1
|
Wang J, Liu H, Li H, Wang F, Yang S, Yue L, Liu S, Liu B, Huang M, Kong F, Sun Z. The LUX-SWI3C module regulates photoperiod sensitivity in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40105506 DOI: 10.1111/jipb.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
In plants, the photoperiod sensitivity directly influences flowering time, which in turn affects latitudinal adaptation and yield. However, research into the mechanisms underlying photoperiod sensitivity, particularly those mediated by epigenetic regulation, is still in its nascent stages. In this study, we analyzed the regulation of photoperiod sensitivity in Arabidopsis thaliana. We demonstrate that the evening complex LUX ARRYTHMO (LUX) and the chromatin remodeling factor SWITCH/SUCROSE NONFERMENTING 3C (SWI3C) regulate GI locus chromatin compaction and H3K4me3 modification levels at the GIGANTEA locus under different photoperiod conditions. This mechanism is one of the key factors that allow plants to distinguish between long-day and short-day photoperiods. Our study provides insight into how the LUX-SWI3C module regulates photoperiod sensitivity at the epigenetic level.
Collapse
Affiliation(s)
- Jianhao Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Huan Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Hong Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Fan Wang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lin Yue
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Shuangrong Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Mingkun Huang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi, 332000, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
González-Delgado A, Jiménez-Gómez JM, Wabnik K. Regulatory principles of photoperiod-driven clock function in plants. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00012-3. [PMID: 39984377 DOI: 10.1016/j.tplants.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/23/2025]
Abstract
The circadian clock provides a fundamental timing mechanism for plant fitting to seasonal changes in the photoperiod. Although photoperiodic regulation of developmental transition has been studied in several species, our understanding of core circadian clock parallelisms across species is sparse. Here we present a comparative analysis of circadian clock networks by identifying common regulatory principles that govern key genes in photoperiodic developmental transition. Using time-course transcriptomic datasets from long-day plants and short-day plants taken in different photoperiods, we propose a model that integrates a minimal set of circadian clock components to predict the necessary conditions governing species-specific clock outputs. This study identifies regulatory patterns associated with circadian clock function across different plants, linking photoperiod interpretation with minimal clock architecture.
Collapse
Affiliation(s)
- Alberto González-Delgado
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - José M Jiménez-Gómez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid 28040, Spain.
| |
Collapse
|
3
|
Akpoghiran O, Strich AK, Koh K. Effects of sex, mating status, and genetic background on circadian behavior in Drosophila. Front Neurosci 2025; 18:1532868. [PMID: 39844849 PMCID: PMC11750873 DOI: 10.3389/fnins.2024.1532868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Circadian rhythms play a crucial role in regulating behavior, physiology, and health. Sexual dimorphism, a widespread phenomenon across species, influences circadian behaviors. Additionally, post-mating physiological changes in females are known to modulate various behaviors, yet their effects on circadian rhythms remain underexplored. Here, using Drosophila melanogaster, a powerful model for studying circadian mechanisms, we systematically assessed the impact of sex and mating status on circadian behavior. We measured circadian period length and rhythm strength in virgin and mated males and females, including females mated to males lacking Sex Peptide (SP), a key mediator of post-mating changes. Across four wild-type and control strains, we found that males consistently exhibited shorter circadian periods than females, regardless of mating status, suggesting that circadian period length is a robust sexually dimorphic trait. In contrast, rhythm strength was influenced by the interaction between sex and mating status, with female mating generally reducing rhythm strength in the presence of SP signaling. Notably, genetic background significantly modulated these effects on rhythm strength. Our findings demonstrate that while circadian period length is a stable sex-specific trait, rhythm strength is shaped by a complex interplay between sex, mating status, and genetic background. This study advances our understanding of how sex and mating influence circadian rhythms in Drosophila and provides a foundation for future research into sexually dimorphic mechanisms underlying human diseases associated with circadian disruptions.
Collapse
Affiliation(s)
| | | | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Zanini AA, Dominguez MC, Rodríguez MS. Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves. JOURNAL OF PLANT RESEARCH 2025; 138:131-145. [PMID: 39560817 DOI: 10.1007/s10265-024-01595-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
Cassava common mosaic virus (CsCMV) is a potexvirus that impairs chloroplast and metabolism, causing significant yield losses to cassava crops. Crop yield depends on diel rhythms, influencing carbon allocation and growth, and sugar signaling also impacting light-dark rhythms. This study aimed to elucidate the early impact of CsCMV infection on diel carbon allocation, metabolism, and defense mechanisms in both source and sink cassava leaves before storage root bulking. Soluble sugar and starch concentrations were examined over a 24-h cycle (16:8 photoperiod) in CsCMV-infected plants. The expression of an array of genes-carbohydrate metabolism, SnRK1 activity marker, defense, circadian marker-was analyzed at ZT6, ZT16 and ZT24/ZT0. In CsCMV-infected source leaves, at ZT6, sucrose increased whereas glucose, fructose and sucrose rose at night. An increase in Suc:hexose ratio and upregulation of SnRK1 activity marker genes and PR1 transcripts were found in infected leaves, suggesting a combination of altered carbon metabolism and defense response mechanisms against the viral infection. GIGANTEA, a clock-controlled gene, showed a reduced expression in infected leaves at ZT6 and ZT24/ZT0, suggesting a circadian phase shift compared with uninfected control plants. Additionally, starch mobilization transcripts were downregulated at ZT24/ZT0, though starch content remained unchanged during the 24-h cycle. In sink leaves, a transient peak of maltose (ZT6) was observed. Our findings suggest that CsCMV disrupts the plant's natural rhythms of sugar metabolism and allocation. Spikes in sucrose levels may serve as infection signals in the internal daily clock of the plant, influencing plant responses during the cassava-CsCMV interaction.
Collapse
Affiliation(s)
- Andrea A Zanini
- Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras Km 5.5, X5020ICA, Córdoba, Argentina
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Martin C Dominguez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Cerro Azul (EEA Cerro Azul), Misiones, Argentina
| | - Marianela S Rodríguez
- Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 Cuadras Km 5.5, X5020ICA, Córdoba, Argentina.
- Centro de Investigaciones Agropecuarias (CIAP), Instituto de Fisiología y Recursos Geneticos Vegetales (IFRGV), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras Km 5.5, X5020ICA, Córdoba, Argentina.
| |
Collapse
|
5
|
Cai YD, Liu X, Chow GK, Hidalgo S, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of Clock transcript mediates the response of circadian clocks to temperature changes. Proc Natl Acad Sci U S A 2024; 121:e2410680121. [PMID: 39630861 PMCID: PMC11648895 DOI: 10.1073/pnas.2410680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although Clock (Clk) gene encodes the critical activator of circadian gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. Here, we observed that Clk transcripts undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative Clk transcript, hereinafter termed Clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is deleted in CLK-cold protein. We demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing transcriptional activity of CLK. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature likely due to higher amounts of CLK-cold isoforms that lack S13 residue. Finally, we showed that PER promotes CK1α-dependent phosphorylation of CLK(S13), supporting kinase-scaffolding role of repressor proteins as a conserved feature in the regulation of eukaryotic circadian clocks. This study provides insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Xianhui Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College, Soochow University, Suzhou, Jiangsu215123, China
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA95616
| |
Collapse
|
6
|
Eprintsev AT, Anokhina GB, Shakhov ZN, Moskvina PP, Igamberdiev AU. The Role of Glutamate Metabolism and the GABA Shunt in Bypassing the Tricarboxylic Acid Cycle in the Light. Int J Mol Sci 2024; 25:12711. [PMID: 39684421 DOI: 10.3390/ijms252312711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Glutamate is an essential amino acid in both the energy and biosynthetic processes in plant cells. The aim of this work was to study changes in glutamate metabolism upon irradiation of maize (Zea mays L.) leaves with light of different spectral compositions, as well as to identify mechanisms regulating the work of enzymes involved in the studied process. A study was conducted of light-induced changes in glutamate metabolism in maize leaves, mediated by redirecting the glutamate flow to the γ-aminobutyric acid (GABA) shunt. Glutamate dehydrogenase (GDH) was more active in darkness, and the irradiation by red light inhibited the expression of both the Gdh1 and Gdh2 genes. EGTA and ruthenium red abolished the effects of light, indicating the participation of Ca2+ ions in phytochrome signal transduction. Contrary to GDH, glutamate decarboxylase (GAD) activity was moderately higher in the light, stimulated by red light, while far-red light reversed the effect. The effect of light on Gad expression was more pronounced than on GAD activity. Irradiation by red light also resulted in the increase in activity of GABA transaminase (GTA), which was abolished by far-red light. The third enzyme of the GABA shunt, succinic semialdehyde dehydrogenase (SSADH), was also activated by light. The effect of light on the expression of Ssadh1, but not on Ssadh2, was phytochrome-dependent. It is concluded that irradiation by light shifts glutamate metabolism from GDH to GAD with the activation of GABA transaminase and SSADH. This suggests that the GABA pathway plays a role in the maintenance of the tricarboxylic acid cycle in the light via bypassing its reactions when the 2-oxoglutarate dehydrogenase complex is inhibited and the cycle switches to the open mode.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Galina B Anokhina
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Zakhar N Shakhov
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Polina P Moskvina
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Akpoghiran O, Strich AK, Koh K. Effects of sex, mating status, and genetic background on circadian behavior in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624853. [PMID: 39605702 PMCID: PMC11601570 DOI: 10.1101/2024.11.22.624853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Circadian rhythms play a crucial role in regulating behavior, physiology, and health. Sexual dimorphism, a widespread phenomenon across species, influences circadian behaviors. Additionally, post-mating physiological changes in females are known to modulate various behaviors, yet their effects on circadian rhythms remain underexplored. Here, using Drosophila melanogaster, a powerful model for studying circadian mechanisms, we systematically assessed the impact of sex and mating status on circadian behavior. We measured circadian period length and rhythm strength in virgin and mated males and females, including females mated to males lacking Sex Peptide (SP), a key mediator of post-mating changes. Across four wild-type and control strains, we found that males consistently exhibited shorter circadian periods than females, regardless of mating status, suggesting that circadian period length is a robust sexually dimorphic trait. In contrast, rhythm strength was influenced by the interaction between sex and mating status, with female mating generally reducing rhythm strength in the presence of SP signaling. Notably, genetic background significantly modulated these effects on rhythm strength. Our findings demonstrate that while circadian period length is a stable sex-specific trait, rhythm strength is shaped by a complex interplay between sex, mating status, and genetic background. This study advances our understanding of how sex and mating influence circadian rhythms in Drosophila and provides a foundation for future research into sexually dimorphic mechanisms underlying human diseases associated with circadian disruptions.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alexandra K. Strich
- Department of Neuroscience, Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Bentelspacher M, Amézquita EJ, Adhikari S, Barros J, Park SY. The early dodder gets the host: decoding the coiling patterns of Cuscuta campestris with automated image processing. PLANT CELL REPORTS 2024; 43:282. [PMID: 39549119 DOI: 10.1007/s00299-024-03337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 11/18/2024]
Abstract
KEY MESSAGE We developed an in-house Python-based image analysis pipeline to investigate the movement patterns of Cuscuta. Our analysis unveiled that the coiling and circumnutation movements of Cuscuta are regulated by its intrinsic circadian rhythm. Cuscuta spp., commonly known as dodders, are rootless and leafless stem parasitic plants. Upon germination, Cuscuta starts rotating immediately in a counterclockwise direction (circumnutation) to locate a host plant, creating a seamless vascular connection to steal water and nutrients from its host. In this study, our aim was to elucidate the dynamics of the coiling patterns of Cuscuta, which is an essential step for successful parasitism. Using time-lapse photography, we recorded the circumnutation and coiling movements of C. campestris at different inoculation times on non-living hosts. Subsequent image analyses were facilitated through an in-house Python-based image processing pipeline to detect coiling locations, angles, initiation and completion times, and duration of coiling stages in between. The study revealed that the coiling efficacy of C. campestris varied with the inoculation time of day, showing higher success and faster initiation in morning than in evening. These observations suggest that Cuscuta, despite lacking leaves and a developed chloroplast, can discern photoperiod changes, significantly determining its parasitic efficiency. The automated image analysis results confirmed the reliability of our Python pipeline by aligning closely with manual annotations. This study provides significant insights into the parasitic strategies of C. campestris and demonstrates the potential of integrating computational image analysis in plant biology for exploring complex plant behaviors. Furthermore, this method provides an efficient tool for investigating plant movement dynamics, laying the foundation for future studies on mitigating the economic impacts of parasitic plants.
Collapse
Affiliation(s)
- Max Bentelspacher
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Erik J Amézquita
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
- Department of Mathematics, University of Missouri, Columbia, MO, 65211, USA.
| | - Supral Adhikari
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Jaime Barros
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - So-Yon Park
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
9
|
Liu X, Han M, Jiang T, Liu L, Luo J, Lu Y, Zhao Y, Jiang CZ, Gao J, Hong B, Ma C. AGAMOUS-LIKE 24 senses continuous inductive photoperiod in the inflorescence meristem to promote anthesis in chrysanthemum. THE PLANT CELL 2024; 36:4658-4671. [PMID: 39159157 PMCID: PMC11448879 DOI: 10.1093/plcell/koae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
During the floral transition, many plant species including chrysanthemum (Chrysanthemum morifolium) require continuous photoperiodic stimulation for successful anthesis. Insufficient photoperiodic stimulation results in flower bud arrest or even failure. The molecular mechanisms underlying how continuous photoperiodic stimulation promotes anthesis are not well understood. Here, we reveal that in wild chrysanthemum (Chrysanthemum indicum), an obligate short-day (SD) plant, floral evocation is not limited to SD conditions. However, SD signals generated locally in the inflorescence meristem (IM) play a vital role in ensuring anthesis after floral commitment. Genetic analyses indicate that the florigen FLOWERING LOCUS T-LIKE3 (CiFTL3) plays an important role in floral evocation, but a lesser role in anthesis. Importantly, our data demonstrate that AGAMOUS-LIKE 24 (CiAGL24) is a critical component of SD signal perception in the IM to promote successful anthesis, and that floral evocation and anthesis are two separate developmental events in chrysanthemum. We further reveal that the central circadian clock component PSEUDO-RESPONSE REGULATOR 7 (CiPRR7) in the IM activates CiAGL24 expression in response to SD conditions. Moreover, our findings elucidate a negative feedback loop in which CiAGL24 and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (CiSOC1) modulate LEAFY (CiLFY) expression. Together, our results demonstrate that the CiPRR7-CiAGL24 module is vital for sustained SD signal perception in the IM to ensure successful anthesis in chrysanthemum.
Collapse
Affiliation(s)
- Xuening Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mingzheng Han
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianhua Jiang
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lei Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiayi Luo
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ying Lu
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Junping Gao
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bo Hong
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
He Y, Si Z, Mei G, Cheng Y, Zhang J, Jiang T, Chen J, Xiong H, Zhang T, Hu Y. N6-methyladenosine RNA modification regulates photoperiod sensitivity in cotton. PLANT PHYSIOLOGY 2024; 196:1095-1109. [PMID: 39109985 PMCID: PMC11444288 DOI: 10.1093/plphys/kiae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/01/2024] [Indexed: 10/03/2024]
Abstract
The methylation of N6-methyladenosine (m6A) involves writers, erasers, and readers, acting synergistically in posttranscriptional regulation. These processes influence various biological processes, including plant floral transition. However, the specific role of m6A modifications in photoperiod sensitivity in cotton (Gossypium hirsutum) remains obscure. To elucidate this, in this study, we conducted transcriptome-wide m6A sequencing during critical flowering transition stages in the photoperiod-sensitive wild G. hirsutum var. yucatanense (yucatanense) and the photoperiod-insensitive cultivated cotton G. hirsutum acc. TM-1 (TM-1). Our results revealed significant variations in m6A methylation of 2 cotton varieties, with yucatanense exhibiting elevated m6A modification levels compared with TM-1 under long-day conditions. Notably, distinct m6A peaks between TM-1 and yucatanense correlated significantly with photoperiod sensitivity. Moreover, our study highlighted the role of the demethylase G. hirsutum ALKB homolog 5 (GhALKBH5) in modulating m6A modification levels. Silencing GhALKBH5 led to a decreased mRNA level of key photoperiodic flowering genes (GhADO3, GhAGL24, and GhFT1), resulting in delayed bud emergence and flowering. Reverse transcription quantitative PCR analyses confirmed that silencing GhADO3 and GhAGL24 significantly downregulated the expression of the floral integrator GhFT1. Collectively, our findings unveiled a transcriptional regulatory mechanism in which GhALKBH5-mediated m6A demethylation of crucial photoperiodic flowering transcripts modulated photoperiod sensitivity in cotton.
Collapse
Affiliation(s)
- Ying He
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Zhanfeng Si
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Gaofu Mei
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310014, China
| | - Yu Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jun Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Tao Jiang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jiani Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Huifang Xiong
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic Crops, Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic Crops, Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
11
|
Maeda AE, Matsuo H, Muranaka T, Nakamichi N. Cold-induced degradation of core clock proteins implements temperature compensation in the Arabidopsis circadian clock. SCIENCE ADVANCES 2024; 10:eadq0187. [PMID: 39331704 PMCID: PMC11430399 DOI: 10.1126/sciadv.adq0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The period of circadian clocks is maintained at close to 24 hours over a broad range of physiological temperatures due to temperature compensation of period length. Here, we show that the quantitative control of the core clock proteins TIMING OF CAB EXPRESSION 1 [TOC1; also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)] and PRR5 is crucial for temperature compensation in Arabidopsis thaliana. The prr5 toc1 double mutant has a shortened period at higher temperatures, resulting in weak temperature compensation. Low ambient temperature reduces amounts of PRR5 and TOC1. In low-temperature conditions, PRR5 and TOC1 interact with LOV KELCH PROTEIN 2 (LKP2), a component of the E3 ubiquitin ligase Skp, Cullin, F-box (SCF) complex. The lkp2 mutations attenuate low temperature-induced decrease of PRR5 and TOC1, and the mutants display longer period only at lower temperatures. Our findings reveal that the circadian clock maintains its period length despite ambient temperature fluctuations through temperature- and LKP2-dependent control of PRR5 and TOC1 abundance.
Collapse
Affiliation(s)
- Akari E. Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Hiromi Matsuo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Tomoaki Muranaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Shahzad K, Zhang M, Mubeen I, Zhang X, Guo L, Qi T, Feng J, Tang H, Qiao X, Wu J, Xing C. Integrative analyses of long and short-read RNA sequencing reveal the spliced isoform regulatory network of seedling growth dynamics in upland cotton. Funct Integr Genomics 2024; 24:156. [PMID: 39230785 DOI: 10.1007/s10142-024-01420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced GI isoform Gh_A02G0645_N17 significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene ELF in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
13
|
Liu Z, Liu W, Wang Z, Xie Z, Qi K, Yue D, Li Y, Zhang S, Wu J, Wang P. Molecular characterization of PSEUDO RESPONSE REGULATOR family in Rosaceae and function of PbPRR59a and PbPRR59b in flowering regulation. BMC Genomics 2024; 25:794. [PMID: 39169310 PMCID: PMC11340073 DOI: 10.1186/s12864-024-10720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.
Collapse
Affiliation(s)
- Zhe Liu
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Yue
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Zong W, Guo X, Zhang K, Chen L, Liu YG, Guo J. Photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3762-3777. [PMID: 38779909 DOI: 10.1093/jxb/erae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Plants must accurately integrate external environmental signals with their own development to initiate flowering at the appropriate time for reproductive success. Photoperiod and temperature are key external signals that determine flowering time; both are cyclical and periodic, and they are closely related. In this review, we describe photoperiod-sensitive genes that simultaneously respond to temperature signals in rice (Oryza sativa). We introduce the mechanisms by which photoperiod and temperature synergistically regulate heading date and regional adaptation in rice. We also discuss the prospects for designing different combinations of heading date genes and other cold tolerance or thermo-tolerance genes to help rice better adapt to changes in light and temperature via molecular breeding to enhance yield in the future.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Zhao G, Liu W, Lin G, Wen J. Evaluation of reference genes and expression patterns of CONSTANS-LIKE genes in Tetrastigma hemsleyanum under different photoperiods. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23218. [PMID: 39038159 DOI: 10.1071/fp23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
CONSTANS-LIKE (COL ) genes are a key signalling molecule that regulates plant growth and development during the photoperiod. Our preliminary experiments showed that the photoperiod greatly influence the formation of Tetrastigma hemsleyanum root tubers. In this study, we examined the oscillation patterns and expression characteristics of COL genes in leaves of T. hemsleyanum under different photoperiod conditions. Six genes were selected as candidate reference genes for further analyses: (1) 18S ribosomal RNA (18S rRNA ); (2) α-tubulin (TUBA ); (3) 30S ribosomal RNA (30S rRNA ); (4) TATA binding protein (TBP ); (5) elongation factor 1α (EF-1α ); and (6) RNA polymerase II (RPII ). The geNorm, NormFinder, and BestKeeper software programs were used to evaluate expression stability. Two ThCOL genes were screened in the T. hemsleyanum transcriptome library, and their expression patterns under different photoperiod conditions were analysed using quantitative reverse transcription PCR. The genes EF-1α , TUBA , and 18S rRNA were used to analyse the expression profiles of CONSTANS genes (ThCOL4 and ThCOL5 ) under different photoperiods. The expression peaks of ThCOL4 and ThCOL5 appeared at different times, demonstrating that their oscillation patterns were influenced by the photoperiod. We speculate that these two ThCOL genes may be involved in different biological processes.
Collapse
Affiliation(s)
- Gang Zhao
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Wenling Liu
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Guowei Lin
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Jing Wen
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| |
Collapse
|
16
|
Krahmer J, Fankhauser C. Environmental Control of Hypocotyl Elongation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:489-519. [PMID: 38012051 DOI: 10.1146/annurev-arplant-062923-023852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.
Collapse
Affiliation(s)
- Johanna Krahmer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
- Current affiliation: Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark;
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
17
|
Mehta D, Scandola S, Kennedy C, Lummer C, Gallo MCR, Grubb LE, Tan M, Scarpella E, Uhrig RG. Twilight length alters growth and flowering time in Arabidopsis via LHY/ CCA1. SCIENCE ADVANCES 2024; 10:eadl3199. [PMID: 38941453 PMCID: PMC11212724 DOI: 10.1126/sciadv.adl3199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Decades of research have uncovered how plants respond to two environmental variables that change across latitudes and over seasons: photoperiod and temperature. However, a third such variable, twilight length, has so far gone unstudied. Here, using controlled growth setups, we show that the duration of twilight affects growth and flowering time via the LHY/CCA1 clock genes in the model plant Arabidopsis. Using a series of progressively truncated no-twilight photoperiods, we also found that plants are more sensitive to twilight length compared to equivalent changes in solely photoperiods. Transcriptome and proteome analyses showed that twilight length affects reactive oxygen species metabolism, photosynthesis, and carbon metabolism. Genetic analyses suggested a twilight sensing pathway from the photoreceptors PHY E, PHY B, PHY D, and CRY2 through LHY/CCA1 to flowering modulation through the GI-FT pathway. Overall, our findings call for more nuanced models of day-length perception in plants and posit that twilight is an important determinant of plant growth and development.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biosystems, KU Leuven, B-3001 Leuven, Belgium
- Leuven Plant Institute, KU Leuven, B-3001 Leuven, Belgium
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Lauren E. Grubb
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
18
|
Madhuri S, Lepetit B, Fürst AH, Kroth PG. A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components. PLANTS (BASEL, SWITZERLAND) 2024; 13:1465. [PMID: 38891274 PMCID: PMC11174801 DOI: 10.3390/plants13111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Plants and algae use light not only for driving photosynthesis but also to sense environmental cues and to adjust their circadian clocks via photoreceptors. Aureochromes are blue-light-dependent photoreceptors that also function as transcription factors, possessing both a LOV and a bZIP domain. Aureochromes so far have only been detected in Stramenopile algae, which include the diatoms. Four paralogues of aureochromes have been identified in the pennate model diatom Phaeodactylum tricornutum: PtAureo1a, 1b, 1c, and 2. While it was shown recently that diatoms have a diel rhythm, the molecular mechanisms and components regulating it are still largely unknown. Diel gene expression analyses of wild-type P. tricornutum, a PtAureo1a knockout strain, and the respective PtAureo1 complemented line revealed that all four aureochromes have a different diel regulation and that PtAureo1a has a strong co-regulatory influence on its own transcription, as well as on that of other genes encoding different blue-light photoreceptors (CPF1, 2 and 4), proteins involved in photoprotection (Lhcx1), and specific bHLH transcription factors (RITMO1). Some of these genes completely lost their circadian expression in the PtAureo1a KO mutant. Our results suggest a major involvement of aureochromes in the molecular clock of diatoms.
Collapse
Affiliation(s)
| | | | | | - Peter G. Kroth
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; (S.M.); (B.L.); (A.H.F.)
| |
Collapse
|
19
|
de Leone MJ, Yanovsky MJ. The circadian clock and thermal regulation in plants: novel insights into the role of positive circadian clock regulators in temperature responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2809-2818. [PMID: 38373194 DOI: 10.1093/jxb/erae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The impact of rising global temperatures on crop yields is a serious concern, and the development of heat-resistant crop varieties is crucial for mitigating the effects of climate change on agriculture. To achieve this, a better understanding of the molecular basis of the thermal responses of plants is necessary. The circadian clock plays a central role in modulating plant biology in synchrony with environmental changes, including temperature fluctuations. Recent studies have uncovered the role of transcriptional activators of the core circadian network in plant temperature responses. This expert view highlights key novel findings regarding the role of the RVE and LNK gene families in controlling gene expression patterns and plant growth under different temperature conditions, ranging from regular diurnal oscillations to extreme stress temperatures. These findings reinforce the essential role of the circadian clock in plant adaptation to changing temperatures and provide a basis for future studies on crop improvement.
Collapse
Affiliation(s)
- María José de Leone
- Fundación Instituto Leloir-IIBBA/CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Javier Yanovsky
- Fundación Instituto Leloir-IIBBA/CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Cai YD, Chow GK, Hidalgo S, Liu X, Jackson KC, Vasquez CD, Gao ZY, Lam VH, Tabuloc CA, Zheng H, Zhao C, Chiu JC. Alternative splicing of clock transcript mediates the response of circadian clocks to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593646. [PMID: 38766142 PMCID: PMC11100826 DOI: 10.1101/2024.05.10.593646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Circadian clocks respond to temperature changes over the calendar year, allowing organisms to adjust their daily biological rhythms to optimize health and fitness. In Drosophila, seasonal adaptations and temperature compensation are regulated by temperature-sensitive alternative splicing (AS) of period (per) and timeless (tim) genes that encode key transcriptional repressors of clock gene expression. Although clock (clk) gene encodes the critical activator of clock gene expression, AS of its transcripts and its potential role in temperature regulation of clock function have not been explored. We therefore sought to investigate whether clk exhibits AS in response to temperature and the functional changes of the differentially spliced transcripts. We observed that clk transcripts indeed undergo temperature-sensitive AS. Specifically, cold temperature leads to the production of an alternative clk transcript, hereinafter termed clk-cold, which encodes a CLK isoform with an in-frame deletion of four amino acids proximal to the DNA binding domain. Notably, serine 13 (S13), which we found to be a CK1α-dependent phosphorylation site, is among the four amino acids deleted in CLK-cold protein. Using a combination of transgenic fly, tissue culture, and in vitro experiments, we demonstrated that upon phosphorylation at CLK(S13), CLK-DNA interaction is reduced, thus decreasing CLK occupancy at clock gene promoters. This is in agreement with our findings that CLK occupancy at clock genes and transcriptional output are elevated at cold temperature, which can be explained by the higher amounts of CLK-cold isoforms that lack S13 residue. This study provides new insights into the complex collaboration between AS and phospho-regulation in shaping temperature responses of the circadian clock.
Collapse
Affiliation(s)
- Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Gary K. Chow
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Kiya C. Jackson
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Cameron D. Vasquez
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Zita Y. Gao
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vu H. Lam
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
21
|
Edet OU, Ubi BE, Ishii T. Genomic analysis of a spontaneous unifoliate mutant reveals gene candidates associated with compound leaf development in Vigna unguiculata [L] Walp. Sci Rep 2024; 14:10654. [PMID: 38724579 PMCID: PMC11082238 DOI: 10.1038/s41598-024-61062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular mechanisms which underpin compound leaf development in some legumes have been reported, but there is no previous study on the molecular genetic control of compound leaf formation in Vigna unguiculata (cowpea), an important dryland legume of African origin. In most studied species with compound leaves, class 1 KNOTTED-LIKE HOMEOBOX genes expressed in developing leaf primordia sustain morphogenetic activity, allowing leaf dissection and the development of leaflets. Other genes, such as, SINGLE LEAFLET1 in Medicago truncatula and Trifoliate in Solanum lycopersicum, are also implicated in regulating compound leaf patterning. To set the pace for an in-depth understanding of the genetics of compound leaf development in cowpea, we applied RNA-seq and whole genome shotgun sequence datasets of a spontaneous cowpea unifoliate mutant and its trifoliate wild-type cultivar to conduct comparative reference-based gene expression, de novo genome-wide isoform switch, and genome variant analyses between the two genotypes. Our results suggest that genomic variants upstream of LATE ELONGATED HYPOCOTYL and down-stream of REVEILLE4, BRASSINOSTERIOD INSENSITIVE1 and LATERAL ORGAN BOUNDARIES result in down-regulation of key components of cowpea circadian rhythm central oscillator and brassinosteroid signaling, resulting in unifoliate leaves and brassinosteroid-deficient-like phenotypes. We have stated hypotheses that will guide follow-up studies expected to provide more insights.
Collapse
Affiliation(s)
- Offiong Ukpong Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
- Department of Crop Science, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria.
| | - Benjamin Ewa Ubi
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Takayoshi Ishii
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
22
|
Shi Z, Zhao W, Li C, Tan W, Zhu Y, Han Y, Ai P, Li Z, Wang Z. Overexpression of the Chrysanthemum lavandulifolium ROS1 gene promotes flowering in Arabidopsis thaliana by reducing the methylation level of CONSTANS. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112019. [PMID: 38346563 DOI: 10.1016/j.plantsci.2024.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
DNA demethylation is involved in the regulation of flowering in plants, yet the underlying molecular mechanisms remain largely unexplored. The RELEASE OF SILENCING 1 (ROS1) gene, encoding a DNA demethyltransferase, plays key roles in many developmental processes. In this study, the ROS1 gene was isolated from Chrysanthemum lavandulifolium, where it was strongly expressed in the leaves, buds and flowers. Overexpression of the ClROS1 gene caused an early flowering phenotype in Arabidopsis thaliana. RNA-seq analysis of the transgenic plants revealed that differentially expressed genes (DEGs) were significantly enriched in the circadian rhythm pathway and that the positive regulator of flowering, CONSTANS (CO), was up-regulated. Additionally, whole-genome bisulphite sequencing (WGBS), PCR following methylation-dependent digestion with the enzyme McrBC, and bisulfite sequencing PCR (BSP) confirmed that the methylation level of the AtCO promoter was reduced, specifically in CG context. Overall, our results demonstrated that ClROS1 accelerates flowering by reducing the methylation level of the AtCO promoter. These findings clarify the epigenetic mechanism by which ClROS1-mediated DNA demethylation regulates flowering.
Collapse
Affiliation(s)
- Zhongya Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Wenqian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Chenran Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Wenchao Tan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Yifei Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Yanchao Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Penghui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Zhongai Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China
| | - Zicheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, Henan, China.
| |
Collapse
|
23
|
Hu ZH, Zhang N, Qin ZY, Li JW, Tao JP, Yang N, Chen Y, Kong JY, Luo W, Chen X, Li XH, Xiong AS, Zhuang J. Circadian rhythm response and its effect on photosynthetic characteristics of the Lhcb family genes in tea plant. BMC PLANT BIOLOGY 2024; 24:333. [PMID: 38664694 PMCID: PMC11044350 DOI: 10.1186/s12870-024-04958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The circadian clock, also known as the circadian rhythm, is responsible for predicting daily and seasonal changes in the environment, and adjusting various physiological and developmental processes to the appropriate times during plant growth and development. The circadian clock controls the expression of the Lhcb gene, which encodes the chlorophyll a/b binding protein. However, the roles of the Lhcb gene in tea plant remain unclear. RESULTS In this study, a total of 16 CsLhcb genes were identified based on the tea plant genome, which were distributed on 8 chromosomes of the tea plant. The promoter regions of CsLhcb genes have a variety of cis-acting elements including hormonal, abiotic stress responses and light response elements. The CsLhcb family genes are involved in the light response process in tea plant. The photosynthetic parameter of tea leaves showed rhythmic changes during the two photoperiod periods (48 h). Stomata are basically open during the day and closed at night. Real-time quantitative PCR results showed that most of the CsLhcb family genes were highly expressed during the day, but were less expressed at night. CONCLUSIONS Results indicated that CsLhcb genes were involved in the circadian clock process of tea plant, it also provided potential references for further understanding of the function of CsLhcb gene family in tea plant.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Yuan Qin
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Yu Kong
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Luo
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Wu T, Liu Z, Yu T, Zhou R, Yang Q, Cao R, Nie F, Ma X, Bai Y, Song X. Flowering genes identification, network analysis, and database construction for 837 plants. HORTICULTURE RESEARCH 2024; 11:uhae013. [PMID: 38585015 PMCID: PMC10995624 DOI: 10.1093/hr/uhae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 04/09/2024]
Abstract
Flowering is one of the most important biological phenomena in the plant kingdom, which not only has important ecological significance, but also has substantial horticultural ornamental value. In this study, we undertook an exhaustive review of the advancements in our understanding of plant flowering genes. We delved into the identification and conducted comparative analyses of flowering genes across virtually all sequenced angiosperm plant genomes. Furthermore, we established an extensive angiosperm flowering atlas, encompassing a staggering 183 720 genes across eight pathways, along with 10 155 ABCDE mode genes, which play a pivotal role in plant flowering regulation. Through the examination of expression patterns, we unveiled the specificities of these flowering genes. An interaction network between flowering genes of the ABCDE model and their corresponding upstream genes offered a blueprint for comprehending their regulatory mechanisms. Moreover, we predicted the miRNA and target genes linked to the flowering processes of each species. To culminate our efforts, we have built a user-friendly web interface, named the Plant Flowering-time Gene Database (PFGD), accessible at http://pfgd.bio2db.com/. We firmly believe that this database will serve as a cornerstone in the global research community, facilitating the in-depth exploration of flowering genes in the plant kingdom. In summation, this pioneering endeavor represents the first comprehensive collection and comparative analysis of flowering genes in plants, offering valuable resources for the study of plant flowering genetics.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Aarhus 8200, Denmark
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Rui Cao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Fulei Nie
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
- College of Horticultural Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei 066600, China
| | - Yun Bai
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
25
|
Hughes CL, An Y, Maloof JN, Harmer SL. Light quality-dependent roles of REVEILLE proteins in the circadian system. PLANT DIRECT 2024; 8:e573. [PMID: 38481435 PMCID: PMC10936234 DOI: 10.1002/pld3.573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 03/17/2024]
Abstract
Several closely related Myb-like activator proteins are known to have partially redundant functions within the plant circadian clock, but their specific roles are not well understood. To clarify the function of the REVEILLE 4, REVEILLE 6, and REVEILLE 8 transcriptional activators, we characterized the growth and clock phenotypes of CRISPR-Cas9-generated single, double, and triple rve mutants. We found that these genes act synergistically to regulate flowering time, redundantly to regulate leaf growth, and antagonistically to regulate hypocotyl elongation. We previously reported that increasing intensities of monochromatic blue and red light have opposite effects on the period of triple rve468 mutants. Here, we further examined light quality-specific phenotypes of rve mutants and report that rve468 mutants lack the blue light-specific increase in expression of some circadian clock genes observed in wild type. To investigate the basis of these blue light-specific circadian phenotypes, we examined RVE protein abundances and degradation rates in blue and red light and found no significant differences between these conditions. We next examined genetic interactions between RVE genes and ZEITLUPE and ELONGATED HYPOCOTYL5, two factors with blue light-specific functions in the clock. We found that the RVEs interact additively with both ZEITLUPE and ELONGATED HYPOCOTYL5 to regulate circadian period, which suggests that neither of these factors are required for the blue light-specific differences that we observed. Overall, our results suggest that the RVEs have separable functions in plant growth and circadian regulation and that they are involved in blue light-specific circadian signaling via a novel mechanism.
Collapse
Affiliation(s)
- Cassandra L. Hughes
- Department of Plant BiologyUniversity of California, DavisDavisCaliforniaUSA
| | - Yuyan An
- College of Life SciencesShaanxi Normal UniversityXi'anChina
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California, DavisDavisCaliforniaUSA
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
26
|
Dwivedi SL, Quiroz LF, Spillane C, Wu R, Mattoo AK, Ortiz R. Unlocking allelic variation in circadian clock genes to develop environmentally robust and productive crops. PLANTA 2024; 259:72. [PMID: 38386103 PMCID: PMC10884192 DOI: 10.1007/s00425-023-04324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/24/2023] [Indexed: 02/23/2024]
Abstract
MAIN CONCLUSION Molecular mechanisms of biological rhythms provide opportunities to harness functional allelic diversity in core (and trait- or stress-responsive) oscillator networks to develop more climate-resilient and productive germplasm. The circadian clock senses light and temperature in day-night cycles to drive biological rhythms. The clock integrates endogenous signals and exogenous stimuli to coordinate diverse physiological processes. Advances in high-throughput non-invasive assays, use of forward- and inverse-genetic approaches, and powerful algorithms are allowing quantitation of variation and detection of genes associated with circadian dynamics. Circadian rhythms and phytohormone pathways in response to endogenous and exogenous cues have been well documented the model plant Arabidopsis. Novel allelic variation associated with circadian rhythms facilitates adaptation and range expansion, and may provide additional opportunity to tailor climate-resilient crops. The circadian phase and period can determine adaptation to environments, while the robustness in the circadian amplitude can enhance resilience to environmental changes. Circadian rhythms in plants are tightly controlled by multiple and interlocked transcriptional-translational feedback loops involving morning (CCA1, LHY), mid-day (PRR9, PRR7, PRR5), and evening (TOC1, ELF3, ELF4, LUX) genes that maintain the plant circadian clock ticking. Significant progress has been made to unravel the functions of circadian rhythms and clock genes that regulate traits, via interaction with phytohormones and trait-responsive genes, in diverse crops. Altered circadian rhythms and clock genes may contribute to hybrid vigor as shown in Arabidopsis, maize, and rice. Modifying circadian rhythms via transgenesis or genome-editing may provide additional opportunities to develop crops with better buffering capacity to environmental stresses. Models that involve clock gene‒phytohormone‒trait interactions can provide novel insights to orchestrate circadian rhythms and modulate clock genes to facilitate breeding of all season crops.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland.
| | - Rongling Wu
- Beijing Yanqi Lake Institute of Mathematical Sciences and Applications, Beijing, 101408, China
| | - Autar K Mattoo
- USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville, MD, 20705-2350, USA
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Sundsvagen, 10, Box 190, SE 23422, Lomma, Sweden.
| |
Collapse
|
27
|
Yang C, Luo A, Lu HP, Davis SJ, Liu JX. Diurnal regulation of alternative splicing associated with thermotolerance in rice by two glycine-rich RNA-binding proteins. Sci Bull (Beijing) 2024; 69:59-71. [PMID: 38044192 DOI: 10.1016/j.scib.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Rice (Oryza sativa L.) production is threatened by global warming associated with extreme high temperatures, and rice heat sensitivity is differed when stress occurs between daytime and nighttime. However, the underlying molecular mechanism are largely unknown. We show here that two glycine-rich RNA binding proteins, OsGRP3 and OsGRP162, are required for thermotolerance in rice, especially at nighttime. The rhythmic expression of OsGRP3/OsGRP162 peaks at midnight, and at these coincident times, is increased by heat stress. This is largely dependent on the evening complex component OsELF3-2. We next found that the double mutant of OsGRP3/OsGRP162 is strikingly more sensitive to heat stress in terms of survival rate and seed setting rate when comparing to the wild-type plants. Interestingly, the defect in thermotolerance is more evident when heat stress occurred in nighttime than that in daytime. Upon heat stress, the double mutant of OsGRP3/OsGRP162 displays globally reduced expression of heat-stress responsive genes, and increases of mRNA alternative splicing dominated by exon-skipping. This study thus reveals the important role of OsGRP3/OsGRP162 in thermotolerance in rice, and unravels the mechanism on how OsGRP3/OsGRP162 regulate thermotolerance in a diurnal manner.
Collapse
Affiliation(s)
- Chuang Yang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Anni Luo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Seth Jon Davis
- Department of Biology, University of York, York YO105DD, UK
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
28
|
Jang J, Lee S, Kim JI, Lee S, Kim JA. The Roles of Circadian Clock Genes in Plant Temperature Stress Responses. Int J Mol Sci 2024; 25:918. [PMID: 38255990 PMCID: PMC10815334 DOI: 10.3390/ijms25020918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 1/C-REPEAT BINDING FACTOR (DREB1/CBF) transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature. Temperature-responsive transcriptomes show a diurnal cycle and peak expression levels at specific times of throughout the day. Circadian clock genes play essential roles in allowing plants to maintain homeostasis by accommodating temperature changes within the normal temperature range or by altering protein properties and morphogenesis at the cellular level for plant survival and growth under temperature stress conditions. Recent studies revealed that the central oscillator genes CIRCADIAN CLOCK ASSOCIATED 1/LATE ELONGATED HYPOCOTYL (CCA1/LHY) and PSEUDO-RESPONSE REGULATOR5/7/9 (PRR5/7/9), as well as the EVENING COMPLEX (EC) genes REVEILLE4/REVEILLE8 (REV4/REV8), were involved in the DREB1 pathway of the cold signaling transcription factor and regulated the thermomorphogenesis gene PIF4. Further studies showed that another central oscillator, TIMING OF CAB EXPRESSION 1 (TOC1), and the regulatory protein ZEITLUPE (ZTL) are also involved. These studies led to attempts to utilize circadian clock genes for the acquisition of temperature-stress resistance in crops. In this review, we highlight circadian rhythm regulation and the clock genes involved in plant responses to temperature changes, as well as strategies for plant survival in a rapidly changing global climate.
Collapse
Affiliation(s)
- Juna Jang
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sora Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Sichul Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| | - Jin A. Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea; (J.J.); (S.L.); (S.L.)
| |
Collapse
|
29
|
Manosalva Pérez N, Ferrari C, Engelhorn J, Depuydt T, Nelissen H, Hartwig T, Vandepoele K. MINI-AC: inference of plant gene regulatory networks using bulk or single-cell accessible chromatin profiles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:280-301. [PMID: 37788349 DOI: 10.1111/tpj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Gene regulatory networks (GRNs) represent the interactions between transcription factors (TF) and their target genes. Plant GRNs control transcriptional programs involved in growth, development, and stress responses, ultimately affecting diverse agricultural traits. While recent developments in accessible chromatin (AC) profiling technologies make it possible to identify context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a method that combines AC data from bulk or single-cell experiments with TF binding site (TFBS) information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify correct TFBS. In maize, a crop with a complex genome and abundant distal AC regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying known and novel candidate regulators, improving our understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Camilla Ferrari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Julia Engelhorn
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Thomas Hartwig
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| |
Collapse
|
30
|
Martins FB, Aono AH, Moraes ADCL, Ferreira RCU, Vilela MDM, Pessoa-Filho M, Rodrigues-Motta M, Simeão RM, de Souza AP. Genome-wide family prediction unveils molecular mechanisms underlying the regulation of agronomic traits in Urochloa ruziziensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303417. [PMID: 38148869 PMCID: PMC10749977 DOI: 10.3389/fpls.2023.1303417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Marco Pessoa-Filho
- Embrapa Cerrados, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | | | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Mato Grosso, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
31
|
Ikeda H, Uchikawa T, Kondo Y, Takahashi N, Shishikui T, Watahiki MK, Kubota A, Endo M. Circadian Clock Controls Root Hair Elongation through Long-Distance Communication. PLANT & CELL PHYSIOLOGY 2023; 64:1289-1300. [PMID: 37552691 DOI: 10.1093/pcp/pcad076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Plants adapt to periodic environmental changes, such as day and night, by using circadian clocks. Cell division and elongation are primary steps to adjust plant development according to their environments. In Arabidopsis, hypocotyl elongation has been studied as a representative model to understand how the circadian clock regulates cell elongation. However, it remains unknown whether similar phenomena exist in other organs, such as roots, where circadian clocks regulate physiological responses. Here, we show that root hair elongation is controlled by both light and the circadian clock. By developing machine-learning models to automatically analyze the images of root hairs, we found that genes encoding major components of the central oscillator, such as TIMING OF CAB EXPRESSION1 (TOC1) or CIRCADIAN CLOCK ASSOCIATED1 (CCA1), regulate the rhythmicity of root hair length. The partial illumination of light to either shoots or roots suggested that light received in shoots is mainly responsible for the generation of root hair rhythmicity. Furthermore, grafting experiments between wild-type (WT) and toc1 plants demonstrated that TOC1 in shoots is responsible for the generation of root hair rhythmicity. Our results illustrate the combinational effects of long-distance signaling and the circadian clock on the regulation of root hair length.
Collapse
Affiliation(s)
- Hikari Ikeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Taiga Uchikawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, 444-8787 Japan
| | - Nozomu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012 Japan
| | - Takuma Shishikui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Masaaki K Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Akane Kubota
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| |
Collapse
|
32
|
Davies C, Burbidge CA, Böttcher C, Dodd AN. Loss of Diel Circadian Clock Gene Cycling Is a Part of Grape Berry Ripening. PLANT & CELL PHYSIOLOGY 2023; 64:1386-1396. [PMID: 37769233 DOI: 10.1093/pcp/pcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Diel cycles of gene expression are thought to adapt plants to 24-h changes in environmental conditions. The circadian clock contributes to this process, but less is known about circadian programs in developing reproductive organs. While model plants and controlled conditions have contributed greatly to our knowledge of circadian clock function, there is a need to better understand its role in crop plants under field conditions with fluctuating light and temperature. In this study, we investigated changes in the circadian clock during the development of grape berries of Vitis vinifera L. We found that the transcripts of circadian clock homologs had high-amplitude oscillations prior to, but not during, ripening. As ripening progressed, the amplitude and rhythmicity of the diel oscillations decreased until most transcripts tested had no significant fluctuation over the 24-h cycle. Despite this loss of rhythmicity, the majority of circadian clock genes investigated were expressed at or near their abundance at the nadir of their pre-ripening oscillation although the berries remained transcriptionally active. From this, it can be concluded that cycling of the canonical circadian clock appears unnecessary for berry ripening. Our data suggest that changes in circadian clock dynamics during reproductive organ development may have important functional consequences.
Collapse
Affiliation(s)
| | | | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich NR4 7RU, UK
| |
Collapse
|
33
|
Alvarez-García L, Sánchez-García FJ, Vázquez-Pichardo M, Moreno-Altamirano MM. Chikungunya Virus, Metabolism, and Circadian Rhythmicity Interplay in Phagocytic Cells. Metabolites 2023; 13:1143. [PMID: 37999239 PMCID: PMC10672914 DOI: 10.3390/metabo13111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to humans by mosquitoes of the genus Aedes, causing the chikungunya fever disease, associated with inflammation and severe articular incapacitating pain. There has been a worldwide reemergence of chikungunya and the number of cases increased to 271,006 in 2022 in the Americas alone. The replication of CHIKV takes place in several cell types, including phagocytic cells. Monocytes and macrophages are susceptible to infection by CHIKV; at the same time, they provide protection as components of the innate immune system. However, in host-pathogen interactions, CHIKV might have the ability to alter the function of immune cells, partly by rewiring the tricarboxylic acid cycle. Some viral evasion mechanisms depend on the metabolic reprogramming of immune cells, and the cell metabolism is intertwined with circadian rhythmicity; thus, a circadian immunovirometabolism axis may influence viral pathogenicity. Therefore, analyzing the interplay between viral infection, circadian rhythmicity, and cellular metabolic reprogramming in human macrophages could shed some light on the new field of immunovirometabolism and eventually contribute to the development of novel drugs and therapeutic approaches based on circadian rhythmicity and metabolic reprogramming.
Collapse
Affiliation(s)
- Linamary Alvarez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - F. Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| | - Mauricio Vázquez-Pichardo
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
- Laboratorio de Arbovirus, Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaría de Salud, Francisco de P. Miranda 177, Col. Lomas de Plateros, Mexico City 01480, Mexico
| | - M. Maximina Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del IPN, Prolongación de Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (L.A.-G.); (F.J.S.-G.); (M.V.-P.)
| |
Collapse
|
34
|
Wang M, Zheng S, Han J, Liu Y, Wang Y, Wang W, Tang X, Zhou C. Nyctinastic movement in legumes: Developmental mechanisms, factors and biological significance. PLANT, CELL & ENVIRONMENT 2023; 46:3206-3217. [PMID: 37614098 DOI: 10.1111/pce.14699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
In legumes, a common phenomenon known as nyctinastic movement is observed. This movement involves the horizontal expansion of leaves during the day and relative vertical closure at night. Nyctinastic movement is driven by the pulvinus, which consists of flexor and extensor motor cells. The turgor pressure difference between these two cell types generates a driving force for the bending and deformation of the pulvinus. This review focuses on the developmental mechanisms of the pulvinus, the factors affecting nyctinastic movement, and the biological significance of this phenomenon in legumes, thus providing a reference for further research on nyctinastic movement.
Collapse
Affiliation(s)
- Min Wang
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Shuze Zheng
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Jingyi Han
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Yuqi Liu
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Yun Wang
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Weilin Wang
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Ximi Tang
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Chuanen Zhou
- School of Life Science, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
35
|
Patil AB, Kar D, Datta S, Vijay N. Genomic and Transcriptomic Analyses Illuminates Unique Traits of Elusive Night Flowering Jasmine Parijat (Nyctanthes arbor-tristis). PHYSIOLOGIA PLANTARUM 2023; 175:e14119. [PMID: 38148217 DOI: 10.1111/ppl.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
The night-flowering Jasmine, Nyctanthes arbor-tristis also known as Parijat, is a perennial woody shrub belonging to the family of Oleaceae. It is popular for its fragrant flowers that bloom in the night and is a potent source of secondary metabolites. However, knowledge about its genome and the expression of genes regulating flowering or secondary metabolite accumulation is lacking. In this study, we generated whole genome sequencing data to assemble the first de novo assembly of Parijat and use it for comparative genomics and demographic history reconstruction. The temporal dynamics of effective population size (Ne ) experienced a positive influence of colder climates suggesting the switch to night flowering may have provided an evolutionary advantage. We employed multi-tissue transcriptome sequencing of floral stages/parts to obtain insights into the transcriptional regulation of nocturnal flower development and the production of volatiles/metabolites. Tissue-specific transcripts for mature flowers revealed key players in circadian regulation and flower development, including the auxin pathway and cell wall modifying genes. Furthermore, we identified tissue-specific transcripts responsible for producing numerous secondary metabolites, mainly terpenoids and carotenoids. The diversity and specificity of Terpene Synthase (TPS) and CCDs (Carotenoid Cleavage Deoxygenases) mediate the bio-synthesis of specialised metabolites in Parijat. Our study establishes Parijat as a novel non-model species to understand the molecular mechanisms of nocturnal blooming and secondary metabolite production.
Collapse
Affiliation(s)
- Ajinkya Bharatraj Patil
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| | - Debojyoti Kar
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| | - Sourav Datta
- Plant Cell and Developmental Biology Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Madhya Pradesh, India
| |
Collapse
|
36
|
Zhang Y, Xu P, Xue W, Zhu W, Yu X. Diurnal gene oscillations modulated by RNA metabolism in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:728-743. [PMID: 37492018 DOI: 10.1111/tpj.16400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Diurnal rhythms are known to regulate the expression of a large number of genes, coordinating plant growth and development with diel changes in light and temperature. However, the impact of RNA metabolism on rhythmic gene oscillations in plant is not yet fully understood. To address this question, we performed transcriptome and degradome profiling on tomato leaves at 6 time points during one 24 h cycle, using RNA-seq and genome-wide mapping of uncapped and cleavage transcripts (GMUCT). Time-series profiling of RNA-seq revealed 9342 diurnal-oscillated genes, which were enriched in various metabolic processes. To quantify the general level of RNA degradation for each gene, we utilized the Proportion Uncapped (PU) metric, which represents the GMUCT/RNA-seq ratio. Oscillated PU analysis revealed that 3885 genes were regulated by rhythmic RNA degradation. The RNA decay of these diurnal genes was highly coordinated with mRNA downregulation during oscillation, highlighting the critical role of internal transcription-degradation balance in rhythmic gene oscillation. Furthermore, we identified 2190 genes undergoing co-translational RNA decay (CTRD) with 5' phosphate read ends enriched at the boundary of ribosomes stalling at translational termination sites. Interestingly, diurnal-changed mRNAs with large amplitudes tended to be co-translationally decay, suggesting that CTRD contributed to the rapid turnover of diurnal mRNAs. Finally, we also identified several genes, whose miRNA cleavage efficiency oscillated in a diurnal manner. Taken together, these findings uncovered the vital functions of RNA metabolism, including rhythmic RNA degradation, CTRD, and miRNA cleavage, in modulating the diurnal mRNA oscillations during diel change at post-transcriptional level in tomato.
Collapse
Affiliation(s)
- Yingying Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Pengfei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanxin Xue
- Shanghai Yuanyi Seedling Co. Ltd, Shanghai, 201318, China
| | - Weimin Zhu
- Shanghai Key Laboratory of Protected Horticulture Technology, The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
37
|
Zhang M, Jiang Y, Dong H, Shan X, Tian J, Sun M, Ma F, Ren C, Yuan Y. Transcriptomic response for revealing the molecular mechanism of oat flowering under different photoperiods. FRONTIERS IN PLANT SCIENCE 2023; 14:1279107. [PMID: 38023932 PMCID: PMC10644674 DOI: 10.3389/fpls.2023.1279107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Proper flowering is essential for the reproduction of all kinds of plants. Oat is an important cereal and forage crop; however, its cultivation is limited because it is a long-day plant. The molecular mechanism by which oats respond to different photoperiods is still unclear. In this study, oat plants were treated under long-day and short-day photoperiods for 10 days, 15 days, 20 days, 25 days, 30 days, 40 days and 50 days, respectively. Under the long-day treatment, oats entered the reproductive stage, while oats remained vegetative under the short-day treatment. Forty-two samples were subjected to RNA-Seq to compare the gene expression patterns of oat under long- and short-day photoperiods. A total of 634-5,974 differentially expressed genes (DEGs) were identified for each time point, while the floral organ primordium differentiation stage showed the largest number of DEGs, and the spikelet differentiation stage showed the smallest number. Gene Ontology (GO) analysis showed that the plant hormone signaling transduction and hormone metabolism processes significantly changed in the photoperiod regulation of flowering time in oat. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Mapman analysis revealed that the DEGs were mainly concentrated in the circadian rhythm, protein antenna pathways and sucrose metabolism process. Additionally, transcription factors (TFs) involved in various flowering pathways were explored. Combining all this information, we established a molecular model of oat flowering induced by a long-day photoperiod. Taken together, the long-day photoperiod has a large effect at both the morphological and transcriptomic levels, and these responses ultimately promote flowering in oat. Our findings expand the understanding of oat as a long-day plant, and the explored genes could be used in molecular breeding to help break its cultivation limitations in the future.
Collapse
Affiliation(s)
- Man Zhang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Yuan Jiang
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Haixiao Dong
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Xiaohui Shan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Juan Tian
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Moke Sun
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Feiyue Ma
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Changzhong Ren
- Key Laboratory of Biotechnology of Jinlin Province, Baicheng Academy of Agricultural Science, Baicheng, China
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
38
|
Alcantara M, Iftikhar H, Kagan K, Dzheyranyan D, Abbasi P, Alamilla A, Ayala N, Baca T, Benoit V, Clausen N, Coto C, Guerrero C, Hernandez Catalan E, Hurtado S, Lopez A, Lopez J, Majarian N, Mesfin N, Mishegyan A, Mkrtchyan G, Ordonez A, Pachanyan A, Pelayo T, Rosas A, Rowsey K, Sharma E, Sharma S, Van Grinsven S, Hanzawa Y. Clarifying the Temporal Dynamics of the Circadian Clock and Flowering Gene Network Using Overexpression and Targeted Mutagenesis of Soybean EARLY FLOWERING 3-1 ( GmELF3-1 ). MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000935. [PMID: 37908495 PMCID: PMC10613878 DOI: 10.17912/micropub.biology.000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
With progressing climate fluctuations, an understanding of the molecular mechanisms of crop plants that regulate their flowering responses to environments is crucial. To achieve this goal, we aimed at clarifying the gene regulatory networks among the circadian clock and flowering genes in soybean ( Glycine max ). Based on our network inference approach , we hypothesize that GmELF3-1 , one of the Evening Complex (EC) gene homologs in soybean's circadian clock, may have an integrative role in transcriptional regulation of the circadian clock and flowering gene network. In this study, we verify GmELF3-1 ' s regulatory roles in its potential downstream genes by modulating the activity of GmELF3-1 using overexpression and CRISPR-Cas9 in soybean protoplasts. Our results indicate that GmELF3-1 may control the expression of the PRR genes in the circadian clock and the flowering gene GmCOL1a .
Collapse
Affiliation(s)
| | - Hira Iftikhar
- Department of Biology, California State University Northridge
| | - Kimberly Kagan
- Department of Biology, California State University Northridge
| | | | - Pedram Abbasi
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Alejandra Alamilla
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Nicole Ayala
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Trixy Baca
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Vanessa Benoit
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Natalia Clausen
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Caroline Coto
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Celia Guerrero
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Erik Hernandez Catalan
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Sierra Hurtado
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Angela Lopez
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Jacqueline Lopez
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Nicholas Majarian
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Noah Mesfin
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Avetis Mishegyan
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Goharik Mkrtchyan
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Amy Ordonez
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Arthur Pachanyan
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Tanya Pelayo
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Alondra Rosas
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Kylee Rowsey
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Elina Sharma
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Sanjiti Sharma
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Shauna Van Grinsven
- Department of Biology, BIOL 481L Plant Physiology, California State University Northridge
| | - Yoshie Hanzawa
- Department of Biology, California State University Northridge
| |
Collapse
|
39
|
Brooks CJ, Atamian HS, Harmer SL. Multiple light signaling pathways control solar tracking in sunflowers. PLoS Biol 2023; 21:e3002344. [PMID: 37906610 PMCID: PMC10617704 DOI: 10.1371/journal.pbio.3002344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways.
Collapse
Affiliation(s)
- Christopher J. Brooks
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Hagop S. Atamian
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
- Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
40
|
Savageau MA. Phenotype Design Space Provides a Mechanistic Framework Relating Molecular Parameters to Phenotype Diversity Available for Selection. J Mol Evol 2023; 91:687-710. [PMID: 37620617 PMCID: PMC10598110 DOI: 10.1007/s00239-023-10127-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Two long-standing challenges in theoretical population genetics and evolution are predicting the distribution of phenotype diversity generated by mutation and available for selection, and determining the interaction of mutation, selection and drift to characterize evolutionary equilibria and dynamics. More fundamental for enabling such predictions is the current inability to causally link genotype to phenotype. There are three major mechanistic mappings required for such a linking - genetic sequence to kinetic parameters of the molecular processes, kinetic parameters to biochemical system phenotypes, and biochemical phenotypes to organismal phenotypes. This article introduces a theoretical framework, the Phenotype Design Space (PDS) framework, for addressing these challenges by focusing on the mapping of kinetic parameters to biochemical system phenotypes. It provides a quantitative theory whose key features include (1) a mathematically rigorous definition of phenotype based on biochemical kinetics, (2) enumeration of the full phenotypic repertoire, and (3) functional characterization of each phenotype independent of its context-dependent selection or fitness contributions. This framework is built on Design Space methods that relate system phenotypes to genetically determined parameters and environmentally determined variables. It also has the potential to automate prediction of phenotype-specific mutation rate constants and equilibrium distributions of phenotype diversity in microbial populations undergoing steady-state exponential growth, which provides an ideal reference to which more realistic cases can be compared. Although the framework is quite general and flexible, the details will undoubtedly differ for different functions, organisms and contexts. Here a hypothetical case study involving a small molecular system, a primordial circadian clock, is used to introduce this framework and to illustrate its use in a particular case. The framework is built on fundamental biochemical kinetics. Thus, the foundation is based on linear algebra and reasonable physical assumptions, which provide numerous opportunities for experimental testing and further elaboration to deal with complex multicellular organisms that are currently beyond its scope. The discussion provides a comparison of results from the PDS framework with those from other approaches in theoretical population genetics.
Collapse
Affiliation(s)
- Michael A Savageau
- Department of Microbiology & Molecular Genetics, University of California, 228 Briggs, Davis, CA, 95616, USA.
- Department of Biomedical Engineering, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
41
|
Hughes CL, Harmer SL. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. PLANT DIRECT 2023; 7:e533. [PMID: 37811362 PMCID: PMC10557472 DOI: 10.1002/pld3.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.
Collapse
Affiliation(s)
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
42
|
Noordally ZB, Hindle MM, Martin SF, Seaton DD, Simpson TI, Le Bihan T, Millar AJ. A phospho-dawn of protein modification anticipates light onset in the picoeukaryote Ostreococcus tauri. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5514-5531. [PMID: 37481465 PMCID: PMC10540734 DOI: 10.1093/jxb/erad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Diel regulation of protein levels and protein modification had been less studied than transcript rhythms. Here, we compare transcriptome data under light-dark cycles with partial proteome and phosphoproteome data, assayed using shotgun MS, from the alga Ostreococcus tauri, the smallest free-living eukaryote. A total of 10% of quantified proteins but two-thirds of phosphoproteins were rhythmic. Mathematical modelling showed that light-stimulated protein synthesis can account for the observed clustering of protein peaks in the daytime. Prompted by night-peaking and apparently dark-stable proteins, we also tested cultures under prolonged darkness, where the proteome changed less than under the diel cycle. Among the dark-stable proteins were prasinophyte-specific sequences that were also reported to accumulate when O. tauri formed lipid droplets. In the phosphoproteome, 39% of rhythmic phospho-sites reached peak levels just before dawn. This anticipatory phosphorylation suggests that a clock-regulated phospho-dawn prepares green cells for daytime functions. Acid-directed and proline-directed protein phosphorylation sites were regulated in antiphase, implicating the clock-related casein kinases 1 and 2 in phase-specific regulation, alternating with the CMGC protein kinase family. Understanding the dynamic phosphoprotein network should be facilitated by the minimal kinome and proteome of O. tauri. The data are available from ProteomeXchange, with identifiers PXD001734, PXD001735, and PXD002909.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Matthew M Hindle
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah F Martin
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - T Ian Simpson
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Thierry Le Bihan
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
43
|
Scandola S, Mehta D, Castillo B, Boyce N, Uhrig RG. Systems-level proteomics and metabolomics reveals the diel molecular landscape of diverse kale cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1170448. [PMID: 37575922 PMCID: PMC10421703 DOI: 10.3389/fpls.2023.1170448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Kale is a group of diverse Brassicaceae species that are nutritious leafy greens consumed for their abundance of vitamins and micronutrients. Typified by their curly, serrated and/or wavy leaves, kale varieties have been primarily defined based on their leaf morphology and geographic origin, despite having complex genetic backgrounds. Kale is a very promising crop for vertical farming due to its high nutritional content; however, being a non-model organism, foundational, systems-level analyses of kale are lacking. Previous studies in kale have shown that time-of-day harvesting can affect its nutritional composition. Therefore, to gain a systems-level diel understanding of kale across its wide-ranging and diverse genetic landscape, we selected nine publicly available and commercially grown kale cultivars for growth under near-sunlight LED light conditions ideal for vertical farming. We then analyzed changes in morphology, growth and nutrition using a combination of plant phenotyping, proteomics and metabolomics. As the diel molecular activities of plants drive their daily growth and development, ultimately determining their productivity as a crop, we harvested kale leaf tissue at both end-of-day (ED) and end-of-night (EN) time-points for all molecular analyses. Our results reveal that diel proteome and metabolome signatures divide the selected kale cultivars into two groups defined by their amino acid and sugar content, along with significant proteome differences involving carbon and nitrogen metabolism, mRNA splicing, protein translation and light harvesting. Together, our multi-cultivar, multi-omic analysis provides new insights into the molecular underpinnings of the diel growth and development landscape of kale, advancing our fundamental understanding of this nutritious leafy green super-food for horticulture/vertical farming applications.
Collapse
Affiliation(s)
| | | | | | | | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
44
|
Li J, Qiu JX, Zeng QH, Zhang N, Xu SX, Jin J, Dong ZC, Chen L, Huang W. OsTOC1 plays dual roles in the regulation of plant circadian clock by functioning as a direct transcription activator or repressor. Cell Rep 2023; 42:112765. [PMID: 37421622 DOI: 10.1016/j.celrep.2023.112765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Plant clock function relies on precise timing of gene expression through complex regulatory networks consisting of activators and repressors at the core of oscillators. Although TIMING OF CAB EXPRESSION 1 (TOC1) has been recognized as a repressor involved in shaping oscillations and regulating clock-driven processes, its potential to directly activate gene expression remains unclear. In this study, we find that OsTOC1 primarily acts as a transcriptional repressor for core clock components, including OsLHY and OsGI. Here, we show that OsTOC1 possesses the ability to directly activate the expression of circadian target genes. Through binding to the promoters of OsTGAL3a/b, transient activation of OsTOC1 induces the expression of OsTGAL3a/b, indicating its role as an activator contributing to pathogen resistance. Moreover, TOC1 participates in regulating multiple yield-related traits in rice. These findings suggest that TOC1's function as a transcriptional repressor is not inherent, providing flexibility to circadian regulations, particularly in outputs.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jia-Xin Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qing-Hua Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ning Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jian Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Zhi-Cheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
45
|
Nong ML, Luo XH, Zhu LX, Zhang YN, Dun XY, Huang L. Insights into the Adaptation to High Altitudes from Transcriptome Profiling: A Case Study of an Endangered Species, Kingdonia uniflora. Genes (Basel) 2023; 14:1291. [PMID: 37372473 DOI: 10.3390/genes14061291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Kingdonia uniflora is an endangered alpine herb that is distributed along an altitudinal gradient. The unique traits and important phylogenetic position make K. uniflora an ideal model for exploring how endangered plants react to altitude variation. In this study, we sampled nine individuals from three representative locations and adopted RNA-seq technology to sequence 18 tissues, aiming to uncover how K. uniflora responded to different altitudes at the gene expression level. We revealed that genes that responded to light stimuli and circadian rhythm genes were significantly enriched in DEGs in the leaf tissue group, while genes that were related to root development and peroxidase activity or involved in the pathways of cutin, suberin, wax biosynthesis, and monoterpenoid biosynthesis were significantly enriched in DEGs in the flower bud tissue group. All of the above genes may play an important role in the response of K. uniflora to various stresses, such as low temperatures and hypoxia in high-altitude environments. Furthermore, we proved that the discrepancy in gene expression patterns between leaf and flower bud tissues varied along the altitudinal gradient. Overall, our findings provide new insights into the adaptation of endangered species to high-altitude environments and further encourage parallel research to focus on the molecular mechanisms of alpine plant evolution.
Collapse
Affiliation(s)
- Man-Li Nong
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao-Hui Luo
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Li-Xin Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ya-Nan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xue-Yi Dun
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Lei Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
- Key Laboratory of Medicinal Plant Resource and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
46
|
Huang T, Liu H, Tao JP, Zhang JQ, Zhao TM, Hou XL, Xiong AS, You X. Low light intensity elongates period and defers peak time of photosynthesis: a computational approach to circadian-clock-controlled photosynthesis in tomato. HORTICULTURE RESEARCH 2023; 10:uhad077. [PMID: 37323229 PMCID: PMC10261901 DOI: 10.1093/hr/uhad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/09/2023] [Indexed: 06/17/2023]
Abstract
Photosynthesis is involved in the essential process of transforming light energy into chemical energy. Although the interaction between photosynthesis and the circadian clock has been confirmed, the mechanism of how light intensity affects photosynthesis through the circadian clock remains unclear. Here, we propose a first computational model for circadian-clock-controlled photosynthesis, which consists of the light-sensitive protein P, the core oscillator, photosynthetic genes, and parameters involved in the process of photosynthesis. The model parameters were determined by minimizing the cost function ( [Formula: see text]), which is defined by the errors of expression levels, periods, and phases of the clock genes (CCA1, PRR9, TOC1, ELF4, GI, and RVE8). The model recapitulates the expression pattern of the core oscillator under moderate light intensity (100 μmol m -2 s-1). Further simulation validated the dynamic behaviors of the circadian clock and photosynthetic outputs under low (62.5 μmol m-2 s-1) and normal (187.5 μmol m-2 s-1) intensities. When exposed to low light intensity, the peak times of clock and photosynthetic genes were shifted backward by 1-2 hours, the period was elongated by approximately the same length, and the photosynthetic parameters attained low values and showed delayed peak times, which confirmed our model predictions. Our study reveals a potential mechanism underlying the circadian regulation of photosynthesis by the clock under different light intensities in tomato.
Collapse
Affiliation(s)
- Ting Huang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Jian-Ping Tao
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
- The Institute of Agricultural Information, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jia-Qi Zhang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Tong-Min Zhao
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xi-Lin Hou
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu China
| |
Collapse
|
47
|
Sakeef N, Scandola S, Kennedy C, Lummer C, Chang J, Uhrig RG, Lin G. Machine learning classification of plant genotypes grown under different light conditions through the integration of multi-scale time-series data. Comput Struct Biotechnol J 2023; 21:3183-3195. [PMID: 37333861 PMCID: PMC10275741 DOI: 10.1016/j.csbj.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
In order to mitigate the effects of a changing climate, agriculture requires more effective evaluation, selection, and production of crop cultivars in order to accelerate genotype-to-phenotype connections and the selection of beneficial traits. Critically, plant growth and development are highly dependent on sunlight, with light energy providing plants with the energy required to photosynthesize as well as a means to directly intersect with the environment in order to develop. In plant analyses, machine learning and deep learning techniques have a proven ability to learn plant growth patterns, including detection of disease, plant stress, and growth using a variety of image data. To date, however, studies have not assessed machine learning and deep learning algorithms for their ability to differentiate a large cohort of genotypes grown under several growth conditions using time-series data automatically acquired across multiple scales (daily and developmentally). Here, we extensively evaluate a wide range of machine learning and deep learning algorithms for their ability to differentiate 17 well-characterized photoreceptor deficient genotypes differing in their light detection capabilities grown under several different light conditions. Using algorithm performance measurements of precision, recall, F1-Score, and accuracy, we find that Suport Vector Machine (SVM) maintains the greatest classification accuracy, while a combined ConvLSTM2D deep learning model produces the best genotype classification results across the different growth conditions. Our successful integration of time-series growth data across multiple scales, genotypes and growth conditions sets a new foundational baseline from which more complex plant science traits can be assessed for genotype-to-phenotype connections.
Collapse
Affiliation(s)
- Nazmus Sakeef
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Scandola
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Curtis Kennedy
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Lummer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jiameng Chang
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Guohui Lin
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Pavani G, Malhotra PK, Verma SK. Flowering in sugarcane-insights from the grasses. 3 Biotech 2023; 13:154. [PMID: 37138783 PMCID: PMC10149435 DOI: 10.1007/s13205-023-03573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
Flowering is a crucial phase for angiosperms to continue their species propagation and is highly regulated. In the current review, flowering in sugarcane and the associated mechanisms are elaborately presented. In sugarcane, flowering has two effects, wherein it is a beneficial factor from the breeder's perspective and crucial for crop improvement, but commercially, it depletes the sucrose reserves from the stalks; hence, less value is assigned. Different species of Saccharum genus are spread across geographical latitudes, thereby proving their ability to grow in multiple inductive daylengths of different locations according in the habituated zone. In general, sugarcane is termed an intermediate daylength plant with quantitative short-day behaviour as it requires reduction in daylength from 12 h 55 min to 12 h or 12 h 30 min. The prime concern in sugarcane flowering is its erratic flowering nature. The transition to reproductive stage which reverts to vegetative stage if there is any deviation from ambient temperature and light is also an issue. Spatial and temporal gene expression patterns during vegetative to reproductive stage transition and after reverting to vegetative state could possibly reveal how the genetic circuits are being governed. This review will also shed a light on potential roles of genes and/or miRNAs in flowering in sugarcane. Knowledge of transcriptomic background of circadian, photoperiod, and gibberellin pathways in sugarcane will enable us to better understand of variable response in floral development.
Collapse
Affiliation(s)
- Gongati Pavani
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Pawan Kumar Malhotra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sandeep Kumar Verma
- Institute of Biological Science, SAGE University, Bypass Road, Kailod Kartal, Indore, Madhya Pradesh 452020 India
| |
Collapse
|
49
|
Sorkin ML, Tzeng SC, King S, Romanowski A, Kahle N, Bindbeutel R, Hiltbrunner A, Yanovsky MJ, Evans BS, Nusinow DA. COLD REGULATED GENE 27 and 28 Antagonize the Transcriptional Activity of the RVE8/LNK1/LNK2 Circadian Complex. PLANT PHYSIOLOGY 2023:kiad210. [PMID: 37017001 DOI: 10.1093/plphys/kiad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Many molecular and physiological processes in plants occur at a specific time of day. These daily rhythms are coordinated in part by the circadian clock, a timekeeper that uses daylength and temperature to maintain rhythms of approximately 24 hours in various clock-regulated phenotypes. The circadian MYB-like transcription factor REVEILLE 8 (RVE8) interacts with its transcriptional coactivators NIGHT LIGHT INDUCIBLE AND CLOCK REGULATED 1 (LNK1) and LNK2 to promote the expression of evening-phased clock genes and cold tolerance factors. While genetic approaches have commonly been used to discover connections within the clock and between clock elements and other pathways, here we used affinity purification coupled with mass spectrometry to identify time-of-day-specific protein interactors of the RVE8-LNK1/LNK2 complex in Arabidopsis (Arabidopsis thaliana). Among the interactors of RVE8/LNK1/LNK2 were COLD REGULATED GENE 27 (COR27) and COR28, which coprecipitated in an evening-specific manner. In addition to COR27 and COR28, we found an enrichment of temperature-related interactors that led us to establish a previously uncharacterized role for LNK1 and LNK2 in temperature entrainment of the clock. We established that RVE8, LNK1, and either COR27 or COR28 form a tripartite complex in yeast (Saccharomyces cerevisiae) and that the effect of this interaction in planta serves to antagonize transcriptional activation of RVE8 target genes, potentially through mediating RVE8 protein degradation in the evening. Together, these results illustrate how a proteomic approach can be used to identify time-of-day-specific protein interactions. Discovery of the RVE8-LNK-COR protein complex indicates a previously unknown regulatory mechanism for circadian and temperature signaling pathways.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Stefanie King
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrés Romanowski
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nikolai Kahle
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
50
|
Kim H, Kim J, Choi G. Epidermal phyB requires RRC1 to promote light responses by activating the circadian rhythm. THE NEW PHYTOLOGIST 2023; 238:705-723. [PMID: 36651061 DOI: 10.1111/nph.18746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Phytochrome B (phyB) expressed in the epidermis is sufficient to promote red light responses, including the inhibition of hypocotyl elongation and hypocotyl negative gravitropism. Nonetheless, the downstream mechanism of epidermal phyB in promoting light responses had been elusive. Here, we mutagenized the epidermis-specific phyB-expressing line (MLB) using ethyl methanesulfonate (EMS) and characterized a novel mutant allele of RRC1 (rrc1-689), which causes reduced epidermal phyB-mediated red light responses. The rrc1-689 mutation increases the alternative splicing of major clock gene transcripts, including PRR7 and TOC1, disrupting the rhythmic expression of the entire clock and clock-controlled genes. Combined with the result that MLB/prr7 exhibits the same red-hyposensitive phenotypes as MLB/rrc1-689, our data support that the circadian clock is required for the ability of epidermal phyB to promote light responses. We also found that, unlike phyB, RRC1 preferentially acts in the endodermis to maintain the circadian rhythm by suppressing the alternative splicing of core clock genes. Together, our results suggest that epidermal phyB requires RRC1 to promote light responses by activating the circadian rhythm in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Jaewook Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, 34141, Korea
| |
Collapse
|