1
|
Pingault V, Neiva-Vaz C, de Oliveira J, Martínez-Gil N, Lasa-Aranzasti A, Campos B, Lakeman IMM, Nibbeling EAR, Stoeva R, Jayakar P, Dabir T, Elloumi HZ, Strong A, Hanein S, Picard A, Ochsenbein F, Blanc P, Amiel J. Chromatin assembly factor subunit CHAF1A as a monogenic cause for oculo-auriculo-vertebral spectrum. Eur J Hum Genet 2025; 33:131-136. [PMID: 39333427 PMCID: PMC11711244 DOI: 10.1038/s41431-024-01698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) is characterized by abnormal development of the 1st and 2nd branchial arches. Despite arguments against a monogenic condition, a few genes have been involved in a minority of cases. We now report heterozygous, presumably loss-of function variants in the CHAF1A gene in 8 individuals, including 3 members of the same family. Four cases fulfill stringent diagnostic criteria for OAVS, including asymmetric ear dysplasia, preauricular tags, mandibular asymmetry +/- vertebral malformations. Two patients also presented with kidney malformations. CHAF1A encodes a subunit of CAF-1 (chromatin assembly factor-1), a heterotrimeric protein complex responsible for the deposition of newly synthesized histones H3-H4 onto the newly synthetized DNA strand during replication. The identification of loss-of-unction variants in CHAF1A is consistent with the hypothesis of early developmental genes dysregulation driving OAVS and other associations recently lumped under the acronym Recurrent Constellations of Embryonic Malformations (RCEM).
Collapse
Affiliation(s)
- Véronique Pingault
- Laboratoire « Embryologie et Génétique des Malformations », Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, France.
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, F-75015, Paris, France.
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France.
| | - Cécilia Neiva-Vaz
- Chirurgie Maxillofaciale, Hôpital Necker-Enfants Malades, AP-HP Centre, Paris, France
| | - Judite de Oliveira
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| | - Núria Martínez-Gil
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Berta Campos
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medical Genetics Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Inge M M Lakeman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Esther A R Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Radka Stoeva
- Department of Medical Genetics, Le Mans Hospital, Le Mans, France
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - Tabib Dabir
- Medical Genetics Dept, Belfast City Hospital, Belfast, BT9 7AB, UK
| | | | - Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvain Hanein
- Bioinformatic Platform, Institute of Genetic Diseases, INSERM UMR1163, Institut Imagine, Université Paris-Cité and Structure Fédérative de Recherche Necker, 75015, Paris, France
| | - Arnaud Picard
- Chirurgie Maxillofaciale, Hôpital Necker-Enfants Malades, AP-HP Centre, Paris, France
| | - Francoise Ochsenbein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, Gif-sur-Yvette, France
| | - Pierre Blanc
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Jeanne Amiel
- Laboratoire « Embryologie et Génétique des Malformations », Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, France
- Service de Médecine Génomique des maladies rares, AP-HP.Centre, Hôpital Necker-Enfants Malades, F-75015, Paris, France
| |
Collapse
|
2
|
Kim HJ, Szurgot MR, van Eeuwen T, Ricketts MD, Basnet P, Zhang AL, Vogt A, Sharmin S, Kaplan CD, Garcia BA, Marmorstein R, Murakami K. Structure of the Hir histone chaperone complex. Mol Cell 2024; 84:2601-2617.e12. [PMID: 38925115 PMCID: PMC11338637 DOI: 10.1016/j.molcel.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved HIRA/Hir histone chaperone complex and ASF1a/Asf1 co-chaperone cooperate to deposit histone (H3/H4)2 tetramers on DNA for replication-independent chromatin assembly. The molecular architecture of the HIRA/Hir complex and its mode of histone deposition have remained unknown. Here, we report the cryo-EM structure of the S. cerevisiae Hir complex with Asf1/H3/H4 at 2.9-6.8 Å resolution. We find that the Hir complex forms an arc-shaped dimer with a Hir1/Hir2/Hir3/Hpc2 stoichiometry of 2/4/2/4. The core of the complex containing two Hir1/Hir2/Hir2 trimers and N-terminal segments of Hir3 forms a central cavity containing two copies of Hpc2, with one engaged by Asf1/H3/H4, in a suitable position to accommodate a histone (H3/H4)2 tetramer, while the C-terminal segments of Hir3 harbor nucleic acid binding activity to wrap DNA around the Hpc2-assisted histone tetramer. The structure suggests a model for how the Hir/Asf1 complex promotes the formation of histone tetramers for their subsequent deposition onto DNA.
Collapse
Affiliation(s)
- Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary R Szurgot
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor van Eeuwen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Daniel Ricketts
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pratik Basnet
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Athena L Zhang
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Austin Vogt
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samah Sharmin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Ouasti F, Audin M, Fréon K, Quivy JP, Tachekort M, Cesard E, Thureau A, Ropars V, Fernández Varela P, Moal G, Soumana-Amadou I, Uryga A, Legrand P, Andreani J, Guerois R, Almouzni G, Lambert S, Ochsenbein F. Disordered regions and folded modules in CAF-1 promote histone deposition in Schizosaccharomyces pombe. eLife 2024; 12:RP91461. [PMID: 38376141 PMCID: PMC10942606 DOI: 10.7554/elife.91461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.
Collapse
Affiliation(s)
- Fouad Ouasti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Maxime Audin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Karine Fréon
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Jean-Pierre Quivy
- Institut Curie, PSL Research University, CNRS, Sorbonne Université,CNRS UMR3664, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le CancerParisFrance
| | - Mehdi Tachekort
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Elizabeth Cesard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Aurélien Thureau
- Synchrotron SOLEIL, HelioBio group, l'Orme des MerisiersSaint-AubinFrance
| | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Paloma Fernández Varela
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Gwenaelle Moal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Ibrahim Soumana-Amadou
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Aleksandra Uryga
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, l'Orme des MerisiersSaint-AubinFrance
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université,CNRS UMR3664, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le CancerParisFrance
| | - Sarah Lambert
- Institut Curie, PSL Research University, CNRS UMR 3348, INSERM U1278, Université Paris-Saclay, Equipe labellisée Ligue contre le CancerOrsayFrance
| | - Francoise Ochsenbein
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Institute JoliotGif-sur-YvetteFrance
| |
Collapse
|
4
|
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. Genome Res 2023; 33:2108-2118. [PMID: 38081658 PMCID: PMC10760526 DOI: 10.1101/gr.278273.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others showing significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we show that the delay in chromatin maturation is accompanied by a transient and S-phase-specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Heather K MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
| |
Collapse
|
5
|
Hao H, Ren C, Lian Y, Zhao M, Bo T, Xu J, Wang W. Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila. Cells 2023; 12:2828. [PMID: 38132148 PMCID: PMC10741905 DOI: 10.3390/cells12242828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Histones and DNA associate to form the nucleosomes of eukaryotic chromatin. Chromatin assembly factor 1 (CAF-1) complex and histone regulatory protein A (HIRA) complex mediate replication-couple (RC) and replication-independent (RI) nucleosome assembly, respectively. CHAF1B and HIRA share a similar domain but play different roles in nucleosome assembly by binding to the different interactors. At present, there is limited understanding for the similarities and differences in their respective functions. Tetrahymena thermophila contains transcriptionally active polyploid macronuclei (MAC) and transcriptionally silent diploid micronuclei (MIC). Here, the distribution patterns of Caf1b and Hir1 exhibited both similarities and distinctions. Both proteins localized to the MAC and MIC during growth, and to the MIC during conjugation. However, Hir1 exhibited additional signaling on parental MAC and new MAC during sexual reproduction and displayed a punctate signal on developing anlagen. Caf1b and Hir1 only co-localized in the MIC with Pcna1 during conjugation. Knockdown of CAF1B impeded cellular growth and arrested sexual reproductive development. Loss of HIR1 led to MIC chromosome defects and aborted sexual development. Co-interference of CAF1B and HIR1 led to a more severe phenotype. Moreover, CAF1B knockdown led to the up-regulation of HIR1 expression, while knockdown of HIR1 also led to an increase in CAF1B expression. Furthermore, Caf1b and Hir1 interacted with different interactors. These results showed that CAF-1 and Hir1 have independent and complementary functions for chromatin assembly in T. thermophila.
Collapse
Affiliation(s)
- Huijuan Hao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Chenhui Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Yinjie Lian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Min Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (H.H.); (C.R.); (Y.L.); (M.Z.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
6
|
Ghaddar N, Luciano P, Géli V, Corda Y. Chromatin assembly factor-1 preserves genome stability in ctf4Δ cells by promoting sister chromatid cohesion. Cell Stress 2023; 7:69-89. [PMID: 37662646 PMCID: PMC10468696 DOI: 10.15698/cst2023.09.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chromatin assembly and the establishment of sister chromatid cohesion are intimately connected to the progression of DNA replication forks. Here we examined the genetic interaction between the heterotrimeric chromatin assembly factor-1 (CAF-1), a central component of chromatin assembly during replication, and the core replisome component Ctf4. We find that CAF-1 deficient cells as well as cells affected in newly-synthesized H3-H4 histones deposition during DNA replication exhibit a severe negative growth with ctf4Δ mutant. We dissected the role of CAF-1 in the maintenance of genome stability in ctf4Δ yeast cells. In the absence of CTF4, CAF-1 is essential for viability in cells experiencing replication problems, in cells lacking functional S-phase checkpoint or functional spindle checkpoint, and in cells lacking DNA repair pathways involving homologous recombination. We present evidence that CAF-1 affects cohesin association to chromatin in a DNA-damage-dependent manner and is essential to maintain cohesion in the absence of CTF4. We also show that Eco1-catalyzed Smc3 acetylation is reduced in absence of CAF-1. Furthermore, we describe genetic interactions between CAF-1 and essential genes involved in cohesin loading, cohesin stabilization, and cohesin component indicating that CAF-1 is crucial for viability when sister chromatid cohesion is affected. Finally, our data indicate that the CAF-1-dependent pathway required for cohesion is functionally distinct from the Rtt101-Mms1-Mms22 pathway which functions in replicated chromatin assembly. Collectively, our results suggest that the deposition by CAF-1 of newly-synthesized H3-H4 histones during DNA replication creates a chromatin environment that favors sister chromatid cohesion and maintains genome integrity.
Collapse
Affiliation(s)
- Nagham Ghaddar
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Pierre Luciano
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Yves Corda
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| |
Collapse
|
7
|
Choudhry SK, Neal ML, Li S, Navare AT, Van Eeuwen T, Wozniak RW, Mast FD, Rout MP, Aitchison JD. Nuclear pore complexes mediate subtelomeric gene silencing by regulating PCNA levels on chromatin. J Cell Biol 2023; 222:e202207060. [PMID: 37358474 PMCID: PMC10292210 DOI: 10.1083/jcb.202207060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/02/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
The nuclear pore complex (NPC) physically interacts with chromatin and regulates gene expression. The Saccharomyces cerevisiae inner ring nucleoporin Nup170 has been implicated in chromatin organization and the maintenance of gene silencing in subtelomeric regions. To gain insight into how Nup170 regulates this process, we used protein-protein interactions, genetic interactions, and transcriptome correlation analyses to identify the Ctf18-RFC complex, an alternative proliferating cell nuclear antigen (PCNA) loader, as a facilitator of the gene regulatory functions of Nup170. The Ctf18-RFC complex is recruited to a subpopulation of NPCs that lack the nuclear basket proteins Mlp1 and Mlp2. In the absence of Nup170, PCNA levels on DNA are reduced, resulting in the loss of silencing of subtelomeric genes. Increasing PCNA levels on DNA by removing Elg1, which is required for PCNA unloading, rescues subtelomeric silencing defects in nup170Δ. The NPC, therefore, mediates subtelomeric gene silencing by regulating PCNA levels on DNA.
Collapse
Affiliation(s)
- Sanjeev Kumar Choudhry
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Maxwell L. Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Song Li
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Arti T. Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Trevor Van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | | | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Departments of Pediatrics and Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Liu CP, Yu Z, Xiong J, Hu J, Song A, Ding D, Yu C, Yang N, Wang M, Yu J, Hou P, Zeng K, Li Z, Zhang Z, Zhang X, Li W, Zhang Z, Zhu B, Li G, Xu RM. Structural insights into histone binding and nucleosome assembly by chromatin assembly factor-1. Science 2023; 381:eadd8673. [PMID: 37616371 PMCID: PMC11186048 DOI: 10.1126/science.add8673] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Chromatin inheritance entails de novo nucleosome assembly after DNA replication by chromatin assembly factor-1 (CAF-1). Yet direct knowledge about CAF-1's histone binding mode and nucleosome assembly process is lacking. In this work, we report the crystal structure of human CAF-1 in the absence of histones and the cryo-electron microscopy structure of CAF-1 in complex with histones H3 and H4. One histone H3-H4 heterodimer is bound by one CAF-1 complex mainly through the p60 subunit and the acidic domain of the p150 subunit. We also observed a dimeric CAF-1-H3-H4 supercomplex in which two H3-H4 heterodimers are poised for tetramer assembly and discovered that CAF-1 facilitates right-handed DNA wrapping of H3-H4 tetramers. These findings signify the involvement of DNA in H3-H4 tetramer formation and suggest a right-handed nucleosome precursor in chromatin replication.
Collapse
Affiliation(s)
- Chao-Pei Liu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Hu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongbo Ding
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cong Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; Hangzhou, Zhejiang 310024, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, Tianjin 300353, China
| | - Mingzhu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Juan Yu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peini Hou
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kangning Zeng
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Li
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules and Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; Hangzhou, Zhejiang 310024, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Chen B, MacAlpine HK, Hartemink AJ, MacAlpine DM. Spatiotemporal kinetics of CAF-1-dependent chromatin maturation ensures transcription fidelity during S-phase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.541209. [PMID: 37292814 PMCID: PMC10245875 DOI: 10.1101/2023.05.25.541209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proper maintenance of epigenetic information after replication is dependent on the rapid assembly and maturation of chromatin. Chromatin Assembly Complex 1 (CAF-1) is a conserved histone chaperone that deposits (H3-H4)2 tetramers as part of the replication-dependent chromatin assembly process. Loss of CAF-1 leads to a delay in chromatin maturation, albeit with minimal impact on steady-state chromatin structure. However, the mechanisms by which CAF-1 mediates the deposition of (H3-H4)2 tetramers and the phenotypic consequences of CAF-1-associated assembly defects are not well understood. We used nascent chromatin occupancy profiling to track the spatiotemporal kinetics of chromatin maturation in both wild-type (WT) and CAF-1 mutant yeast cells. Our results show that loss of CAF-1 leads to a heterogeneous rate of nucleosome assembly, with some nucleosomes maturing at near WT kinetics and others exhibiting significantly slower maturation kinetics. The slow-to-mature nucleosomes are enriched in intergenic and poorly transcribed regions, suggesting that transcription-dependent assembly mechanisms can reset the slow-to-mature nucleosomes following replication. Nucleosomes with slow maturation kinetics are also associated with poly(dA:dT) sequences, which implies that CAF-1 deposits histones in a manner that counteracts resistance from the inflexible DNA sequence, promoting the formation of histone octamers as well as ordered nucleosome arrays. In addition, we demonstrate that the delay in chromatin maturation is accompanied by a transient and S-phase specific loss of gene silencing and transcriptional regulation, revealing that the DNA replication program can directly shape the chromatin landscape and modulate gene expression through the process of chromatin maturation.
Collapse
Affiliation(s)
- Boning Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Heather K. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | | | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
10
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Singha R, Aggarwal R, Sanyal K. Negative regulation of biofilm development by the CUG-Ser1 clade-specific histone H3 variant is dependent on the canonical histone chaperone CAF-1 complex in Candida albicans. Mol Microbiol 2023; 119:574-585. [PMID: 36855815 DOI: 10.1111/mmi.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
The CUG-Ser1 clade-specific histone H3 variant (H3VCTG ) has been reported to be a negative regulator of planktonic to biofilm growth transition in Candida albicans. The preferential binding of H3VCTG at the biofilm gene promoters makes chromatin repressive for the biofilm mode of growth. The two evolutionarily conserved chaperone complexes involved in incorporating histone H3 are CAF-1 and HIRA. In this study, we sought to identify the chaperone complex(es) involved in loading H3VCTG . We demonstrate that C. albicans cells lacking either Cac1 or Cac2 subunit of the CAF-1 chaperone complex, exhibit a hyper-filamentation phenotype on solid surfaces and form more robust biofilms than wild-type cells, thereby mimicking the phenotype of the H3VCTG null mutant. None of the subunits of the HIRA chaperone complex shows any significant difference in biofilm growth as compared to the wild type. The occupancy of H3VCTG is found to be significantly reduced at the promoters of biofilm genes in the absence of CAF-1 subunits. Hence, we provide evidence that CAF-1, a chaperone known to load canonical histone H3 in mammalian cells, is involved in chaperoning of variant histone H3VCTG at the biofilm gene promoters in C. albicans. Our findings also illustrate the acquisition of an unconventional role of the CAF-1 chaperone complex in morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Rima Singha
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Rashi Aggarwal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
12
|
Zhao X, Wang J, Jin D, Cheng J, Chen H, Li Z, Wang Y, Lou H, Zhu JK, Du X, Gong Z. AtMCM10 promotes DNA replication-coupled nucleosome assembly in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:203-222. [PMID: 36541721 DOI: 10.1111/jipb.13438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Minichromosome Maintenance protein 10 (MCM10) is essential for DNA replication initiation and DNA elongation in yeasts and animals. Although the functions of MCM10 in DNA replication and repair have been well documented, the detailed mechanisms for MCM10 in these processes are not well known. Here, we identified AtMCM10 gene through a forward genetic screening for releasing a silenced marker gene. Although plant MCM10 possesses a similar crystal structure as animal MCM10, AtMCM10 is not essential for plant growth or development in Arabidopsis. AtMCM10 can directly bind to histone H3-H4 and promotes nucleosome assembly in vitro. The nucleosome density is decreased in Atmcm10, and most of the nucleosome density decreased regions in Atmcm10 are also regulated by newly synthesized histone chaperone Chromatin Assembly Factor-1 (CAF-1). Loss of both AtMCM10 and CAF-1 is embryo lethal, indicating that AtMCM10 and CAF-1 are indispensable for replication-coupled nucleosome assembly. AtMCM10 interacts with both new and parental histones. Atmcm10 mutants have lower H3.1 abundance and reduced H3K27me1/3 levels with releasing some silenced transposons. We propose that AtMCM10 deposits new and parental histones during nucleosome assembly, maintaining proper epigenetic modifications and genome stability during DNA replication.
Collapse
Affiliation(s)
- Xinjie Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dan Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hui Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian-Kang Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuan Du
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|
13
|
Urban JA, Ranjan R, Chen X. Asymmetric Histone Inheritance: Establishment, Recognition, and Execution. Annu Rev Genet 2022; 56:113-143. [PMID: 35905975 PMCID: PMC10054593 DOI: 10.1146/annurev-genet-072920-125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.
Collapse
Affiliation(s)
- Jennifer A Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA;
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| |
Collapse
|
14
|
Du W, Shi G, Shan CM, Li Z, Zhu B, Jia S, Li Q, Zhang Z. Mechanisms of chromatin-based epigenetic inheritance. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2162-2190. [PMID: 35792957 PMCID: PMC10311375 DOI: 10.1007/s11427-022-2120-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.
Collapse
Affiliation(s)
- Wenlong Du
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guojun Shi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chun-Min Shan
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiming Li
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Zhiguo Zhang
- Institutes of Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Couvillion M, Harlen KM, Lachance KC, Trotta KL, Smith E, Brion C, Smalec BM, Churchman LS. Transcription elongation is finely tuned by dozens of regulatory factors. eLife 2022; 11:e78944. [PMID: 35575476 PMCID: PMC9154744 DOI: 10.7554/elife.78944] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding the complex network that regulates transcription elongation requires the quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We performed native elongating transcript sequencing (NET-seq) in 41 strains of Saccharomyces cerevisiae lacking known elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers, and remodelers. We found that the opposing effects of these factors balance transcription elongation and antisense transcription. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Antisense transcription varies highly across the regulatory landscapes analyzed, but antisense transcription in itself does not affect sense transcription at the same locus. Our findings collectively show that a diverse array of factors regulate transcription elongation by precisely balancing Pol II activity.
Collapse
Affiliation(s)
- Mary Couvillion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kevin M Harlen
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kate C Lachance
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Kristine L Trotta
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Erin Smith
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Christian Brion
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Brendan M Smalec
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - L Stirling Churchman
- Blavatnik Institute, Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
16
|
Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:ijms23042160. [PMID: 35216276 PMCID: PMC8874411 DOI: 10.3390/ijms23042160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
The Chromatin Assembly Factor 1 is a heterotrimeric complex responsible for the nucleosome assembly during DNA replication and DNA repair. In humans, the largest subunit P150 is the major actor of this process. It has been recently considered as a tumor-associated protein due to its overexpression in many malignancies. Structural and functional studies targeting P150 are still limited and only scarce information about this subunit is currently available. Literature data and bioinformatics analysis assisted the identification of a stable DNA binding domain, encompassing residues from 721 to 860 of P150 within the full-length protein. This domain was recombinantly produced and in vitro investigated. An acidic region modulating its DNA binding ability was also identified and characterized. Results showed similarities and differences between the P150 and its yeast homologue, namely Cac-1, suggesting that, although sharing a common biological function, the two proteins may also possess different features.
Collapse
|
17
|
Zhang Y, Yang Y, Qiao P, Wang X, Yu R, Sun H, Xing X, Zhang Y, Su J. CHAF1b, chromatin assembly factor-1 subunit b, is essential for mouse preimplantation embryos. Int J Biol Macromol 2022; 195:547-557. [PMID: 34906611 DOI: 10.1016/j.ijbiomac.2021.11.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022]
Abstract
Chromatin assembly factor-1, subunit b (CHAF1b), the p60 subunit of the chromatin-assembly factor-1 (CAF-1) complex, is an evolutionarily conserved protein that has been implicated in various biological processes. Although a variety of functions have been attributed to CHAF1b, its function in preimplantation embryos remains obscure. In this study, we showed that CHAF1b knockdown did not affect the blastocyst rate, but resulted in a low blastocyst hatching rate, outgrowth failure in vitro, and embryonic lethality after implantation in vivo. Notably, CHAF1b depletion increased apoptosis and caused down-regulated expression of key regulators of cell fate specification, including Oct4, Cdx2, Sox2, and Nanog. Further analysis revealed that CHAF1b mediated the replacement of H3.3 with H3.1/3.2, which was associated with decreased repressive histone marks (H3K9me2/3 and H3K27me2/3) and increased active histone marks (H3K4me2/3). Moreover, RNA-sequencing analysis revealed that CHAF1b depletion resulted in the differential expression of 1508 genes, including epigenetic modifications genes, multiple lineage-specific genes, and several genes encoding apoptosis proteins. In addition, assay for transposase-accessible chromatin-sequencing analysis demonstrated that silencing CHAF1b altered the chromatin accessibility of lineage-specific genes and epigenetic modifications genes. Taken together, these data imply that CHAF1b plays significant roles in preimplantation embryos, probably by regulating epigenetic modifications and lineage specification.
Collapse
Affiliation(s)
- Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ying Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Peipei Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiyue Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ruiluan Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
18
|
Li Y, Hartemink AJ, MacAlpine DM. Cell-Cycle-Dependent Chromatin Dynamics at Replication Origins. Genes (Basel) 2021; 12:genes12121998. [PMID: 34946946 PMCID: PMC8701747 DOI: 10.3390/genes12121998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Origins of DNA replication are specified by the ordered recruitment of replication factors in a cell-cycle–dependent manner. The assembly of the pre-replicative complex in G1 and the pre-initiation complex prior to activation in S phase are well characterized; however, the interplay between the assembly of these complexes and the local chromatin environment is less well understood. To investigate the dynamic changes in chromatin organization at and surrounding replication origins, we used micrococcal nuclease (MNase) to generate genome-wide chromatin occupancy profiles of nucleosomes, transcription factors, and replication proteins through consecutive cell cycles in Saccharomyces cerevisiae. During each G1 phase of two consecutive cell cycles, we observed the downstream repositioning of the origin-proximal +1 nucleosome and an increase in protected DNA fragments spanning the ARS consensus sequence (ACS) indicative of pre-RC assembly. We also found that the strongest correlation between chromatin occupancy at the ACS and origin efficiency occurred in early S phase, consistent with the rate-limiting formation of the Cdc45–Mcm2-7–GINS (CMG) complex being a determinant of origin activity. Finally, we observed nucleosome disruption and disorganization emanating from replication origins and traveling with the elongating replication forks across the genome in S phase, likely reflecting the disassembly and assembly of chromatin ahead of and behind the replication fork, respectively. These results provide insights into cell-cycle–regulated chromatin dynamics and how they relate to the regulation of origin activity.
Collapse
Affiliation(s)
- Yulong Li
- Department of Computer Science, Duke University, Durham, NC 27708, USA;
| | - Alexander J. Hartemink
- Department of Computer Science, Duke University, Durham, NC 27708, USA;
- Correspondence: (A.J.H.); (D.M.M.)
| | - David M. MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence: (A.J.H.); (D.M.M.)
| |
Collapse
|
19
|
Eekhout T, Dvorackova M, Pedroza Garcia JA, Nespor Dadejova M, Kalhorzadeh P, Van den Daele H, Vercauteren I, Fajkus J, De Veylder L. G2/M-checkpoint activation in fasciata1 rescues an aberrant S-phase checkpoint but causes genome instability. PLANT PHYSIOLOGY 2021; 186:1893-1907. [PMID: 34618100 PMCID: PMC8331141 DOI: 10.1093/plphys/kiab201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 05/13/2023]
Abstract
The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Martina Dvorackova
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - José Antonio Pedroza Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Martina Nespor Dadejova
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Pooneh Kalhorzadeh
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
20
|
Hammond-Martel I, Verreault A, Wurtele H. Chromatin dynamics and DNA replication roadblocks. DNA Repair (Amst) 2021; 104:103140. [PMID: 34087728 DOI: 10.1016/j.dnarep.2021.103140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
A broad spectrum of spontaneous and genotoxin-induced DNA lesions impede replication fork progression. The DNA damage response that acts to promote completion of DNA replication is associated with dynamic changes in chromatin structure that include two distinct processes which operate genome-wide during S-phase. The first, often referred to as histone recycling or parental histone segregation, is characterized by the transfer of parental histones located ahead of replication forks onto nascent DNA. The second, known as de novo chromatin assembly, consists of the deposition of new histone molecules onto nascent DNA. Because these two processes occur at all replication forks, their potential to influence a multitude of DNA repair and DNA damage tolerance mechanisms is considerable. The purpose of this review is to provide a description of parental histone segregation and de novo chromatin assembly, and to illustrate how these processes influence cellular responses to DNA replication roadblocks.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montreal, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boulevard de l'Assomption, Montreal, H1T 2M4, Canada; Département de Médecine, Université de Montréal, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, H3T 1J4, Canada.
| |
Collapse
|
21
|
Goffová I, Fajkus J. The rDNA Loci-Intersections of Replication, Transcription, and Repair Pathways. Int J Mol Sci 2021; 22:1302. [PMID: 33525595 PMCID: PMC7865372 DOI: 10.3390/ijms22031302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are essential for cell survival and are particularly sensitive to factors leading to genomic instability. Their repetitive character makes them prone to inappropriate recombinational events arising from collision of transcriptional and replication machineries, resulting in unstable rDNA copy numbers. In this review, we summarize current knowledge on the structure and organization of rDNA, its role in sensing changes in the genome, and its linkage to aging. We also review recent findings on the main factors involved in chromatin assembly and DNA repair in the maintenance of rDNA stability in the model plants Arabidopsis thaliana and the moss Physcomitrella patens, providing a view across the plant evolutionary tree.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic;
- Chromatin Molecular Complexes, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
| |
Collapse
|
22
|
Parental nucleosome segregation and the inheritance of cellular identity. Nat Rev Genet 2021; 22:379-392. [PMID: 33500558 DOI: 10.1038/s41576-020-00312-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.
Collapse
|
23
|
Qasim MN, Valle Arevalo A, Nobile CJ, Hernday AD. The Roles of Chromatin Accessibility in Regulating the Candida albicans White-Opaque Phenotypic Switch. J Fungi (Basel) 2021; 7:37. [PMID: 33435404 PMCID: PMC7826875 DOI: 10.3390/jof7010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans, a diploid polymorphic fungus, has evolved a unique heritable epigenetic program that enables reversible phenotypic switching between two cell types, referred to as "white" and "opaque". These cell types are established and maintained by distinct transcriptional programs that lead to differences in metabolic preferences, mating competencies, cellular morphologies, responses to environmental signals, interactions with the host innate immune system, and expression of approximately 20% of genes in the genome. Transcription factors (defined as sequence specific DNA-binding proteins) that regulate the establishment and heritable maintenance of the white and opaque cell types have been a primary focus of investigation in the field; however, other factors that impact chromatin accessibility, such as histone modifying enzymes, chromatin remodelers, and histone chaperone complexes, also modulate the dynamics of the white-opaque switch and have been much less studied to date. Overall, the white-opaque switch represents an attractive and relatively "simple" model system for understanding the logic and regulatory mechanisms by which heritable cell fate decisions are determined in higher eukaryotes. Here we review recent discoveries on the roles of chromatin accessibility in regulating the C. albicans white-opaque phenotypic switch.
Collapse
Affiliation(s)
- Mohammad N. Qasim
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Ashley Valle Arevalo
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Quantitative and Systems Biology Graduate Program, University of California-Merced, Merced, CA 95343, USA
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343, USA; (M.N.Q.); (A.V.A.); (C.J.N.)
- Health Sciences Research Institute, University of California-Merced, Merced, CA 95343, USA
| |
Collapse
|
24
|
Young TJ, Cui Y, Pfeffer C, Hobbs E, Liu W, Irudayaraj J, Kirchmaier AL. CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac, preventing ectopic silencing. PLoS Genet 2020; 16:e1009226. [PMID: 33284793 PMCID: PMC7746308 DOI: 10.1371/journal.pgen.1009226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/17/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022] Open
Abstract
Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.
Collapse
Affiliation(s)
- Tiffany J. Young
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Yi Cui
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Claire Pfeffer
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Emilie Hobbs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Wenjie Liu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Joseph Irudayaraj
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, Urbana, Illinois, United States of America
| | - Ann L. Kirchmaier
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- Purdue University Center for Cancer Research, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
25
|
Cheng L, Zhang X, Wang Y, Gan H, Xu X, Lv X, Hua X, Que J, Ordog T, Zhang Z. Chromatin Assembly Factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucleic Acids Res 2020; 47:11114-11131. [PMID: 31586391 PMCID: PMC6868363 DOI: 10.1093/nar/gkz858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Establishment and subsequent maintenance of distinct chromatin domains during embryonic stem cell (ESC) differentiation are crucial for lineage specification and cell fate determination. Here we show that the histone chaperone Chromatin Assembly Factor 1 (CAF-1), which is recruited to DNA replication forks through its interaction with proliferating cell nuclear antigen (PCNA) for nucleosome assembly, participates in the establishment of H3K27me3-mediated silencing during differentiation. Deletion of CAF-1 p150 subunit impairs the silencing of many genes including Oct4, Sox2 and Nanog as well as the establishment of H3K27me3 at these gene promoters during ESC differentiation. Mutations of PCNA residues involved in recruiting CAF-1 to the chromatin also result in defects in differentiation in vitro and impair early embryonic development as p150 deletion. Together, these results reveal that the CAF-1-PCNA nucleosome assembly pathway plays an important role in the establishment of H3K27me3-mediated silencing during cell fate determination.
Collapse
Affiliation(s)
- Liang Cheng
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Xu Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Yan Wang
- Biochemistry and Molecular Biology Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55902, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiaowei Xu
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xiangdong Lv
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Columbia University, New York, NY 10032, USA.,Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
26
|
Kaushik M, Nehra A, Gakhar SK, Gill SS, Gill R. The multifaceted histone chaperone RbAp46/48 in Plasmodium falciparum: structural insights, production, and characterization. Parasitol Res 2020; 119:1753-1765. [PMID: 32363442 DOI: 10.1007/s00436-020-06669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
RbAp46/RBBP7 and RbAp48/RBBP4 are WD40-repeat histone chaperones and chromatin adaptors that reside in multiple complexes involved in maintenance of chromatin structure. RbAp48 is the essential subunit of the chromatin assembly factor-1 (CAF-1) complex, therefore also named as CAF-1C. A detailed in silico sequence and structure analysis of homologs of RbAp46/48 in Plasmodium falciparum (PF3D7_0110700 and PF3D7_1433300) exhibited conservation of characteristic features in both the protein-seven-bladed WD40 β-propeller conformation and different binding interfaces. A comparative structural analysis highlighted species-specific features of the parasite, yeast, drosophila, and human RbAp46/48. In the present study, we report cloning, expression, and characterization of P. falciparum PF3D7_0110700, a putative RbAp46/48 (PfRbAp46/48). PfRbAp46/48 was cloned into pTEM11 vector in fusion with 6xHistidine tag and over-expressed in Escherichia coli B834 cells. The protein was purified by Ni-NTA followed by gel permeation chromatography. The protein expressed in all the three asexual blood stages and exhibited nuclear localization. We showed direct interaction of the purified rPfRbAp46/48 with the histone H4. These findings further our understanding of RbAp46/48 proteins and role of these proteins in the parasite biology.
Collapse
Affiliation(s)
- Manjeri Kaushik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Ashima Nehra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Surendra Kumar Gakhar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124 001, India.
| |
Collapse
|
27
|
Epigenetic Regulation of Notch Signaling During Drosophila Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:59-75. [PMID: 32060871 DOI: 10.1007/978-3-030-34436-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Notch signaling exerts multiple important functions in various developmental processes, including cell differentiation and cell proliferation, while mis-regulation of this pathway results in a variety of complex diseases, such as cancer and developmental defects. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, makes this an attractive model for studying the fundamental mechanisms of how Notch signaling is regulated and how it functions in various cellular contexts. Recently, increasing evidence for epigenetic control of Notch signaling reveals the intimate link between epigenetic regulators and Notch signaling pathway. In this chapter, we summarize the research advances of Notch and CAF-1 in Drosophila development and the epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as other epigenetic modification machineries, which enables Notch to orchestrate different biological inputs and outputs in specific cellular contexts.
Collapse
|
28
|
Di M, Wang M, Miao J, Chen B, Huang H, Lin C, Jian Y, Li Y, Ouyang Y, Chen X, Wang L, Zhao C. CHAF1B induces radioresistance by promoting DNA damage repair in nasopharyngeal carcinoma. Biomed Pharmacother 2019; 123:109748. [PMID: 31869663 DOI: 10.1016/j.biopha.2019.109748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Radiotherapy is the main treatment for nasopharyngeal carcinoma (NPC); however radioresistance restricts its efficacy. Therefore, new molecular regulators are required to improve the radiosensitivity of NPC. Chromatin assembly factor 1 subunit B (CHAF1B) plays a role in DNA synthesis and repair, and participates in the progression of various malignancies. However, the expression and function of CHAF1B in NPC is unclear. METHODS The expression of CHAF1B was determined using real-time PCR and western blotting. CHAF1B expression in 160 human NPC tissue samples was evaluated using immunochemistry (IHC). The correlations between CHAF1B expression and NPC clinicopathological features were determined. The effect of CHAF1B on the radiosensitivity of NPC cells was detected using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and colony formation assays. Apoptosis rates were analyzed using flow cytometry. A nude mouse subcutaneous xenograft model and living fluorescence imaging were applied to evaluate tumor regression in vivo. The molecular mechanisms of radioresistance were confirmed by bioinformatics analysis and detection of phosphorylated H2A histone family member X (γH2AX) foci. RESULTS Significantly increased CHAF1B levels were observed in NPC tissues, which correlated positively with radioresistance and poor prognosis. In addition, CHAF1B was upregulated in radioresistant NPC cell lines. Overexpression of CHAF1B reduced, while silencing of CHAF1B enhanced, the radiosensitivity of NPC cells in vitro and in vivo. Mechanistically, CHAF1B inhibited NPC cell apoptosis by promoting DNA damage repair. Finally, the DNA-dependent protein kinase (DNA-PK) pathway was observed to be essential for CHAF1B promotion of DNA damage repair-mediated radioresistance. CONCLUSION The results suggested CHAF1B enhances radioresistance by promoting DNA damage repair and inhibiting cell apoptosis, in a DNA-PK pathway-dependent manner. CHAF1B may serve as a novel factor for predicting radiorsensitivity. Besides, DNA-dependent protein kinase inhibitor could serve as a radiosensitizer for patients with NPC and high CHAF1B expression.
Collapse
Affiliation(s)
- Muping Di
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Meng Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jingjing Miao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Boyu Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Huageng Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Chuyong Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yunting Jian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yue Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Ying Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiangfu Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Lin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China.
| | - Chong Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China.
| |
Collapse
|
29
|
Santos SM, Hartman JL. A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin. Cancer Metab 2019; 7:9. [PMID: 31660150 PMCID: PMC6806529 DOI: 10.1186/s40170-019-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. METHODS Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. RESULTS Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions. CONCLUSIONS Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.
Collapse
Affiliation(s)
- Sean M. Santos
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| | - John L. Hartman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
30
|
Rowlands H, Shaban K, Cheng A, Foster B, Yankulov K. Dysfunctional CAF-I reveals its role in cell cycle progression and differential regulation of gene silencing. Cell Cycle 2019; 18:3223-3236. [PMID: 31564230 DOI: 10.1080/15384101.2019.1673100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chromatin Assembly Factor I (CAF-I) plays a central role in the reassembly of H3/H4 histones during DNA replication. In S. cerevisiae CAF-I is not essential and its loss is associated with reduced gene silencing at telomeres and increased sensitivity to DNA damage. Two kinases, Cyclin Dependent Kinase (CDK) and Dbf4-Dependent Kinase (DDK), are known to phosphorylate the Cac1p subunit of CAF-I, but their role in the regulation of CAF-I activity is not well understood. In this study we systematically mutated the phosphorylation target sites of these kinases. We show that concomitant mutations of the CDK and DDK target sites of Cac1p lead to growth retardation and significant cell cycle defects, altered cell morphology and increased sensitivity to DNA damage. Surprisingly, some mutations also produced flocculation, a phenotype that is lost in most laboratory strains, and displayed elevated expression of FLO genes. None of these effects is observed upon the destruction of CAF-I. In contrast, the mutations that caused flocculation did not affect gene silencing at the mating type and subtelomeric loci. We conclude that dysfunctional CAF-I produces severe phenotypes, which reveal a possible role of CAF-I in the coordination of DNA replication, chromatin reassembly and cell cycle progression. Our study highlights the role of phosphorylation of Cac1p by CDK and a putative role for DDK in the transmission and re-assembly of chromatin during DNA replication.
Collapse
Affiliation(s)
- Hollie Rowlands
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Ashley Cheng
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph , Guelph , Canada
| |
Collapse
|
31
|
Rowlands H, Shaban K, Foster B, Proteau Y, Yankulov K. Histone chaperones and the Rrm3p helicase regulate flocculation in S. cerevisiae. Epigenetics Chromatin 2019; 12:56. [PMID: 31547833 PMCID: PMC6757361 DOI: 10.1186/s13072-019-0303-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
Background Biofilm formation or flocculation is a major phenotype in wild type budding yeasts but rarely seen in laboratory yeast strains. Here, we analysed flocculation phenotypes and the expression of FLO genes in laboratory strains with various genetic backgrounds. Results We show that mutations in histone chaperones, the helicase RRM3 and the Histone Deacetylase HDA1 de-repress the FLO genes and partially reconstitute flocculation. We demonstrate that the loss of repression correlates to elevated expression of several FLO genes, to increased acetylation of histones at the promoter of FLO1 and to variegated expression of FLO11. We show that these effects are related to the activity of CAF-1 at the replication forks. We also demonstrate that nitrogen starvation or inhibition of histone deacetylases do not produce flocculation in W303 and BY4742 strains but do so in strains compromised for chromatin maintenance. Finally, we correlate the de-repression of FLO genes to the loss of silencing at the subtelomeric and mating type gene loci. Conclusions We conclude that the deregulation of chromatin maintenance and transmission is sufficient to reconstitute flocculation in laboratory yeast strains. Consequently, we propose that a gain in epigenetic silencing is a major contributing factor for the loss of flocculation phenotypes in these strains. We suggest that flocculation in yeasts provides an excellent model for addressing the challenging issue of how epigenetic mechanisms contribute to evolution.
Collapse
Affiliation(s)
- Hollie Rowlands
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Yannic Proteau
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
32
|
Maulión E, Gomez MS, Bustamante CA, Casati P. AtCAF-1 mutants show different DNA damage responses after ultraviolet-B than those activated by other genotoxic agents in leaves. PLANT, CELL & ENVIRONMENT 2019; 42:2730-2745. [PMID: 31145828 DOI: 10.1111/pce.13596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/21/2019] [Accepted: 05/25/2019] [Indexed: 05/27/2023]
Abstract
Chromatin assembly factor-1 (CAF-1) is a histone H3/H4 chaperone that participates in DNA and chromatin interaction processes. In this manuscript, we show that organs from CAF-1 deficient plants respond differently to ultraviolet-B (UV-B) radiation than to other genotoxic stresses. For example, CAF-1 deficient leaves tolerate better UV-B radiation, showing lower cyclobutane pyrimidine dimer (CPD) accumulation, lower inhibition of cell proliferation, increased cell wall thickness, UV-B absorbing compounds, and ploidy levels, whereas previous data from different groups have shown that CAF-1 mutants show shortening of telomeres, loss of 45S rDNA, and increased homologous recombination, phenotypes associated to DNA breaks. Interestingly, CAF-1 deficient roots show increased inhibition of primary root elongation, with decreased meristem size due to a higher inhibition of cell proliferation after UV-B exposure. The decrease in root meristem size in CAF-1 mutants is a consequence of defects in programmed cell death after UV-B exposure. Together, we provide evidence demonstrating that root and shoot meristematic cells may have distinct protection mechanisms against CPD accumulation by UV-B, which may be linked with different functions of the CAF-1 complex in these different organs.
Collapse
Affiliation(s)
- Evangelina Maulión
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - María Sol Gomez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Anabel Bustamante
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
33
|
Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in Saccharomyces cerevisiae. Genetics 2019; 211:1219-1237. [PMID: 30728156 DOI: 10.1534/genetics.118.301858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/29/2019] [Indexed: 11/18/2022] Open
Abstract
CAF-1 is an evolutionarily conserved H3/H4 histone chaperone that plays a key role in replication-coupled chromatin assembly and is targeted to the replication fork via interactions with PCNA, which, if disrupted, leads to epigenetic defects. In Saccharomyces cerevisiae, when the silent mating-type locus HMR contains point mutations within the E silencer, Sir protein association and silencing is lost. However, mutation of CDC7, encoding an S-phase-specific kinase, or subunits of the H4 K16-specific acetyltransferase complex SAS-I, restore silencing to this crippled HMR, HMR a e** Here, we observed that loss of Cac1p, the largest subunit of CAF-1, also restores silencing at HMR a e**, and silencing in both cac1Δ and cdc7 mutants is suppressed by overexpression of SAS2 We demonstrate Cdc7p and Cac1p interact in vivo in S phase, but not in G1, consistent with observed cell cycle-dependent phosphorylation of Cac1p, and hypoacetylation of chromatin at H4 K16 in both cdc7 and cac1Δ mutants. Moreover, silencing at HMR a e** is restored in cells expressing cac1p mutants lacking Cdc7p phosphorylation sites. We also discovered that cac1Δ and cdc7-90 synthetically interact negatively in the presence of DNA damage, but that Cdc7p phosphorylation sites on Cac1p are not required for responses to DNA damage. Combined, our results support a model in which Cdc7p regulates replication-coupled histone modification via a CAC1-dependent mechanism involving H4 K16ac deposition, and thereby silencing, while CAF-1-dependent replication- and repair-coupled chromatin assembly per se are functional in the absence of phosphorylation of Cdc7p consensus sites on CAF-1.
Collapse
|
34
|
Transcriptional Profiling of Patient Isolates Identifies a Novel TOR/Starvation Regulatory Pathway in Cryptococcal Virulence. mBio 2018; 9:mBio.02353-18. [PMID: 30563896 PMCID: PMC6299223 DOI: 10.1128/mbio.02353-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human infection with Cryptococcus causes up to a quarter of a million AIDS-related deaths annually and is the most common cause of nonviral meningitis in the United States. As an opportunistic fungal pathogen, Cryptococcus neoformans is distinguished by its ability to adapt to diverse host environments, including plants, amoebae, and mammals. In the present study, comparative transcriptomics of the fungus within human cerebrospinal fluid identified expression profiles representative of low-nutrient adaptive responses. Transcriptomics of fungal isolates from a cohort of HIV/AIDS patients identified high expression levels of an alternative carbon nutrient transporter gene, STL1, to be associated with poor early fungicidal activity, an important clinical prognostic marker. Mouse modeling and pathway analysis demonstrated a role for STL1 in mammalian pathogenesis and revealed that STL1 expression is regulated by a novel multigene regulatory mechanism involving the CAC2 subunit of the chromatin assembly complex 1, CAF-1. In this pathway, the global regulator of virulence gene VAD1 was found to transcriptionally regulate a cryptococcal homolog of a cytosolic protein, Ecm15, in turn required for nuclear transport of the Cac2 protein. Derepression of STL1 by the CAC2-containing CAF-1 complex was mediated by Cac2 and modulated binding and suppression of the STL1 enhancer element. Derepression of STL1 resulted in enhanced survival and growth of the fungus in the presence of low-nutrient, alternative carbon sources, facilitating virulence in mice. This study underscores the utility of ex vivo expression profiling of fungal clinical isolates and provides fundamental genetic understanding of saprophyte adaption to the human host.IMPORTANCE Cryptococcus is a fungal pathogen that kills an estimated quarter of a million individuals yearly and is the most common cause of nonviral meningitis in the United States. The fungus is carried in about 10% of the adult population and, after reactivation, causes disease in a wide variety of immunosuppressed individuals, including the HIV infected and patients receiving transplant conditioning, cancer therapy, or corticosteroid therapy for autoimmune diseases. The fungus is widely carried in the soil but can also cause infections in plants and mammals. However, the mechanisms for this widespread ability to infect a variety of hosts are poorly understood. The present study identified adaptation to low nutrients as a key property that allows the fungus to inhabit these diverse environments. Further studies identified a nutrient transporter gene, STL1, to be upregulated under low nutrients and to be associated with early fungicidal activity, a marker of poor clinical outcome in a cohort of HIV/AIDS patients. Understanding molecular mechanisms involved in adaptation to the human host may help to design better methods of control and treatment of widely dispersed fungal pathogens such as Cryptococcus.
Collapse
|
35
|
Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K, Churchill MEA. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res 2018; 46:9907-9917. [PMID: 30239791 PMCID: PMC6212844 DOI: 10.1093/nar/gky823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/15/2018] [Indexed: 02/03/2023] Open
Abstract
Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.
Collapse
Affiliation(s)
- Paul V Sauer
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Yajie Gu
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Wallace H Liu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Daniel Panne
- European Molecular Biology Laboratory, 38042 Grenoble, France,Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 7RH, UK
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Mair EA Churchill
- Department of Pharmacology and Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA,To whom correspondence should be addressed. Tel: +1 303 724 3670;
| |
Collapse
|
36
|
Mozgova I, Wildhaber T, Trejo-Arellano MS, Fajkus J, Roszak P, Köhler C, Hennig L. Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. THE NEW PHYTOLOGIST 2018; 220:908-921. [PMID: 29573427 DOI: 10.1111/nph.15082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 05/23/2023]
Abstract
Chromatin is assembled by histone chaperones such as chromatin assembly factor CAF-1. We had noticed that vigor of Arabidopsis thaliana CAF-1 mutants decreased over several generations. Because changes in mutant phenotype severity over generations are unusual, we asked how repeated selfing of Arabidopsis CAF-1 mutants affects phenotype severity. CAF-1 mutant plants of various generations were grown, and developmental phenotypes, transcriptomes and DNA cytosine-methylation profiles were compared quantitatively. Shoot- and root-related growth phenotypes were progressively more affected in successive generations of CAF-1 mutants. Early and late generations of the fasciata (fas)2-4 CAF-1 mutant displayed only limited changes in gene expression, of which increasing upregulation of plant defense-related genes reflects the transgenerational phenotype aggravation. Likewise, global DNA methylation in the sequence context CHG but not CG or CHH (where H = A, T or C) changed over generations in fas2-4. Crossing early and late generation fas2-4 plants established that the maternal contribution to the phenotype severity exceeds the paternal contribution. Together, epigenetic rather than genetic mechanisms underlie the progressive developmental phenotype aggravation in the Arabidopsis CAF-1 mutants and preferred maternal transmission reveals a more efficient reprogramming of epigenetic information in the male than the female germline.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický mlýn, CZ-37981, Třeboň, Czech Republic
| | - Thomas Wildhaber
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Jiri Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-61137, Brno, Czech Republic
| | - Pawel Roszak
- Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007, Uppsala, Sweden
| |
Collapse
|
37
|
Bellelli R, Belan O, Pye VE, Clement C, Maslen SL, Skehel JM, Cherepanov P, Almouzni G, Boulton SJ. POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication. Mol Cell 2018; 72:112-126.e5. [PMID: 30217558 PMCID: PMC6179962 DOI: 10.1016/j.molcel.2018.08.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Abstract
Maintenance of epigenetic integrity relies on coordinated recycling and partitioning of parental histones and deposition of newly synthesized histones during DNA replication. This process depends upon a poorly characterized network of histone chaperones, remodelers, and binding proteins. Here we implicate the POLE3-POLE4 subcomplex of the leading-strand polymerase, Polε, in replication-coupled nucleosome assembly through its ability to selectively bind to histones H3-H4. Using hydrogen/deuterium exchange mass spectrometry and physical mapping, we define minimal domains necessary for interaction between POLE3-POLE4 and histones H3-H4. Biochemical analyses establish that POLE3-POLE4 is a histone chaperone that promotes tetrasome formation and DNA supercoiling in vitro. In cells, POLE3-POLE4 binds both newly synthesized and parental histones, and its depletion hinders helicase unwinding and chromatin PCNA unloading and compromises coordinated parental histone retention and new histone deposition. Collectively, our study reveals that POLE3-POLE4 possesses intrinsic H3-H4 chaperone activity, which facilitates faithful nucleosome dynamics at the replication fork.
Collapse
Affiliation(s)
| | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Valerie E Pye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Camille Clement
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Genevieve Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
38
|
Kondratick CM, Litman JM, Shaffer KV, Washington MT, Dieckman LM. Crystal structures of PCNA mutant proteins defective in gene silencing suggest a novel interaction site on the front face of the PCNA ring. PLoS One 2018; 13:e0193333. [PMID: 29499038 PMCID: PMC5834165 DOI: 10.1371/journal.pone.0193333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA), a homotrimeric protein, is the eukaryotic sliding clamp that functions as a processivity factor for polymerases during DNA replication. Chromatin association factor 1 (CAF-1) is a heterotrimeric histone chaperone protein that is required for coupling chromatin assembly with DNA replication in eukaryotes. CAF-1 association with replicating DNA, and the targeting of newly synthesized histones to sites of DNA replication and repair requires its interaction with PCNA. Genetic studies have identified three mutant forms of PCNA in yeast that cause defects in gene silencing and exhibit altered association of CAF-1 to chromatin in vivo, as well as inhibit binding to CAF-1 in vitro. Three of these mutant forms of PCNA, encoded by the pol30-6, pol30-8, and the pol30-79 alleles, direct the synthesis of PCNA proteins with the amino acid substitutions D41A/D42A, R61A/D63A, and L126A/I128A, respectively. Interestingly, these double alanine substitutions are located far away from each other within the PCNA protein. To understand the structural basis of the interaction between PCNA and CAF-1 and how disruption of this interaction leads to reduced gene silencing, we determined the X-ray crystal structures of each of these mutant PCNA proteins. All three of the substitutions caused disruptions of a surface cavity on the front face of the PCNA ring, which is formed in part by three loops comprised of residues 21–24, 41–44, and 118–134. We suggest that this cavity is a novel binding pocket required for the interaction between PCNA and CAF-1, and that this region in PCNA also represents a potential binding site for other PCNA-binding proteins.
Collapse
Affiliation(s)
- Christine M. Kondratick
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA, United States of America
| | - Jacob M. Litman
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA, United States of America
| | - Kurt V. Shaffer
- Department of Chemistry, Creighton University, Omaha, NE, United States of America
| | - M. Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA, United States of America
| | - Lynne M. Dieckman
- Department of Chemistry, Creighton University, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
39
|
Pivotal roles of PCNA loading and unloading in heterochromatin function. Proc Natl Acad Sci U S A 2018; 115:E2030-E2039. [PMID: 29440488 DOI: 10.1073/pnas.1721573115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.
Collapse
|
40
|
Role of Chromatin assembly factor 1 in DNA replication of Plasmodium falciparum. Biochem Biophys Res Commun 2018; 495:1285-1291. [DOI: 10.1016/j.bbrc.2017.11.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/19/2017] [Indexed: 01/11/2023]
|
41
|
Liu T, Zhu L, Zhang Z, Huang H, Zhang Z, Jiang L. Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Sci Rep 2017; 7:17586. [PMID: 29242620 PMCID: PMC5730648 DOI: 10.1038/s41598-017-15489-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/27/2017] [Indexed: 11/21/2022] Open
Abstract
An isolated black yeast-like strain was obtained from radiation-polluted soil collected from Xinjiang province in northwest China. On the basis of ITS and LSU rDNA sequence analysis, in combination with the colony morphology and phenotypic properties, the isolated strain was revealed to represent a novel variety of Aureobasidium subglaciale, designated as A. subglaciale F134. Compared to other yeasts and bacteria, this isolate displayed superior resistance to gamma irradiation, UV light, and heavy metal ions. It was discovered that the resistance of the isolate was correlated with the stress protector trehalose. Through the overexpression of the trehalose-6-phosphate synthase gene tps1 and the deletion of acid trehalase gene ath1, the APT∆A double mutant exhibited a survival rate of 1% under 20 kGy of gamma-radiation, 2% survival rate at a UV dosage of 250 J/m2, and tolerance towards Pb2+ as high as 1500 mg/L, which was in agreement with the high accumulation of intracellular trehalose compared to the wild-type strain. Finally, the protective effects and the mechanism of trehalose accumulation in A. subglaciale F134 were investigated, revealing a significant activation of the expression of many of the stress tolerance genes, offering new perspectives on the adaptations of radioresistant microorganisms.
Collapse
Affiliation(s)
- Tingting Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 210009, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhiping Zhang
- Nanjing Beishengrong Energy Technology Co. Ltd, Nanjing, 210009, People's Republic of China
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uigur Autonomous Region, People's Republic of China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
42
|
Muñoz-Viana R, Wildhaber T, Trejo-Arellano MS, Mozgová I, Hennig L. Arabidopsis Chromatin Assembly Factor 1 is required for occupancy and position of a subset of nucleosomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:363-374. [PMID: 28786541 DOI: 10.1111/tpj.13658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 05/23/2023]
Abstract
Chromatin Assembly Factor 1 (CAF-1) is a major nucleosome assembly complex which functions particularly during DNA replication and repair. Here we studied how the nucleosome landscape changes in a CAF-1 mutant in the model plant Arabidopsis thaliana. Globally, most nucleosomes were not affected by loss of CAF-1, indicating the presence of efficient alternative nucleosome assemblers. Nucleosomes that we found depleted in the CAF-1 mutant were enriched in non-transcribed regions, consistent with the notion that CAF-1-independent nucleosome assembly can compensate for loss of CAF-1 mainly in transcribed regions. Depleted nucleosomes were particularly enriched in proximal promoters, suggesting that CAF-1-independent nucleosome assembly mechanisms are often not efficient upstream of transcription start sites. Genes related to plant defense were particularly prone to lose nucleosomes in their promoters upon CAF-1 depletion. Reduced nucleosome occupancy at promoters of many defense-related genes is associated with a primed gene expression state that may considerably increase plant fitness by facilitating plant defense. Together, our results establish that the nucleosome landscape in Arabidopsis is surprisingly robust even in the absence of the dedicated nucleosome assembly machinery CAF-1 and that CAF-1-independent nucleosome assembly mechanisms are less efficient in particular genome regions.
Collapse
Affiliation(s)
- Rafael Muñoz-Viana
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| | - Thomas Wildhaber
- Department of Biology, ETH Zürich, Universitätsstrasse 2, CH-8092, Zürich, Switzerland
| | - Minerva S Trejo-Arellano
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| | - Iva Mozgová
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
- Institute of Microbiology, Centre Algatech, Opatovický mlýn, 37981, Třeboň, Czech Republic
| | - Lars Hennig
- Department of Plant Biology and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO-Box 7080, SE-75007, Uppsala, Sweden
| |
Collapse
|
43
|
Hedglin M, Benkovic SJ. Eukaryotic Translesion DNA Synthesis on the Leading and Lagging Strands: Unique Detours around the Same Obstacle. Chem Rev 2017; 117:7857-7877. [PMID: 28497687 PMCID: PMC5662946 DOI: 10.1021/acs.chemrev.7b00046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During S-phase, minor DNA damage may be overcome by DNA damage tolerance (DDT) pathways that bypass such obstacles, postponing repair of the offending damage to complete the cell cycle and maintain cell survival. In translesion DNA synthesis (TLS), specialized DNA polymerases replicate the damaged DNA, allowing stringent DNA synthesis by a replicative polymerase to resume beyond the offending damage. Dysregulation of this DDT pathway in human cells leads to increased mutation rates that may contribute to the onset of cancer. Furthermore, TLS affords human cancer cells the ability to counteract chemotherapeutic agents that elicit cell death by damaging DNA in actively replicating cells. Currently, it is unclear how this critical pathway unfolds, in particular, where and when TLS occurs on each template strand. Given the semidiscontinuous nature of DNA replication, it is likely that TLS on the leading and lagging strand templates is unique for each strand. Since the discovery of DDT in the late 1960s, most studies on TLS in eukaryotes have focused on DNA lesions resulting from ultraviolet (UV) radiation exposure. In this review, we revisit these and other related studies to dissect the step-by-step intricacies of this complex process, provide our current understanding of TLS on leading and lagging strand templates, and propose testable hypotheses to gain further insights.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
44
|
The Effects of Replication Stress on S Phase Histone Management and Epigenetic Memory. J Mol Biol 2017; 429:2011-2029. [DOI: 10.1016/j.jmb.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
45
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
46
|
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae. Genetics 2017; 203:1563-99. [PMID: 27516616 DOI: 10.1534/genetics.112.145243] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing.
Collapse
|
47
|
The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1. Sci Rep 2017; 7:46274. [PMID: 28418026 PMCID: PMC5394680 DOI: 10.1038/srep46274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 11/08/2022] Open
Abstract
Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a composite interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.
Collapse
|
48
|
Mattiroli F, Gu Y, Yadav T, Balsbaugh JL, Harris MR, Findlay ES, Liu Y, Radebaugh CA, Stargell LA, Ahn NG, Whitehouse I, Luger K. DNA-mediated association of two histone-bound complexes of yeast Chromatin Assembly Factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. eLife 2017; 6:e22799. [PMID: 28315523 PMCID: PMC5404915 DOI: 10.7554/elife.22799] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Nucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex. Here we investigate the CAF-1•H3-H4 binding mode and the mechanism of nucleosome assembly. We show that yeast CAF-1 binding to a H3-H4 dimer activates the Cac1 winged helix domain interaction with DNA. This drives the formation of a transient CAF-1•histone•DNA intermediate containing two CAF-1 complexes, each associated with one H3-H4 dimer. Here, the (H3-H4)2 tetramer is formed and deposited onto DNA. Our work elucidates the molecular mechanism for histone deposition by CAF-1, a reaction that has remained elusive for other histone chaperones, and it advances our understanding of how nucleosomes and their epigenetic information are maintained through DNA replication.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Yajie Gu
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Tejas Yadav
- Weill Cornell Graduate School of Medical Sciences, New York, United States
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jeremy L Balsbaugh
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, United States
| | - Michael R Harris
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Eileen S Findlay
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Yang Liu
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
- Institute for Genome Architecture and Function, Colorado State University, Fort Collins, United States
| | - Natalie G Ahn
- Biofrontiers Institute, University of Colorado Boulder, Boulder, United States
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Karolin Luger
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
- Institute for Genome Architecture and Function, Colorado State University, Fort Collins, United States
| |
Collapse
|
49
|
Sauer PV, Timm J, Liu D, Sitbon D, Boeri-Erba E, Velours C, Mücke N, Langowski J, Ochsenbein F, Almouzni G, Panne D. Insights into the molecular architecture and histone H3-H4 deposition mechanism of yeast Chromatin assembly factor 1. eLife 2017; 6:e23474. [PMID: 28315525 PMCID: PMC5404918 DOI: 10.7554/elife.23474] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
How the very first step in nucleosome assembly, deposition of histone H3-H4 as tetramers or dimers on DNA, is accomplished remains largely unclear. Here, we report that yeast chromatin assembly factor 1 (CAF1), a conserved histone chaperone complex that deposits H3-H4 during DNA replication, binds a single H3-H4 heterodimer in solution. We identify a new DNA-binding domain in the large Cac1 subunit of CAF1, which is required for high-affinity DNA binding by the CAF1 three-subunit complex, and which is distinct from the previously described C-terminal winged-helix domain. CAF1 binds preferentially to DNA molecules longer than 40 bp, and two CAF1-H3-H4 complexes concertedly associate with DNA molecules of this size, resulting in deposition of H3-H4 tetramers. While DNA binding is not essential for H3-H4 tetrasome deposition in vitro, it is required for efficient DNA synthesis-coupled nucleosome assembly. Mutant histones with impaired H3-H4 tetramerization interactions fail to release from CAF1, indicating that DNA deposition of H3-H4 tetramers by CAF1 requires a hierarchical cooperation between DNA binding, H3-H4 deposition and histone tetramerization.
Collapse
Affiliation(s)
| | - Jennifer Timm
- European Molecular Biology Laboratory, Grenoble, France
| | - Danni Liu
- CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - David Sitbon
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Elisabetta Boeri-Erba
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Grenoble, France
| | - Christophe Velours
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Norbert Mücke
- Abteilung Biophysik der Makromoleküle, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Jörg Langowski
- Abteilung Biophysik der Makromoleküle, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Françoise Ochsenbein
- CEA, DRF, SB2SM, Laboratoire de Biologie Structurale et Radiobiologie, Gif-sur-Yvette, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR3664, Paris, France
| | - Daniel Panne
- European Molecular Biology Laboratory, Grenoble, France
| |
Collapse
|
50
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|