1
|
Wiley L, Cheek M, LaFar E, Ma X, Sekowski J, Tanguturi N, Iltis A. The Ethics of Human Embryo Editing via CRISPR-Cas9 Technology: A Systematic Review of Ethical Arguments, Reasons, and Concerns. HEC Forum 2025; 37:267-303. [PMID: 39302534 PMCID: PMC12014773 DOI: 10.1007/s10730-024-09538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
The possibility of editing the genomes of human embryos has generated significant discussion and interest as a matter of science and ethics. While it holds significant promise to prevent or treat disease, research on and potential clinical applications of human embryo editing also raise ethical, regulatory, and safety concerns. This systematic review included 223 publications to identify the ethical arguments, reasons, and concerns that have been offered for and against the editing of human embryos using CRISPR-Cas9 technology. We identified six major themes: risk/harm; potential benefit; oversight; informed consent; justice, equity, and other social considerations; and eugenics. We explore these themes and provide an overview and analysis of the critical points in the current literature.
Collapse
Affiliation(s)
- Lindsay Wiley
- Wake Forest University Center for Bioethics, Health and Society, Winston-Salem, USA
| | - Mattison Cheek
- Wake Forest University Center for Bioethics, Health and Society, Winston-Salem, USA
| | - Emily LaFar
- Wake Forest University Center for Bioethics, Health and Society, Winston-Salem, USA
| | - Xiaolu Ma
- Department of Communication Studies, University of Minnesota, Minneapolis, USA
| | - Justin Sekowski
- Wake Forest University Center for Bioethics, Health and Society, Winston-Salem, USA
| | - Nikki Tanguturi
- Wake Forest University Center for Bioethics, Health and Society, Winston-Salem, USA
| | - Ana Iltis
- Department of Philosophy, Wake Forest University Center for Bioethics, Health and Society, Winston-Salem, USA.
| |
Collapse
|
2
|
Harshini P, Varghese R, Pachamuthu K, Ramamoorthy S. Enhanced pigment production from plants and microbes: a genome editing approach. 3 Biotech 2025; 15:129. [PMID: 40255449 PMCID: PMC12003259 DOI: 10.1007/s13205-025-04290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/22/2025] [Indexed: 04/22/2025] Open
Abstract
Pigments are known for their vital roles in the growth and development of plants and microbes. In addition, they are also an imperative component of several industries, including textiles, foods, and pharmaceuticals, owing to their immense colours and therapeutic potential. Conventionally, pigments are obtained from plant resources, and the advent of in-vitro propagation techniques boosted the massive production. However, it could not meet the booming demand, leading to the incorporation of new genetic engineering tools. This review focuses on the role of various genetic engineering techniques in enhancing pigment production in plants and microorganisms. It also critically analyzes the efficacy and bottlenecks of these techniques in augmenting pigment biosynthesis. Furthermore, the use of microbes as pigment biofactories and the prospects in the field of genome editing to augment pigment synthesis are discussed. The limitations in the existing techniques underline the need for advanced genome editing strategies to broaden the mass production of pigments to meet the surging needs.
Collapse
Affiliation(s)
- P. Harshini
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Kannan Pachamuthu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
3
|
Palomino SM, Gabriel KA, Mwirigi JM, Cervantes A, Horton P, Funk G, Moutal A, Martin LF, Khanna R, Price TJ, Patwardhan A. Genetic editing of primary human dorsal root ganglion neurons using CRISPR-Cas9. Sci Rep 2025; 15:11116. [PMID: 40169710 PMCID: PMC11961745 DOI: 10.1038/s41598-025-91153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/18/2025] [Indexed: 04/03/2025] Open
Abstract
CRISPR-Cas9 is now the leading method for genome editing and is advancing for the treatment of human disease. CRIPSR has promise in treating neurological diseases, but traditional viral-vector-delivery approaches have neurotoxicity limiting their use. Here we describe a simple method for non-viral transfection of primary human DRG (hDRG) neurons for CRISPR-Cas9 editing. We edited TRPV1, NTSR2, and CACNA1E using a lipofection method with CRISPR-Cas9 plasmids containing reporter tags (GFP or mCherry). Transfection was successfully demonstrated by the expression of the reporters two days post-administration. CRISPR-Cas9 editing was confirmed at the genome level with a T7-endonuclease-I assay; protein level with immunocytochemistry and Western blot; and functional level through capsaicin-induced Ca2+ accumulation in a high-throughput compatible fluorescent imaging plate reader (FLIPR) system. This work establishes a reliable, target specific, non-viral CRISPR-Cas9-mediated genetic editing in primary human neurons with potential for future clinical application for sensory diseases.
Collapse
Affiliation(s)
- Seph M Palomino
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, 6202 Harry Hines Blvd., 9th Floor, Dallas, 75235, TX, USA
| | - Katherin A Gabriel
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Juliet M Mwirigi
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA
| | - Anna Cervantes
- Southwest Transplant Alliance, Manderville Ln, Dallas, TX, 8190, 75231, USA
| | - Peter Horton
- Southwest Transplant Alliance, Manderville Ln, Dallas, TX, 8190, 75231, USA
| | - Geoffrey Funk
- Southwest Transplant Alliance, Manderville Ln, Dallas, TX, 8190, 75231, USA
| | - Aubin Moutal
- Department of Pharmacology and Physiology, Saint Louis University, 1402 S. Grand Blvd, St. Louis, Mo, 63104, USA
| | - Laurent F Martin
- Department of Pharmacology, University of Arizona, 1501 N Campbell Ave, Tucson, AZ, 85721, USA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Drive, Gainesville, FL, ARB R5-234, 32610-0267, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75080, USA.
| | - Amol Patwardhan
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, 6202 Harry Hines Blvd., 9th Floor, Dallas, 75235, TX, USA.
| |
Collapse
|
4
|
Razalli II, Abdullah-Zawawi MR, Tamizi AA, Harun S, Zainal-Abidin RA, Jalal MIA, Ullah MA, Zainal Z. Accelerating crop improvement via integration of transcriptome-based network biology and genome editing. PLANTA 2025; 261:92. [PMID: 40095140 DOI: 10.1007/s00425-025-04666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
MAIN CONCLUSION Big data and network biology infer functional coupling between genes. In combination with machine learning, network biology can dramatically accelerate the pace of gene discovery using modern transcriptomics approaches and be validated via genome editing technology for improving crops to stresses. Unlike other living things, plants are sessile and frequently face various environmental challenges due to climate change. The cumulative effects of combined stresses can significantly influence both plant growth and yields. In navigating the complexities of climate change, ensuring the nourishment of our growing population hinges on implementing precise agricultural systems. Conventional breeding methods have been commonly employed; however, their efficacy has been impeded by limitations in terms of time, cost, and infrastructure. Cutting-edge tools focussing on big data are being championed to usher in a new era in stress biology, aiming to cultivate crops that exhibit enhanced resilience to multifactorial stresses. Transcriptomics, combined with network biology and machine learning, is proving to be a powerful approach for identifying potential genes to target for gene editing, specifically to enhance stress tolerance. The integration of transcriptomic data with genome editing can yield significant benefits, such as gaining insights into gene function by modifying or manipulating of specific genes in the target plant. This review provides valuable insights into the use of transcriptomics platforms and the application of biological network analysis and machine learning in the discovery of novel genes, thereby enhancing the understanding of plant responses to combined or sequential stress. The transcriptomics as a forefront omics platform and how it is employed through biological networks and machine learning that lead to novel gene discoveries for producing multi-stress-tolerant crops, limitations, and future directions have also been discussed.
Collapse
Affiliation(s)
- Izreen Izzati Razalli
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Amin-Asyraf Tamizi
- Malaysian Agricultural Research and Development Institute (MARDI), 43400, Serdang, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | | | - Muhammad Irfan Abdul Jalal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Mohammad Asad Ullah
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Bangladesh Institute of Nuclear Agriculture (BINA), BAU Campus, Mymensingh, 2202, Bangladesh
| | - Zamri Zainal
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
5
|
Chavhan RL, Jaybhaye SG, Hinge VR, Deshmukh AS, Shaikh US, Jadhav PK, Kadam US, Hong JC. Emerging applications of gene editing technologies for the development of climate-resilient crops. Front Genome Ed 2025; 7:1524767. [PMID: 40129518 PMCID: PMC11931038 DOI: 10.3389/fgeed.2025.1524767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 03/26/2025] Open
Abstract
Climate change threatens global crop yield and food security due to rising temperatures, erratic rainfall, and increased abiotic stresses like drought, heat, and salinity. Gene editing technologies, including CRISPR/Cas9, base editors, and prime editors, offer precise tools for enhancing crop resilience. This review explores the mechanisms of these technologies and their applications in developing climate-resilient crops to address future challenges. While CRISPR/enables targeted modifications of plant DNA, the base editors allow for direct base conversion without inducing double-stranded breaks, and the prime editors enable precise insertions, deletions, and substitutions. By understanding and manipulating key regulator genes involved in stress responses, such as DREB, HSP, SOS, ERECTA, HsfA1, and NHX; crop tolerance can be enhanced against drought, heat, and salt stress. Gene editing can improve traits related to root development, water use efficiency, stress response pathways, heat shock response, photosynthesis, membrane stability, ion homeostasis, osmotic adjustment, and oxidative stress response. Advancements in gene editing technologies, integration with genomics, phenomics, artificial intelligence (AI)/machine learning (ML) hold great promise. However, challenges such as off-target effects, delivery methods, and regulatory barriers must be addressed. This review highlights the potential of gene editing to develop climate-resilient crops, contributing to food security and sustainable agriculture.
Collapse
Affiliation(s)
- R. L. Chavhan
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - S. G. Jaybhaye
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - V. R. Hinge
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - A. S. Deshmukh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Shaikh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - P. K. Jadhav
- Vilasrao Deshmukh College of Agricultural Biotechnology, Vasantrao Naik Marathwada Krishi Vidyapeeth, Latur, India
| | - U. S. Kadam
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - J. C. Hong
- Division of Applied Life Science (BK21 Four), Division of Life Science, Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Suzuki T, Bono H. Pipeline to explore information on genome editing using large language models and genome editing meta-database. Database (Oxford) 2025; 2025:baaf022. [PMID: 40056431 PMCID: PMC11890094 DOI: 10.1093/database/baaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/10/2025]
Abstract
Genome editing (GE) is widely recognized as an effective and valuable technology in life sciences research. However, certain genes are difficult to edit depending on some factors such as the type of species, sequences, and GE tools. Therefore, confirming the presence or absence of GE practices in previous publications is crucial for the effective designing and establishment of research using GE. Although the Genome Editing Meta-database (GEM: https://bonohu.hiroshima-u.ac.jp/gem/) aims to provide as comprehensive GE information as possible, it does not indicate how each registered gene is involved in GE. In this study, we developed a systematic method for extracting essential GE information using large language models from the information based on GEM and GE-related articles. This approach allows for a systematic and efficient investigation of GE information that cannot be achieved using the current GEM alone. In addition, by converting the extracted GE information into metrics, we propose a potential application of this method to prioritize genes for future research. The extracted GE information and novel GE-related scores are expected to facilitate the efficient selection of target genes for GE and support the design of research using GE. Database URLs: https://github.com/szktkyk/extract_geinfo, https://github.com/szktkyk/visualize_geinfo.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
7
|
Kim GY, Kang MJ. The decrease in Rad51 and DNA ligase IV nuclear protein expression in Msh2 knockdown HC11 cells induced the low CRISPR/Cas9-mediated knock-in efficiency at the β-casein gene locus. Anim Biosci 2025; 38:560-567. [PMID: 39483035 PMCID: PMC11917420 DOI: 10.5713/ab.24.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Successful gene editing technology is crucial in molecular biology and related fields. An essential part of an efficient knock-in system is increasing homologous recombination (HR) efficiency in the double-strand break (DSB) repair pathways. Interestingly, HR is closely related to the DNA mismatch repair (MMR) pathway, whereby MMR-related gene Msh2 recognizes a mismatch of nucleotides in recombinant intermediates or gene conversion formed during HR. This study aimed to investigate how the knockdown of Msh2 affects HR-mediated knock-in efficiency at the mouse β-casein locus. Therefore, we investigated the effect of inhibiting Msh2 expression on the expression of the HR-related gene Rad51 and the key enzyme DNA ligase IV involved in non-homologous end joining (NHEJ). METHODS The knock-in vector targeting the mouse β-casein gene locus, programmed guide RNA, and Msh2 siRNA expression vector were co-transfected in HC11 cells, or only the Msh2 siRNA expression vector was transfected. Knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA and protein expression of Msh2, HR-related gene Rad51, and NHEJ-related gene DNA ligase IV were evaluated by quantitative reverse transcription PCR (RT-qPCR) and Western blot analysis. RESULTS The knock-in vector efficiency at the mouse β-casein gene locus significantly decreased upon Msh2 knockdown in HC11 mouse mammary epithelial cells (HC11 cell). Additionally, the knockdown of the DNA MMR-related gene Msh2 protein significantly downregulated the nuclear protein expression of the HR-related Rad51 and NHEJ-related DNA ligase IV genes. CONCLUSION The decreased Msh2 protein expression in the nucleus downregulated the Rad51 and ligase IV protein expressions. Consequently, reduced Rad51 expression results in decreased knock-in efficiency.
Collapse
Affiliation(s)
- Ga-Yeon Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| | - Man-Jong Kang
- Department of Animal Science, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
8
|
Hamze JG, Cambra JM, Navarro-Serna S, Martinez-Serrano CA. Navigating gene editing in porcine embryos: Methods, challenges, and future perspectives. Genomics 2025; 117:111014. [PMID: 39952413 DOI: 10.1016/j.ygeno.2025.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Gene editing technologies, particularly CRISPR/Cas9, have emerged as transformative tools in genetic modification, significantly advancing the use of porcine embryos in biomedical and agricultural research. This review comprehensively examines the various methodologies for gene editing and delivery methods, such as somatic cell nuclear transfer (SCNT), microinjection, electroporation, and lipofection. This review, focuses on the advantages or limitations of using different biological sources (in vivo- vs. in vitro oocytes/embryos). Male germ cell manipulation using sperm-mediated gene transfer (SMGT) and testis-mediated gene transfer (TMGT) represent innovative approaches for producing genetically modified animals. Although these technologies have revolutionized the genetic engineering field, all these strategies face challenges, including high rates of off-target events and mosaicism. This review emphasizes the need to refine these methods, with a focus on reducing mosaicism and improving editing accuracy. Further advancements are essential to unlocking the full potential of gene editing for both agricultural applications and biomedical innovations.
Collapse
Affiliation(s)
- Julieta G Hamze
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.
| | - Josep M Cambra
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany.
| | | | - Cristina A Martinez-Serrano
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Oliynyk RT, Church GM. Circular Vectors as an efficient, fully synthetic, cell-free approach for preparing small circular DNA as a plasmid substitute for guide RNA expression in CRISPR-Cas9 genome editing. Nat Protoc 2025:10.1038/s41596-024-01138-0. [PMID: 39994413 DOI: 10.1038/s41596-024-01138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025]
Abstract
Robust expression of guide RNA (gRNA) is essential for successful implementation of CRISPR-Cas9 genome-editing methods. The gRNA components, such as an RNA polymerase promoter followed by the gRNA coding sequence and an RNA polymerase terminator sequence, and the Cas9 protein are expressed either via an all-in-one plasmid or separate dedicated plasmids. The preparation of such plasmids involves a laborious multi-day process of DNA assembly, bacterial cloning, validation, purification and sequencing. Our Circular Vector (CV) protocol introduces an efficient, fully synthetic, cell-free approach for preparing gRNA expression templates suitable for transfection, marking a significant advancement over traditional plasmid-based approaches. This protocol consists of the circularization and purification of linear double-stranded DNA (dsDNA) containing gRNA expression elements into compact, bacterial-backbone-free circular DNA expression vectors in as little as 3 h. We provide a guide to the design of the dsDNA template coding for gRNA elements for CRISPR-Cas9 base and prime editing, along with step-by-step instructions for the efficient preparation of gRNA-expressing CVs. In addition to rapid preparation, CVs created via this protocol offer several key advantages: a compact size, absence of a bacterial backbone, absence of bacterial endotoxins and no contamination by bacterial RNA or DNA fragments. These features make gRNA-expressing CVs a superior choice over plasmid-based gRNA expression templates.
Collapse
Affiliation(s)
- Roman Teo Oliynyk
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Computer Science, University of Auckland, Auckland, New Zealand.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|
10
|
Zhao M, Wen J, Chen ISY, Liu J, Lu Y. Excision of HIV-1 Provirus in Human Primary Cells with Nanocapsuled TALEN Proteins. ACS APPLIED BIO MATERIALS 2025; 8:1227-1239. [PMID: 39889258 PMCID: PMC11892523 DOI: 10.1021/acsabm.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Despite the tremendous success of combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection, the durability and persistence of latent reservoirs of HIV-infected cells in HIV-infected patients remain obstacles to achieving HIV cure. While technically challenging, the most direct means to eradicate latent reservoirs is to destroy the HIV provirus, thus ensuring that HIV virions are not produced while preserving resident cells. Transcription activator-like effector nucleases (TALEN)─a genome editing method with high DNA targeting efficiency─have been investigated as a potential gene therapy by disrupting the HIV-1 coreceptor CCR5 genes in HIV target cells or HIV proviral DNA in infected cells. However, the transduction and editing efficiencies are low in primary cells and vary by cell type. Using a nanotechnology platform, which we term nanocapsules, the TALEN protein can be effectively delivered into primary cells and escape from endosome/lysosome sequestration. We report that TALEN nanocapsules can effectively mutagenize the HIV-1 proviral DNA integrated into two primary HIV-1 reservoir cells─T cells and macrophages, such that replication and/or reactivation from latency is aborted. We envision that this study provides a useful platform to deliver a wide range of DNA-modifying enzymes for effective HIV therapy.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Current Address: Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, 66047, USA
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Garcia-Oliveira AL, Ortiz R, Sarsu F, Rasmussen SK, Agre P, Asfaw A, Kante M, Chander S. The importance of genotyping within the climate-smart plant breeding value chain - integrative tools for genetic enhancement programs. FRONTIERS IN PLANT SCIENCE 2025; 15:1518123. [PMID: 39980758 PMCID: PMC11839310 DOI: 10.3389/fpls.2024.1518123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
The challenges faced by today's agronomists, plant breeders, and their managers encompass adapting sustainably to climate variability while working with limited budgets. Besides, managers are dealing with a multitude of issues with different organizations working on similar initiatives and projects, leading to a lack of a sustainable impact on smallholder farmers. To transform the current food systems as a more sustainable and resilient model efficient solutions are needed to deliver and convey results. Challenges such as logistics, labour, infrastructure, and equity, must be addressed alongside adapting to increasingly unstable climate conditions which affect the life cycle of transboundary pathogens and pests. In this context, transforming food systems go far beyond just farmers and plant breeders and it requires substantial contributions from industry, global finances, transportation, energy, education, and country developmental sectors including legislators. As a result, a holistic approach is essential for achieving sustainable and resilient food systems to sustain a global population anticipated to reach 9.7 billion by 2050 and 11.2 billion by 2100. As of 2021, nearly 193 million individuals were affected by food insecurity, 40 million more than in 2020. Meanwhile, the digital world is rapidly advancing with the digital economy estimated at about 20% of the global gross domestic product, suggesting that digital technologies are increasingly accessible even in areas affected by food insecurity. Leveraging these technologies can facilitate the development of climate-smart cultivars that adapt effectively to climate variation, meet consumer preferences, and address human and livestock nutritional needs. Most economically important traits in crops are controlled by multiple loci often with recessive alleles. Considering particularly Africa, this continent has several agro-climatic zones, hence crops need to be adapted to these. Therefore, targeting specific loci using modern tools offers a precise and efficient approach. This review article aims to address how these new technologies can provide a better support to smallholder farmers.
Collapse
Affiliation(s)
- Ana Luísa Garcia-Oliveira
- Genetic Resources Program, Alliance Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Fatma Sarsu
- Plant Breeding and Genetics Section, Joint FAO/IAEA Center, International Atomic Energy Agency, Vienna, Austria
| | | | - Paterne Agre
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Asrat Asfaw
- Yam Breeding Unit, International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Moctar Kante
- Genetics, Genomics, and Crop Improvement Division, International Potato Center, Lima, Peru
| | - Subhash Chander
- Oilseeds Section, Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
12
|
Sannigrahi A, De N, Bhunia D, Bhadra J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg Chem 2025; 155:108146. [PMID: 39817998 DOI: 10.1016/j.bioorg.2025.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges. In Addition, we explore future perspectives and potential limitations of PNA-based technologies, highlighting the need for further research and development to fully realize their therapeutic and biotechnological potential.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nayan De
- Institute for System Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Debmalya Bhunia
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| | - Jhuma Bhadra
- Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India.
| |
Collapse
|
13
|
Park JJ, Rim YA, Sohn Y, Nam Y, Ju JH. Prospects of induced pluripotent stem cells in treating advancing Alzheimer's disease: A review. Histol Histopathol 2025; 40:157-170. [PMID: 38847077 DOI: 10.14670/hh-18-766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The World Health Organization has identified Alzheimer's disease (AD), the leading cause of dementia globally, as a public health priority. However, the complex multifactorial pathology of AD means that its etiology remains incompletely understood. Despite being recognized a century ago, incomplete knowledge has hindered the development of effective treatments for AD. Recent scientific advancements, particularly in induced pluripotent stem cell (iPSC) technology, show great promise in elucidating the fundamental mechanisms of AD. iPSCs play a dual role in regenerating damaged cells for therapeutic purposes and creating disease models to understand AD pathology and aid in drug screening. Nevertheless, as an emerging field, iPSC technology requires further technological advancement to develop effective AD treatments in the future. Thus, this review summarizes recent advances in stem cell therapies, specifically iPSCs, aimed at understanding AD pathology and developing treatments.
Collapse
Affiliation(s)
- Juyoun Janis Park
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Yeri Alice Rim
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
| | - Ji Hyeon Ju
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine and Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
14
|
Garg P, Singhal G, Pareek S, Kulkarni P, Horne D, Nath A, Salgia R, Singhal SS. Unveiling the potential of gene editing techniques in revolutionizing Cancer treatment: A comprehensive overview. Biochim Biophys Acta Rev Cancer 2025; 1880:189233. [PMID: 39638158 DOI: 10.1016/j.bbcan.2024.189233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Gene editing techniques have emerged as powerful tools in biomedical research, offering precise manipulation of genetic material with the potential to revolutionize cancer treatment strategies. This review provides a comprehensive overview of the current landscape of gene editing technologies, including CRISPR-Cas systems, base editing, prime editing, and synthetic gene circuits, highlighting their applications and potential in cancer therapy. It discusses the mechanisms, advantages, and limitations of each gene editing approach, emphasizing their transformative impact on targeting oncogenes, tumor suppressor genes, and drug resistance mechanisms in various cancer types. The review delves into population-level interventions and precision prevention strategies enabled by gene editing technologies, including gene drives, synthetic gene circuits, and precision prevention tools, for controlling cancer-causing genes, targeting pre-cancerous lesions, and implementing personalized preventive measures. Ethical considerations, regulatory challenges, and future directions in gene editing research for cancer treatment are also addressed. This review highlights how gene editing could revolutionize precision medicine by enhancing patient care and advancing cancer treatments with targeted, personalized methods. For these benefits to be fully realized, collaboration among researchers, doctors, regulators, and patient advocates is crucial in fighting cancer and meeting clinical needs.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Gargi Singhal
- Undergraduate Medical Sciences, S.N. Medical College Agra, Uttar Pradesh 282002, India
| | - Siddhika Pareek
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
15
|
Kursheed F, Naz E, Mateen S, Kulsoom U. CRISPR applications in microbial World: Assessing the opportunities and challenges. Gene 2025; 935:149075. [PMID: 39489225 DOI: 10.1016/j.gene.2024.149075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genome editing has emerged during the past few decades in the scientific research area to manipulate genetic composition, obtain desired traits, and deal with biological challenges by exploring genetic traits and their sequences at a level of precision. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing tool has offered a much better understanding of cellular and molecular mechanisms. This technology emerges as one of the most promising candidates for genome editing, offering several advantages over other techniques such as high accuracy and specificity. In the microbial world, CRISPR/Cas technology enables researchers to manipulate the genetic makeup of micro-organisms, allowing them to achieve almost impossible tasks. This technology initially discovered as a bacterial defense mechanism, is now being used for gene cutting and editing to explore more of its dimensions. CRISPR/Cas 9 systems are highly efficient and flexible, leading to its widespread uses in microbial research areas. Although this technology is widely used in the scientific community, many challenges, including off-target activity, low efficiency of Homology Directed Repair (HDR), and ethical considerations, still need to be overcome before it can be widely used. As CRISPR/Cas technology has revolutionized the field of microbiology, this review article aimed to present a comprehensive overview highlighting a brief history, basic mechanisms, and its application in the microbial world along with accessing the opportunities and challenges.
Collapse
Affiliation(s)
- Farhan Kursheed
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Esha Naz
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Sana Mateen
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Ume Kulsoom
- Department of Biotechnology, Faculty of Engineering, Science and Technology (FEST). Research Officer, Office of Research Innovation and Commercialization (ORIC), Hamdard University, Karachi 74600, Pakistan, Pakistan.
| |
Collapse
|
16
|
Zheng X, Huang CH, Yan S, Rong MD. Advances and applications of genome-edited animal models for severe combined immunodeficiency. Zool Res 2025; 46:249-260. [PMID: 39846200 PMCID: PMC11891005 DOI: 10.24272/j.issn.2095-8137.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 01/24/2025] Open
Abstract
Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models. These models have not only deepened our understanding of disease pathophysiology but have also driven progress in cancer therapy, stem cell transplantation, organ transplantation, and infectious disease management. This review provides a comprehensive overview of current SCID models generated using novel gene-editing approaches, highlighting their potential applications in translational medicine and their role in advancing biomedical research.
Collapse
Affiliation(s)
- Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Chun-Hui Huang
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
- School of medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
- School of medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Neurology, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510220, China. E-mail:
| | - Ming-Deng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:
| |
Collapse
|
17
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
18
|
Quiroz LF, Khan M, Gondalia N, Lai L, McKeown PC, Brychkova G, Spillane C. Tissue culture-independent approaches to revolutionizing plant transformation and gene editing. HORTICULTURE RESEARCH 2025; 12:uhae292. [PMID: 39906168 PMCID: PMC11789523 DOI: 10.1093/hr/uhae292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Despite the transformative power of gene editing for crop improvement, its widespread application across species and varieties is limited by the transformation bottleneck that exists for many crops. The genetic transformation of plants is hindered by a general reliance on in vitro regeneration through plant tissue culture. Tissue culture requires empirically determined conditions and aseptic techniques, and cannot easily be translated to recalcitrant species and genotypes. Both Agrobacterium-mediated and alternative transformation protocols are limited by a dependency on in vitro regeneration, which also limits their use by non-experts and hinders research into non-model species such as those of possible novel biopharmaceutical or nutraceutical use, as well as novel ornamental varieties. Hence, there is significant interest in developing tissue culture-independent plant transformation and gene editing approaches that can circumvent the bottlenecks associated with in vitro plant regeneration recalcitrance. Compared to tissue culture-based transformations, tissue culture-independent approaches offer advantages such as avoidance of somaclonal variation effects, with more streamlined and expeditious methodological processes. The ease of use, dependability, and accessibility of tissue culture-independent procedures can make them attractive to non-experts, outperforming classic tissue culture-dependent systems. This review explores the diversity of tissue culture-independent transformation approaches and compares them to traditional tissue culture-dependent transformation strategies. We highlight their simplicity and provide examples of recent successful transformations accomplished using these systems. Our review also addresses current limitations and explores future perspectives, highlighting the significance of these techniques for advancing plant research and crop improvement.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Moman Khan
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Linyi Lai
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| | - Charles Spillane
- Agriculture, Food Systems and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway H91 REW4, Ireland
| |
Collapse
|
19
|
Ahuja S, Zaheer S. Advancements in pathology: Digital transformation, precision medicine, and beyond. J Pathol Inform 2025; 16:100408. [PMID: 40094037 PMCID: PMC11910332 DOI: 10.1016/j.jpi.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 01/02/2025] Open
Abstract
Pathology, a cornerstone of medical diagnostics and research, is undergoing a revolutionary transformation fueled by digital technology, molecular biology advancements, and big data analytics. Digital pathology converts conventional glass slides into high-resolution digital images, enhancing collaboration and efficiency among pathologists worldwide. Integrating artificial intelligence (AI) and machine learning (ML) algorithms with digital pathology improves diagnostic accuracy, particularly in complex diseases like cancer. Molecular pathology, facilitated by next-generation sequencing (NGS), provides comprehensive genomic, transcriptomic, and proteomic insights into disease mechanisms, guiding personalized therapies. Immunohistochemistry (IHC) plays a pivotal role in biomarker discovery, refining disease classification and prognostication. Precision medicine integrates pathology's molecular findings with individual genetic, environmental, and lifestyle factors to customize treatment strategies, optimizing patient outcomes. Telepathology extends diagnostic services to underserved areas through remote digital pathology. Pathomics leverages big data analytics to extract meaningful insights from pathology images, advancing our understanding of disease pathology and therapeutic targets. Virtual autopsies employ non-invasive imaging technologies to revolutionize forensic pathology. These innovations promise earlier diagnoses, tailored treatments, and enhanced patient care. Collaboration across disciplines is essential to fully realize the transformative potential of these advancements in medical practice and research.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
20
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
21
|
Fayyaz A, Haqqi A, Khan R, Irfan M, Khan K, Reiner Ž, Sharifi-Rad J, Calina D. Revolutionizing cancer treatment: the rise of personalized immunotherapies. Discov Oncol 2024; 15:756. [PMID: 39692978 DOI: 10.1007/s12672-024-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Interest in biological therapy for cancer has surged due to its precise targeting of cancer cells and minimized impact on surrounding healthy tissues. This review discusses various biological cancer therapies, highlighting advanced alternatives over conventional chemotherapy alone. It explores DNA and RNA-based vaccines, T-cell modifications, adoptive cell transfer, CAR T cell therapy, angiogenesis inhibitors, and the combination of immunotherapy with chemotherapy, offering a holistic view of the potential in cancer treatment. Additionally, it discusses the role of nanotechnology in increasing the efficacy of cancer-targeting drugs, as well as cytokine and immunoconjugate therapies for bolstering immune system effectiveness against neoplastic cells. The potential of gene potential for precise targeting of cancer-linked genes and the application of oncolytic viruses against virus-associated cancers are also discussed. The review identifies significant advancements in the targeted treatment of cancer by biological methods. It acknowledges the challenges, including drug resistance and the need for high specificity in certain therapies, while also highlighting the effectiveness of cancer vaccines, modified T-cells, and oncolytic viruses. Biological therapies are a promising frontier in cancer treatment, offering the potential for more personalized and effective therapeutic strategies. Despite existing challenges, ongoing research and clinical trials are fundamental for overcoming current limitations and enhancing the efficacy of biological therapies in cancer care.
Collapse
Affiliation(s)
- Amna Fayyaz
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aleena Haqqi
- School of Medical Laboratory Technology, Faculty of Allied Health Sciences, Minhaj University Lahore (MUL), Lahore, 54000, Pakistan
| | - Rashid Khan
- Department of Pharmacy, Punjab University College of Pharmacy University of Punjab Lahore, Lahore, 54000, Pakistan
| | - Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Željko Reiner
- Department for Metabolic Diseases, University Hospital Center Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
22
|
Nazir A, Hussain FHN, Raza A. Advancing microbiota therapeutics: the role of synthetic biology in engineering microbial communities for precision medicine. Front Bioeng Biotechnol 2024; 12:1511149. [PMID: 39698189 PMCID: PMC11652149 DOI: 10.3389/fbioe.2024.1511149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Over recent years, studies on microbiota research and synthetic biology have explored novel approaches microbial manipulation for therapeutic purposes. However, fragmented information is available on this aspect with key insights scattered across various disciplines such as molecular biology, genetics, bioengineering, and medicine. This review aims to the transformative potential of synthetic biology in advancing microbiome research and therapies, with significant implications for healthcare, agriculture, and environmental sustainability. By merging computer science, engineering, and biology, synthetic biology allows for precise design and modification of biological systems via cutting edge technologies like CRISPR/Cas9 gene editing, metabolic engineering, and synthetic oligonucleotide synthesis, thus paving the way for targeted treatments such as personalized probiotics and engineered microorganisms. The review will also highlight the vital role of gut microbiota in disorders caused by its dysbiosis and suggesting microbiota-based therapies and innovations such as biosensors for real-time gut health monitoring, non-invasive diagnostic tools, and automated bio foundries for better outcomes. Moreover, challenges including genetic stability, environmental safety, and robust regulatory frameworks will be discussed to understand the importance of ongoing research to ensure safe and effective microbiome interventions.
Collapse
Affiliation(s)
- Asiya Nazir
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
23
|
Mamatha Bhanu LS, Kataki S, Chatterjee S. CRISPR: New promising biotechnological tool in wastewater treatment. J Microbiol Methods 2024; 227:107066. [PMID: 39491556 DOI: 10.1016/j.mimet.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for water resources with increase in population has sparked interest in reusing produced water, especially in water-scarce regions. The clustered regularly interspaced short palindromic repeats (CRISPR) technology is an emerging genome editing tool that has the potential to trigger significant impact with broad application scope in wastewater treatment. We provide a comprehensive overview of the scope of CRISPR-Cas based tool for treating wastewater that may bring new scope in wastewater management in future in controlling harmful contaminants and pathogens. As an advanced versatile genome engineering tool, focusing on particular genes and enzymes that are accountable for pathogen identification, regulation of antibiotic/antimicrobial resistance, and enhancing processes for wastewater bioremediation constitute the primary focal points of research associated with this technology. The technology is highly recommended for targeted mutations to incorporate desirable microalgal characteristics and the development of strains capable of withstanding various wastewater stresses. However, concerns about gene leakage from strains with modified genome and off target mutations should be considered during field application. A comprehensive interdisciplinary approach involving various fields and an intense research focus concerning delivery systems, target genes, detection, environmental conditions, and monitoring at both lab and ground level should be considered to ensure its successful application in sustainable and safe wastewater treatment.
Collapse
Affiliation(s)
- L S Mamatha Bhanu
- Department of Biotechnology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, India
| | - Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| |
Collapse
|
24
|
Yuan P, Usman M, Liu W, Adhikari A, Zhang C, Njiti V, Xia Y. Advancements in Plant Gene Editing Technology: From Construct Design to Enhanced Transformation Efficiency. Biotechnol J 2024; 19:e202400457. [PMID: 39692063 DOI: 10.1002/biot.202400457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 12/19/2024]
Abstract
Plant gene editing technology has significantly advanced in recent years, thereby transforming both biotechnological research and agricultural practices. This review provides a comprehensive summary of recent advancements in this rapidly evolving field, showcasing significant discoveries from improved transformation efficiency to advanced construct design. The primary focus is on the maturation of the Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)9 system, which has emerged as a powerful tool for precise gene editing in plants. Through a detailed exploration, we elucidate the intricacies of integrating genetic modifications into plant genomes, shedding light on transport mechanisms, transformation techniques, and optimization strategies specific to CRISPR constructs. Furthermore, we explore the initiatives aimed at extending the frontiers of gene editing to nonmodel plant species, showcasing the growing scope of this technology. Overall, this comprehensive review highlights the significant impact of recent advancements in plant gene editing, illuminating its transformative potential in driving agricultural innovation and biotechnological progress.
Collapse
Affiliation(s)
- Pu Yuan
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Muhammad Usman
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Wenshan Liu
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Ashna Adhikari
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Chunquan Zhang
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Victor Njiti
- College of Agriculture and Applied Sciences, Alcorn State University, Lorman, Mississippi, USA
| | - Ye Xia
- Department of Plant Pathology, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
25
|
Syahrani RA, Wanandi SI, Arumsari S, Nihayah S, Watanabe Y, Mizuno S, Louisa M, Wuyung PE. Dual sgRNA-directed knockout survivin gene expression using CRISPR/Cas9 technology for editing survivin gene in triple-negative breast cancer. NARRA J 2024; 4:e1177. [PMID: 39816115 PMCID: PMC11731936 DOI: 10.52225/narra.v4i3.1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 01/18/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting survivin with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the survivin gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects. Survivin gene knockout was conducted in the TNBC cell line BT549. Intron 1, exon 2, and intron 2 of the survivin gene were selected as sgRNA targets. These sgRNAs were designed in silico and then cloned into a CRISPR/Cas9 expression plasmid. The cleavage activity was assessed using an enhanced green fluorescent protein (EGFP) expression plasmid. The sgRNAs with higher cleavage activity were selected for the establishment of knockout cells. After transfecting the plasmid into the cells, the success of the survivin gene knockout was validated at the deoxyribonucleic acid (DNA) level using polymerase chain reaction (PCR) and sequencing analysis, and at the protein expression level using Western blotting. The study found that sgRNAs survin1A (targeting intron 1), survex2A (targeting intron 2), and survin2A (targeting intron 2) demonstrated higher cleavage activities compared to the other sgRNAs. However, using the single sgRNA, survex2A did not generate mutations in the survivin gene. At the protein level, survivin was still expressed, indicating that a single sgRNA was ineffective in knocking out the survivin gene. In contrast, the combination of sgRNA survin1A and sgRNA survin2A was more effective in generating mutations in the survivin gene, resulting in the deletion of the entire exon 2 and leading to a loss of survivin protein expression. In conclusion, our work provides specific sgRNAs and demonstrates the utilization of dual sgRNAs strategy in the CRISPR/Cas9 technology to knock out the survivin gene, showing potential in breast cancer therapy.
Collapse
Affiliation(s)
- Resda A. Syahrani
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Septelia I. Wanandi
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Sekar Arumsari
- Molecular Biology and Proteomics Core Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Silviatun Nihayah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yukihide Watanabe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Melva Louisa
- Department of Pharmacology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Puspita E. Wuyung
- Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
26
|
Bonnechère B. Animals as Architects: Building the Future of Technology-Supported Rehabilitation with Biomimetic Principles. Biomimetics (Basel) 2024; 9:723. [PMID: 39727727 DOI: 10.3390/biomimetics9120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Rehabilitation science has evolved significantly with the integration of technology-supported interventions, offering objective assessments, personalized programs, and real-time feedback for patients. Despite these advances, challenges remain in fully addressing the complexities of human recovery through the rehabilitation process. Over the last few years, there has been a growing interest in the application of biomimetics to inspire technological innovation. This review explores the application of biomimetic principles in rehabilitation technologies, focusing on the use of animal models to help the design of assistive devices such as robotic exoskeletons, prosthetics, and wearable sensors. Animal locomotion studies have, for example, inspired energy-efficient exoskeletons that mimic natural gait, while insights from neural plasticity research in species like zebrafish and axolotls are advancing regenerative medicine and rehabilitation techniques. Sensory systems in animals, such as the lateral line in fish, have also led to the development of wearable sensors that provide real-time feedback for motor learning. By integrating biomimetic approaches, rehabilitation technologies can better adapt to patient needs, ultimately improving functional outcomes. As the field advances, challenges related to translating animal research to human applications, ethical considerations, and technical barriers must be addressed to unlock the full potential of biomimetic rehabilitation.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, 3590 Diepenbeek, Belgium
- Department of PXL-Healthcare, PXL University of Applied Sciences and Arts, 3500 Hasselt, Belgium
| |
Collapse
|
27
|
Wattad H, Molcho J, Manor R, Weil S, Aflalo ED, Chalifa-Caspi V, Sagi A. Roadmap and Considerations for Genome Editing in a Non-Model Organism: Genetic Variations and Off-Target Profiling. Int J Mol Sci 2024; 25:12530. [PMID: 39684244 DOI: 10.3390/ijms252312530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The CRISPR/Cas genome editing approach in non-model organisms poses challenges that remain to be resolved. Here, we demonstrated a generalized roadmap for a de novo genome annotation approach applied to the non-model organism Macrobrachium rosenbergii. We also addressed the typical genome editing challenges arising from genetic variations, such as a high frequency of single nucleotide polymorphisms, differences in sex chromosomes, and repetitive sequences that can lead to off-target events. For the genome editing of M. rosenbergii, our laboratory recently adapted the CRISPR/Cas genome editing approach to embryos and the embryonic primary cell culture. In this continuation study, an annotation pipeline was trained to predict the gene models by leveraging the available genomic, transcriptomic, and proteomic data, and enabling accurate gene prediction and guide design for knock-outs. A next-generation sequencing analysis demonstrated a high frequency of genetic variations in genes on both autosomal and sex chromosomes, which have been shown to affect the accuracy of editing analyses. To enable future applications based on the CRISPR/Cas tool in non-model organisms, we also verified the reliability of editing efficiency and tracked off-target frequencies. Despite the lack of comprehensive information on non-model organisms, this study provides an example of the feasibility of selecting and editing specific genes with a high degree of certainty.
Collapse
Affiliation(s)
- Hanin Wattad
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Jonathan Molcho
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
28
|
Niazi V, Parseh B. Organoid models of breast cancer in precision medicine and translational research. Mol Biol Rep 2024; 52:2. [PMID: 39570495 DOI: 10.1007/s11033-024-10101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran.
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Shastkola Street, Gorgan, 4918936316, Iran.
| |
Collapse
|
29
|
Chodnekar SY, Tsetskhladze Z. CRISPR CLIP: comprehensive reviews on interventional studies using precision recombinant technologies: clinical landmarks, implications, and prospects. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae013. [PMID: 39659430 PMCID: PMC11630829 DOI: 10.1093/oxfimm/iqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/03/2024] [Accepted: 10/26/2024] [Indexed: 12/12/2024] Open
Abstract
To consolidate clinical trials that utilized the CRISPR technology to synthesise cures for various genetic diseases as a means to provide a window into the progress made so far while paving the way forward for future research and practices. Systematic review (PROSPERO CRD42023479511). Trials from seven databases' (ClinicalTrials.gov, European Union Clinical Trials Registry, ISRCTN registry, ICTRP/trialsearch.who.int, ChiCTR.org.cn, Clinical Trial Registry India, and Cochrane Library/Trials) inception to 9 March 2024, were considered. Exclusion criteria were unrelated, duplicated, non-English, unavailable full texts, diagnostic studies, correlational studies, observational studies, abstract-only papers, reviews or conference papers. Included studies were appraised using the ten-item CASP tool to assess methodological quality. The review identified 82 RCTs utilizing CRISPR and revealed four main themes: Diseases targeted, Countries of Clinical trials, Type of interventions, and Trial trends over the years. Geographically, the United States and China lead in the number of CRISPR clinical trials, followed by the European Union. However, Africa, Asia, and South America have very few trials. Among disease classes, cancer is the most prevalent focus with 39 studies, followed by monogenetic blood diseases, like Thalassemia and sickle cell anaemia. The biological agent CTX001 and Cyclophosphamide each feature in 11 studies. The peak year for clinical trials was 2018, marked by a significant increase with 16 studies conducted. Despite conducting a comprehensive search, the majority of trials were concentrated in the United States and China. Additionally, potential oversights due to vague titles, English-only studies, and indexing issues may have occurred. Nonetheless, by incorporating data from seven distinct databases, this review significantly contributes to understanding CRISPR's utilization in therapeutic clinical trials, paving the way for future research directions. The review underscores the burgeoning interest in CRISPR-based interventions. Current trials barely tap CRISPR's potential for treating genetic diseases.
Collapse
Affiliation(s)
| | - Zurab Tsetskhladze
- Faculty of Medicine, University Geomedi, 3, King Solomon Street, Tbilisi 0114, Georgia
| |
Collapse
|
30
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
31
|
Lee KR, Park ME, Kim HU. Domestication and engineering of pennycress (Thlaspi arvense L.): challenges and opportunities for sustainable bio-based feedstocks. PLANTA 2024; 260:127. [PMID: 39470818 DOI: 10.1007/s00425-024-04560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
MAIN CONCLUSION Pennycress, as an emerging oilseed crop with high oil content, faces challenges but offers potential for sustainable bioproducts; ongoing research aims to enhance its traits and quality. Pennycress (Thlaspi arvense L.) is an emerging oilseed crop with many advantages, such as high seed oil (27-39%) and monounsaturated fatty acid (55.6%) content, making it an attractive candidate to produce sustainable bioproducts. However, several challenges are associated with domesticating pennycress, including high silicle shatter, which reduces seed yield during harvest, non-uniformed germination rate and high contents of erucic acid and glucosinolates, which have adverse health effects on humans and animals. Pennycress, which can be easily and rapidly transformed using the floral dip method under vacuum, can achieve trait improvements. Ongoing research for pennycress domestication using mutation breeding, including ethylmethylsulfonate treatment and genome editing, aims to improve its quality. Pennycress can be used as an excellent platform for producing industrially important fatty acids such as hydroxy and epoxy fatty acids and docosahexaenoic acid. In conclusion, pennycress is a promising oilseed crop with multiple advantages and potential applications. Continuous improvements in quality and engineering for producing high-value bio-based feedstocks in pennycress will establish it as a sustainable and economically valuable crop.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54875, Republic of Korea
| | - Mid-Eum Park
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea
| | - Hyun Uk Kim
- Department of Molecular Biology, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 05006, Republic of Korea.
- Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
32
|
Chatterjee A, Khan R, Mukherjee T, Sahoo PP, Tiwari LN, Singh BN, Kumari R, Kumari A, Rai A, Ray S. Harnessing bacterial metabolites for enhanced cancer chemotherapy: unveiling unique therapeutic potentials. Arch Microbiol 2024; 206:449. [PMID: 39472338 DOI: 10.1007/s00203-024-04179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/10/2024]
Abstract
Cancer poses a serious threat to health globally, with millions diagnosed every year. According to Global Cancer Statistics 2024, about 20 million new cases were reported in 2022, and 9.7 million people worldwide died of this condition. Advanced therapies include combination of one or more treatment procedures, depending on the type, stage, and particular genetic constitution of the cancer, which may include surgery, radiotherapy, chemotherapy, immunotherapy, hormone therapy, targeted therapy, and stem cell transplant. Also, awareness about lifestyle changes, preventive measures and screening at early stages has reduced the incidence of the disease; still, there is a major failure in controlling the incidence of cancer because of its complex and multifaceted nature. With increasing interest in bacterial metabolites as possible novel and effective treatment options in cancer therapy, their main benefits include not only direct anticancer effects but also the modulation of the immune system and potential for targeted and combination therapies. They can therefore be used in combination with chemotherapy, radiotherapy, or immunotherapy to improve outcomes or reduce side effects. Furthermore, nanoparticle-based delivery systems have the potential to enhance the potency and safety of anticancer drugs by providing improved stability, targeted release, and controlled delivery.
Collapse
Affiliation(s)
- Aroni Chatterjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Rajni Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, 844102, Bihar, India
| | - Triparna Mukherjee
- Department of Biotechnology, School of Biotechnology and Biosciences, Brainware University, Barasat, Kolkata, 700125, West Bengal, India
| | - Preity Pragnya Sahoo
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Laxmi Narayan Tiwari
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Basant Narain Singh
- Department of Botany, Pandit Deendayal Upadhyaya Shekhawati University, Sikar, Nawalgarh Road, Katrathal, Rajasthan, 332024, India
| | - Rashmi Kumari
- Department of Zoology, ZA Islamia College Siwan, Affiliated Unit of Jai Prakash University, Chapra, Bihar, 841226, India
| | - Anisha Kumari
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India
| | - Ankit Rai
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| |
Collapse
|
33
|
Desai D, Maheta DK, Agrawal SP, Patel M, Frishman WH, Aronow WS. Revolutionizing Cardiac Care: The Role of Gene Therapy in Treating Cardiomyopathy. Cardiol Rev 2024. [DOI: 10.1097/crd.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Gene therapy presents a method for addressing types of cardiomyopathies that play a substantial role in heart failure. This innovative approach, leveraging technologies such as clustered regularly interspaced short palindromic repeats/Cas9 for modifying genomes, holds promise for lasting treatments or potential cures that go beyond therapies. It is essential to grasp the workings of gene therapy, including gene silencing, clustered regularly interspaced short palindromic repeats genome editing, and enhancing sarcomere function to effectively apply it to treating cardiomyopathy. Examining current trials will shed light on the advancements and accomplishments in this field while also addressing the obstacles, uncertainties, and opportunities ahead. Delving into the possibilities of gene therapy involves exploring targets and inventive delivery methods that underscore the evolving landscape of research in this domain hinting at a future brimming with opportunities to transform care. The progress made in using gene therapy to treat cardiomyopathies represents the progress of medicine in driving forward scientific innovation to provide more precise and enduring solutions for patients. Continuously refining gene therapy techniques and deepening our knowledge of genetics are factors that will shape the future direction of cardiac care. The potential of gene therapy does not just benefit individuals with cardiomyopathy but also represents a move toward effective treatments for various genetic conditions. This signifies a step in the pursuit of holistic healthcare solutions.
Collapse
Affiliation(s)
- Dev Desai
- Department of Medicine, Smt. NHLMMC, Ahmedabad, India
| | | | - Siddharth Pravin Agrawal
- Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, RI
| | - Monit Patel
- Department of Medicine, Touro College of Osteopathic Medicine, New York, NY
| | | | - Wilbert S. Aronow
- Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY
| |
Collapse
|
34
|
Papp D, Korcsmaros T, Hautefort I. Revolutionizing immune research with organoid-based co-culture and chip systems. Clin Exp Immunol 2024; 218:40-54. [PMID: 38280212 PMCID: PMC11404127 DOI: 10.1093/cei/uxae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
The intertwined interactions various immune cells have with epithelial cells in our body require sophisticated experimental approaches to be studied. Due to the limitations of immortalized cell lines and animal models, there is an increasing demand for human in vitro model systems to investigate the microenvironment of immune cells in normal and in pathological conditions. Organoids, which are self-renewing, 3D cellular structures that are derived from stem cells, have started to provide gap-filling tissue modelling solutions. In this review, we first demonstrate with some of the available examples how organoid-based immune cell co-culture experiments can advance disease modelling of cancer, inflammatory bowel disease, and tissue regeneration. Then, we argue that to achieve both complexity and scale, organ-on-chip models combined with cutting-edge microfluidics-based technologies can provide more precise manipulation and readouts. Finally, we discuss how genome editing techniques and the use of patient-derived organoids and immune cells can improve disease modelling and facilitate precision medicine. To achieve maximum impact and efficiency, these efforts should be supported by novel infrastructures such as organoid biobanks, organoid facilities, as well as drug screening and host-microbe interaction testing platforms. All these together or in combination can allow researchers to shed more detailed, and often patient-specific, light on the crosstalk between immune cells and epithelial cells in health and disease.
Collapse
Affiliation(s)
- Diana Papp
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Tamas Korcsmaros
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Isabelle Hautefort
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
35
|
Mishra S, Banerjee S, Tiwari BS, Tiwari AK. Recent progress in CRISPR-Cas-system for neurological disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:231-261. [PMID: 39824583 DOI: 10.1016/bs.pmbts.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Different neurological diseases including, Parkinson's, Alzheimer's, and Huntington's diseases extant momentous global disease burdens, affecting millions of lives for imposing a heavy disease burden on the healthcare systems. Despite various treatment strategies aimed at alleviating symptoms, treatments remain elusive and ineffective due to the disease's complexity. However, recent advancements in gene therapy via the CRISPR-Cas system offer ground-breaking and targeted treatment options. Based on a bacterial immune mechanism, the CRISPR-Cas system enables precise genome editing, allowing for the alteration of different genetic mutations and the possible cure of genetic diseases. In the context of neurological disorders, the CRISPR-Cas system shows a promising avenue by allowing researchers to conduct genome-editing which is implicated in neurodegenerative disease therapeutics. This book chapter provides an updated overview of the application of the CRISPR-Cas system for addressing target-specific therapeutic approaches for neurodegenerative disorders. Furthermore, we discuss the principles of the CRISPR-Cas mechanism, its role in modeling neurological disorders, identifying molecular targets, and developing gene-based therapies. Additionally, the chapter explores the recent clinical trials and CRISPR-Cas-mediated treatments for neurological conditions. By leveraging the accuracy and versatility of the CRISPR-Cas system, scientists can more effectively handle the genetic underpinnings of neurodegenerative diseases. Furthermore, the chapter extends the critical viewpoints on ethical considerations and technical limitations related to the clinical deployment of this revolutionizing technique.
Collapse
Affiliation(s)
- Sarita Mishra
- National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Biochemistry Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Budhi Sagar Tiwari
- Plant Cell & Molecular Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
36
|
Jain R, Daigavane S. Advances and Challenges in Gene Therapy for Inherited Retinal Dystrophies: A Comprehensive Review. Cureus 2024; 16:e69895. [PMID: 39439625 PMCID: PMC11494405 DOI: 10.7759/cureus.69895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are a diverse group of genetic disorders leading to progressive vision loss due to the degeneration of retinal photoreceptors. Gene therapy has emerged as a promising approach to address the underlying genetic causes of IRDs, offering the potential for restoring vision and halting disease progression. This review provides a comprehensive overview of gene therapy innovations for IRDs, focusing on the mechanisms, recent advancements, and ongoing challenges. We discuss the fundamental principles of gene therapy, including the use of viral and non-viral vectors, and highlight key developments such as the approval of Luxturna for RPE65-mediated retinal dystrophy and the application of gene editing technologies like CRISPR/Cas9. Despite these advancements, significant challenges remain, including vector delivery, long-term safety, and variable patient responses. This review also explores the future directions of gene therapy, emphasizing the need for further research to address these challenges and enhance therapeutic efficacy. By examining the current state of gene therapy for IRDs, this review aims to provide valuable insights into the potential for these treatments to transform the management of retinal diseases and improve the quality of life for affected individuals.
Collapse
Affiliation(s)
- Raina Jain
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
37
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Khoeini T, Kariminejad A, Nilipour Y, Ariaei A, Najmabadi H, Arabshahi M, Faraji Zonooz M, Haghi Ashtiani B. Core myopathy in two siblings with a biallelic variant in the CACNA1S gene-A case series study. Clin Case Rep 2024; 12:e9251. [PMID: 39104734 PMCID: PMC11299071 DOI: 10.1002/ccr3.9251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Homozygous variants of Calcium Voltage-Gated Channel Subunit Alpha1 S (CACNA1S) gene mutation were previously identified as causes of periodic paralysis and congenital early-onset myopathy, while it could be manifested as a late-onset congenital core myopathy. Abstract Calcium Voltage-Gated Channel Subunit Alpha1 S (CACNA1S) gene mutation has been linked to various neuromuscular conditions in recent years. Congenital myopathy with core-like features is one of the cardinal associations reported previously, causing severe respiratory insufficiency and death in neonates. Informed consent was received from the patients. Subsequently, peripheral blood leukocytes were utilized to extract genomic DNA. Moreover, exome enrichment was implemented through the Twist Human Core Exome Kit (Twist Bioscience) and exome sequenced using Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA). Sanger sequencing using BIG Dye Terminators confirmed the presence of the final variant. Finally, the candidate variants were classified based on the American College of Medical Genetics and Genomics (ACMG) guidelines. In this report, we describe two siblings, who presented with childhood and late-onset progressive muscle weakness, and had a homozygous variant in exon 2 of the CACNA1S gene defined as c.188C > A (p.Ala63Asp) (NM_000069.3). The SIFT, Polyphen2, CADD PHRED, and Mutation Taster analysis tools classified the variant as pathogenic/damaging. The muscle biopsy of the younger brother revealed intermyofibrillar network pattern disruption as cytoplasmic core-like lesions. The muscle magnetic resonance imaging (MRI) reported grade IIa and IIb fatty changes. Finally, the electromyography (EMG) findings suggested a myopathic change pattern. This report illustrates the clinical variability in CACNA1S-related myopathy by reviewing prior reports and adding newly found aspects, additionally expanding the gene defects associated with core myopathy.
Collapse
Affiliation(s)
- Tara Khoeini
- Department of Neurology, Firoozgar HospitalIran University of Medical SciencesTehranIran
| | | | - Yalda Nilipour
- Pediatric Pathology Research CenterResearch Institute for Children's Health, Shahid Beheshti University of Medical SciencesTehranIran
- Neuromuscular Research CenterTehran University of Medical SciencesTehranIran
| | - Armin Ariaei
- School of MedicineIran University of Medical SciencesTehranIran
| | - Hossein Najmabadi
- Kariminejad‐Najmabadi Pathology & Genetics CenterTehranIran
- Genetics Research CenterUniversity of Social Welfare & Rehabilitation ScienceTehranIran
| | - Mojtaba Arabshahi
- Radiology Department, Shohada Tajrish HospitalShahid Beheshti University of Medical ScienceTehranIran
| | | | - Bahram Haghi Ashtiani
- Department of Neurology, Firoozgar HospitalIran University of Medical SciencesTehranIran
| |
Collapse
|
39
|
Zou J, Peng B, Fan N, Liu Y. Simulation and experimental study on the influence of lamina on nanoneedle penetration into the cell nucleus. Biomech Model Mechanobiol 2024; 23:1241-1262. [PMID: 38526703 DOI: 10.1007/s10237-024-01836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
We have developed a finite element model to simulate the penetration of nanoneedles into the cellular nucleus. It is found that the nuclear lamina, the primary supporting structure of the nuclear membrane, plays a crucial role in maintaining the integrity of the nuclear envelope and enhancing stress concentration in the nuclear membrane. Notably, nuclear lamina A exhibits a more pronounced effect compared to nuclear lamina B. Subsequently, we further conducted experiments by controlling the time of osteopontin (OPN) treatment to modify the nuclear lamina density, and the results showed that an increase in nuclear lamina density enhances the probability of nanoneedle penetration into the nuclear membrane. Through employing both simulation and experimental techniques, we have gathered compelling evidence indicating that an augmented density of nuclear lamina A can enhance the penetration of nanoneedles into the nuclear membrane.
Collapse
Affiliation(s)
- Jie Zou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Na Fan
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
40
|
Wang M, Schedel M, Gelfand EW. Gene editing in allergic diseases: Identification of novel pathways and impact of deleting allergen genes. J Allergy Clin Immunol 2024; 154:51-58. [PMID: 38555980 PMCID: PMC11227406 DOI: 10.1016/j.jaci.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Gene editing technology has emerged as a powerful tool in all aspects of health research and continues to advance our understanding of critical and essential elements in disease pathophysiology. The clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology has been used with precision to generate gene knockouts, alter genes, and identify genes that cause disease. The full spectrum of allergic/atopic diseases, in part because of shared pathophysiology, is ripe for studies with this technology. In this way, novel culprit genes are being identified and allow for manipulation of triggering allergens to reduce allergenicity and disease. Notwithstanding current limitations on precision and potential off-target effects, newer approaches are rapidly being introduced to more fully understand specific gene functions as well as the consequences of genetic manipulation. In this review, we examine the impact of editing technologies of novel genes relevant to peanut allergy and asthma as well as how gene modification of common allergens may lead to the deletion of allergenic proteins.
Collapse
Affiliation(s)
- Meiqin Wang
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo
| | - Michaela Schedel
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo; Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany; Department of Pulmonary Medicine, University Hospital, Essen, Germany
| | - Erwin W Gelfand
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, Colo.
| |
Collapse
|
41
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
42
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
43
|
Moradi V, Khodabandehloo E, Alidadi M, Omidkhoda A, Ahmadbeigi N. Progress and pitfalls of gene editing technology in CAR-T cell therapy: a state-of-the-art review. Front Oncol 2024; 14:1388475. [PMID: 38912057 PMCID: PMC11190338 DOI: 10.3389/fonc.2024.1388475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
CAR-T cell therapy has shown remarkable promise in treating B-cell malignancies, which has sparked optimism about its potential to treat other types of cancer as well. Nevertheless, the Expectations of CAR-T cell therapy in solid tumors and non-B cell hematologic malignancies have not been met. Furthermore, safety concerns regarding the use of viral vectors and the current personalized production process are other bottlenecks that limit its widespread use. In recent years the use of gene editing technology in CAR-T cell therapy has opened a new way to unleash the latent potentials of CAR-T cell therapy and lessen its associated challenges. Moreover, gene editing tools have paved the way to manufacturing CAR-T cells in a fully non-viral approach as well as providing a universal, off-the-shelf product. Despite all the advantages of gene editing strategies, the off-target activity of classical gene editing tools (ZFNs, TALENs, and CRISPR/Cas9) remains a major concern. Accordingly, several efforts have been made in recent years to reduce their off-target activity and genotoxicity, leading to the introduction of advanced gene editing tools with an improved safety profile. In this review, we begin by examining advanced gene editing tools, providing an overview of how these technologies are currently being applied in clinical trials of CAR-T cell therapies. Following this, we explore various gene editing strategies aimed at enhancing the safety and efficacy of CAR-T cell therapy.
Collapse
Affiliation(s)
- Vahid Moradi
- Hematology and Blood Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Khodabandehloo
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Omidkhoda
- Hematology and Blood Transfusion Science Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Ledesma AV, Van Eenennaam AL. Global status of gene edited animals for agricultural applications. Vet J 2024; 305:106142. [PMID: 38788996 DOI: 10.1016/j.tvjl.2024.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Gene editing (GnEd) involves using a site-directed nuclease to introduce a double-strand break (DSB) at a targeted location in the genome. A literature search was performed on the use of GnEd in animals for agricultural applications. Data was extracted from 212 peer-reviewed articles that described the production of at least one living animal employing GnEd technologies for agricultural purposes. The most common GnEd system reported was CRISPR/Cas9, and the most frequent type of edit was the unguided insertion or deletion resulting from the repair of the targeted DSB leading to a knock-out (KO) mutation. Animal groups included in the reviewed papers were ruminants (cattle, sheep, goats, n=63); monogastrics (pigs and rabbits, n=60); avian (chicken, duck, quail, n=17); aquatic (many species, n=65), and insects (honeybee, silkworm, n=7). Yield (32%), followed by reproduction (21%) and disease resistance (17%) were the most commonly targeted traits. Over half of the reviewed papers had Chinese first-authorship. Several countries, including Argentina, Australia, Brazil, Colombia and Japan, have adopted a regulatory policy that considers KO mutations introduced following GnEd DSB repair as akin to natural genetic variation, and therefore treat these GnEd animals analogously to those produced using conventional breeding. This approach has resulted in a non-GMO determination for a small number of GnEd food animal applications, including three species of GnEd KO fast-growing fish, (red sea bream, olive flounder and tiger pufferfish in Japan), KO fish and cattle in Argentina and Brazil, and porcine reproductive and respiratory syndrome (PRRS) virus disease-resistant KO pigs in Colombia.
Collapse
Affiliation(s)
- Alba V Ledesma
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
45
|
Yuan R, Wang B, Wang Y, Liu P. Gene Therapy for Neurofibromatosis Type 2-Related Schwannomatosis: Recent Progress, Challenges, and Future Directions. Oncol Ther 2024; 12:257-276. [PMID: 38760612 PMCID: PMC11187037 DOI: 10.1007/s40487-024-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Ruofei Yuan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Wang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
46
|
Bonilla DA, Orozco CA, Forero DA, Odriozola A. Techniques, procedures, and applications in host genetic analysis. ADVANCES IN GENETICS 2024; 111:1-79. [PMID: 38908897 DOI: 10.1016/bs.adgen.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.
Collapse
Affiliation(s)
- Diego A Bonilla
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain; Research Division, Dynamical Business & Science Society-DBSS International SAS, Bogotá, Colombia.
| | - Carlos A Orozco
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología de Colombia, Bogotá, Colombia
| | - Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| | - Adrián Odriozola
- Hologenomiks Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
47
|
Saberi Riseh R, Fathi F, Lagzian A, Vatankhah M, Kennedy JF. Modifying lignin: A promising strategy for plant disease control. Int J Biol Macromol 2024; 271:132696. [PMID: 38823737 DOI: 10.1016/j.ijbiomac.2024.132696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Lignin is a complex polymer found in the cell walls of plants, providing structural support and protection against pathogens. By modifying lignin composition and structure, scientists aim to optimize plant defense responses and increase resistance to pathogens. This can be achieved through various genetic engineering techniques which involve manipulating the genes responsible for lignin synthesis. By either up regulating or down regulating specific genes, researchers can alter the lignin content, composition, or distribution in plant tissues. Reducing lignin content in specific tissues like leaves can improve the effectiveness of defense mechanisms by allowing for better penetration of antimicrobial compounds. Overall, Lignin modification through techniques has shown promising results in enhancing various plants resistance against pathogens. Furthermore, lignin modification can have additional benefits beyond pathogen resistance. It can improve biomass processing for biofuel production by reducing lignin recalcitrance, making the extraction of sugars from cellulose more efficient. The complexity of lignin biosynthesis and its interactions with other plant components make it a challenging target for modification. Additionally, the potential environmental impact and regulatory considerations associated with genetically modified organisms (GMOs) require careful evaluation. Ongoing research aims to further optimize this approach and develop sustainable solutions for crop protection.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
48
|
Gómez-Márquez J. The Lithbea Domain. Adv Biol (Weinh) 2024; 8:e2300679. [PMID: 38386280 DOI: 10.1002/adbi.202300679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The tree of life is the evolutionary metaphor for the past and present connections of all cellular organisms. Today, to speak of biodiversity is not only to speak of archaea, bacteria, and eukaryotes, but they should also consider the "new biodiversity" that includes viruses and synthetic organisms, which represent the new forms of life created in laboratories. There is even a third group of artificial entities that, although not living systems, pretend to imitate the living. To embrace and organize all this new biodiversity, I propose the creation of a new domain, with the name Lithbea (from life-on-the-border entites) The criteria for inclusion as members of Lithbea are: i) the acellular nature of the living system, ii) its origin in laboratory manipulation, iii) showing new biological traits, iv) the presence of exogenous genetic elements, v) artificial or inorganic nature. Within Lithbea there are two subdomains: Virworld (from virus world) which includes all viruses, regarded as lifeless living systems, and classified according to the International Committee on Taxonomy of Viruses (ICTV), and ii) Humade (from human-made) which includes all synthetic organisms and artificial entities. The relationships of Lithbea members to the three classical woesian domains and their implications are briefly discussed.
Collapse
Affiliation(s)
- Jaime Gómez-Márquez
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain
| |
Collapse
|
49
|
Sharma AK, Giri AK. Engineering CRISPR/Cas9 therapeutics for cancer precision medicine. Front Genet 2024; 15:1309175. [PMID: 38725484 PMCID: PMC11079134 DOI: 10.3389/fgene.2024.1309175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) technology has revolutionized field of cancer treatment. This review explores usage of CRISPR/Cas9 for editing and investigating genes involved in human carcinogenesis. It provides insights into the development of CRISPR as a genetic tool. Also, it explores recent developments and tools available in designing CRISPR/Cas9 systems for targeting oncogenic genes for cancer treatment. Further, we delve into an overview of cancer biology, highlighting key genetic alterations and signaling pathways whose deletion prevents malignancies. This fundamental knowledge enables a deeper understanding of how CRISPR/Cas9 can be tailored to address specific genetic aberrations and offer personalized therapeutic approaches. In this review, we showcase studies and preclinical trials that show the utility of CRISPR/Cas9 in disrupting oncogenic targets, modulating tumor microenvironment and increasing the efficiency of available anti treatments. It also provides insight into the use of CRISPR high throughput screens for cancer biomarker identifications and CRISPR based screening for drug discovery. In conclusion, this review offers an overview of exciting developments in engineering CRISPR/Cas9 therapeutics for cancer treatment and highlights the transformative potential of CRISPR for innovation and effective cancer treatments.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Anil K. Giri
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
50
|
Aman R, Syed MM, Saleh A, Melliti F, Gundra S, Wang Q, Marsic T, Mahas A, Mahfouz M. Peptide nucleic acid-assisted generation of targeted double-stranded DNA breaks with T7 endonuclease I. Nucleic Acids Res 2024; 52:3469-3482. [PMID: 38421613 PMCID: PMC11014363 DOI: 10.1093/nar/gkae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Gene-editing technologies have revolutionized biotechnology, but current gene editors suffer from several limitations. Here, we harnessed the power of gamma-modified peptide nucleic acids (γPNAs) to facilitate targeted, specific DNA invasion and used T7 endonuclease I (T7EI) to recognize and cleave the γPNA-invaded DNA. Our data show that T7EI can specifically target PNA-invaded linear and circular DNA to introduce double-strand breaks (DSBs). Our PNA-Guided T7EI (PG-T7EI) technology demonstrates that T7EI can be used as a programmable nuclease capable of generating single or multiple specific DSBs in vitro under a broad range of conditions and could be potentially applied for large-scale genomic manipulation. With no protospacer adjacent motif (PAM) constraints and featuring a compact protein size, our PG-T7EI system will facilitate and expand DNA manipulations both in vitro and in vivo, including cloning, large-fragment DNA assembly, and gene editing, with exciting applications in biotechnology, medicine, agriculture, and synthetic biology.
Collapse
Affiliation(s)
- Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Muntjeeb M Syed
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ahmed Saleh
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Firdaws Melliti
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sivakrishna Rao Gundra
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Qiaochu Wang
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tin Marsic
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Department of Genetics, Harvard University, Boston, MA 02115, USA
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|