1
|
Hennig M, Bhattacharjee RB, Agarwal I, Alfaifi A, Casillas JE, Chavez S, Ishimaru D, Liston D, Mohapatra S, Molla T, Pathare S, Sidhu MS, Wang P, Wang Z, Lombana TN, Kharitonov VG, Couch JA, Lockhart DJ, Wustman BA. Inhaled DNAI1 mRNA therapy for treatment of primary ciliary dyskinesia. Proc Natl Acad Sci U S A 2025; 122:e2421915122. [PMID: 40294271 PMCID: PMC12067232 DOI: 10.1073/pnas.2421915122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder caused by mutations in one of at least 50 different genes that encode proteins involved in the biogenesis, structure, or function of motile cilia. Genetically inherited defects in motile cilia cause PCD, a debilitating respiratory disease for which there is no approved therapy. The dynein axonemal intermediate chain 1 (DNAI1) protein is a key structural element of the ciliary outer dynein arm (ODA) critical for normal ciliary activity and subsequent clearance of mucus from the conducting airways in humans. Loss-of-function mutations in DNAI1 account for up to 10% of all PCD cases, with functional abnormalities in patients presenting at or near birth and leading to a life-long course of disability, including progressive loss of lung function and bronchiectasis by adulthood. This underscores the significant unmet need for disease-modifying treatments that restore ciliary activity and mucociliary clearance in PCD patients. In this work, we demonstrate that lipid nanoparticle (LNP)-formulated human DNAI1 mRNA can be delivered as an aerosol to primary human bronchial epithelial cell models and to nonhuman primate (NHP) lungs. Additionally, we show that delivery of aerosolized LNP-DNAI1 mRNA to NHPs leads to detectable levels of newly translated human DNAI1 protein, at doses that overlap with exposures in an in vitro cell-based PCD model enabling rescue of ciliary function. Therefore, these data support further development of the inhaled DNAI1 mRNA therapy in clinical studies as a potential disease-modifying treatment for PCD.
Collapse
Affiliation(s)
- Mirko Hennig
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | | | - Ishita Agarwal
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Ali Alfaifi
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Jade E. Casillas
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Sofia Chavez
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Daniella Ishimaru
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - David Liston
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Sakya Mohapatra
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Touhidul Molla
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Suyog Pathare
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Maninder S. Sidhu
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Peng Wang
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Zechen Wang
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - T. Noelle Lombana
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | | | - Jessica A. Couch
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - David J. Lockhart
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| | - Brandon A. Wustman
- Research and Development, ReCode Therapeutics, Inc., Menlo Park, CA94025
| |
Collapse
|
2
|
Chai P, Yang J, Geohring IC, Markus SM, Wang Y, Zhang K. The mechanochemical cycle of reactive full-length human dynein 1. Nat Struct Mol Biol 2025:10.1038/s41594-025-01543-3. [PMID: 40263469 DOI: 10.1038/s41594-025-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
Dynein-driven cargo transport has a pivotal role in diverse cellular activities, central to which is dynein's mechanochemical cycle. Here, we performed a systematic cryo-electron microscopic investigation of the conformational landscape of full-length human dynein 1 in reaction, in various nucleotide conditions, on and off microtubules. Our approach reveals over 40 high-resolution structures, categorized into eight states, providing a dynamic and comprehensive view of dynein throughout its mechanochemical cycle. The described intermediate states reveal mechanistic insights into dynein function, including a 'backdoor' phosphate release model that coordinates linker straightening, how microtubule binding enhances adenosine triphosphatase activity through a two-way communication mechanism and the crosstalk mechanism between AAA1 and the regulatory AAA3 site. Our findings also lead to a revised model for the force-generating powerstroke and reveal means by which dynein exhibits unidirectional stepping. These results improve our understanding of dynein and provide a more complete model of its mechanochemical cycle.
Collapse
Affiliation(s)
- Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Indigo C Geohring
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Innovation Center for Brain Medical Sciences, The Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Li J, Liu Y, Kong P, Chang Q, Chen S, Yang W, Liu W, Teng X, Guo Y. Impact of DNAH3 deficiency on sperm energy metabolism and motility leading to asthenozoospermia†. Biol Reprod 2025; 112:501-512. [PMID: 39774634 DOI: 10.1093/biolre/ioaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/10/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025] Open
Abstract
Asthenozoospermia, a prevalent contributor to male infertility, exhibits a multifaceted pathogenesis. This study identified a significant downregulation in sperm dynein heavy chain 3 (DNAH3) protein levels in individuals with asthenozoospermia. To elucidate the role of DNAH3 in asthenozoospermia, we constructed Dnah3-knockout mice, which exhibited asthenozoospermia and sterility. The sperm motility of Dnah3-knockout mice significantly declined compared to wild-type mice. However, spermatozoa from Dnah3-knockout mice displayed normal morphology in hematoxylin and eosin staining and transmission electron microscopy analyses. Sperm metabolomics revealed that DNAH3 deficiency disturbed sperm energy metabolism, resulting in substantial reductions of L-palmitoylcarnitine and glycocholic acid. Notably, offspring were successfully obtained from Dnah3-knockout male mice through intracytoplasmic sperm injection. Collectively, these findings indicate that DNAH3 deficiency induces disturbances in energy metabolism, rather than abnormalities in sperm flagellar morphology, culminating in asthenozoospermia development. Our investigation provides valuable insights into understanding asthenozoospermia and offers guidance for clinical consultation.
Collapse
Affiliation(s)
- Jinli Li
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Yingdong Liu
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Pengcheng Kong
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Qiurong Chang
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Siyu Chen
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Wanli Yang
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Wenqiang Liu
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Xiaoming Teng
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Yi Guo
- Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 West Gaoke Road, Shanghai, 201204, China
| |
Collapse
|
4
|
Xia X, Shimogawa MM, Wang H, Liu S, Wijono A, Langousis G, Kassem AM, Wohlschlegel JA, Hill KL, Zhou ZH. Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms. Science 2025; 387:eadr3314. [PMID: 40080582 DOI: 10.1126/science.adr3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 01/06/2025] [Indexed: 03/15/2025]
Abstract
The flagellum of Trypanosoma brucei drives the parasite's characteristic screw-like motion and is essential for its replication, transmission, and pathogenesis. However, the molecular details of this process remain unclear. Here, we present high-resolution (up to 2.8 angstrom) cryo-electron microscopy structures of T. brucei flagellar doublet microtubules (DMTs). Integrated modeling identified 154 different axonemal proteins inside and outside the DMT and, together with genetic and proteomic interrogation, revealed conserved and trypanosome-specific foundations of flagellum assembly and motility. We captured axonemal dynein motors in their pre-power stroke state. Comparing atomic models between pre- and post-power strokes defined how dynein structural changes drive sliding of adjacent DMTs during flagellar beating. This study illuminates structural dynamics underlying flagellar motility and identifies pathogen-specific proteins to consider for therapeutic interventions targeting neglected diseases.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Michelle M Shimogawa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Samuel Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Angeline Wijono
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Ahmad M Kassem
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Kent L Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Yin Z, Gan Y, Chen Y, Kozgunova E, Yi P. The Microtubule Cytoskeleton in Bryophytes. Cytoskeleton (Hoboken) 2025. [PMID: 40040596 DOI: 10.1002/cm.22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Microtubules (MTs) are essential cytoskeletal elements in all eukaryotes, playing critical roles in cell shape, intercellular organization, cell division, and cell motility. The organization of the MT network has undergone significant changes throughout plant evolution. Some MT structures, such as the preprophase band and phragmoplast, are innovations in plant lineages, while others, including the centriole and flagellum, have been lost over time. Bryophytes, consisting of mosses, liverworts, and hornworts, are the earliest land plants and occupy a key phylogenetic position in the evolution of MT organization. In the past two decades, advances in genomics, genetics, and cell imaging technologies have significantly enhanced our understanding of MT organization and function. Two representative species, Physcomitrium patens (moss) and Marchantia polymorph (liverwort), have become established model organisms, and new models for hornworts are emerging. In this review, we summarize the current knowledge of the MT cytoskeleton, drawing from early electron microscopy studies and recent advances in these emerging models. Our aim is to provide a comprehensive overview of the major MT array types and key factors involved in MT organization in bryophytes, offering insights into MT adaptation during plant evolution.
Collapse
Affiliation(s)
- Zihan Yin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yirong Gan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Yin Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| | - Elena Kozgunova
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
6
|
Dong M, Shi X, Zhou Y, Duan J, He L, Song X, Huang Z, Chen R, Li J, Jia N. Genetic spectrum and genotype-phenotype correlations in DNAH5-mutated primary ciliary dyskinesia: a systematic review. Orphanet J Rare Dis 2025; 20:97. [PMID: 40033371 PMCID: PMC11874857 DOI: 10.1186/s13023-025-03596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD), a rare ciliopathy disorder, is caused by variants in multiple genes, with DNAH5 being one of the most frequently implicated. However, the precise relationship between variant type or location in the DNAH5 gene and the clinical heterogeneity remains elusive. The present systematic review aims to provide critical insights into the impact of the molecular nature of DNAH5 variants on PCD phenotypes. METHODS We enrolled all reported cases of PCD with biallelic pathogenic variants in the DNAH5 gene to date, and evaluated genotype-phenotype correlations in these patients, employing truncating (TV) and missense (MV) variant-carrying as grouping criteria. RESULTS A total of 323 PCD patients with the DNAH5 variants were included, with 14.55% of these patients were diagnosed as Kartagener syndrome. Pediatric and adult patients exhibited distinct clinical features, including varying incidences of bronchiectasis, infertility, neonatal respiratory distress (NRD), ciliary ultrastructural defects distributions, and lung function (all p < 0.05). With regard to mutational patterns, truncating variants in DNAH5 were clustered in the 1200-3200 amino acid region, and were more prevalent in children compared to adult (p < 0.0001). Most missense variants are clustering in the linker, AAA + ATPase and AAA-lid domains. The most frequently observed mutation, c.10815delT, was prevalent in Europe and America, whereas c.8030G > A was more common in China and Asia. In terms of genotype-phenotype correlations, individuals with the TV/TV genotype exhibited a higher proportion of NRD and earlier onset compared to those with MV-carrying genotypes, both in overall population and in pediatric patients (all p < 0.05). Patients with the TV/TV genotype exhibited worse lung function compared to those with MV-carrying genotypes. CONCLUSION The study underscores the broad mutational spectrum and high phenotypic heterogenicity in DNAH5-related PCD patients. The presence of biallelic truncating variants may predispose patients to earlier disease onset and poorer lung function.
Collapse
Affiliation(s)
- Meihua Dong
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yawen Zhou
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li He
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaonan Song
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhiwen Huang
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
8
|
Wang J, Kidmose RT, Boegholm N, Zacharia NK, Thomsen MB, Christensen A, Malik T, Lechtreck K, Lorentzen E. Integrative in silico and biochemical analyses demonstrate direct Arl3-mediated ODA16 release from the intraflagellar transport machinery. J Biol Chem 2025; 301:108237. [PMID: 39880089 PMCID: PMC11879689 DOI: 10.1016/j.jbc.2025.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Outer dynein arms (ODAs) are essential for ciliary motility and are preassembled in the cytoplasm before trafficking into cilia by intraflagellar transport (IFT). ODA16 is a key adaptor protein that links ODAs to the IFT machinery via direct interaction with the IFT46 protein. However, the molecular mechanisms regulating the assembly, transport, and release of ODAs remain poorly understood. Here, we employ AlphaPulldown, an in silico screening method, to identify direct interactors of ODA16, including the dynein adaptor IDA3 and the small GTPase Arl3. We use structural modeling, biochemical, and biophysical assays on Chlamydomonas and human proteins to elucidate the interactions and regulatory mechanisms governing the IFT of ODAs. We identify a conserved N-terminal motif in Chlamydomonas IFT46 that mediates its binding to one side of the ODA16 structure. Biochemical dissection reveals that IDA3 and Arl3 bind to the same surface of ODA16 (the C-terminal β-propeller face), which is opposite to the IFT46 binding site, enabling them to dissociate ODA16 from IFT46, likely through an allosteric mechanism. Our findings provide mechanistic insights into the concerted actions of IFT and adaptor proteins in ODA transport and regulation.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Rune T Kidmose
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Nevin K Zacharia
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Mads B Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anni Christensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Tara Malik
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
9
|
Shoaib M, Zubair M, Shah W, Uddin M, Hussain A, Mustafa G, Rahim F, Zhang H, Ali I, Abbas T, Raza Y, Fan SX, Shi QH. Novel bi-allelic variants in DNAH10 lead to multiple morphological abnormalities of sperm flagella and male infertility. Asian J Androl 2025:00129336-990000000-00286. [PMID: 39996363 DOI: 10.4103/aja2024116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/03/2024] [Indexed: 02/26/2025] Open
Abstract
ABSTRACT Multiple morphological abnormalities of sperm flagella (MMAF) is a severe form of asthenoteratozoospermia, characterized by morphological abnormalities and reduced motility of sperm, causing male infertility. Although approximately 60% of MMAF cases can be explained genetically, the etiology of the remaining cases is unclear. Here, we identified two novel compound heterozygous variants in the gene, dynein axonemal heavy chain 10 (DNAH10), in three patients from two unrelated Pakistani families using whole-exome sequencing (WES), including one compound heterozygous mutation (DNAH10: c.9409C>A [p.P3137T]; c.12946G>C [p.D4316H]) in family 1 and another compound heterozygous mutation (DNAH10: c.8849G>A [p.G2950D]; c.11509C>T [p.R3687W]) in family 2. All the identified variants are absent or rare in public genome databases and are predicted to have deleterious effects according to multiple bioinformatic tools. Sanger sequencing revealed that these variants follow an autosomal recessive mode of inheritance. Hematoxylin and eosin (H&E) staining revealed MMAF, including sperm head abnormalities, in the patients. In addition, immunofluorescence staining revealed loss of DNAH10 protein signals along sperm flagella. These findings broaden the spectrum of DNAH10 variants and expand understanding of the genetic basis of male infertility associated with the MMAF phenotype.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Center for Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hirashima T, W P S, Noda T. Collective sperm movement in mammalian reproductive tracts. Semin Cell Dev Biol 2025; 166:13-21. [PMID: 39675229 DOI: 10.1016/j.semcdb.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mammalian sperm cells travel from their origin in the male reproductive tract to fertilization in the female tract through a complex process driven by coordinated mechanical and biochemical mechanisms. Recent experimental and theoretical advances have illuminated the collective behaviors of sperm both in vivo and in vitro. However, our understanding of the underlying mechano-chemical processes remains incomplete. This review integrates current insights into sperm group movement, examining both immotile and motile states, which are essential for passive transport and active swimming through the reproductive tracts. We provide an overview of the current understanding of collective sperm movement, focusing on the experimental and theoretical mechanisms behind these behaviors. We also explore how sperm motility is regulated through the coordination of mechanical and chemical processes. Emerging evidence highlights the mechanosensitive properties of a sperm flagellum, suggesting that mechanical stimuli regulate flagellar beating at both individual and collective levels. This self-regulatory, mechano-chemical system reflects a broader principle observed in multicellular systems, offering a system-level insight into the regulation of motility and collective dynamics in biological systems.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore 117593, Singapore.
| | - Sound W P
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Taichi Noda
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
11
|
Cavarocchi E, Drouault M, Ribeiro JC, Simon V, Whitfield M, Touré A. Human asthenozoospermia: Update on genetic causes, patient management, and clinical strategies. Andrology 2025. [PMID: 39748639 DOI: 10.1111/andr.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle, which contains dynein motor proteins that provide the mechanical force for sperm propulsion and motility. Primary motility of the sperm cells is acquired during their transit through the epididymis and hyperactivated motility is acquired throughout the journey in the female genital tract by a process called capacitation. These activation processes rely on the micro-environment of the genital tracts. In particular, during capacitation, a panoply of ion transporters located at the surface of the sperm cells mediate complex ion exchanges, which induce an increase in plasma membrane fluidity, the alkalinization of the cytoplasm and protein phosphorylation cascades that are compulsory for sperm hyperactivation and fertilization potential. As a consequence, both structural and functional defects of the sperm flagellum can affect sperm motility, resulting in asthenozoospermia, which constitutes the most predominant pathological condition associated with human male infertility. OBJECTIVES Herein, we have performed a literature review to provide a comprehensive description of the recent advances in the genetics of human asthenozoospermia. RESULTS AND DISCUSSION We describe the currently knowledge on gene mutations that affect sperm morphology and motility, namely, asthenoteratozoospermia; we also specify the gene mutations that exclusively affect sperm function and activation, resulting in functional asthenozoospermia. We discuss the benefit of this knowledge for patient and couple management, in terms of genetic counselling and diagnosis of male infertility as a sole phenotype or in association with ciliary defects. Last, we discuss the current strategies that have been initiated for the development of potential therapeutical and contraceptive strategies targeting genes that are essential for sperm function and activation.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Faculty of Medicine, Centre Hospitalier Universitaire de Québec-Research Center, Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Canada
| | - Maëva Drouault
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Joao C Ribeiro
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Violaine Simon
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France
| |
Collapse
|
12
|
Zhou Z, Qi Q, Wang WH, Dong J, Xu JJ, Feng YM, Zou ZC, Chen L, Ma JZ, Yao B. A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility. Asian J Androl 2025; 27:113-119. [PMID: 39254424 PMCID: PMC11784957 DOI: 10.4103/aja202477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 ( CFAP300 ) resulting in a stop codon (p.Glu156*) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Collapse
Affiliation(s)
- Zheng Zhou
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qi Qi
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-Hua Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jie Dong
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan-Juan Xu
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yu-Ming Feng
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi-Chuan Zou
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Li Chen
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Jin-Zhao Ma
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| |
Collapse
|
13
|
Li Y, Xu W, Cheng Y, Djenoune L, Zhuang C, Cox AL, Britto CJ, Yuan S, Wang S, Sun Z. Cotranslational molecular condensation of cochaperones and assembly factors facilitates axonemal dynein biogenesis. Proc Natl Acad Sci U S A 2024; 121:e2402818121. [PMID: 39541357 PMCID: PMC11588059 DOI: 10.1073/pnas.2402818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Axonemal dynein, the macromolecular machine that powers ciliary motility, assembles in the cytosol with the help of dynein axonemal assembly factors (DNAAFs). These DNAAFs localize in cytosolic foci thought to form via liquid-liquid phase separation. However, the functional significance of DNAAF foci formation and how the production and assembly of multiple components are so efficiently coordinated, at such enormous scale, remain unclear. Here, we unveil an axonemal dynein production and assembly hub enriched with translating heavy chains (HCs) and DNAAFs. We show that mRNAs encoding interacting HCs of outer dynein arms colocalize in cytosolic foci, along with nascent HCs. The formation of these mRNA foci and their colocalization relies on HC translation. We observe that a previously identified DNAAF assembly, containing the DNAAF Lrrc6 and cochaperones Ruvbl1 and Ruvbl2, colocalizes with these HC foci, and is also dependent on HC translation. We additionally show that Ruvbl1 is required for the recruitment of Lrrc6 into the HC foci and that both proteins function cotranslationally. We propose that these DNAAF foci are anchored by stable interactions between translating HCs, ribosomes, and encoding mRNAs, followed by cotranslational molecular condensation of cochaperones and assembly factors, providing a potential mechanism that coordinates HC translation, folding, and assembly at scale.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Wenyan Xu
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Lydia Djenoune
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Chuzhi Zhuang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Andrew Lee Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Clemente J. Britto
- Division of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT06520
| | - Shiaulou Yuan
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| |
Collapse
|
14
|
Hebert E, Silvia M, Wessel GM. Structural and molecular distinctions of primary and secondary spines in the sea urchin Lytechinus variegatus. Sci Rep 2024; 14:28525. [PMID: 39557944 PMCID: PMC11574069 DOI: 10.1038/s41598-024-76239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
Sea urchins (echinoids) are common model organisms for research in developmental biology and for their unusual transition from a bilaterally organized larva into a post-metamorphic adult with pentaradial body symmetry. The adult also has a calcareous endoskeleton with a multimetameric pattern of continuously added elements, among them the namesake of this phylum, spines. Nearly all echinoids have both large primary spines, and an associated set of smaller secondary spines. We hypothesize that the secondary spines of the tropical variegated urchin species, Lytechinus variegatus, are morphologically and molecularly distinct structures from primary spines and not just small versions of the large spines. To test this premise, we examined both spine types using light microscopy, micro-CT imaging, lectin labeling, transcriptomics, and fluorescence in situ hybridization (FISH). Our findings reveal basic similarities between the two spine types in mineral and cellular anatomy, but with clear differences in growth patterns, genes expressed, and in the profile of various expressed genes. In particular, secondary spines have non-overlapping, longitudinally concentrated growth bands that lead to a blunt and straight profile, and a distinct transcriptome involving the upregulation in many genes in comparison to the primary spines. Neural, ciliary, and extracellular matrix interacting factors are implicated in the differentially expressed gene (DEG) dataset, including two genes-ONECUT2 and an uncharacterized discoidin- and thrombospondin-containing protein. We show spine type-specific localizations by FISH, which will be of interest to ongoing work in urchin spine patterning. These results demonstrate that primary and secondary spines of L. variegatus have overlapping but distinct molecular and biomineralization characteristics, suggesting unique developmental, regenerative, and representation in this spiny dermal phylum.
Collapse
Affiliation(s)
- Elise Hebert
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Madison Silvia
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
15
|
Wang X, Shen G, Yang Y, Jiang C, Ruan T, Yang X, Zhuo L, Zhang Y, Ou Y, Zhao X, Long S, Tang X, Lin T, Shen Y. DNAH3 deficiency causes flagellar inner dynein arm loss and male infertility in humans and mice. eLife 2024; 13:RP96755. [PMID: 39503742 PMCID: PMC11540302 DOI: 10.7554/elife.96755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Axonemal protein complexes, including the outer and inner dynein arms (ODA/IDA), are highly ordered structures of the sperm flagella that drive sperm motility. Deficiencies in several axonemal proteins have been associated with male infertility, which is characterized by asthenozoospermia or asthenoteratozoospermia. Dynein axonemal heavy chain 3 (DNAH3) resides in the IDA and is highly expressed in the testis. However, the relationship between DNAH3 and male infertility is still unclear. Herein, we identified biallelic variants of DNAH3 in four unrelated Han Chinese infertile men with asthenoteratozoospermia through whole-exome sequencing (WES). These variants contributed to deficient DNAH3 expression in the patients' sperm flagella. Importantly, the patients represented the anomalous sperm flagellar morphology, and the flagellar ultrastructure was severely disrupted. Intriguingly, Dnah3 knockout (KO) male mice were also infertile, especially showing the severe reduction in sperm movement with the abnormal IDA and mitochondrion structure. Mechanically, nonfunctional DNAH3 expression resulted in decreased expression of IDA-associated proteins in the spermatozoa flagella of patients and KO mice, including DNAH1, DNAH6, and DNALI1, the deletion of which has been involved in disruption of sperm motility. Moreover, the infertility of patients with DNAH3 variants and Dnah3 KO mice could be rescued by intracytoplasmic sperm injection (ICSI) treatment. Our findings indicated that DNAH3 is a novel pathogenic gene for asthenoteratozoospermia and may further contribute to the diagnosis, genetic counseling, and prognosis of male infertility.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan UniversityChengduChina
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Xue Yang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Liangchai Zhuo
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yingteng Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yangdi Ou
- West China School of Medicine, Sichuan UniversityChengduChina
| | - Xinya Zhao
- West China School of Basic Medicine and Forensic Medicine, Sichuan UniversityChengduChina
| | - Shunhua Long
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Xiangrong Tang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Tingting Lin
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and ChildrenChongqingChina
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| |
Collapse
|
16
|
Becker ME, Martin-Sancho L, Simons LM, McRaven MD, Chanda SK, Hultquist JF, Hope TJ. Live imaging of airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Nat Commun 2024; 15:9480. [PMID: 39488529 PMCID: PMC11531594 DOI: 10.1038/s41467-024-53791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
SARS-CoV-2 initiates infection in the conducting airways, where mucociliary clearance inhibits pathogen penetration. However, it is unclear how mucociliary clearance impacts SARS-CoV-2 spread after infection is established. To investigate viral spread at this site, we perform live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 12 days. Using a fluorescent reporter virus and markers for cilia and mucus, we longitudinally monitor mucus motion, ciliary motion, and infection. Infected cell numbers peak at 4 days post infection, forming characteristic foci that tracked mucus movement. Inhibition of MCC using physical and genetic perturbations limits foci. Later in infection, mucociliary clearance deteriorates. Increased mucus secretion accompanies ciliary motion defects, but mucociliary clearance and vectorial infection spread resume after mucus removal, suggesting that mucus secretion may mediate MCC deterioration. Our work shows that while MCC can facilitate SARS-CoV-2 spread after initial infection, subsequent MCC decreases inhibit spread, revealing a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
- Mark E Becker
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lacy M Simons
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D McRaven
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Zhao L, Gong F, Lou K, Wang L, Wang J, Sun H, Wang D, Shi Y, Wang Z. Retrotransposon involves in photoperiodic spermatogenesis in Brandt's voles (Lasiopodomys brandtii) by co-transcription with flagellar genes. Int J Biol Macromol 2024; 281:136224. [PMID: 39362423 DOI: 10.1016/j.ijbiomac.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Photoperiod is a pivotal factor in affecting spermatogenesis in seasonal-breeding animals. Transposable elements have regulatory functions during spermatogenesis. However, whether it also functions in photoperiodic spermatogenesis in seasonal breeding animals is unknown. To explore this, we first annotated 5,501,822 transposons in the whole genome of Brandt's voles (Lasiopodomys brandtii), and revealed that LINEs were the most abundant, comprising 16.61 % of the genome. Following closely, SINEs accounted for 10.13 %, LTRs for 7.54 %, and DNA transposons for 0.70 %. Subsequently, we exposed male Brandt's voles to long-photoperiod (LP, 16 h/day) and short-photoperiod (SP, 8 h/day) from their embryonic stages, and obtained testes transcriptome at 4 and 10 weeks after birth. Differential expression and Pearson analysis indicated strongly positive correlations between the expression of differentially expressed retrotransposons and the adjacent genes. KO, KEGG and GSEA results showed that sperm flagellar genes were most enriched nearby the retrotransposons such as Dnah1, Dnah2, Dnah17, Dnali1. RT-PCR results showed that SINE/Alu_1213291 co-transcripted with Dnali1 gene. Our findings first reveal the regulatory function of transposons in photoperiodic spermatogenesis, providing insights into the role of photoperiod in seasonal reproduction in wild animals.
Collapse
Affiliation(s)
- Lijuan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fanglei Gong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kang Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hong Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Western Agricultural Research Center, Chinese Academy of Agriculture Science, Changji 831100, China.
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
18
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Duan W, Wu Y, Zhang Y, Liu X. Identification of competing endogenous RNA networks associated with circRNA and lncRNA in TCDD-induced cleft palate development. Toxicol Lett 2024; 401:71-81. [PMID: 39270811 DOI: 10.1016/j.toxlet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD) is a teratogen that can induce cleft palate formation, a common birth defect. Competing endogenous RNAs (ceRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), indirectly regulate gene expression via sharing microRNAs (miRNAs). Nevertheless, the mechanism by which they act as ceRNAs to regulate palatal development remains to be explored in greater detail. Here, the cleft palate model of C57BL/6 N pregnant mice was constructed by gavage of TCDD (64 ug/kg) on gestation day (GD) 10.5, and the palatal shelves were taken on gestation day (GD) 14.5 for whole-transcriptome sequencing to investigate the underlying mechanisms of the roles of circRNAs and lncRNAs as ceRNAs in cleft palate. Sequencing results revealed that 293 lncRNA, 589 circRNA, 47 miRNA, and 138 messenger RNA (mRNA) were significantly dysregulated, and the cytochrome P450 (CYP) enzymes and the aryl hydrocarbon receptor (AhR) pathway play key roles in the induction of cleft palate upon exposure to TCDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the function of TCDD function was mainly related to the metabolic processes of intracellular compounds, including the metabolic processes of cellular aromatic compounds and the metabolism of exogenous drugs by cytochrome P450, etc. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks were hypothesized to be a hub involved in palatal development suggesting that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks may be critical for palatogenesis, setting the foundation for the investigation of cleft palate.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hexin Su
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
19
|
Wesselman HM, Arceri L, Nguyen TK, Lara CM, Wingert RA. Genetic mechanisms of multiciliated cell development: from fate choice to differentiation in zebrafish and other models. FEBS J 2024; 291:4159-4192. [PMID: 37997009 DOI: 10.1111/febs.17012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Multiciliated cells (MCCS) form bundles of cilia and their activities are essential for the proper development and physiology of many organ systems. Not surprisingly, defects in MCCs have profound consequences and are associated with numerous disease states. Here, we discuss the current understanding of MCC formation, with a special focus on the genetic and molecular mechanisms of MCC fate choice and differentiation. Furthermore, we cast a spotlight on the use of zebrafish to study MCC ontogeny and several recent advances made in understanding MCCs using this vertebrate model to delineate mechanisms of MCC emergence in the developing kidney.
Collapse
Affiliation(s)
| | - Liana Arceri
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Thanh Khoa Nguyen
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, IN, USA
| |
Collapse
|
20
|
Guo S, Tang D, Chen Y, Yu H, Gu M, Geng H, Fang J, Wu B, Ruan L, Li K, Xu C, Gao Y, Tan Q, Duan Z, Wu H, Hua R, Guo R, Wei Z, Zhou P, Xu Y, Cao Y, He X, Sha Y, Lv M. Association of novel DNAH11 variants with asthenoteratozoospermia lead to male infertility. Hum Genomics 2024; 18:97. [PMID: 39256880 PMCID: PMC11389119 DOI: 10.1186/s40246-024-00658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Bi-allelic variants in DNAH11 have been identified as causative factors in Primary Ciliary Dyskinesia, leading to abnormal respiratory cilia. Nonetheless, the specific impact of these variants on human sperm flagellar and their involvement in male infertility remain largely unknown. METHODS A collaborative effort involving two Chinese reproductive centers conducted a study with 975 unrelated infertile men. Whole-exome sequencing was employed for variant screening, and Sanger sequencing confirmed the identified variants. Morphological and ultrastructural analyses of sperm were conducted using Scanning Electron Microscopy and Transmission Electron Microscopy. Western Blot Analysis and Immunofluorescence Analysis were utilized to assess protein levels and localization. ICSI was performed to evaluate its efficacy in achieving favorable pregnancy outcomes for individuals with DNAH11 variants. RESULTS In this study, we identified seven novel variants in the DNAH11 gene in four asthenoteratozoospermia subjects. These variants led the absence of DNAH11 proteins and ultrastructure defects in sperm flagella, particularly affecting the outer dynein arms (ODAs) and adjacent structures. The levels of ODA protein DNAI2 and axoneme related proteins were down regulated, instead of inner dynein arms (IDA) proteins DNAH1 and DNAH6. Two out of four individuals with DNAH11 variants achieved clinical pregnancies through ICSI. The findings confirm the association between male infertility and bi-allelic deleterious variants in DNAH11, resulting in the aberrant assembly of sperm flagella and contributing to asthenoteratozoospermia. Importantly, ICSI emerges as an effective intervention for overcoming reproductive challenges caused by DNAH11 gene variants.
Collapse
Affiliation(s)
- Senzhao Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Yuge Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hui Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Meng Gu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Jiajun Fang
- The First Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Baoyan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lewen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qing Tan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Provincial Human Sperm Bank First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongliu Duan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, 230032, China.
| |
Collapse
|
21
|
Balasubramaniam K, He T, Chen H, Lin Z, He CY. Cytoplasmic preassembly of the flagellar outer dynein arm complex in Trypanosoma brucei. Mol Biol Cell 2024; 35:br16. [PMID: 39024276 PMCID: PMC11449384 DOI: 10.1091/mbc.e24-06-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
The outer dynein arm (ODA) is a large, multimeric protein complex essential for ciliary motility. The composition and assembly of ODA are best characterized in the green algae Chlamydomonas reinhardtii, where individual ODA subunits are synthesized and preassembled into a mature complex in the cytosol prior to ciliary import. The single-cellular parasite Trypanosoma brucei contains a motile flagellum essential for cell locomotion and pathogenesis. Similar to human motile cilia, T. brucei flagellum contains a two-headed ODA complex arranged at 24 nm intervals along the axonemal microtubule doublets. The subunit composition and the preassembly of the ODA complex in T. brucei, however, have not been investigated. In this study, we affinity-purified the ODA complex from T. brucei cytoplasmic extract. Proteomic analyses revealed the presence of two heavy chains (ODAα and ODAβ), two intermediate chains (IC1and IC2) and several light chains. We showed that both heavy chains and both intermediate chains are indispensable for flagellar ODA assembly. Our study also provided biochemical evidence supporting the presence of a cytoplasmic, preassembly pathway for T. brucei ODA.
Collapse
Affiliation(s)
- Karthika Balasubramaniam
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Tingting He
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Helen Chen
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Zhewang Lin
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| | - Cynthia Y. He
- Department of Biological Science, The Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
22
|
Bonnefoy S, Alves AA, Bertiaux E, Bastin P. LRRC56 is an IFT cargo required for assembly of the distal dynein docking complex in Trypanosoma brucei. Mol Biol Cell 2024; 35:ar106. [PMID: 38865178 PMCID: PMC11321045 DOI: 10.1091/mbc.e23-11-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Outer dynein arms (ODAs) are responsible for ciliary beating in eukaryotes. They are assembled in the cytoplasm and shipped by intraflagellar transport (IFT) before attachment to microtubule doublets via the docking complex. The LRRC56 protein has been proposed to contribute to ODAs maturation. Mutations or deletion of the LRRC56 gene lead to reduced ciliary motility in all species investigated so far, but with variable impact on dynein arm presence. Here, we investigated the role of LRRC56 in the protist Trypanosoma brucei, where its absence results in distal loss of ODAs, mostly in growing flagella. We show that LRRC56 is a transient cargo of IFT trains during flagellum construction and surprisingly, is required for efficient attachment of a subset of docking complex proteins present in the distal portion of the organelle. This relation is interdependent since the knockdown of the distal docking complex prevents LRRC56's association with the flagellum. Intriguingly, lrrc56-/- cells display shorter flagella whose maturation is delayed. Inhibition of cell division compensates for the distal ODAs absence thanks to the redistribution of the proximal docking complex, restoring ODAs attachment but not the flagellum length phenotype. This work reveals an unexpected connection between LRRC56 and the docking complex.
Collapse
Affiliation(s)
- Serge Bonnefoy
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| | - Aline Araujo Alves
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
- Sorbonne Université, école doctorale complexité du vivant, ED 515, 7, quai Saint-Bernard, case 32, 75252 Paris Cedex 05, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur, Université de Paris Cité, INSERM U1201, Paris, France
| |
Collapse
|
23
|
Mukhopadhyay AG, Toropova K, Daly L, Wells JN, Vuolo L, Mladenov M, Seda M, Jenkins D, Stephens DJ, Roberts AJ. Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport. EMBO J 2024; 43:1257-1272. [PMID: 38454149 PMCID: PMC10987677 DOI: 10.1038/s44318-024-00060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Dynein-2 is a large multiprotein complex that powers retrograde intraflagellar transport (IFT) of cargoes within cilia/flagella, but the molecular mechanism underlying this function is still emerging. Distinctively, dynein-2 contains two identical force-generating heavy chains that interact with two different intermediate chains (WDR34 and WDR60). Here, we dissect regulation of dynein-2 function by WDR34 and WDR60 using an integrative approach including cryo-electron microscopy and CRISPR/Cas9-enabled cell biology. A 3.9 Å resolution structure shows how WDR34 and WDR60 use surprisingly different interactions to engage equivalent sites of the two heavy chains. We show that cilia can assemble in the absence of either WDR34 or WDR60 individually, but not both subunits. Dynein-2-dependent distribution of cargoes depends more strongly on WDR60, because the unique N-terminal extension of WDR60 facilitates dynein-2 targeting to cilia. Strikingly, this N-terminal extension can be transplanted onto WDR34 and retain function, suggesting it acts as a flexible tether to the IFT "trains" that assemble at the ciliary base. We discuss how use of unstructured tethers represents an emerging theme in IFT train interactions.
Collapse
Affiliation(s)
- Aakash G Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Katerina Toropova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Lydia Daly
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Randall Centre of Cell & Molecular Biophysics, King's College London, London, UK
| | - Jennifer N Wells
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- MRC London Institute of Medical Sciences (LMS), London, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Miroslav Mladenov
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Marian Seda
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dagan Jenkins
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Anthony J Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK.
| |
Collapse
|
24
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
25
|
Luxmi R, King SM. Cilia Provide a Platform for the Generation, Regulated Secretion, and Reception of Peptidergic Signals. Cells 2024; 13:303. [PMID: 38391915 PMCID: PMC10886904 DOI: 10.3390/cells13040303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Cilia are microtubule-based cellular projections that act as motile, sensory, and secretory organelles. These structures receive information from the environment and transmit downstream signals to the cell body. Cilia also release vesicular ectosomes that bud from the ciliary membrane and carry an array of bioactive enzymes and peptide products. Peptidergic signals represent an ancient mode of intercellular communication, and in metazoans are involved in the maintenance of cellular homeostasis and various other physiological processes and responses. Numerous peptide receptors, subtilisin-like proteases, the peptide-amidating enzyme, and bioactive amidated peptide products have been localized to these organelles. In this review, we detail how cilia serve as specialized signaling organelles and act as a platform for the regulated processing and secretion of peptidergic signals. We especially focus on the processing and trafficking pathways by which a peptide precursor from the green alga Chlamydomonas reinhardtii is converted into an amidated bioactive product-a chemotactic modulator-and released from cilia in ectosomes. Biochemical dissection of this complex ciliary secretory pathway provides a paradigm for understanding cilia-based peptidergic signaling in mammals and other eukaryotes.
Collapse
Affiliation(s)
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
26
|
Meng GQ, Wang Y, Luo C, Tan YM, Li Y, Tan C, Tu C, Zhang QJ, Hu L, Zhang H, Meng LL, Liu CY, Deng L, Lu GX, Lin G, Du J, Tan YQ, Sha Y, Wang L, He WB. Bi-allelic variants in DNAH3 cause male infertility with asthenoteratozoospermia in humans and mice. Hum Reprod Open 2024; 2024:hoae003. [PMID: 38312775 PMCID: PMC10834362 DOI: 10.1093/hropen/hoae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
STUDY QUESTION Are there other pathogenic genes for asthenoteratozoospermia (AT)? SUMMARY ANSWER DNAH3 is a novel candidate gene for AT in humans and mice. WHAT IS KNOWN ALREADY AT is a major cause of male infertility. Several genes underlying AT have been reported; however, the genetic aetiology remains unknown in a majority of affected men. STUDY DESIGN SIZE DURATION A total of 432 patients with AT were recruited in this study. DNAH3 mutations were identified by whole-exome sequencing (WES). Dnah3 knockout mice were generated using the genome editing tool. The morphology and motility of sperm from Dnah3 knockout mice were investigated. The entire study was conducted over 3 years. PARTICIPANTS/MATERIALS SETTING METHODS WES was performed on 432 infertile patients with AT. In addition, two lines of Dnah3 knockout mice were generated. Haematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunostaining, and computer-aided sperm analysis (CASA) were performed to investigate the morphology and motility of the spermatozoa. ICSI was used to overcome the infertility of one patient and of the Dnah3 knockout mice. MAIN RESULTS AND THE ROLE OF CHANCE DNAH3 biallelic variants were identified in three patients from three unrelated families. H&E staining revealed various morphological abnormalities in the flagella of sperm from the patients, and TEM and immunostaining further showed the loss of the central pair of microtubules, a dislocated mitochondrial sheath and fibrous sheath, as well as a partial absence of the inner dynein arms. In addition, the two Dnah3 knockout mouse lines demonstrated AT. One patient and the Dnah3 knockout mice showed good treatment outcomes after ICSI. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION This is a preliminary report suggesting that defects in DNAH3 can lead to asthenoteratozoospermia in humans and mice. The pathogenic mechanism needs to be further examined in a future study. WIDER IMPLICATIONS OF THE FINDINGS Our findings show that DNAH3 is a novel candidate gene for AT in humans and mice and provide crucial insights into the biological underpinnings of this disorder. The findings may also be beneficial for counselling affected individuals. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants from National Natural Science Foundation of China (82201773, 82101961, 82171608, 32322017, 82071697, and 81971447), National Key Research and Development Program of China (2022YFC2702604), Scientific Research Foundation of the Health Committee of Hunan Province (B202301039323, B202301039518), Hunan Provincial Natural Science Foundation (2023JJ30716), the Medical Innovation Project of Fujian Province (2020-CXB-051), the Science and Technology Project of Fujian Province (2023D017), China Postdoctoral Science Foundation (2022M711119), and Guilin technology project for people's benefit (20180106-4-7). The authors declare no competing interests.
Collapse
Affiliation(s)
- Gui-Quan Meng
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yaling Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Chen Luo
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yu-Mei Tan
- GuangDong Provincial Fertility Hospital (GuangDong Provincial Reproductive Science Institute), Guangzhou, China
| | - Yong Li
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chen Tan
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chaofeng Tu
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Qian-Jun Zhang
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Huan Zhang
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Lan-Lan Meng
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Chun-Yu Liu
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Leiyu Deng
- Reproductive Center of No.924 Hospital of PLA Joint Logistic Support Force, Guilin, China
| | - Guang-Xiu Lu
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Ge Lin
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Juan Du
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yue-Qiu Tan
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Lingbo Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen-Bin He
- Genetic Department, Hunan Guangxiu Hospital, Hunan Normal University School of Medicine, Changsha, China
- National Engineering and Research Center of Human Stem Cells & Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Genetic Department, Reproductive and Genetic Hospital of CITIC-Xiangya & Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
27
|
Huang Q, Chen X, Yu H, Ji L, Shi Y, Cheng X, Chen H, Yu J. Structure and molecular basis of spermatid elongation in the Drosophila testis. Open Biol 2023; 13:230136. [PMID: 37935354 PMCID: PMC10645079 DOI: 10.1098/rsob.230136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
Spermatid elongation is a crucial event in the late stage of spermatogenesis in the Drosophila testis, eventually leading to the formation of mature sperm after meiosis. During spermatogenesis, significant structural and morphological changes take place in a cluster of post-meiotic germ cells, which are enclosed in a microenvironment surrounded by somatic cyst cells. Microtubule-based axoneme assembly, formation of individualization complexes and mitochondria maintenance are key processes involved in the differentiation of elongated spermatids. They provide important structural foundations for accessing male fertility. How these structures are constructed and maintained are basic questions in the Drosophila testis. Although the roles of several genes in different structures during the development of elongated spermatids have been elucidated, the relationships between them have not been widely studied. In addition, the genetic basis of spermatid elongation and the regulatory mechanisms involved have not been thoroughly investigated. In the present review, we focus on current knowledge with regard to spermatid axoneme assembly, individualization complex and mitochondria maintenance. We also touch upon promising directions for future research to unravel the underlying mechanisms of spermatid elongation in the Drosophila testis.
Collapse
Affiliation(s)
- Qiuru Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Li Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yi Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| |
Collapse
|
28
|
Wan F, Yu L, Qu X, Xia Y, Feng K, Zhang L, Zhang N, Zhao G, Zhang C, Guo H. A novel mutation in PCD-associated gene DNAAF3 causes male infertility due to asthenozoospermia. J Cell Mol Med 2023; 27:3107-3116. [PMID: 37537752 PMCID: PMC10568663 DOI: 10.1111/jcmm.17881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare autosomal-recessive disease manifested with recurrent infections of respiratory tract and infertility. DNAAF3 is identified as a novel gene associated with PCD and different mutations in DNAAF3 results in different clinical features of PCD patients, such as situs inversus, sinusitis and bronchiectasis. However, the sperm phenotypic characteristics of PCD males are generally poorly investigated. Our reproductive medicine centre received a case of PCD patient with infertility, who presented with sinusitis, recurrent infections of the lower airway and severe asthenozoospermia; However, no situs inversus was found in the patient. A novel homozygous mutation in DNAAF3(c.551T>A; p.V184E) was identified in the PCD patient by whole-exome sequencing. Subsequent Sanger sequencing further confirmed that the DNAAF3 had a homozygous missense variant in the fifth exon. Transmission electron microscopy and immunostaining analysis of the sperms from the patient showed a complete absence of outer dynein arms and partial absence of inner dynein arms, which resulted in the reduction in sperm motility. However, this infertility was overcome by intracytoplasmic sperm injections, as his wife achieved successful pregnancy. These findings showed that the PCD-associated pathogenic mutation within DNAAF3 also causes severe asthenozoospermia and male infertility ultimately due to sperm flagella axoneme defect in humans. Our study not only contributes to understand the sperm phenotypic characteristics of patients with DNAAF3 mutations but also expands the spectrum of DNAAF3 mutations and may contribute to the genetic diagnosis and therapy for infertile patient with PCD.
Collapse
Affiliation(s)
- Feng Wan
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| | - Lan Yu
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| | - Xiaowei Qu
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| | - Yanqing Xia
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| | - Ke Feng
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| | - Lei Zhang
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| | - Na Zhang
- Department of Cardiopulmonary FunctionHenan Provincial People's HospitalZhengzhouChina
| | - Guihua Zhao
- Department of Cardiopulmonary FunctionHenan Provincial People's HospitalZhengzhouChina
| | - Cuilian Zhang
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| | - Haibin Guo
- The Reproductive Medicine CenterHenan Provincial People's HospitalZhengzhouChina
- The Reproductive Medicine CenterPeople's Hospital of Zhengzhou UniversityZhengzhouChina
- The Reproductive Medicine CenterHenan Provincial People's Hospital of Henan UniversityZhengzhouChina
| |
Collapse
|
29
|
Hope T, Becker M, Martin-Sancho L, Simons L, McRaven M, Chanda S, Hultquist J. Live imaging of the airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. RESEARCH SQUARE 2023:rs.3.rs-3246773. [PMID: 37720034 PMCID: PMC10503848 DOI: 10.21203/rs.3.rs-3246773/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 initiates infection in the conducting airways, which rely on mucocilliary clearance (MCC) to minimize pathogen penetration. However, it is unclear how MCC impacts SARS-CoV-2 spread after infection is established. To understand viral spread at this site, we performed live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 9 days. Fluorescent markers for cilia and mucus allowed longitudinal monitoring of MCC, ciliary motion, and infection. The number of infected cells peaked at 4 days post-infection in characteristic foci that followed mucus movement. Inhibition of MCC using physical and genetic perturbations limited foci. Later in infection, MCC was diminished despite relatively subtle ciliary function defects. Resumption of MCC and infection spread after mucus removal suggests that mucus secretion mediates this effect. We show that MCC facilitates SARS-CoV-2 spread early in infection while later decreases in MCC inhibit spread, suggesting a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumit Chanda
- Sanford Burnham Prebys Medical Discovery Institute
| | | |
Collapse
|
30
|
Ibrahim S, Yang C, Yue C, Song X, Deng Y, Li Q, Lü W. Whole Transcriptome Analysis Reveals the Global Molecular Responses of mRNAs, lncRNAs, miRNAs, circRNAs, and Their ceRNA Networks to Salinity Stress in Hong Kong Oysters, Crassostrea hongkongensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:624-641. [PMID: 37493868 DOI: 10.1007/s10126-023-10234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
The Hong Kong oyster, Crassostrea hongkongensis, is an estuarine bivalve with remarkable commercial value in South China, and the increase of salinity in estuaries during the dry season has posed a major threat to the oyster farming. To explore the global transcriptional response to salinity stress, a whole-transcriptome analysis was performed with the gills of oysters in 6‰, 18‰, and 30‰ filtered seawater. Overall, 2243, 194, 371, and 167 differentially expressed mRNAs (DEmRNAs), differentially expressed long non-coding RNAs (DElncRNAs), differentially expressed circular RNAs (DEcircRNAs), and differentially expressed microRNAs (DEmiRNAs) were identified, respectively. Based on GO enrichment and KEGG pathway analysis, these important DEmRNAs, DElncRNAs, DEcircRNAs, and DEmiRNAs were predicted to be mainly involved in amino acids metabolism, microtubule movement, and immune defense. This demonstrated the complexity of dynamic transcriptomic profiles of C. hongkongensis in response to salinity fluctuation. The regulatory relationships of DEmiRNAs-DEmRNAs, DElncRNAs-DEmiRNAs, and DEcircRNAs-DEmiRNAs were also predicted, and finally, a circRNA-associated competing endogenous RNA (ceRNA) network was constructed, consisting of six DEcircRNAs, eight DEmiRNAs, and five DEmRNAs. The key roles of taurine and hypotaurine metabolism and phenylalanine metabolism were highlighted in this ceRNA network, which was consistent with the major contribution of free amino acids to intracellular osmolality and cell volume regulation. Collectively, this study provides comprehensive data, contributing to the exploration of coding and non-coding RNAs in C. hongkongensis salinity response. The results would benefit the understanding of the response mechanism of bivalves against salinity fluctuation, and provide clues for genetic improvement of C. hongkongensis with hyper-salinity tolerance.
Collapse
Affiliation(s)
- Salifu Ibrahim
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chenyang Yue
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xinyu Song
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Wengang Lü
- Guangdong Marine Invertebrates Science and Technology Innovation Center, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
31
|
Chen Z, Lei Y, Finnell RH, Ding Y, Su Z, Wang Y, Xie H, Chen F. Whole-exome sequencing study of hypospadias. iScience 2023; 26:106663. [PMID: 37168556 PMCID: PMC10165268 DOI: 10.1016/j.isci.2023.106663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Hypospadias results from the impaired urethral development, which is influenced by androgens, but its genetic etiology is still unknown. Through whole exome sequencing analysis, we identified NR5A1, SRD5A2, and AR as mutational hotspots in the etiology of severe hypospadias, as these genes are related to androgen signaling. Additionally, rare damaging variants in cilia-related outer dynein arm heavy chain (ODNAH) genes (DNAH5, DNAH8, DNAH9, DNAH11, and DNAH17) (p = 8.5 × 10-47) were significantly enriched in hypospadias cases. The Dnah8 KO mice exhibited significantly decreased testosterone levels, which had an impact on urethral development and disrupted steroid biosynthesis. Combined with trios data, transcriptomic, and phenotypical and proteomic characterization of a mouse model, our work links ciliary genes with hypospadias. Overall, a panel of ODNAH genes with rare damaging variants was identified in 24% of hypospadias patients, providing significant insights into the underlying pathogenesis of hypospadias as well as genetic counseling.
Collapse
Affiliation(s)
- Zhongzhong Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Urogenital Development Research Center, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yunping Lei
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Ding
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhixi Su
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yaping Wang
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Hua Xie
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Fang Chen
- Department of Urology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
- Clinical Research Center For Hypospadias Pediatric College, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China
| |
Collapse
|
32
|
Zimmermann N, Noga A, Obbineni JM, Ishikawa T. ATP-induced conformational change of axonemal outer dynein arms revealed by cryo-electron tomography. EMBO J 2023:e112466. [PMID: 37051721 DOI: 10.15252/embj.2022112466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Axonemal outer dynein arm (ODA) motors generate force for ciliary beating. We analyzed three states of the ODA during the power stroke cycle using in situ cryo-electron tomography, subtomogram averaging, and classification. These states of force generation depict the prepower stroke, postpower stroke, and intermediate state conformations. Comparison of these conformations to published in vitro atomic structures of cytoplasmic dynein, ODA, and the Shulin-ODA complex revealed differences in the orientation and position of the dynein head. Our analysis shows that in the absence of ATP, all dynein linkers interact with the AAA3/AAA4 domains, indicating that interactions with the adjacent microtubule doublet B-tubule direct dynein orientation. For the prepower stroke conformation, there were changes in the tail that is anchored on the A-tubule. We built models starting with available high-resolution structures to generate a best-fitting model structure for the in situ pre- and postpower stroke ODA conformations, thereby showing that ODA in a complex with Shulin adopts a similar conformation as the active prepower stroke ODA in the axoneme.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Akira Noga
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Jagan Mohan Obbineni
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
- VIT School for Agricultural Innovations and Advanced, Learning (VAIAL), VIT, Vellore, India
| | - Takashi Ishikawa
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| |
Collapse
|
33
|
Li L, Li J, Ou Y, Wu J, Li H, Wang X, Tang L, Dai X, Yang C, Wei Z, Yin Z, Shu Y. Ccdc57 is required for straightening the body axis by regulating ciliary motility in the brain ventricle of zebrafish. J Genet Genomics 2023; 50:253-263. [PMID: 36669737 DOI: 10.1016/j.jgg.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Recently, cilia defects have been proposed to contribute to scoliosis. Here, we demonstrate that coiled-coil domain-containing 57 (Ccdc57) plays an essential role in straightening the body axis of zebrafish by regulating ciliary beating in the brain ventricle (BV). Zygotic ccdc57 (Zccdc57) mutant zebrafish developes scoliosis without significant changes in their bone density and calcification, and the maternal-zygotic ccdc57 (MZccdc57) mutant embryos display curved bodies since the long-pec stage. The expression of ccdc57 is enriched in ciliated tissues and immunofluorescence analysis reveals colocalization of Ccdc57-HA with acetylated α-tubulin, implicating it in having a role in ciliary function. Further examination reveals that it is the coordinated cilia beating of multiple cilia bundles (MCB) in the MZccdc57 mutant embryos that is affected at 48 hours post fertilization, when the compromised cerebrospinal fluid flow and curved body axis have already occurred. Either ccdc57 mRNA injection or epinephrine treatment reverses the spinal curvature in MZccdc57 mutant larvae from ventrally curly to straight or even dorsally curly and significantly upregulates urotensin signaling. This study reveals the role of ccdc57 in maintaining coordinated cilia beating of MCB in the BV.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Juan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jiaxin Wu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huilin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xin Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Liying Tang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiangyan Dai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Conghui Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zehong Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yuqin Shu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
34
|
Zhang P, Zhu Y, Guo Q, Li J, Zhan X, Yu H, Xie N, Tan H, Lundholm N, Garcia-Cuetos L, Martin MD, Subirats MA, Su YH, Ruiz-Trillo I, Martindale MQ, Yu JK, Gilbert MTP, Zhang G, Li Q. On the origin and evolution of RNA editing in metazoans. Cell Rep 2023; 42:112112. [PMID: 36795564 PMCID: PMC9989829 DOI: 10.1016/j.celrep.2023.112112] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Extensive adenosine-to-inosine (A-to-I) editing of nuclear-transcribed mRNAs is the hallmark of metazoan transcriptional regulation. Here, by profiling the RNA editomes of 22 species that cover major groups of Holozoa, we provide substantial evidence supporting A-to-I mRNA editing as a regulatory innovation originating in the last common ancestor of extant metazoans. This ancient biochemistry process is preserved in most extant metazoan phyla and primarily targets endogenous double-stranded RNA (dsRNA) formed by evolutionarily young repeats. We also find intermolecular pairing of sense-antisense transcripts as an important mechanism for forming dsRNA substrates for A-to-I editing in some but not all lineages. Likewise, recoding editing is rarely shared across lineages but preferentially targets genes involved in neural and cytoskeleton systems in bilaterians. We conclude that metazoan A-to-I editing might first emerge as a safeguard mechanism against repeat-derived dsRNA and was later co-opted into diverse biological processes due to its mutagenic nature.
Collapse
Affiliation(s)
- Pei Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Qunfei Guo
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Li
- BGI Research-Wuhan, BGI, Wuhan 430074, China
| | | | - Hao Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Nianxia Xie
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Lydia Garcia-Cuetos
- Natural History Museum of Denmark, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Center for Theoretical Evolutionary Genomics, Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Iñaki Ruiz-Trillo
- Institute of Evolutionary Biology, UPF-CSIC Barcelona, 08003 Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Bilogia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan 26242, Taiwan
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Guojie Zhang
- Center of Evolutionary and Organismal Biology, & Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Qiye Li
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Kwon KY, Jeong H, Jang DG, Kwon T, Park TJ. Ckb and Ybx2 interact with Ribc2 and are necessary for the ciliary beating of multi-cilia. Genes Genomics 2023; 45:157-167. [PMID: 36508087 DOI: 10.1007/s13258-022-01350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Motile cilia in a vertebrate are important to sustaining activities of life. Fluid flow on the apical surface of several tissues, including bronchial epithelium, ependymal epithelium, and fallopian tubules is generated by the ciliary beating of motile cilia. Multi-ciliated cells in ependymal tissue are responsible for the circulation of cerebrospinal fluid (CSF), which is essential for the development and homeostasis of the central nervous system, and airway tissues are protected from external contaminants by cilia-driven mucosal flow over the top of the airway epithelium. OBJECTIVE A previous study reported that reduction of Ribc2 protein leads to disruption of ciliary beating in multi-ciliated cells. However, knowledge regarding the molecular function of Ribc2 is limited, thus currently available information is also limited. Therefore, we evaluated the importance of proteins involved in the interaction with Ribc2 in the process of ciliary beating. METHODS Immunoprecipitation and mass spectrometry analysis was performed for the discovery of proteins involved in the interaction with Ribc2. Expression of the target gene was inhibited by injection of antisense morpholinos and measurement of the fluid flow on the embryonic epidermis of Xenopus was performed using fluorescent beads for examination of the ciliary beating of multi cilia. In addition, the flag-tagged protein was expressed by injection of mRNA and the changes in protein localization in the cilia were measured by immunostaining and western blot analysis for analysis of the molecular interaction between Ribc2 and Ribc2 binding proteins in multi-cilia. RESULTS The IP/MS analysis identified Ckb and Ybx2 as Ribc2 binding proteins and our results showed that localization of both Ckb and Ybx2 occurs at the axoneme of multi-cilia on the embryonic epithelium of Xenopus laevis. In addition, our findings confirmed that knock-down of Ckb or Ybx2 resulted in abnormal ciliary beating and reduction of cilia-driven fluid flow on multi-cilia of Xenopus laevis. In addition, significantly decreased localization of Ckb or Ybx2 in the ciliary axoneme was observed in Ribc2-depleted multi-cilia. CONCLUSION Ckb and Ybx2 are involved in the interaction with Ribc2 and are necessary for the ciliary beating of multi-cilia.
Collapse
Affiliation(s)
- Keun Yeong Kwon
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hyeongsun Jeong
- Department of Biological Medical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Dong Gil Jang
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biological Medical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
36
|
Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes (Basel) 2023; 14:383. [PMID: 36833310 PMCID: PMC9956255 DOI: 10.3390/genes14020383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Infertility is a major health problem worldwide without an effective therapy or cure. It is estimated to affect 8-12% of couples in the reproductive age group, equally affecting both genders. There is no single cause of infertility, and its knowledge is still far from complete, with about 30% of infertile couples having no cause identified (named idiopathic infertility). Among male causes of infertility, asthenozoospermia (i.e., reduced sperm motility) is one of the most observed, being estimated that more than 20% of infertile men have this condition. In recent years, many researchers have focused on possible factors leading to asthenozoospermia, revealing the existence of many cellular and molecular players. So far, more than 4000 genes are thought to be involved in sperm production and as regulators of different aspects of sperm development, maturation, and function, and all can potentially cause male infertility if mutated. In this review, we aim to give a brief overview of the typical sperm flagellum morphology and compile some of the most relevant information regarding the genetic factors involved in male infertility, with a focus on sperm immotility and on genes related to sperm flagellum development, structure, or function.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
37
|
Luongo FP, Luddi A, Ponchia R, Ferrante R, Di Rado S, Paccagnini E, Gentile M, Lupetti P, Guazzo R, Orrico A, Stuppia L, Piomboni P. Case report: The CCDC103 variant causes ultrastructural sperm axonemal defects and total sperm immotility in a professional athlete without primary ciliary diskinesia. Front Genet 2023; 14:1062326. [PMID: 36777727 PMCID: PMC9908957 DOI: 10.3389/fgene.2023.1062326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an inherited autosomal-recessive disorder characterized by abnormal ciliary motion, due to a defect in ciliary structure and/or function. This genetic condition leads to recurrent upper and lower respiratory infections, bronchiectasis, laterality defect, and subfertility. Male infertility is often associated with PCD, since the ultrastructure of the axoneme in the sperm tail is similar to that of the motile cilia of respiratory cells. We present the first reported case of a male patient from a non-consanguineous Italian family who exhibited a severe form of asthenozoospermia factor infertility but no situs inversus and absolutely no signs of the clinical respiratory phenotype, the proband being a professional basketball player. Whole-exome sequencing (WES) has identified a homozygote mutation (CCDC103 c.461 A>C, p.His154Pro) in the proband, while his brother was a heterozygous carrier for this mutation. Morphological and ultrastructural analyses of the axoneme in the sperm flagellum demonstrated the complete loss of both the inner and outer dynein arms (IDA and ODA, respectively). Moreover, immunofluorescence of DNAH1, which is used to check the assembly of IDA, and DNAH5, which labels ODA, demonstrated that these complexes are absent along the full length of the flagella in the spermatozoa from the proband, which was consistent with the IDA and ODA defects observed. Noteworthy, TEM analysis of the axoneme from respiratory cilia showed that dynein arms, although either IDAs and/or ODAs seldom missing on some doublets, are still partly present in each observed section. This case reports the total sperm immotility associated with the CCDC103 p.His154Pro mutation in a man with a normal respiratory phenotype and enriches the variant spectrum of ccdc103 variants and the associated clinical phenotypes in PCD, thus improving counseling of patients about their fertility and possible targeted treatments.
Collapse
Affiliation(s)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy,*Correspondence: Alice Luddi,
| | - Rosetta Ponchia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rossella Ferrante
- Department of Psychological Sciences, Health and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Sara Di Rado
- Department of Psychological Sciences, Health and Territory, University of Chieti-Pescara, Chieti, Italy
| | | | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Alfredo Orrico
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Liborio Stuppia
- Department of Psychological Sciences, Health and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy,Assisted Reproductive Unit, Siena University Hospital, Siena, Italy
| |
Collapse
|
38
|
Whole-Genome Profile of Greek Patients with Teratozοοspermia: Identification of Candidate Variants and Genes. Genes (Basel) 2022; 13:genes13091606. [PMID: 36140773 PMCID: PMC9498395 DOI: 10.3390/genes13091606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/09/2023] Open
Abstract
Male infertility is a global health problem that affects a large number of couples worldwide. It can be categorized into specific subtypes, including teratozoospermia. The present study aimed to identify new variants associated with teratozoospermia in the Greek population and to explore the role of genes on which these were identified. For this reason, whole-genome sequencing (WGS) was performed on normozoospermic and teratozoospermic individuals, and after selecting only variants found in teratozoospermic men, these were further prioritized using a wide range of tools, functional and predictive algorithms, etc. An average of 600,000 variants were identified, and of them, 61 were characterized as high impact and 153 as moderate impact. Many of these are mapped in genes previously associated with male infertility, yet others are related for the first time to teratozoospermia. Furthermore, pathway enrichment analysis and Gene ontology (GO) analyses revealed the important role of the extracellular matrix in teratozoospermia. Therefore, the present study confirms the contribution of genes studied in the past to male infertility and sheds light on new molecular mechanisms by providing a list of variants and candidate genes associated with teratozoospermia in the Greek population.
Collapse
|
39
|
Levkova M, Radanova M, Angelova L. Potential role of dynein-related genes in the etiology of male infertility: A systematic review and a meta-analysis. Andrology 2022; 10:1484-1499. [PMID: 36057791 DOI: 10.1111/andr.13287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The dynein-related genes may have a role in the etiology of male infertility, particularly in cases of impaired sperm motility. OBJECTIVES The goal of this review is to compile a list of the most important dynein-related candidate genes that may contribute to male factor infertility. MATERIALS AND METHODS Databases were searched using the keywords "dynein", "male", "infertility" and by applying strict inclusion criteria. A meta-analysis was also performed by using the eligible case-control studies. The odd ratios (OR), the Z-test score, and the level of significance were determined using a fixed model with a p value of 0.05. Funnel plots were used to check for publication bias. RESULTS There were 35 studies that met the inclusion criteria. There were a total of fifteen genes responsible for the production of dynein structural proteins, the production of dynein assembling factors, and potentially associated with male infertility. A total of five case-control studies were eligible for inclusion in the meta-analysis. Variants in the dynein-related genes were linked to an increased the risk of male infertility (OR = 21.52, 95% Confidence Interval (CI) 8.34 - 55.50, Z test = 6.35, p < 0.05). The percentage of heterogeneity, I2 , was 47.00%. The lack of variants in the dynein genes was an advantage and this was statistically significant. DISCUSSION The results from the present review illustrate that pathogenic variants in genes both for dynein synthesis and for dynein assembly factors could be associated with isolated cases of male infertility without any other symptoms. CONCLUSIONS The genes addressed in this study, which are involved in both the production and assembly of dynein, could be used as molecular targets for future research into the etiology of sperm motility problems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Tzar Osvoboditel Str 84b, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
40
|
Luxmi R, King SM. Cilia-derived vesicles: An ancient route for intercellular communication. Semin Cell Dev Biol 2022; 129:82-92. [PMID: 35346578 PMCID: PMC9378432 DOI: 10.1016/j.semcdb.2022.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) provide a mechanism for intercellular communication that transports complex signals in membrane delimited structures between cells, tissues and organisms. Cells secrete EVs of various subtypes defined by the pathway leading to release and by the pathological condition of the cell. Cilia are evolutionarily conserved organelles that can act as sensory structures surveilling the extracellular environment. Here we discuss the secretory functions of cilia and their biological implications. Studies in multiple species - from the nematode Caenorhabditis elegans and the chlorophyte alga Chlamydomonas reinhardtii to mammals - have revealed that cilia shed bioactive EVs (ciliary EVs or ectosomes) by outward budding of the ciliary membrane. The content of ciliary EVs is distinct from that of other vesicles released by cells. Peptides regulate numerous aspects of metazoan physiology and development through evolutionarily conserved mechanisms. Intriguingly, cilia-derived vesicles have recently been found to mediate peptidergic signaling. C. reinhardtii releases the peptide α-amidating enzyme (PAM), bioactive amidated products and components of the peptidergic signaling machinery in ciliary EVs in a developmentally regulated manner. Considering the origin of cilia in early eukaryotes, it is likely that release of peptidergic signals in ciliary EVs represents an alternative and ancient mode of regulated secretion that cells can utilize in the absence of dedicated secretory granules.
Collapse
Affiliation(s)
- Raj Luxmi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| | - Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA.
| |
Collapse
|
41
|
Xiang W, Zur Lage P, Newton FG, Qiu G, Jarman AP. The dynamics of protein localisation to restricted zones within Drosophila mechanosensory cilia. Sci Rep 2022; 12:13338. [PMID: 35922464 PMCID: PMC9349282 DOI: 10.1038/s41598-022-17189-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
The Drosophila chordotonal neuron cilium is the site of mechanosensory transduction. The cilium has a 9 + 0 axoneme structure and is highly sub-compartmentalised, with proximal and distal zones harbouring different TRP channels and the proximal zone axoneme also being decorated with axonemal dynein motor complexes. The activity of the dynein complexes is essential for mechanotransduction. We investigate the localisation of TRP channels and dynein motor complexes during ciliogenesis. Differences in timing of TRP channel localisation correlate with order of construction of the two ciliary zones. Dynein motor complexes are initially not confined to their target proximal zone, but ectopic complexes beyond the proximal zone are later cleared, perhaps by retrograde transport. Differences in transient distal localisation of outer and inner dynein arm complexes (ODAs and IDAs) are consistent with previous suggestions from unicellular eukaryotes of differences in processivity during intraflagellar transport. Stable localisation depends on the targeting of their docking proteins in the proximal zone. For ODA, we characterise an ODA docking complex (ODA-DC) that is targeted directly to the proximal zone. Interestingly, the subunit composition of the ODA-DC in chordotonal neuron cilia appears to be different from the predicted ODA-DC in Drosophila sperm.
Collapse
Affiliation(s)
- Wangchu Xiang
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Department of Neurobiology, Harvard Medical School, Boston, MA, 02215, USA
| | - Petra Zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Fay G Newton
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Guiyun Qiu
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Andrew P Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
42
|
Abstract
Flagellar-driven motility grants unicellular organisms the ability to gather more food and avoid predators, but the energetic costs of construction and operation of flagella are considerable. Paths of flagellar evolution depend on the deviations between fitness gains and energy costs. Using structural data available for all three major flagellar types (bacterial, archaeal, and eukaryotic), flagellar construction costs were determined for Escherichia coli, Pyrococcus furiosus, and Chlamydomonas reinhardtii. Estimates of cell volumes, flagella numbers, and flagellum lengths from the literature yield flagellar costs for another ~200 species. The benefits of flagellar investment were analysed in terms of swimming speed, nutrient collection, and growth rate; showing, among other things, that the cost-effectiveness of bacterial and eukaryotic flagella follows a common trend. However, a comparison of whole-cell costs and flagellum costs across the Tree of Life reveals that only cells with larger cell volumes than the typical bacterium could evolve the more expensive eukaryotic flagellum. These findings provide insight into the unsolved evolutionary question of why the three domains of life each carry their own type of flagellum.
Collapse
Affiliation(s)
- Paul E Schavemaker
- Biodesign Center for Mechanisms of Evolution, Arizona State UniversityTempeUnited States
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State UniversityTempeUnited States
| |
Collapse
|
43
|
Lennon J, zur Lage P, von Kriegsheim A, Jarman AP. Strongly Truncated Dnaaf4 Plays a Conserved Role in Drosophila Ciliary Dynein Assembly as Part of an R2TP-Like Co-Chaperone Complex With Dnaaf6. Front Genet 2022; 13:943197. [PMID: 35873488 PMCID: PMC9298768 DOI: 10.3389/fgene.2022.943197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Axonemal dynein motors are large multi-subunit complexes that drive ciliary movement. Cytoplasmic assembly of these motor complexes involves several co-chaperones, some of which are related to the R2TP co-chaperone complex. Mutations of these genes in humans cause the motile ciliopathy, Primary Ciliary Dyskinesia (PCD), but their different roles are not completely known. Two such dynein (axonemal) assembly factors (DNAAFs) that are thought to function together in an R2TP-like complex are DNAAF4 (DYX1C1) and DNAAF6 (PIH1D3). Here we investigate the Drosophila homologues, CG14921/Dnaaf4 and CG5048/Dnaaf6. Surprisingly, Drosophila Dnaaf4 is truncated such that it completely lacks a TPR domain, which in human DNAAF4 is likely required to recruit HSP90. Despite this, we provide evidence that Drosophila Dnaaf4 and Dnaaf6 proteins can associate in an R2TP-like complex that has a conserved role in dynein assembly. Both are specifically expressed and required during the development of the two Drosophila cell types with motile cilia: mechanosensory chordotonal neurons and sperm. Flies that lack Dnaaf4 or Dnaaf6 genes are viable but with impaired chordotonal neuron function and lack motile sperm. We provide molecular evidence that Dnaaf4 and Dnaaf6 are required for assembly of outer dynein arms (ODAs) and a subset of inner dynein arms (IDAs).
Collapse
Affiliation(s)
- Jennifer Lennon
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
Lucas J, Geisler M. Sequential loss of dynein sequences precedes complete loss in land plants. PLANT PHYSIOLOGY 2022; 189:1237-1240. [PMID: 35385107 PMCID: PMC9237703 DOI: 10.1093/plphys/kiac151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Dynein motor proteins, often considered to be missing in land plants, are found in plants that reproduce with flagellated sperm.
Collapse
Affiliation(s)
| | - Matt Geisler
- Plant Biology Program, School of Biological Sciences, Southern Illinois University—Carbondale, Carbondale, Illinois 62901, USA
| |
Collapse
|
45
|
Bearce EA, Irons ZH, Craig SB, Kuhns CJ, Sabazali C, Farnsworth DR, Miller AC, Grimes DT. Daw1 regulates the timely onset of cilia motility during development. Development 2022; 149:275714. [PMID: 35708608 PMCID: PMC9270974 DOI: 10.1242/dev.200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
Motile cilia generate cell propulsion and extracellular fluid flows that are crucial for airway clearance, fertility and left-right patterning. Motility is powered by dynein arm complexes that are assembled in the cytoplasm then imported into the cilium. Studies in Chlamydomonas reinhardtii showed that ODA16 is a cofactor which promotes dynein arm import. Here, we demonstrate that the zebrafish homolog of ODA16, Daw1, facilitates the onset of robust cilia motility during development. Without Daw1, cilia showed markedly reduced motility during early development; however, motility subsequently increased to attain close to wild-type levels. Delayed motility onset led to differential effects on early and late cilia-dependent processes. Remarkably, abnormal body axis curves, which formed during the first day of development due to reduced cilia motility, self-corrected when motility later reached wild-type levels. Zebrafish larva therefore possess the ability to survey and correct body shape abnormalities. This work defines Daw1 as a factor which promotes the onset of timely cilia motility and can explain why human patients harboring DAW1 mutations exhibit significant laterality perturbations but mild airway and fertility complications. Summary: Daw1 promotes the onset of timely cilia motility for robust axial straightening during zebrafish development.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Zoe H Irons
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Samuel B Craig
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Colin J Kuhns
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Cynthia Sabazali
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Dylan R Farnsworth
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
46
|
Mallet A, Bastin P. Restriction of intraflagellar transport to some microtubule doublets: An opportunity for cilia diversification? Bioessays 2022; 44:e2200031. [PMID: 35638546 DOI: 10.1002/bies.202200031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022]
Abstract
Cilia are unique eukaryotic organelles and exhibit remarkable conservation across evolution. Nevertheless, very different types of configurations are encountered, raising the question of their evolution. Cilia are constructed by intraflagellar transport (IFT), the movement of large protein complexes or trains that deliver cilia components to the distal tip for assembly. Recent data revealed that IFT trains are restricted to some but not all nine doublet microtubules in the protist Trypanosoma brucei. Here, we propose that restricted positioning of IFT trains could offer potent options for cilia to evolve towards more complex (addition of new structural elements like in spermatozoa) or simpler configuration (loss of some elements like in primary cilia), and therefore be a driver of cilia diversification. We present two hypotheses to explain how IFT trains could be restricted to some doublets, either by a triage process taking place at the basal body level or by the development of molecular differences between ciliary microtubules.
Collapse
Affiliation(s)
- Adeline Mallet
- Institut Pasteur, Université de Paris Cité, INSERM U1201, Trypanosome Cell Biology Unit, Paris, F-75015, France.,Institut Pasteur, Université de Paris Cité, Université de Paris Sorbonne, Ultrastructural Bioimaging Unit, Paris, F-75015, France
| | - Philippe Bastin
- Institut Pasteur, Université de Paris Cité, INSERM U1201, Trypanosome Cell Biology Unit, Paris, F-75015, France
| |
Collapse
|
47
|
Yu X, Yuan L, Deng S, Xia H, Tu X, Deng X, Huang X, Cao X, Deng H. Identification of DNAH17 Variants in Han-Chinese Patients With Left–Right Asymmetry Disorders. Front Genet 2022; 13:862292. [PMID: 35692830 PMCID: PMC9186109 DOI: 10.3389/fgene.2022.862292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 12/12/2022] Open
Abstract
The formation of left–right asymmetry of the visceral organs is a conserved feature of the human body, and the asymmetry specification of structure and function is precisely orchestrated by multiple regulatory mechanisms. The abnormal results of organ positioning situs arise from defective cilia structure or function during embryogenesis in humans. In this study, we recruited two unrelated Han-Chinese families with left–right asymmetry disorders. The combination of whole-exome sequencing and Sanger sequencing identified two compound heterozygous variants: c.4109C>T and c.9776C>T, and c.612C>G and c.8764C>T in the dynein axonemal heavy chain 17 gene (DNAH17) in two probands with left–right asymmetry disorders. We report for the first time a possible association between DNAH17 gene variants and left–right asymmetry disorders, which is known as a causal gene for asthenozoospermia. Altogether, the findings of our study may enlarge the DNAH17 gene variant spectrum in human left–right asymmetry disorders, pave a way to illustrate the potential pathogenesis of ciliary/flagellar disorders, and provide supplementary explanation for genetic counseling.
Collapse
Affiliation(s)
- Xuehui Yu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xia
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolong Tu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangjun Huang
- Department of General Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Cao
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hao Deng,
| |
Collapse
|
48
|
Mancuso CA, Bills PS, Krum D, Newsted J, Liu R, Krishnan A. GenePlexus: a web-server for gene discovery using network-based machine learning. Nucleic Acids Res 2022; 50:W358-W366. [PMID: 35580053 PMCID: PMC9252732 DOI: 10.1093/nar/gkac335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/28/2022] Open
Abstract
Biomedical researchers take advantage of high-throughput, high-coverage technologies to routinely generate sets of genes of interest across a wide range of biological conditions. Although these technologies have directly shed light on the molecular underpinnings of various biological processes and diseases, the list of genes from any individual experiment is often noisy and incomplete. Additionally, interpreting these lists of genes can be challenging in terms of how they are related to each other and to other genes in the genome. In this work, we present GenePlexus (https://www.geneplexus.net/), a web-server that allows a researcher to utilize a powerful, network-based machine learning method to gain insights into their gene set of interest and additional functionally similar genes. Once a user uploads their own set of human genes and chooses between a number of different human network representations, GenePlexus provides predictions of how associated every gene in the network is to the input set. The web-server also provides interpretability through network visualization and comparison to other machine learning models trained on thousands of known process/pathway and disease gene sets. GenePlexus is free and open to all users without the need for registration.
Collapse
Affiliation(s)
- Christopher A Mancuso
- Department Of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Patrick S Bills
- Data Management and Analytics, IT Services, Michigan State University, East Lansing, MI 48824, USA
| | - Douglas Krum
- Data Management and Analytics, IT Services, Michigan State University, East Lansing, MI 48824, USA
| | - Jacob Newsted
- Data Management and Analytics, IT Services, Michigan State University, East Lansing, MI 48824, USA
| | - Renming Liu
- Department Of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Arjun Krishnan
- Department Of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. J Cell Sci 2022; 135:jcs259512. [PMID: 35178554 PMCID: PMC8995097 DOI: 10.1242/jcs.259512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Collapse
Affiliation(s)
- Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nedyalka N. Dicheva
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
50
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|