1
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BFC, Deitsch KW. scRNA-seq reveals transcriptional plasticity of var gene expression in Plasmodium falciparum for host immune avoidance. Nat Microbiol 2025:10.1038/s41564-025-02008-5. [PMID: 40379932 DOI: 10.1038/s41564-025-02008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2025] [Indexed: 05/19/2025]
Abstract
Plasmodium falciparum evades antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. Previous work with clonal P. falciparum populations revealed var gene expression profiles inconsistent with uniform single var gene expression. However, the mechanisms underpinning this and how it might contribute to chronic infections were unclear. Here, using single-cell transcriptomics employing enrichment probes and a portable microwell system, we analysed var gene expression in clonal 3D7 and IT4 parasite lines. We show that in addition to mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. Reduced var gene expression resulted in greatly decreased antibody recognition of infected cells. This transcriptional flexibility provides parasites with greater adaptive capacity and could explain the antigenically 'invisible' parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
- Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Joseph E Visone
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Christopher Nötzel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Björn F C Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Tang R, Chen X, Shang X, Hu Y, Lu B, Du X, Yang J, Zhang F, Wang F, Zhang Z, Bai Y, Zhang Q, Fan Y. m5C methylation of mitochondrial RNA and non-coding RNA by NSUN3 is associated with variant gene expression and asexual blood-stage development in Plasmodium falciparum. Parasit Vectors 2025; 18:121. [PMID: 40148982 PMCID: PMC11951620 DOI: 10.1186/s13071-025-06746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Malaria is caused by Plasmodium spp. and is a prevalent parasitic disease worldwide. To evade detection by the immune system, by switching variant gene expression, the malaria parasite continually establishes new patterns displaying a single variant erythrocyte surface antigen. The distinct surface molecules encoded by clonally variant gene families include var, rif, stevor, Pfmc-2tm, and surfins. However, the mechanism behind the exclusive expression of a single member of the variant gene family is still not clear. This study aims to describe the molecular process of variant gene switching from the perspective of the epitranscriptome, specifically by characterizing the role of the Plasmodium falciparum RNA m5C methyltransferase NSUN3. METHODS A conditional gene knockdown approach was adopted by incorporating the glucosamine-inducible glmS ribozyme sequence into the 3' untranslated region (UTR) of the pfnsun3 gene. A transgenic parasite line PfNSUN3-Ty1-Ribo was generated using CRISPR-Cas9 methods. The knockdown effect in the transgenic parasite was measured by a growth curve assay and western blot analysis. The transcriptome changes influenced by PfNUSN3 knockdown were detected by RNA sequencing (RNA-seq), and the direct RNA transcripts regulated by PfNUSN3 were validated by RNA immunoprecipitation and high-throughput sequencing (RIP-seq). RESULTS Growth curve analysis revealed that conditional knockdown of PfNSUN3 interfered with parasite growth. The parasitemia of the PfNSUN3 knockdown line showed a significant decline at the third round of the life cycle compared with the control line. The knockdown of PfNSUN3 altered the global transcriptome. RNA-seq analysis showed that at the ring-stage depletion of PfNSUN3 silenced almost all var genes, as well as the guanine/cytosine (GC)-rich non-coding RNA (ncRNA) ruf6 family. RNA RIP-seq arrays revealed that PfNSUN3 directly interacted with several var genes. CONCLUSIONS Our findings demonstrate a vital role of PfNSUN3 in the process of the mutually exclusive expression of variant genes, and contribute to a better understanding of the complex mechanism of epigenetic regulation of gene expression in P. falciparum.
Collapse
Affiliation(s)
- Ruoyu Tang
- Department of Parasitology, School of Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Blood Transfusion, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuan Chen
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200120, China
- Traditional Chinese Medicine, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, School of Basic Medicine, Nanchang Medical College, Nanchang, 330052, China
| | - Xiaomin Shang
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Ye Hu
- Department of Parasitology, School of Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Blood Transfusion, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Binbin Lu
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuli Du
- Department of Parasitology, School of Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Blood Transfusion, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Junlong Yang
- Department of Parasitology, School of Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Blood Transfusion, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fengshuo Zhang
- Department of Parasitology, School of Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Blood Transfusion, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fei Wang
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zuping Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Yanli Bai
- Department of Parasitology, School of Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Blood Transfusion, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qingfeng Zhang
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yanting Fan
- Department of Parasitology, School of Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China.
- Department of Blood Transfusion, Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710069, Shaanxi, China.
- Laboratory of Molecular Parasitology, State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Key Laboratory of Pathogen-Host Interaction (Tongji University), Ministry of Education, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
3
|
Donu D, Boyle E, Curry A, Cen Y. Biochemical characterization and discovery of inhibitors for PfSir2A: new tricks for an old enzyme. RSC Chem Biol 2025:d4cb00206g. [PMID: 39897407 PMCID: PMC11784564 DOI: 10.1039/d4cb00206g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
The Sir2 enzyme from Plasmodium falciparum (PfSir2A) is essential for the antigenic variation of this parasite, and its inhibition is expected to have therapeutic effects for malaria. Selective PfSir2A inhibitors are not available yet, partially due to the fact that this enzyme demonstrates extremely weak in vitro deacetylase activity, making the characterization of its inhibitors rather challenging. In the current study, we report the biochemical characterization and inhibitor discovery for this enzyme. PfSir2A exhibits greater enzymatic activity in the presence of DNA for both the peptide and histone protein substrates, suggesting that nucleosomes may be the real substrates of this enzyme. Indeed, it demonstrates robust deacetylase activity against nucleosome substrates, stemming primarily from the tight binding interactions with the nucleosome. In addition to DNA/nucleosome, free fatty acids (FFAs) are also identified as endogenous PfSir2A regulators. Myristic acid, a biologically relevant FFA, shows differential regulation of the two distinct activities of PfSir2A: activates deacetylation, but inhibits defatty-acylation. The structural basis of this differential regulation was further explored. Moreover, synthetic small molecule inhibitors of PfSir2A were discovered through the screening of a library of human sirtuin regulators. The mechanism of inhibition of the lead compounds were investigated. Collectively, the mechanistic insights and inhibitors described in this study will facilitate the future development of small molecule PfSir2A inhibitors as antimalarial agents.
Collapse
Affiliation(s)
- Dickson Donu
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Emily Boyle
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Alyson Curry
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
| | - Yana Cen
- Department of Medicinal Chemistry, Virginia Commonwealth University Richmond VA 23219 USA +1 804-828-7405
- Center for Drug Discovery, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
4
|
Nhim S, Tintó-Font E, Casas-Vila N, Michel-Todó L, Cortés A. Heterochromatin dynamics during the initial stages of sexual development in Plasmodium falciparum. Sci Rep 2024; 14:23180. [PMID: 39369041 PMCID: PMC11455859 DOI: 10.1038/s41598-024-73981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Asexual replication of Plasmodium falciparum in the human blood results in exponential parasite growth and causes all clinical symptoms of malaria. However, at each round of the replicative cycle, some parasites convert into sexual precursors called gametocytes, which develop through different stages until they become infective to mosquito vectors. The genome-wide distribution of heterochromatin, a type of chromatin generally refractory to gene expression, is identical at all asexual blood stages, but is altered in stage II/III and more mature gametocytes. However, it is not known if these changes occur concomitantly with sexual conversion or at a later time during gametocyte development. Using a transgenic line in which massive sexual conversion can be conditionally induced, we show that the genome-wide distribution of heterochromatin at the initial stages of sexual development (i.e., sexual rings and stage I gametocytes) is almost identical to asexual blood stages, and major changes do not occur until stage II/III. However, we found that at loci with heterochromatin alterations, transcriptional changes associated with sexual development typically precede, rather than follow, changes in heterochromatin occupancy.
Collapse
Affiliation(s)
- Sandra Nhim
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Casas-Vila
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lucas Michel-Todó
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfred Cortés
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
5
|
Donu D, Boyle E, Curry A, Cen Y. Biochemical Characterization and Inhibitor Discovery for Pf Sir2A - New Tricks for An Old Enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614941. [PMID: 39386451 PMCID: PMC11463419 DOI: 10.1101/2024.09.25.614941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The Sir2 enzyme from Plasmodium falciparum ( Pf Sir2A) is essential for the antigenic variation of this parasite, and its inhibition is expected to have therapeutic effects for malaria. Selective Pf Sir2A inhibitors are not available yet, partially due to the fact that this enzyme demonstrates extremely weak in vitro deacetylase activity, making the characterization of its inhibitors rather challenging. In the current study, we report the biochemical characterization and inhibitor discovery for this enzyme. Pf Sir2A exhibits greater enzymatic activity in the presence of DNA for both the peptide and histone protein substrates, suggesting that nucleosomes may be the real substrates of this enzyme. Indeed, it demonstrates robust deacetylase activity against nucleosome substrates, stemming primarily from the tight binding interactions with the nucleosome. In addition to DNA/nucleosome, free fatty acids (FFAs) are also identified as endogenous Pf Sir2A regulators. Myristic acid, a biologically relevant FFA, shows differential regulation of the two distinct activities of Pf Sir2A: activates deacetylation, but inhibits defatty-acylation. The structural basis of this differential regulation was further explored. Moreover, synthetic small molecule inhibitors of Pf Sir2A were discovered through the screening of a library of human sirtuin regulators. The mechanism of inhibition of the lead compounds were investigated. Collectively, the mechanistic insights and inhibitors described in this study will facilitate the future development of small molecule Pf Sir2A inhibitors as antimalarial agents.
Collapse
|
6
|
Diffendall G, Scherf A. Deciphering the Plasmodium falciparum perinuclear var gene expression site. Trends Parasitol 2024; 40:707-716. [PMID: 38910098 DOI: 10.1016/j.pt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
The protozoan parasite Plasmodium falciparum, responsible for the deadliest form of human malaria, employs antigenic variation via monoallelic expression as a key survival strategy. The selective activation of one out of the 60-member var gene family is key to understanding the parasite's ability to cause severe disease and evade the host immune response. var gene activation is initiated by its relocation to a specialized expression site. While the perinuclear expression site (PES) plays a crucial role in enabling the expression of a single allele, the characteristics of this PES remain largely obscure. Recent breakthroughs in genome editing tools and the discovery of regulatory noncoding RNAs have shed light on this intriguing biological feature, offering significant insights into the mechanisms of pathogen virulence.
Collapse
Affiliation(s)
- Gretchen Diffendall
- Institut Pasteur, Universite Paris Cité, INSERM U1201, CNRS EMR9195, Paris, France
| | - Artur Scherf
- Institut Pasteur, Universite Paris Cité, INSERM U1201, CNRS EMR9195, Paris, France.
| |
Collapse
|
7
|
Lin L, Liu Y, Liang R, Guo Y, Xu R, Fan R, Jiao Z, Zhao W, Yue L, Lu M, Liu S, Su XZ, Li J. Size-dependent enhancement of gene expression by Plasmodium 5'UTR introns. Parasit Vectors 2024; 17:238. [PMID: 38802937 PMCID: PMC11131223 DOI: 10.1186/s13071-024-06319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Eukaryotic genes contain introns that are removed by the spliceosomal machinery during mRNA maturation. Introns impose a huge energetic burden on a cell; therefore, they must play an essential role in maintaining genome stability and/or regulating gene expression. Many genes (> 50%) in Plasmodium parasites contain predicted introns, including introns in 5' and 3' untranslated regions (UTR). However, the roles of UTR introns in the gene expression of malaria parasites remain unknown. METHODS In this study, an episomal dual-luciferase assay was developed to evaluate gene expression driven by promoters with or without a 5'UTR intron from four Plasmodium yoelii genes. To investigate the effect of the 5'UTR intron on endogenous gene expression, the pytctp gene was tagged with 3xHA at the N-terminal of the coding region, and parasites with or without the 5'UTR intron were generated using the CRISPR/Cas9 system. RESULTS We showed that promoters with 5'UTR introns had higher activities in driving gene expression than those without 5'UTR introns. The results were confirmed in recombinant parasites expressing an HA-tagged gene (pytctp) driven by promoter with or without 5'UTR intron. The enhancement of gene expression was intron size dependent, but not the DNA sequence, e.g. the longer the intron, the higher levels of expression. Similar results were observed when a promoter from one strain of P. yoelii was introduced into different parasite strains. Finally, the 5'UTR introns were alternatively spliced in different parasite development stages, suggesting an active mechanism employed by the parasites to regulate gene expression in various developmental stages. CONCLUSIONS Plasmodium 5'UTR introns enhance gene expression in a size-dependent manner; the presence of alternatively spliced mRNAs in different parasite developmental stages suggests that alternative slicing of 5'UTR introns is one of the key mechanisms in regulating parasite gene expression and differentiation.
Collapse
Affiliation(s)
- Lirong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yanjing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Rui Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yue Guo
- School of Medicine, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Ruixue Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ruoxi Fan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhiwei Jiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Wenting Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lixia Yue
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingke Lu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shengfa Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20850, USA.
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
8
|
Kamble S, Singh S, Suresh A, Singothu S, Dandesena D, Bhandari V, Sharma P. Epidrugs: alternative chemotherapy targeting Theileria annulata schizont stage parasites. Microbiol Spectr 2024; 12:e0325823. [PMID: 38421193 PMCID: PMC10986487 DOI: 10.1128/spectrum.03258-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The growing emergence of resistance to current anti-theilerial agents necessitates the exploration of alternative approaches to drug discovery. This study evaluated the antiparasitic efficacy of 148 compounds derived from an epigenetic inhibitor library against the schizont stage of a Theileria annulata-infected cell line. Initial screening at a concentration of 10 µM identified 27 compounds exhibiting promising anti-theilerial activity. Further investigation, including determination of the 50% inhibitory concentration (IC50) and host cell cytotoxicity assay, highlighted seven highly effective compounds (SAHA, BVT-948, Trichostatin A, Methylstat, Plumbagin, Ryuvidine, and TCE-5003) against T. annulata-infected cells. Analysis of the active compounds revealed their inhibitory action against various human targets, such as HDAC (SAHA and Trichostatin A), SET domain (Ryuvidine), PRMT (BVT-948 and TCE-5003), histone demethylase (Methylstat), and ROS/apoptosis inducer (Plumbagin). We identified gene orthologs of these targets in Theileria and conducted molecular docking studies, demonstrating effective binding of the compounds with their respective targets in the parasite, supported by in vitro data. Additionally, we performed in silico ADME/T predictions, which indicated potential mutagenic and hepatotoxic effects of Plumbagin, Methylstat, and TCE-5003, rendering them unsuitable for drug development. Conversely, SAHA, Trichostatin A, and BVT-948 showed promising characteristics and may represent potential candidates for future development as chemotherapeutic agents against tropical theileriosis. These findings provide valuable insights into the search for novel anti-theilerial drugs and offer a basis for further research in this area.IMPORTANCETheileria annulata is a protozoan parasite responsible for tropical theileriosis, a devastating disease affecting cattle. Traditional chemotherapy has limitations, and the study explores the potential of epidrugs as an alternative treatment approach. Epidrugs are compounds that modify gene expression without altering the underlying DNA sequence, offering a novel way to combat parasitic infections. This research is pivotal as it addresses the urgent need for innovative therapies against T. annulata, contributing to the development of more effective and targeted treatments for infected livestock. Successful implementation of epidrugs could not only enhance the well-being of cattle but also have broader implications for the control of parasitic diseases, showcasing the paper's significance in advancing veterinary science and improving livestock health globally.
Collapse
Affiliation(s)
- Sonam Kamble
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Sakshi Singh
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Akash Suresh
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Siva Singothu
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Debabrata Dandesena
- National Institute of Animal Biotechnology, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
9
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BF, Deitsch KW. Transcriptional plasticity of virulence genes provides malaria parasites with greater adaptive capacity for avoiding host immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584127. [PMID: 38496509 PMCID: PMC10942408 DOI: 10.1101/2024.03.08.584127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Chronic, asymptomatic malaria infections contribute substantially to disease transmission and likely represent the most significant impediment preventing malaria elimination and eradication. Plasmodium falciparum parasites evade antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. This process can extend infections for up to a year; however, infections have been documented to last for over a decade, constituting an unseen reservoir of parasites that undermine eradication and control efforts. How parasites remain immunologically "invisible" for such lengthy periods is entirely unknown. Here we show that in addition to the accepted paradigm of mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. This unappreciated flexibility provides parasites with greater adaptive capacity than previously understood and challenges the dogma of mutually exclusive var gene expression. It also provides an explanation for the antigenically "invisible" parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
| | | | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | | | - Björn F.C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
10
|
Reyser T, Paloque L, Augereau JM, Di Stefano L, Benoit-Vical F. Epigenetic regulation as a therapeutic target in the malaria parasite Plasmodium falciparum. Malar J 2024; 23:44. [PMID: 38347549 PMCID: PMC10863139 DOI: 10.1186/s12936-024-04855-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Over the past thirty years, epigenetic regulation of gene expression has gained increasing interest as it was shown to be implicated in illnesses ranging from cancers to parasitic diseases. In the malaria parasite, epigenetics was shown to be involved in several key steps of the complex life cycle of Plasmodium, among which asexual development and sexual commitment, but also in major biological processes like immune evasion, response to environmental changes or DNA repair. Because epigenetics plays such paramount roles in the Plasmodium parasite, enzymes involved in these regulating pathways represent a reservoir of potential therapeutic targets. This review focuses on epigenetic regulatory processes and their effectors in the malaria parasite, as well as the inhibitors of epigenetic pathways and their potential as new anti-malarial drugs. Such types of drugs could be formidable tools that may contribute to malaria eradication in a context of widespread resistance to conventional anti-malarials.
Collapse
Affiliation(s)
- Thibaud Reyser
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Michel Augereau
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Luisa Di Stefano
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Françoise Benoit-Vical
- LCC-CNRS, Laboratoire de Chimie de Coordination, CNRS, Université de Toulouse, Toulouse, France.
- MAAP, Inserm ERL 1289, Team "New Antiplasmodial Molecules and Pharmacological Approaches", Toulouse, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
11
|
Subudhi AK, Green JL, Satyam R, Salunke RP, Lenz T, Shuaib M, Isaioglou I, Abel S, Gupta M, Esau L, Mourier T, Nugmanova R, Mfarrej S, Shivapurkar R, Stead Z, Rached FB, Ostwal Y, Sougrat R, Dada A, Kadamany AF, Fischle W, Merzaban J, Knuepfer E, Ferguson DJP, Gupta I, Le Roch KG, Holder AA, Pain A. DNA-binding protein PfAP2-P regulates parasite pathogenesis during malaria parasite blood stages. Nat Microbiol 2023; 8:2154-2169. [PMID: 37884813 PMCID: PMC10627835 DOI: 10.1038/s41564-023-01497-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Judith L Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
| | - Rohit Satyam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Rahul P Salunke
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Muhammad Shuaib
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Luke Esau
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Raushan Nugmanova
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Rupali Shivapurkar
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Zenaida Stead
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Yogesh Ostwal
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Rachid Sougrat
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ashraf Dada
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
- College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Abdullah Fuaad Kadamany
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK
- Molecular and Cellular Parasitology Laboratory, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, UK.
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
12
|
Almojil D, Diawara A, Soulama I, Dieng MM, Manikandan V, Sermé SS, Sombié S, Diarra A, Barry A, Coulibaly SA, Sirima SB, Idaghdour Y. Impact of Plasmodium falciparum infection on DNA methylation of circulating immune cells. Front Genet 2023; 14:1197933. [PMID: 37470040 PMCID: PMC10352500 DOI: 10.3389/fgene.2023.1197933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
The regulation of immune cell responses to infection is a complex process that involves various molecular mechanisms, including epigenetic regulation. DNA methylation has been shown to play central roles in regulating gene expression and modulating cell response during infection. However, the nature and extent to which DNA methylation is involved in the host immune response in human malaria remains largely unknown. Here, we present a longitudinal study investigating the temporal dynamics of genome-wide in vivo DNA methylation profiles using 189 MethylationEPIC 850 K profiles from 66 children in Burkina Faso, West Africa, sampled three times: before infection, during symptomatic parasitemia, and after malaria treatment. The results revealed major changes in the DNA methylation profiles of children in response to both Plasmodium falciparum infection and malaria treatment, with widespread hypomethylation of CpGs upon infection (82% of 6.8 K differentially methylated regions). We document a remarkable reversal of CpG methylation profiles upon treatment to pre-infection states. These changes implicate divergence in core immune processes, including the regulation of lymphocyte, neutrophil, and myeloid leukocyte function. Integrative DNA methylation-mRNA analysis of a top differentially methylated region overlapping the pro-inflammatory gene TNF implicates DNA methylation of TNF cis regulatory elements in the molecular mechanisms of TNF regulation in human malaria. Our results highlight a central role of epigenetic regulation in mounting the host immune response to P. falciparum infection and in response to malaria treatment.
Collapse
Affiliation(s)
- Dareen Almojil
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuel S. Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Sodiomon B. Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Subudhi AK, Green JL, Satyam R, Lenz T, Salunke RP, Shuaib M, Isaioglou I, Abel S, Gupta M, Esau L, Mourier T, Nugmanova R, Mfarrej S, Sivapurkar R, Stead Z, Rached FB, Otswal Y, Sougrat R, Dada A, Kadamany AF, Fischle W, Merzaban J, Knuepfer E, Ferguson DJP, Gupta I, Le Roch KG, Holder AA, Pain A. PfAP2-MRP DNA-binding protein is a master regulator of parasite pathogenesis during malaria parasite blood stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541898. [PMID: 37293082 PMCID: PMC10245809 DOI: 10.1101/2023.05.23.541898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Judith L Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Rohit Satyam
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi, Delhi 110025, India
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Rahul P Salunke
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Muhammad Shuaib
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ioannis Isaioglou
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Luke Esau
- KAUST Core Labs, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tobias Mourier
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Raushan Nugmanova
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sara Mfarrej
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rupali Sivapurkar
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zenaida Stead
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Fathia Ben Rached
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yogesh Otswal
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Rachid Sougrat
- KAUST Core Labs, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ashraf Dada
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Fuaad Kadamany
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Kingdom of Saudi Arabia
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford OX1 2JD, United Kingdom
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Group, Bioscience Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- International Institute for Zoonosis Control; Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Schneider V, Visone J, Harris C, Florini F, Hadjimichael E, Zhang X, Gross M, Rhee K, Ben Mamoun C, Kafsack B, Deitsch K. The human malaria parasite Plasmodium falciparum can sense environmental changes and respond by antigenic switching. Proc Natl Acad Sci U S A 2023; 120:e2302152120. [PMID: 37068249 PMCID: PMC10151525 DOI: 10.1073/pnas.2302152120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.
Collapse
Affiliation(s)
- Victoria M. Schneider
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Laboratory of Chemical Biology and Microbial Pathogenesis, Rockefeller University, New York, NY 10065
| | - Joseph E. Visone
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Chantal T. Harris
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Mackensie R. Gross
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kyu Y. Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Choukri Ben Mamoun
- Section of Infectious Disease, Department of Microbial Pathogenesis, Yale School of Medicine, Yale University New Haven, CT 06510
| | - Björn F. C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| |
Collapse
|
15
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
16
|
Khurana J, Shrivastava A, Singh A, Gupta A. Exploring potential of Plasmodium RUVBL proteins as anti-malarial drug target. J Biomol Struct Dyn 2023; 41:736-752. [PMID: 34877896 DOI: 10.1080/07391102.2021.2011418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although malaria related cases and deaths have consistently declined over time, growing resistance to existing anti-malarial drugs in Plasmodium remains a matter of extreme concern. Since we rely so heavily on use of chemotherapy for malaria treatment and knowing that all the available anti-malarial drug will become virtually useless in the near future, we have to increase our understanding of basic biology of the parasite as well as characterize new molecular targets that can be exploited for anti-malarial therapy. In the present study, PfRUVBLs (AAA family member proteins) were evaluated for their potential as novel anti-malarial drug target candidates, using computational approaches. Virtual High-throughput screening of various pharmacophore libraries obtained from three different databases (which included, Asinex, ZINC15 & PubChem) followed by extra precision docking, resulted in identification of relevant hit compounds that showed binding affinity with the active region of PfRUVBL1 protein. Based on molecular docking data, MD simulations, and protein-ligand interaction studies, combined with toxicity assessment & ADME profiling data, at least three best hits were eventually identified that could be novel potent inhibitors of PfRUVBL1 protein and can be further tested for anti-malarial activity using in vitro protocols. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juhi Khurana
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashish Shrivastava
- Bioinformatics Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashutosh Singh
- Bioinformatics Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Department of Life Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
17
|
Zhang X, Florini F, Visone JE, Lionardi I, Gross MR, Patel V, Deitsch KW. A coordinated transcriptional switching network mediates antigenic variation of human malaria parasites. eLife 2022; 11:e83840. [PMID: 36515978 PMCID: PMC9833823 DOI: 10.7554/elife.83840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria parasites avoid immune clearance through their ability to systematically alter antigens exposed on the surface of infected red blood cells. This is accomplished by tightly regulated transcriptional control of individual members of a large, multicopy gene family called var and is the key to both the virulence and chronic nature of malaria infections. Expression of var genes is mutually exclusive and controlled epigenetically, however how large populations of parasites coordinate var gene switching to avoid premature exposure of the antigenic repertoire is unknown. Here, we provide evidence for a transcriptional network anchored by a universally conserved gene called var2csa that coordinates the switching process. We describe a structured switching bias that shifts overtime and could shape the pattern of var expression over the course of a lengthy infection. Our results provide an explanation for a previously mysterious aspect of malaria infections and shed light on how parasites possessing a relatively small repertoire of variant antigen-encoding genes can coordinate switching events to limit antigen exposure, thereby maintaining chronic infections.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Joseph E Visone
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Irina Lionardi
- Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medical CollegeNew YorkUnited States
| | - Mackensie R Gross
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Valay Patel
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
18
|
Reader J, Opperman DFL, van der Watt ME, Theron A, Leshabane M, da Rocha S, Turner J, Garrabrant K, Piña I, Mills C, Woster PM, Birkholtz L. New Transmission-Selective Antimalarial Agents through Hit-to-Lead Optimization of 2-([1,1'-Biphenyl]-4-carboxamido)benzoic Acid Derivatives. Chembiochem 2022; 23:e202200427. [PMID: 36106425 PMCID: PMC10946866 DOI: 10.1002/cbic.202200427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/14/2022] [Indexed: 11/12/2022]
Abstract
Malaria elimination requires multipronged approaches, including the application of antimalarial drugs able to block human-to-mosquito transmission of malaria parasites. The transmissible gametocytes of Plasmodium falciparum seem to be highly sensitive towards epidrugs, particularly those targeting demethylation of histone post-translational marks. Here, we report exploration of compounds from a chemical library generated during hit-to-lead optimization of inhibitors of the human histone lysine demethylase, KDM4B. Derivatives of 2-([1,1'-biphenyl]-4-carboxamido) benzoic acid, around either the amide or a sulfonamide linker backbone (2-(arylcarboxamido)benzoic acid, 2-carboxamide (arylsulfonamido)benzoic acid and N-(2-(1H-tetrazol-5-yl)phenyl)-arylcarboxamide), showed potent activity towards late-stage gametocytes (stage IV/V) of P. falciparum, with the most potent compound reaching single digit nanomolar activity. Structure-activity relationship trends were evident and frontrunner compounds also displayed microsomal stability and favourable solubility profiles. Simplified synthetic routes support further derivatization of these compounds for further development of these series as malaria transmission-blocking agents.
Collapse
Affiliation(s)
- Janette Reader
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Daniel F. L. Opperman
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Mariëtte E. van der Watt
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
- School of Health Systems and Public HealthUniversity of Pretoria, HatfieldPretoria0028South Africa
| | - Anjo Theron
- Next Generation HealthCouncil for Scientific and Industrial ResearchPretoria0001South Africa
| | - Meta Leshabane
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Shanté da Rocha
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| | - Jonathan Turner
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Kathleen Garrabrant
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Ivett Piña
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Catherine Mills
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Patrick M. Woster
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSC 29425USA
| | - Lyn‐Marié Birkholtz
- Department of BiochemistryGenetics and MicrobiologyInstitute for Sustainable Malaria ControlUniversity of PretoriaLynnwood RoadPretoria0028South Africa
| |
Collapse
|
19
|
Epigenetic and Epitranscriptomic Gene Regulation in Plasmodium falciparum and How We Can Use It against Malaria. Genes (Basel) 2022; 13:genes13101734. [PMID: 36292619 PMCID: PMC9601349 DOI: 10.3390/genes13101734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria, caused by Plasmodium parasites, is still one of the biggest global health challenges. P. falciparum is the deadliest species to humans. In this review, we discuss how this parasite develops and adapts to the complex and heterogenous environments of its two hosts thanks to varied chromatin-associated and epigenetic mechanisms. First, one small family of transcription factors, the ApiAP2 proteins, functions as master regulators of spatio-temporal patterns of gene expression through the parasite life cycle. In addition, chromatin plasticity determines variable parasite cell phenotypes that link to parasite growth, virulence and transmission, enabling parasite adaptation within host conditions. In recent years, epitranscriptomics is emerging as a new regulatory layer of gene expression. We present evidence of the variety of tRNA and mRNA modifications that are being characterized in Plasmodium spp., and the dynamic changes in their abundance during parasite development and cell fate. We end up outlining that new biological systems, like the mosquito model, to decipher the unknowns about epigenetic mechanisms in vivo; and novel methodologies, to study the function of RNA modifications; are needed to discover the Achilles heel of the parasite. With this new knowledge, future strategies manipulating the epigenetics and epitranscriptomic machinery of the parasite have the potential of providing new weapons against malaria.
Collapse
|
20
|
Baumgarten S, Bryant J. Chromatin structure can introduce systematic biases in genome-wide analyses of Plasmodium falciparum. OPEN RESEARCH EUROPE 2022; 2:75. [PMID: 37645349 PMCID: PMC10445928 DOI: 10.12688/openreseurope.14836.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 08/31/2023]
Abstract
Background: The maintenance, regulation, and dynamics of heterochromatin in the human malaria parasite, Plasmodium falciparum, has drawn increasing attention due to its regulatory role in mutually exclusive virulence gene expression and the silencing of key developmental regulators. The advent of genome-wide analyses such as chromatin-immunoprecipitation followed by sequencing (ChIP-seq) has been instrumental in understanding chromatin composition; however, even in model organisms, ChIP-seq experiments are susceptible to intrinsic experimental biases arising from underlying chromatin structure. Methods: We performed a control ChIP-seq experiment, re-analyzed previously published ChIP-seq datasets and compared different analysis approaches to characterize biases of genome-wide analyses in P. falciparum. Results: We found that heterochromatic regions in input control samples used for ChIP-seq normalization are systematically underrepresented in regard to sequencing coverage across the P. falciparum genome. This underrepresentation, in combination with a non-specific or inefficient immunoprecipitation, can lead to the identification of false enrichment and peaks across these regions. We observed that such biases can also be seen at background levels in specific and efficient ChIP-seq experiments. We further report on how different read mapping approaches can also skew sequencing coverage within highly similar subtelomeric regions and virulence gene families. To ameliorate these issues, we discuss orthogonal methods that can be used to characterize bona fide chromatin-associated proteins. Conclusions: Our results highlight the impact of chromatin structure on genome-wide analyses in the parasite and the need for caution when characterizing chromatin-associated proteins and features.
Collapse
Affiliation(s)
| | - Jessica Bryant
- Biology of Host-Parasite Interactions Unit, Pasteur Institute, Paris, Paris, 75015, France
- CNRS ERL9195, Paris, 75015, France
- INSERM U1201, Paris, France
| |
Collapse
|
21
|
Sethumadhavan DV, Tiburcio M, Kanyal A, Jabeena CA, Govindaraju G, Karmodiya K, Rajavelu A. Chromodomain Protein Interacts with H3K9me3 and Controls RBC Rosette Formation by Regulating the Expression of a Subset of RIFINs in the Malaria Parasite. J Mol Biol 2022; 434:167601. [PMID: 35460670 DOI: 10.1016/j.jmb.2022.167601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum expresses clonally variant proteins on the surface of infected erythrocytes to evade the host immune system. The clonally variant multigene families include var, rifin, and stevor, which express Erythrocyte Membrane Protein 1 (EMP1), Repetitive Interspersed Families of polypeptides (RIFINs), and Sub-telomeric Variable Open Reading frame (STEVOR) proteins, respectively. The rifins are the largest multigene family and are essentially involved in the RBC rosetting, the hallmark of severe malaria. The molecular regulators that control the RIFINs expression in Plasmodium spp. have not been reported so far. This study reports a chromodomain-containing protein (PfCDP) that binds to H3K9me3 modification on P. falciparum chromatin. Conditional deletion of the chromodomain (CD) gene in P. falciparum using an inducible DiCre-LoxP system leads to selective up-regulation of a subset of virulence genes, including rifins, a few var, and stevor genes. Further, we show that PfCDP conditional knockout (PfΔCDP) promotes RBC rosette formation. This study provides the first evidence of an epigenetic regulator mediated control on a subset of RIFINs expression and RBC rosetting by P. falciparum.
Collapse
Affiliation(s)
- Devadathan Valiyamangalath Sethumadhavan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Marta Tiburcio
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India. https://twitter.com/AbhishekKanyal7
| | - C A Jabeena
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Gayathri Govindaraju
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Ph.D registered with Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, Maharashtra, India. https://twitter.com/Krishanpal_K
| | - Arumugam Rajavelu
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Chennai, Tamil Nadu 600 036, India; Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695 014, Kerala, India.
| |
Collapse
|
22
|
Saxena H, Gupta A. P. falciparum PfRUVBL proteins binds at TARE region and var gene promoter located in subtelomeric region. Pathog Dis 2022; 80:6595874. [PMID: 35640888 DOI: 10.1093/femspd/ftac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In order to survive and establish infection, Plasmodium parasite employ various strategies to evade host immune response. Var genes family, a repertoire of 60 genes, express parasite-specific protein PfEMP1, a variable surface antigen, on the membrane of infected erythrocyte, and by continuously switching the variants of PfEMP1, helps the parasite to avoid detection and destruction by host immune system during intra-erythrocytic developmental cycle. Although chromatin modifications are recognized to be a prominent phenomenon in regulation of mono-allelic expression of these var genes, however the precise histone codes and molecular players & mechanisms guiding these modifications are yet to be unravelled in depth. In this study, we have functionally characterized RUVBL proteins of P. falciparum and shown that PfMYST (an essential lysine acetyl transferase) and PfRUVBL protein complex occupy the TARE region and var gene promoter in ring stage of the parasite. Further we have demonstrated that PfMYST/PfRUVBL complex interact with core histone, H3 & H4. Overall the findings of this study adds a layer by identifying the potential role of epigenetic regulators, PfMYST & PfRUVBL in regulation of monoallelic expression of var genes in malaria parasite.
Collapse
Affiliation(s)
- Himani Saxena
- Epigenetics and Human disease laboratory, Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - Ashish Gupta
- Epigenetics and Human disease laboratory, Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| |
Collapse
|
23
|
Tintó-Font E, Cortés A. Malaria parasites do respond to heat. Trends Parasitol 2022; 38:435-449. [PMID: 35301987 DOI: 10.1016/j.pt.2022.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023]
Abstract
The capacity of malaria parasites to respond to changes in their environment at the transcriptional level has been the subject of debate, but recent evidence has unambiguously demonstrated that Plasmodium spp. can produce adaptive transcriptional responses when exposed to some specific types of stress. These include metabolic conditions and febrile temperature. The Plasmodium falciparum protective response to thermal stress is similar to the response in other organisms, but it is regulated by a transcription factor evolutionarily unrelated to the conserved transcription factor that drives the heat shock (HS) response in most eukaryotes. Of the many genes that change expression during HS, only a subset constitutes an authentic response that contributes to parasite survival.
Collapse
Affiliation(s)
- Elisabet Tintó-Font
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain; ICREA, Barcelona 08010, Catalonia, Spain.
| |
Collapse
|
24
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
25
|
5-methylcytosine modification by Plasmodium NSUN2 stabilizes mRNA and mediates the development of gametocytes. Proc Natl Acad Sci U S A 2022; 119:2110713119. [PMID: 35210361 PMCID: PMC8892369 DOI: 10.1073/pnas.2110713119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
5-methylcytosine (m5C) is an important epitranscriptomic modification involved in messenger RNA (mRNA) stability and translation efficiency in various biological processes. However, it remains unclear if m5C modification contributes to the dynamic regulation of the transcriptome during the developmental cycles of Plasmodium parasites. Here, we characterize the landscape of m5C mRNA modifications at single nucleotide resolution in the asexual replication stages and gametocyte sexual stages of rodent (Plasmodium yoelii) and human (Plasmodium falciparum) malaria parasites. While different representations of m5C-modified mRNAs are associated with the different stages, the abundance of the m5C marker is strikingly enhanced in the transcriptomes of gametocytes. Our results show that m5C modifications confer stability to the Plasmodium transcripts and that a Plasmodium ortholog of NSUN2 is a major mRNA m5C methyltransferase in malaria parasites. Upon knockout of P. yoelii nsun2 (pynsun2), marked reductions of m5C modification were observed in a panel of gametocytogenesis-associated transcripts. These reductions correlated with impaired gametocyte production in the knockout rodent malaria parasites. Restoration of the nsun2 gene in the knockout parasites rescued the gametocyte production phenotype as well as m5C modification of the gametocytogenesis-associated transcripts. Together with the mRNA m5C profiles for two species of Plasmodium, our findings demonstrate a major role for NSUN2-mediated m5C modifications in mRNA transcript stability and sexual differentiation in malaria parasites.
Collapse
|
26
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
27
|
Shang X, Wang C, Fan Y, Guo G, Wang F, Zhao Y, Sheng F, Tang J, He X, Yu X, Zhang M, Zhu G, Yin S, Mu J, Culleton R, Cao J, Jiang M, Zhang Q. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3413-3431. [PMID: 35288749 PMCID: PMC8989538 DOI: 10.1093/nar/gkac176] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heterochromatin-associated gene silencing controls multiple physiological processes in malaria parasites, however, little is known concerning the regulatory network and cis-acting sequences involved in the organization of heterochromatin and how they modulate heterochromatic gene expression. Based on systematic profiling of genome-wide occupancy of eighteen Apicomplexan AP2 transcription factors by ChIP-seq analysis, we identify and characterize eight heterochromatin-associated factors (PfAP2-HFs), which exhibit preferential enrichment within heterochromatic regions but with differential coverage profiles. Although these ApiAP2s target euchromatic gene loci via specific DNA motifs, they are likely integral components of heterochromatin independent of DNA motif recognition. Systematic knockout screenings of ApiAP2 factors coupled with RNA-seq transcriptomic profiling revealed three activators and three repressors of heterochromatic gene expression including four PfAP2-HFs. Notably, expression of virulence genes is either completely silenced or significantly reduced upon the depletion of PfAP2-HC. Integrated multi-omics analyses reveal autoregulation and feed-forward loops to be common features of the ApiAP2 regulatory network, in addition to the occurrence of dynamic interplay between local chromatin structure and ApiAP2s in transcriptional control. Collectively, this study provides a valuable resource describing the genome-wide landscape of the ApiAP2 family and insights into functional divergence and cooperation within this family during the blood-stage development of malaria parasites.
Collapse
Affiliation(s)
| | | | | | | | - Fei Wang
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital; Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yuemeng Zhao
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital; Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fei Sheng
- Laboratory of Molecular Parasitology, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital; Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianxia Tang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Xiaoqin He
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Meihua Zhang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Guoding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892-8132, USA
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Jun Cao
- Correspondence may also be addressed to Jun Cao. Tel: +05 10 6878 1007;
| | - Mei Jiang
- Correspondence may also be addressed to Mei Jiang. Tel: +86 21 6598 5138;
| | - Qingfeng Zhang
- To whom correspondence should be addressed. Tel: +86 21 6598 5138;
| |
Collapse
|
28
|
Abstract
Malaria parasites need to cope with changing environmental conditions that require strong countermeasures to ensure pathogen survival in the human and mosquito hosts. The molecular mechanisms that protect Plasmodium falciparum homeostasis during the complex life cycle remain unknown. Here, we identify cytosine methylation of tRNAAsp (GTC) as being critical to maintain stable protein synthesis. Using conditional knockout (KO) of a member of the DNA methyltransferase family, called Pf-DNMT2, RNA bisulfite sequencing demonstrated the selective cytosine methylation of this enzyme of tRNAAsp (GTC) at position C38. Although no growth defect on parasite proliferation was observed, Pf-DNMT2KO parasites showed a selective downregulation of proteins with a GAC codon bias. This resulted in a significant shift in parasite metabolism, priming KO parasites for being more sensitive to various types of stress. Importantly, nutritional stress made tRNAAsp (GTC) sensitive to cleavage by an unknown nuclease and increased gametocyte production (>6-fold). Our study uncovers an epitranscriptomic mechanism that safeguards protein translation and homeostasis of sexual commitment in malaria parasites. IMPORTANCE P. falciparum is the most virulent malaria parasite species, accounting for the majority of the disease mortality and morbidity. Understanding how this pathogen is able to adapt to different cellular and environmental stressors during its complex life cycle is crucial in order to develop new strategies to tackle the disease. In this study, we identified the writer of a specific tRNA cytosine methylation site as a new layer of epitranscriptomic regulation in malaria parasites that regulates the translation of a subset of parasite proteins (>400) involved in different metabolic pathways. Our findings give insight into a novel molecular mechanism that regulates P. falciparum response to drug treatment and sexual commitment.
Collapse
|
29
|
Miao J, Wang C, Lucky AB, Liang X, Min H, Adapa SR, Jiang R, Kim K, Cui L. A unique GCN5 histone acetyltransferase complex controls erythrocyte invasion and virulence in the malaria parasite Plasmodium falciparum. PLoS Pathog 2021; 17:e1009351. [PMID: 34403450 PMCID: PMC8396726 DOI: 10.1371/journal.ppat.1009351] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/27/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
The histone acetyltransferase GCN5-associated SAGA complex is evolutionarily conserved from yeast to human and functions as a general transcription co-activator in global gene regulation. In this study, we identified a divergent GCN5 complex in Plasmodium falciparum, which contains two plant homeodomain (PHD) proteins (PfPHD1 and PfPHD2) and a plant apetela2 (AP2)-domain transcription factor (PfAP2-LT). To dissect the functions of the PfGCN5 complex, we generated parasite lines with either the bromodomain in PfGCN5 or the PHD domain in PfPHD1 deleted. The two deletion mutants closely phenocopied each other, exhibiting significantly reduced merozoite invasion of erythrocytes and elevated sexual conversion. These domain deletions caused dramatic decreases not only in histone H3K9 acetylation but also in H3K4 trimethylation, indicating synergistic crosstalk between the two euchromatin marks. Domain deletion in either PfGCN5 or PfPHD1 profoundly disturbed the global transcription pattern, causing altered expression of more than 60% of the genes. At the schizont stage, these domain deletions were linked to specific down-regulation of merozoite genes involved in erythrocyte invasion, many of which contain the AP2-LT binding motif and are also regulated by AP2-I and BDP1, suggesting targeted recruitment of the PfGCN5 complex to the invasion genes by these specific factors. Conversely, at the ring stage, PfGCN5 or PfPHD1 domain deletions disrupted the mutually exclusive expression pattern of the entire var gene family, which encodes the virulent factor PfEMP1. Correlation analysis between the chromatin state and alteration of gene expression demonstrated that up- and down-regulated genes in these mutants are highly correlated with the silent and active chromatin states in the wild-type parasite, respectively. Collectively, the PfGCN5 complex represents a novel HAT complex with a unique subunit composition including an AP2 transcription factor, which signifies a new paradigm for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist. Epigenetic regulation of gene expression plays essential roles in orchestrating the general and parasite-specific cellular pathways in the malaria parasite Plasmodium falciparum. To better understand the epigenetic mechanisms in this parasite, we characterized the histone acetyltransferase GCN5-mediated transcription regulation during intraerythrocytic development of the parasite. Using tandem affinity purification and proteomic characterization, we identified that the PfGCN5-associated complex contains nine core components, including two PHD domain proteins (PfPHD1 and PfPHD2) and an AP2-domain transcription factor, which is divergent from the canonical GCN5 complexes evolutionarily conserved from yeast to human. To understand the functions of the PfGCN5 complex, we performed domain deletions in two subunits of this complex, PfGCN5 and PfPHD1. We found that the two deletion mutants displayed very similar growth phenotypes, including significantly reduced merozoite invasion rates and elevated sexual conversion. These two mutants were associated with dramatic decreases in histone H3K9 acetylation and H3K4 trimethylation, which led to global changes in chromatin states and gene expression. Consistent with the phenotypes, genes significantly affected by the PfGCN5 and PfPHD1 gene disruption include those participating in parasite-specific pathways such as invasion, virulence, and sexual development. In conclusion, this study presents a new model of the PfGCN5 complex for targeting the co-activator complex to regulate general and parasite-specific cellular processes in this low-branching parasitic protist.
Collapse
Affiliation(s)
- Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JM); (LC)
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Rays Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Kami Kim
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail: (JM); (LC)
| |
Collapse
|
30
|
Expression Patterns of Plasmodium falciparum Clonally Variant Genes at the Onset of a Blood Infection in Malaria-Naive Humans. mBio 2021; 12:e0163621. [PMID: 34340541 PMCID: PMC8406225 DOI: 10.1128/mbio.01636-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonally variant genes (CVGs) play fundamental roles in the adaptation of Plasmodium falciparum to fluctuating conditions of the human host. However, their expression patterns under the natural conditions of the blood circulation have been characterized in detail for only a few specific gene families. Here, we provide a detailed characterization of the complete P. falciparum transcriptome across the full intraerythrocytic development cycle (IDC) at the onset of a blood infection in malaria-naive human volunteers. We found that the vast majority of transcriptional differences between parasites obtained from the volunteers and the parental parasite line maintained in culture occurred in CVGs. In particular, we observed a major increase in the transcript levels of most genes of the pfmc-2tm and gbp families and of specific genes of other families, such as phist, hyp10, rif, or stevor, in addition to previously reported changes in var and clag3 gene expression. Increased transcript levels of individual pfmc-2tm, rif, and stevor genes involved activation in small subsets of parasites. Large transcriptional differences correlated with changes in the distribution of heterochromatin, confirming their epigenetic nature. Furthermore, the similar expression of several CVGs between parasites collected at different time points along the blood infection suggests that the epigenetic memory for multiple CVG families is lost during transmission stages, resulting in a reset of their transcriptional state. Finally, the CVG expression patterns observed in a volunteer likely infected by a single sporozoite suggest that new epigenetic patterns are established during liver stages.
Collapse
|
31
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
32
|
Le Govic Y, Houzé S, Papon N. Repurposing Anticancer Drugs To Tackle Malaria. ChemMedChem 2021; 16:2192-2194. [PMID: 33931947 DOI: 10.1002/cmdc.202100176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Despite considerable efforts, malaria remains one of the most devastating infectious disease worldwide. In the absence of an effective vaccine, the prophylaxis and management of Plasmodium infections still rely on the therapeutic use of antimalarial agents. However, the emergence of resistant parasites has jeopardized the efficiency of virtually all antimalarial drugs, including artemisinin combination therapies (ACTs). Thus, there is an urgent need for innovative treatments with novel targets to avoid or overcome drug resistance. In this context, Huang & colleagues prioritized compounds that can block the activity of epigenetic enzymes, and described the discovery of a selective P. falciparum histone deacetylase (HDAC) inhibitor with high activity against various stages of the parasite. These findings may pave the way toward developing new lead compounds with broad-spectrum activity, thus facilitating malaria treatment and elimination.
Collapse
Affiliation(s)
- Yohann Le Govic
- Laboratoire de Parasitologie-Mycologie, Centre de Biologie Humaine, CHU Amiens Picardie - site Sud, Amiens, France.,Agents Infectieux, Résistance et Chimiothérapie (AGIR), UR 4294, Université de Picardie Jules Verne, UFR de Pharmacie, Amiens, France
| | - Sandrine Houzé
- CNR du Paludisme, AP-HP, Hôpital Bichat - Claude-Bernard, Laboratoire de Parasitologie-Mycologie, UMR261 Merit, Université de Paris, Paris, France
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP), EA 3142, UNIV Angers, UNIV Brest, SFR 4208 ICAT, Angers, France
| |
Collapse
|
33
|
Carrington E, Cooijmans RHM, Keller D, Toenhake CG, Bártfai R, Voss TS. The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite Plasmodium falciparum. iScience 2021; 24:102444. [PMID: 33997710 PMCID: PMC8105651 DOI: 10.1016/j.isci.2021.102444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites undergo a complex life cycle in the human host and the mosquito vector. The ApiAP2 family of DNA-binding proteins plays a dominant role in parasite development and life cycle progression. Most ApiAP2 factors studied to date act as transcription factors regulating stage-specific gene expression. Here, we characterized an ApiAP2 factor in Plasmodium falciparum that we termed PfAP2-HC. We demonstrate that PfAP2-HC specifically binds to heterochromatin throughout the genome. Intriguingly, PfAP2-HC does not bind DNA in vivo and recruitment of PfAP2-HC to heterochromatin is independent of its DNA-binding domain but strictly dependent on heterochromatin protein 1. Furthermore, our results suggest that PfAP2-HC functions neither in the regulation of gene expression nor in heterochromatin formation or maintenance. In summary, our findings reveal PfAP2-HC as a core component of heterochromatin in malaria parasites and identify unexpected properties and substantial functional divergence among the members of the ApiAP2 family of regulatory proteins. The ApiAP2 factor AP2-HC is a core component of heterochromatin in malaria parasites Binding of AP2-HC to heterochromatin strictly depends on heterochromatin protein 1 The AP2 DNA-binding domain of AP2-HC is dispensable for heterochromatin association
Collapse
Affiliation(s)
- Eilidh Carrington
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Dominique Keller
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Till Steffen Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
34
|
Connacher J, Josling GA, Orchard LM, Reader J, Llinás M, Birkholtz LM. H3K36 methylation reprograms gene expression to drive early gametocyte development in Plasmodium falciparum. Epigenetics Chromatin 2021; 14:19. [PMID: 33794978 PMCID: PMC8017609 DOI: 10.1186/s13072-021-00393-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The Plasmodium sexual gametocyte stages are the only transmissible form of the malaria parasite and are thus responsible for the continued transmission of the disease. Gametocytes undergo extensive functional and morphological changes from commitment to maturity, directed by an equally extensive control program. However, the processes that drive the differentiation and development of the gametocyte post-commitment, remain largely unexplored. A previous study reported enrichment of H3K36 di- and tri-methylated (H3K36me2&3) histones in early-stage gametocytes. Using chromatin immunoprecipitation followed by high-throughput sequencing, we identify a stage-specific association between these repressive histone modifications and transcriptional reprogramming that define a stage II gametocyte transition point. Results Here, we show that H3K36me2 and H3K36me3 from stage II gametocytes are associated with repression of genes involved in asexual proliferation and sexual commitment, indicating that H3K36me2&3-mediated repression of such genes is essential to the transition from early gametocyte differentiation to intermediate development. Importantly, we show that the gene encoding the transcription factor AP2-G as commitment master regulator is enriched with H3K36me2&3 and actively repressed in stage II gametocytes, providing the first evidence of ap2-g gene repression in post-commitment gametocytes. Lastly, we associate the enhanced potency of the pan-selective Jumonji inhibitor JIB-04 in gametocytes with the inhibition of histone demethylation including H3K36me2&3 and a disruption of normal transcriptional programs. Conclusions Taken together, our results provide the first description of an association between global gene expression reprogramming and histone post-translational modifications during P. falciparum early sexual development. The stage II gametocyte-specific abundance of H3K36me2&3 manifests predominantly as an independent regulatory mechanism targeted towards genes that are repressed post-commitment. H3K36me2&3-associated repression of genes is therefore involved in key transcriptional shifts that accompany the transition from early gametocyte differentiation to intermediate development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00393-9.
Collapse
Affiliation(s)
- Jessica Connacher
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gabrielle A Josling
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
35
|
Inhibition of PfMYST Histone Acetyltransferase Activity Blocks Plasmodium falciparum Growth and Survival. Antimicrob Agents Chemother 2020; 65:AAC.00953-20. [PMID: 33046499 DOI: 10.1128/aac.00953-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
One of the major barriers in the prevention and control of malaria programs worldwide is the growing emergence of multidrug resistance in Plasmodium parasites, and this necessitates continued efforts to discover and develop effective drug molecules targeting novel proteins essential for parasite survival. In recent years, epigenetic regulators have evolved as an attractive drug target option owing to their crucial role in survival and development of Plasmodium at different stages of its life cycle. PfMYST, a histone acetyltransferase protein, is known to regulate key cellular processes, such as cell cycle progression, DNA damage repair, and antigenic variation, that facilitate parasite growth, adaptation, and survival inside its host. With the aim of assessing the therapeutic potential of PfMYST as a novel drug target, we examined the effect of NU9056 (an HsTIP60 inhibitor) on the rate of parasite growth and survival. In the present study, by using a yeast complementation assay, we established that PfMYST is a true homolog of TIP60 and showed that NU9056 can inhibit PfMYST catalytic activity and kill P. falciparum parasites in culture. Inhibiting the catalytic activity of PfMYST arrests the parasite in the trophozoite stage and inhibits its further transition to the schizont stage, eventually leading to its death. Overall, our study provides proof of concept that PfMYST catalytic activity is essential for parasite growth and survival and that PfMYST can be a potential target for antimalarial therapy.
Collapse
|
36
|
Wang J, Jiang N, Sang X, Yang N, Feng Y, Chen R, Wang X, Chen Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol Cell Proteomics 2020; 20:100001. [PMID: 33517144 PMCID: PMC7857547 DOI: 10.1074/mcp.ra120.002375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China; College of Food Science, Shenyang Agricultural Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
37
|
Bryant JM, Baumgarten S, Dingli F, Loew D, Sinha A, Claës A, Preiser PR, Dedon PC, Scherf A. Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite. Mol Syst Biol 2020; 16:e9569. [PMID: 32816370 PMCID: PMC7440042 DOI: 10.15252/msb.20209569] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mutually exclusive expression of the var multigene family is key to immune evasion and pathogenesis in Plasmodium falciparum, but few factors have been shown to play a direct role. We adapted a CRISPR-based proteomics approach to identify novel factors associated with var genes in their natural chromatin context. Catalytically inactive Cas9 ("dCas9") was targeted to var gene regulatory elements, immunoprecipitated, and analyzed with mass spectrometry. Known and novel factors were enriched including structural proteins, DNA helicases, and chromatin remodelers. Functional characterization of PfISWI, an evolutionarily divergent putative chromatin remodeler enriched at the var gene promoter, revealed a role in transcriptional activation. Proteomics of PfISWI identified several proteins enriched at the var gene promoter such as acetyl-CoA synthetase, a putative MORC protein, and an ApiAP2 transcription factor. These findings validate the CRISPR/dCas9 proteomics method and define a new var gene-associated chromatin complex. This study establishes a tool for targeted chromatin purification of unaltered genomic loci and identifies novel chromatin-associated factors potentially involved in transcriptional control and/or chromatin organization of virulence genes in the human malaria parasite.
Collapse
Affiliation(s)
- Jessica M Bryant
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Sebastian Baumgarten
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Florent Dingli
- Institut CuriePSL Research UniversityCentre de RechercheMass Spectrometry and Proteomics FacilityParisFrance
| | - Damarys Loew
- Institut CuriePSL Research UniversityCentre de RechercheMass Spectrometry and Proteomics FacilityParisFrance
| | - Ameya Sinha
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Aurélie Claës
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| | - Peter R Preiser
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Artur Scherf
- Biology of Host‐Parasite Interactions UnitInstitut PasteurParisFrance
- INSERM U1201ParisFrance
- CNRS ERL9195ParisFrance
| |
Collapse
|
38
|
Ruiz JL, Gómez-Díaz E. The second life of Plasmodium in the mosquito host: gene regulation on the move. Brief Funct Genomics 2020; 18:313-357. [PMID: 31058281 DOI: 10.1093/bfgp/elz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
39
|
Ranford-Cartwright L, Gómez-Díaz E. Plasmodium comparative genomics. Brief Funct Genomics 2020; 18:267-269. [PMID: 31696202 DOI: 10.1093/bfgp/elz020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Elena Gómez-Díaz
- Institute of Parasitology and Biomedicine López-Neyra, Spanish National Research Council (CSIC), Spain
| |
Collapse
|
40
|
Llorà-Batlle O, Tintó-Font E, Cortés A. Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 2020; 18:329-341. [PMID: 31114839 DOI: 10.1093/bfgp/elz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | |
Collapse
|
41
|
Hammam E, Ananda G, Sinha A, Scheidig-Benatar C, Bohec M, Preiser PR, Dedon PC, Scherf A, Vembar SS. Discovery of a new predominant cytosine DNA modification that is linked to gene expression in malaria parasites. Nucleic Acids Res 2020; 48:184-199. [PMID: 31777939 PMCID: PMC6943133 DOI: 10.1093/nar/gkz1093] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022] Open
Abstract
DNA cytosine modifications are key epigenetic regulators of cellular processes in mammalian cells, with their misregulation leading to varied disease states. In the human malaria parasite Plasmodium falciparum, a unicellular eukaryotic pathogen, little is known about the predominant cytosine modifications, cytosine methylation (5mC) and hydroxymethylation (5hmC). Here, we report the first identification of a hydroxymethylcytosine-like (5hmC-like) modification in P. falciparum asexual blood stages using a suite of biochemical methods. In contrast to mammalian cells, we report 5hmC-like levels in the P. falciparum genome of 0.2–0.4%, which are significantly higher than the methylated cytosine (mC) levels of 0.01–0.05%. Immunoprecipitation of hydroxymethylated DNA followed by next generation sequencing (hmeDIP-seq) revealed that 5hmC-like modifications are enriched in gene bodies with minimal dynamic changes during asexual development. Moreover, levels of the 5hmC-like base in gene bodies positively correlated to transcript levels, with more than 2000 genes stably marked with this modification throughout asexual development. Our work highlights the existence of a new predominant cytosine DNA modification pathway in P. falciparum and opens up exciting avenues for gene regulation research and the development of antimalarials.
Collapse
Affiliation(s)
- Elie Hammam
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France.,Sorbonne Université, Ecole doctorale Complexité du Vivant ED515, F-75005 Paris, France
| | - Guruprasad Ananda
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Ameya Sinha
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Christine Scheidig-Benatar
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| | - Mylene Bohec
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Peter R Preiser
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Artur Scherf
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| | - Shruthi S Vembar
- Institut Pasteur, 75015 Paris, France.,CNRS ERL9195, 75015 Paris, France.,INSERM U1201, 75015 Paris, France
| |
Collapse
|
42
|
Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep 2020; 10:2355. [PMID: 32047203 PMCID: PMC7012883 DOI: 10.1038/s41598-020-59298-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
The epigenome of the malaria parasite, Plasmodium falciparum, is associated with regulation of various essential processes in the parasite including control of proliferation during asexual development as well as control of sexual differentiation. The unusual nature of the epigenome has prompted investigations into the potential to target epigenetic modulators with novel chemotypes. Here, we explored the diversity within a library of 95 compounds, active against various epigenetic modifiers in cancerous cells, for activity against multiple stages of P. falciparum development. We show that P. falciparum is differentially susceptible to epigenetic perturbation during both asexual and sexual development, with early stage gametocytes particularly sensitive to epi-drugs targeting both histone and non-histone epigenetic modifiers. Moreover, 5 compounds targeting histone acetylation and methylation show potent multistage activity against asexual parasites, early and late stage gametocytes, with transmission-blocking potential. Overall, these results warrant further examination of the potential antimalarial properties of these hit compounds.
Collapse
Affiliation(s)
- Nanika Coetzee
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Daniel Opperman
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
43
|
Theileria parva: a parasite of African buffalo, which has adapted to infect and undergo transmission in cattle. Int J Parasitol 2020; 50:403-412. [PMID: 32032592 PMCID: PMC7294229 DOI: 10.1016/j.ijpara.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023]
Abstract
Theileria parva parasites show extensive genotypic diversity and undergo frequent genetic recombination during tick transmission. Theileria parva maintained in cattle is much less genotypically diverse than the buffalo-maintained population. Theileria parva transmitted from buffalo to cattle usually fails to differentiate to the tick-transmissible stages in cattle. These differences have resulted in the parasites in the two hosts being maintained largely as separate populations.
The tick-borne protozoan parasite Theileria parva causes an acute, often fatal disease in cattle throughout a large part of eastern and southern Africa. Infection of African buffalo (Syncerus caffer) is also widespread in this region but does not cause clinical disease in this species. This difference most likely reflects the evolutionary history of the parasites in these species, in that cattle were only introduced into Africa within the last 8000 years. In both hosts, T. parva establishes a carrier state, involving persistence of small numbers of parasites for many months following the acute phase of infection. This persistence is considered important for maintaining the parasite populations. Although cattle and buffalo parasites both produce severe disease when transmitted to cattle, the buffalo-derived parasites are usually not transmissible from infected cattle. Recent studies of the molecular and antigenic composition of T. parva, in addition to demonstrating heterogeneity in the populations in both host species, have revealed that infections in individual animals are genotypically mixed. The results of these studies have also shown that buffalo T. parva exhibit much greater genotypic diversity than the cattle population and indicate that cattle parasites represent a subpopulation of T. parva that has adapted to maintenance in cattle. The parasites in cattle and buffalo appear to be maintained largely as separate populations. This insight into the genotypic composition of T. parva populations has raised important questions on how host adaptation of the parasite has evolved and whether there is scope for further adaptation of buffalo-maintained populations to cattle.
Collapse
|
44
|
Nardella F, Halby L, Hammam E, Erdmann D, Cadet-Daniel V, Peronet R, Ménard D, Witkowski B, Mecheri S, Scherf A, Arimondo PB. DNA Methylation Bisubstrate Inhibitors Are Fast-Acting Drugs Active against Artemisinin-Resistant Plasmodium falciparum Parasites. ACS CENTRAL SCIENCE 2020; 6:16-21. [PMID: 31989022 PMCID: PMC6978834 DOI: 10.1021/acscentsci.9b00874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 05/05/2023]
Abstract
Malaria is the deadliest parasitic disease affecting over 200 million people worldwide. The increasing number of treatment failures due to multi-drug-resistant parasites in South-East Asia hinders the efforts for elimination. It is thus urgent to develop new antimalarials to contain these resistant parasites. Based on a previous report showing the presence of DNA methylation in Plasmodium, we generated new types of DNA methylation inhibitors against malaria parasites. The quinoline-quinazoline-based inhibitors kill parasites, including artemisinin-resistant field isolates adapted to culture, in the low nanomolar range. The compounds target all stages of the asexual cycle, including early rings, during a 6 h treatment period; they reduce DNA methylation in the parasite and show in vivo activity at 10 mg/kg. These potent inhibitors are a new starting point to develop fast-acting antimalarials that could be used in combination with artemisinins.
Collapse
Affiliation(s)
- Flore Nardella
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Ludovic Halby
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Elie Hammam
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- Ecole
Doctorale Complexité du Vivant ED515, Sorbonne Universités, Paris 6, Paris 75005, France
| | - Diane Erdmann
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
- Ecole
Doctorale MTCI ED563, Université
de Paris, Sorbonne Paris Cité, Paris 75006, France
| | - Véronique Cadet-Daniel
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
| | - Roger Peronet
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Didier Ménard
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- Malaria
Molecular Epidemiology Unit, Pasteur Institute
in Cambodia, Phnom Penh, Cambodia
| | - Benoit Witkowski
- Malaria
Molecular Epidemiology Unit, Pasteur Institute
in Cambodia, Phnom Penh, Cambodia
| | - Salah Mecheri
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
| | - Artur Scherf
- Unité
Biologie des Interactions Hôte-Parasite, Département
de Parasites et Insectes Vecteurs, Institut
Pasteur, CNRS ERL 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris 75015, France
- E-mail:
| | - Paola B. Arimondo
- Epigenetic
Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, 28 Rue du Dr Roux, Paris 75015, France
- E-mail:
| |
Collapse
|
45
|
Investigating a Plasmodium falciparum erythrocyte invasion phenotype switch at the whole transcriptome level. Sci Rep 2020; 10:245. [PMID: 31937828 PMCID: PMC6959351 DOI: 10.1038/s41598-019-56386-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
The central role that erythrocyte invasion plays in Plasmodium falciparum survival and reproduction makes this process an attractive target for therapeutic or vaccine development. However, multiple invasion-related genes with complementary and overlapping functions afford the parasite the plasticity to vary ligands used for invasion, leading to phenotypic variation and immune evasion. Overcoming the challenge posed by redundant ligands requires a deeper understanding of conditions that select for variant phenotypes and the molecular mediators. While host factors including receptor heterogeneity and acquired immune responses may drive parasite phenotypic variation, we have previously shown that host-independent changes in invasion phenotype can be achieved by continuous culturing of the W2mef and Dd2 P. falciparum strains in moving suspension as opposed to static conditions. Here, we have used a highly biologically replicated whole transcriptome sequencing approach to identify the molecular signatures of variation associated with the phenotype switch. The data show increased expression of particular invasion-related genes in switched parasites, as well as a large number of genes encoding proteins that are either exported or form part of the export machinery. The genes with most markedly increased expression included members of the erythrocyte binding antigens (EBA), reticulocyte binding homologues (RH), surface associated interspersed proteins (SURFIN), exported protein family 1 (EPF1) and Plasmodium Helical Interspersed Sub-Telomeric (PHIST) gene families. The data indicate changes in expression of a repertoire of genes not previously associated with erythrocyte invasion phenotypes, suggesting the possibility that moving suspension culture may also select for other traits.
Collapse
|
46
|
van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, Llinás M, Birkholtz LM. Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics 2019; 20:920. [PMID: 31795940 PMCID: PMC6889441 DOI: 10.1186/s12864-019-6322-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Malaria pathogenesis relies on sexual gametocyte forms of the malaria parasite to be transmitted between the infected human and the mosquito host but the molecular mechanisms controlling gametocytogenesis remains poorly understood. Here we provide a high-resolution transcriptome of Plasmodium falciparum as it commits to and develops through gametocytogenesis. RESULTS The gametocyte-associated transcriptome is significantly different from that of the asexual parasites, with dynamic gene expression shifts characterizing early, intermediate and late-stage gametocyte development and results in differential timing for sex-specific transcripts. The transcriptional dynamics suggest strict transcriptional control during gametocytogenesis in P. falciparum, which we propose is mediated by putative regulators including epigenetic mechanisms (driving active repression of proliferation-associated processes) and a cascade-like expression of ApiAP2 transcription factors. CONCLUSIONS The gametocyte transcriptome serves as the blueprint for sexual differentiation and will be a rich resource for future functional studies on this critical stage of Plasmodium development, as the intraerythrocytic transcriptome has been for our understanding of the asexual cycle.
Collapse
Affiliation(s)
- Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Heather J Painter
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Review, U.S. Food & Drug Administration, Silver Spring, MD, 20993, USA
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
47
|
Reporter lines based on the gexp02 promoter enable early quantification of sexual conversion rates in the malaria parasite Plasmodium falciparum. Sci Rep 2019; 9:14595. [PMID: 31601834 PMCID: PMC6787211 DOI: 10.1038/s41598-019-50768-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Transmission of malaria parasites from humans to mosquito vectors requires that some asexual parasites differentiate into sexual forms termed gametocytes. The balance between proliferation in the same host and conversion into transmission forms can be altered by the conditions of the environment. The ability to accurately measure the rate of sexual conversion under different conditions is essential for research addressing the mechanisms underlying sexual conversion, and to assess the impact of environmental factors. Here we describe new Plasmodium falciparum transgenic lines with genome-integrated constructs in which a fluorescent reporter is expressed under the control of the promoter of the gexp02 gene. Using these parasite lines, we developed a sexual conversion assay that shortens considerably the time needed for an accurate determination of sexual conversion rates, and dispenses the need to add chemicals to inhibit parasite replication. Furthermore, we demonstrate that gexp02 is expressed specifically in sexual parasites, with expression starting as early as the sexual ring stage, which makes it a candidate marker for circulating sexual rings in epidemiological studies.
Collapse
|
48
|
Toenhake CG, Bártfai R. What functional genomics has taught us about transcriptional regulation in malaria parasites. Brief Funct Genomics 2019; 18:290-301. [PMID: 31220867 PMCID: PMC6859821 DOI: 10.1093/bfgp/elz004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/08/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Malaria parasites are characterized by a complex life cycle that is accompanied by dynamic gene expression patterns. The factors and mechanisms that regulate gene expression in these parasites have been searched for even before the advent of next generation sequencing technologies. Functional genomics approaches have substantially boosted this area of research and have yielded significant insights into the interplay between epigenetic, transcriptional and post-transcriptional mechanisms. Recently, considerable progress has been made in identifying sequence-specific transcription factors and DNA-encoded regulatory elements. Here, we review the insights obtained from these efforts including the characterization of core promoters, the involvement of sequence-specific transcription factors in life cycle progression and the mapping of gene regulatory elements. Furthermore, we discuss recent developments in the field of functional genomics and how they might contribute to further characterization of this complex gene regulatory network.
Collapse
Affiliation(s)
- Christa G Toenhake
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, the Netherlands
| | - Richárd Bártfai
- Radboud University, Faculty of Science, Department of Molecular Biology, Nijmegen, the Netherlands
| |
Collapse
|
49
|
Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gómez-Díaz E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2019; 46:9414-9431. [PMID: 30016465 PMCID: PMC6182165 DOI: 10.1093/nar/gky643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.
Collapse
Affiliation(s)
- José Luis Ruiz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Elena Gómez-Díaz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain.,Instituto de Parasitología y Biomedicina 'López-Neyra' (IPBLN), Consejo Superior de Investigaciones Científicas, Granada 18016, Spain
| |
Collapse
|
50
|
Dynamic colocalization of 2 simultaneously active VSG expression sites within a single expression-site body in Trypanosoma brucei. Proc Natl Acad Sci U S A 2019; 116:16561-16570. [PMID: 31358644 PMCID: PMC6697882 DOI: 10.1073/pnas.1905552116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The African trypanosome Trypanosoma brucei expresses a single variant surface glycoprotein (VSG) gene from one of multiple VSG expression sites (ESs) in a stringent monoallelic fashion. The counting mechanism behind this restriction is poorly understood. Unusually for a eukaryote, the active ES is transcribed by RNA polymerase I (Pol I) within a unique Pol I body called the expression-site body (ESB). We have demonstrated the importance of the ESB in restricting the singular expression of VSG. We have generated double-expresser trypanosomes, which simultaneously express 2 ESs at the same time in an unstable dynamic fashion. These cells predominantly contain 1 ESB, and, surprisingly, simultaneous transcription of the 2 ESs is observed only when they are both colocalized within it. Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.
Collapse
|