-associated genes. We applied flow cytometry on KCs from lesional and nonlesional epidermis to characterize the phenotype in the germinative compartment in psoriasis, and we observed an overall increase in the stemness markers CD29 (2.4-fold), CD44 (2.9-fold), CD49f (2.8-fold), and p63 (1.4-fold). We found a reduced percentage of cells positive for the early differentiation marker cytokeratin 10 and a greater fraction of CD29+ and involucrin+ cells in the psoriasis KCs than in nonlesional KCs. The up-regulation of stemness markers was more pronounced in the K10+ cells. Furthermore, the psoriasis cells were smaller, indicating increased proliferation. Treatment with IL-17 and IL-22 induced a similar expression pattern of an up-regulation of p63, CD44, and CD29 in normal KCs and increased the colony-forming efficiency and long-term proliferative capacity, reflecting increased stem cell-like characteristics in the KC population. These data suggest that IL-17 and IL-22 link the inflammatory response to the immature differentiation and epithelial regeneration by acting directly on KCs to promote cell stemness.
Collapse
Affiliation(s)
- Anna-Karin Ekman
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden
| | - Ingemar Rundquist
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden.
| |
Collapse
|
45
|
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci U S A 2019; 116:14630-14638. [PMID: 31253707 DOI: 10.1073/pnas.1715272116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mammalian epidermal stem cells maintain homeostasis of the skin epidermis and contribute to its regeneration throughout adult life. While 2D mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cAMP, FGF, and R-spondin signaling with inhibition of bone morphogenetic protein (BMP) signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 mo, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro.
Collapse
|
46
|
Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019; 39:1610-1622. [PMID: 31168795 DOI: 10.1002/jat.3815] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Organoids are three-dimensional self-aggregating structures generated from stem cells (SCs) or progenitor cells in a process that recapitulates molecular and cellular stages of early organ development. The differentiation process leads to the appearance of specialized mature cells and is connected with changes in the organoid internal structure rearrangement and self-organization. The formation of organ-specific structures in vitro with highly ordered architecture is also strongly influenced by the extracellular matrix. These features make organoids as a powerful model for in vitro toxicology. Nowadays this technology is developing very quickly. In this review we present, from a toxicological and species-specific point of view, the state of the art of organoid generation from adult SCs and pluripotent SCs: embryonic SCs or induced pluripotent SCs. The current culture organoid techniques are discussed for their main advantages, disadvantages and limitations. In the second part of the review, we concentrated on the characterization of species-specific organoids generated from tissue-specific SCs of different sources: mammary (bovine), epidermis (canine), intestinal (porcine, bovine, canine, chicken) and liver (feline, canine).
Collapse
Affiliation(s)
- Justyna Augustyniak
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Alessia Bertero
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS Pavia, Pavia, Italy
| | - Diego Baderna
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
47
|
Rognoni E, Walko G. The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells 2019; 8:cells8050411. [PMID: 31058846 PMCID: PMC6562585 DOI: 10.3390/cells8050411] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Skin is the largest organ of the human body. Its architecture and physiological functions depend on diverse populations of epidermal cells and dermal fibroblasts. Reciprocal communication between the epidermis and dermis plays a key role in skin development, homeostasis and repair. While several stem cell populations have been identified in the epidermis with distinct locations and functions, there is additional heterogeneity within the mesenchymal cells of the dermis. Here, we discuss the current knowledge of how the Hippo pathway and its downstream effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) contribute to the maintenance, activation and coordination of the epidermal and dermal cell populations during development, homeostasis, wound healing and cancer.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gernot Walko
- Department of Biology and Biochemistry & Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
48
|
Na JI, Shin JW, Choi HR, Kwon SH, Park KC. Resveratrol as a Multifunctional Topical Hypopigmenting Agent. Int J Mol Sci 2019; 20:ijms20040956. [PMID: 30813264 PMCID: PMC6412432 DOI: 10.3390/ijms20040956] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Melanin is produced in melanocytes and stored in melanosomes, after which it is transferred to keratinocytes and, thus, determines skin color. Despite its beneficial sun-protective effects, abnormal accumulation of melanin results in esthetic problems. A range of topical hypopigmenting agents have been evaluated for their use in the treatment of pigmentary disorders with varying degrees of success. Hydroquinone (HQ), which competes with tyrosine, is the main ingredient in topical pharmacological agents. However, frequent occurrence of adverse reactions is an important factor that limits its use. Thus, efforts to discover effective topical hypopigmenting agents with less adverse effects continue. Here, we describe the potential of resveratrol to function as an effective hypopigmenting agent based on its mechanism of action. Resveratrol is not only a direct tyrosinase inhibitor but an indirect inhibitor as well. Additionally, it can affect keratinocytes, which regulate the function of melanocytes. Resveratrol regulates the inflammatory process of keratinocytes and protects them from oxidative damage. In this way, it prevents keratinocyte-induced melanocyte stimulation. Furthermore, it has a rescuing effect on the stemness of interfollicular epidermal cells that can repair signs of photoaging in the melasma, a typical pigmentary skin disorder. Overall, resveratrol is a promising potent hypopigmenting agent.
Collapse
Affiliation(s)
- Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Soon-Hyo Kwon
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Kyung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| |
Collapse
|
49
|
Podoplanin in Inflammation and Cancer. Int J Mol Sci 2019; 20:ijms20030707. [PMID: 30736372 PMCID: PMC6386838 DOI: 10.3390/ijms20030707] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Podoplanin is a small cell-surface mucin-like glycoprotein that plays a crucial role in the development of the alveoli, heart, and lymphatic vascular system. Emerging evidence indicates that it is also involved in the control of mammary stem-cell activity and biogenesis of platelets in the bone marrow, and exerts an important function in the immune response. Podoplanin expression is upregulated in different cell types, including fibroblasts, macrophages, T helper cells, and epithelial cells, during inflammation and cancer, where it plays important roles. Podoplanin is implicated in chronic inflammatory diseases, such as psoriasis, multiple sclerosis, and rheumatoid arthritis, promotes inflammation-driven and cancer-associated thrombosis, and stimulates cancer cell invasion and metastasis through a variety of strategies. To accomplish its biological functions, podoplanin must interact with other proteins located in the same cell or in neighbor cells. The binding of podoplanin to its ligands leads to modulation of signaling pathways that regulate proliferation, contractility, migration, epithelial⁻mesenchymal transition, and remodeling of the extracellular matrix. In this review, we describe the diverse roles of podoplanin in inflammation and cancer, depict the protein ligands of podoplanin identified so far, and discuss the mechanistic basis for the involvement of podoplanin in all these processes.
Collapse
|
50
|
Skin Stem Cells, Their Niche and Tissue Engineering Approach for Skin Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:107-126. [PMID: 31065940 DOI: 10.1007/5584_2019_380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Skin is the main organ that covers the human body and acts as a protective barrier between the human body and the environment. Skin tissue as a stem cell source can be used for transplantation in therapeutic application in terms of its properties such as abundant, easy to access, high plasticity and high ability to regenerate. The immunological profile of these cells makes it a suitable resource for autologous and allogeneic applications. The lack of major histo-compatibility complex 1 is also advantageous in its use. Epidermal stem cells are the main stem cells in the skin and are suitable cells in tissue engineering studies for their important role in wound repair. In the last 30 years, many studies have been conducted to develop substitutions that mimic human skin. Stem cell-based skin substitutions have been developed to be used in clinical applications, to support the healing of acute and chronic wounds and as test systems for dermatological and pharmacological applications. In this chapter, tissue specific properties of epidermal stem cells, composition of their niche, regenerative approaches and repair of tissue degeneration have been examined.
Collapse
|