1
|
Chen H, Hu Q, Lu Z, Zhao J, Liu A, Liu Z, Luo J, Ye Q, Zhong Z. Aldehyde dehydrogenase 2 attenuates renal injury through inhibiting CYP4A expression. Transl Res 2025; 277:1-12. [PMID: 39746575 DOI: 10.1016/j.trsl.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Renal ischemia-reperfusion injury (IRI) is a prevalent clinical syndrome, yet its underlying pathogenesis remains largely unknown. Aldehyde dehydrogenase 2 (ALDH2), an enzyme responsible for detoxifying lipid aldehydes, has been suggested to play a protective role against IRI. In our study, we observed that Aldh2 knock-out C57BL/6 mice experienced more severe renal functional impairment following IRI. This was characterized by elevated levels of creatinine and blood urea nitrogen, as well as increased apoptosis. Proteomic analysis further revealed that ALDH2 deficiency significantly disrupted lipid metabolism, resulting in higher levels of the proinflammatory protein CYP4A and its metabolic byproduct, 20-HETE. This metabolic disruption exacerbated renal inflammation and triggered endoplasmic reticulum stress. However, we found that administration of the CYP4A inhibitor, HET0016, could ameliorate these effects. Mechanistically, we discovered that after IRI, ALDH2 translocates to the nucleus and interacts with nuclear receptor corepressor 1 (NCOR1) to repress Cyp4a transcription. ALDH2 specifically interacts with the N-terminal domain of NCOR1, which is responsible for its interaction with its E3 ligase SIAH2. This interaction inhibits the proteasome degradation of NCOR1, ultimately stabilizing the NCOR1 transcriptional repression complex. In summary, our research uncovers the role of ALDH2 in mitigating renal IRI by inhibiting 20-HETE synthesis through the transcriptional repression of Cyp4a.
Collapse
Affiliation(s)
- Hao Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Qianchao Hu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Jie Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong New Area,Shanghai 200127, China
| | - Anxiong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China.; Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha 410013, China..
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
| |
Collapse
|
2
|
Potapenko A, Davidson JM, Lee A, Laird AS. The deubiquitinase function of ataxin-3 and its role in the pathogenesis of Machado-Joseph disease and other diseases. Biochem J 2024; 481:461-480. [PMID: 38497605 PMCID: PMC11088879 DOI: 10.1042/bcj20240017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
Collapse
Affiliation(s)
- Anastasiya Potapenko
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Jennilee M. Davidson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela S. Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
3
|
Mekbib T, Suen TC, Rollins-Hairston A, Smith K, Armstrong A, Gray C, Owino S, Baba K, Baggs JE, Ehlen JC, Tosini G, DeBruyne JP. "The ubiquitin ligase SIAH2 is a female-specific regulator of circadian rhythms and metabolism". PLoS Genet 2022; 18:e1010305. [PMID: 35789210 PMCID: PMC9286287 DOI: 10.1371/journal.pgen.1010305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/15/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.
Collapse
Affiliation(s)
- Tsedey Mekbib
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ting-Chung Suen
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Aisha Rollins-Hairston
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kiandra Smith
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ariel Armstrong
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Cloe Gray
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Sharon Owino
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Kenkichi Baba
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Julie E. Baggs
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - J. Christopher Ehlen
- Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Gianluca Tosini
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jason P. DeBruyne
- Neuroscience Institute, Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Li K, Li J, Ye M, Jin X. The role of Siah2 in tumorigenesis and cancer therapy. Gene 2022; 809:146028. [PMID: 34687788 DOI: 10.1016/j.gene.2021.146028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Seven in absentia homolog 2 (Siah2), an RING E3 ubiquitin ligases, has been characterized to play the vital role in tumorigenesis and cancer progression. Numerous studies have determined that Siah2 promotes tumorigenesis in a variety of human malignancies such as prostate, lung, gastric, and liver cancers. However, several studies revealed that Siah2 exhibited tumor suppressor function by promoting the proteasome-mediated degradation of several oncoproteins, suggesting that Siah2 could exert its biological function according to different stages of tumor development. Moreover, Siah2 is subject to complex regulation, especially the phosphorylation of Siah2 by a variety of protein kinases to regulate its stability and activity. In this review, we describe the structure and regulation of Siah2 in human cancer. Moreover, we highlight the critical role of Siah2 in tumorigenesis. Furthermore, we note that the potential clinical applications of targeting Siah2 in cancer therapy.
Collapse
Affiliation(s)
- Kailang Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Yan T, Zhou D, Shi Y, Cui D, Jiang J, Han B, Xia S, Wang Z, Liu H, Guo W, Jing Y. Targeting ADT-Induced Activation of the E3 Ubiquitin Ligase Siah2 to Delay the Occurrence of Castration-Resistant Prostate Cancer. Front Oncol 2021; 11:637040. [PMID: 33937036 PMCID: PMC8085430 DOI: 10.3389/fonc.2021.637040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/26/2021] [Indexed: 01/13/2023] Open
Abstract
Siah2 is an E3 ubiquitin ligase that targets androgen receptor (AR) and plays an important role in the development of castration-resistant prostate cancer (CRPC). However, the regulation of Siah2 in prostate cancer (PCa) is largely unknown. In this study, we used AR-dependent and -independent cells lines to investigate the cellular roles of AR and androgen deprivation therapy (ADT) on Siah2 protein levels and E3 ligase activity using Western blotting and co-immunoprecipitation. We also validated our findings using patient samples taken before and after ADT. Finally, we used xenograft tumor models to test the effects of ADT combined with vitamin K3 (Vit K3) on tumor growth in vivo. Our results showed that AR stabilizes Siah2 protein by attenuating its self-ubiquitination and auto-degradation, likely by blocking its E3 ubiquitin ligase activity. Conversely, ADT decreased Siah2 protein expression but enhanced its E3 ligase activity in PCa cells. Notably, the findings that ADT decreasing Siah2 protein expression were verified in a series of paired PCa samples from the same patient. Additionally, we found that ADT-induced Siah2 activation could be abolished by Vit K3. Strikingly, ADT combined with Vit K3 treatment delayed the occurrence of CRPC and dramatically inhibited the growth of tumor xenografts compared with ADT treatment alone. AR is an inhibitor of Siah2 in PCa, and ADT leads to the continuous activation of Siah2, which may contribute to CRPC. Finally, ADT+Vit K3 may be a potential approach to delay the occurrence of CRPC.
Collapse
Affiliation(s)
- Tingmang Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Zhou
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youwei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Haitao Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhuan Guo
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Qi Z, Yang N, Pi M, Yu W. Current status of the diagnosis and treatment of gastrointestinal schwannoma. Oncol Lett 2021; 21:384. [PMID: 33777207 PMCID: PMC7988712 DOI: 10.3892/ol.2021.12645] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Gastrointestinal schwannoma is a rare, slow-growing and benign tumor that mostly originates in the Auerbach myenteric nerve plexus in the gastrointestinal tract. The clinical manifestations may be associated with the location, size, differentiation type, and degree of malignancy of the tumor. Endoscopy, ultrasound and imaging examinations serve an important auxiliary role in the clinical identification, diagnosis and differential diagnosis of lesions; assessment of risk; and preparation for surgery. S-100 positivity is a hallmark of schwannoma. CD34, CD117, discovered on GIST-1, P53, ALK, β-catenin, smooth muscle actin and Desmin negativity are helpful for the identification of other gastrointestinal stromal tumors. Surgical removal of the tumor is the main treatment for schwannoma. Benign gastrointestinal schwannoma has a good prognosis without recurrence and metastasis; malignant transformation is extremely rare and has a poor prognosis.
Collapse
Affiliation(s)
- Zhiyong Qi
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Naixv Yang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Mengqi Pi
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wei Yu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
7
|
Dang TN, Taylor JL, Kilroy G, Yu Y, Burk DH, Floyd ZE. SIAH2 is Expressed in Adipocyte Precursor Cells and Interacts with EBF1 and ZFP521 to Promote Adipogenesis. Obesity (Silver Spring) 2021; 29:98-107. [PMID: 33155406 PMCID: PMC7902405 DOI: 10.1002/oby.23013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Expression of zinc finger protein 423 (ZFP423), a key proadipogenic transcription factor in adipocyte precursor cells, is regulated by interaction of the proadipogenic early B-cell factor 1 (EBF1) and antiadipogenic ZFP521. The ubiquitin ligase seven-in-absentia homolog 2 (SIAH2) targets ZFP521 for degradation. This study asked whether SIAH2 is expressed in adipocyte precursor cells and whether SIAH2 interacts with ZFP521 and EBF1 to regulate ZFP521 protein levels during adipogenesis. METHODS SIAH2 expression in precursor cells was assessed in primary cells and tissues from wild-type and SIAH2 null mice fed a control or high-fat diet. Primary cells, 3T3-L1 preadipocytes, and HEK293T cells were used to analyze Siah2, Ebf1, and Zfp521 expression and SIAH2-mediated changes in ZFP521 and EBF1 protein levels. RESULTS Siah2 is expressed in platelet-derived growth factor receptor α (PDGFRα)+ and stem cell antigen-1 (SCA1)+ adipocyte precursor cells. SIAH2 depletion reduces Ebf1 gene expression and increases EBF1 protein levels in early but not late adipogenesis. In early adipogenesis, SIAH2 forms a protein complex with EBF1 and ZFP521 to enhance SIAH2-mediated ubiquitylation and degradation of ZFP521 while increasing EBF1 protein levels. CONCLUSIONS Siah2 is expressed in PDGFRα+ adipocyte precursor cells and is linked to precursor cell commitment to adipogenesis by interacting with EBF1 and ZFP521 proteins to target the antiadipogenic ZFP521 for degradation.
Collapse
Affiliation(s)
- Thanh N Dang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Gail Kilroy
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Yongmei Yu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - David H Burk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| |
Collapse
|
8
|
The Ubiquitin Ligase SIAH2 Negatively Regulates Glucocorticoid Receptor Activity and Abundance. Biomedicines 2020; 9:biomedicines9010022. [PMID: 33396678 PMCID: PMC7823448 DOI: 10.3390/biomedicines9010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids are clinically essential drugs used routinely to control inflammation. However, a host of metabolic side effects manifests upon usage beyond a few days. In the present study, we tested the hypothesis that seven-in-absentia mammalian homolog-2 (SIAH2), a ubiquitin ligase that regulates adipogenesis, is important for controlling adipocyte size, inflammation, and the ability of adipose tissue to expand in response to a glucocorticoid challenge. Using mice with global deletion of SIAH2 exposed or not to corticosterone, we found that adipocytes are larger in response to glucocorticoids in the absence of SIAH2. In addition, SIAH2 regulates glucocorticoid receptor (GR) transcriptional activity and total GR protein abundance. Moreover, these studies reveal that there is an increased expression of genes involved in fibrosis and inflammatory signaling pathways found in white adipose tissue in response to glucocorticoids in the absence of SIAH2. In summary, this is the first study to identify a role for SIAH2 to regulate transcriptional activity and abundance of the GR, which leads to alterations in adipose tissue size and gene expression during in vivo exposure to glucocorticoids.
Collapse
|
9
|
Yuan F, Yun Y, Fan H, Li Y, Lu L, Liu J, Feng W, Chen SY. MicroRNA-135a Protects Against Ethanol-Induced Apoptosis in Neural Crest Cells and Craniofacial Defects in Zebrafish by Modulating the Siah1/p38/p53 Pathway. Front Cell Dev Biol 2020; 8:583959. [PMID: 33134300 PMCID: PMC7561719 DOI: 10.3389/fcell.2020.583959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are involved in various biological processes, including apoptosis, by regulating gene expression. This study was designed to test the hypothesis that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in neural crest cells (NCCs) by upregulating Siah1 and activating the p38 mitogen-activated protein kinase (MAPK)/p53 pathway. We found that treatment with ethanol resulted in a significant decrease in miR-135a expression in both NCCs and zebrafish embryos. Ethanol-induced downregulation of miR-135a resulted in the upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and increased apoptosis in NCCs and zebrafish embryos. Ethanol exposure also resulted in growth retardation and developmental defects that are characteristic of fetal alcohol spectrum disorders (FASD) in zebrafish. Overexpression of miRNA-135a significantly reduced ethanol-induced upregulation of Siah1 and the activation of the p38 MAPK/p53 pathway and decreased ethanol-induced apoptosis in NCCs and zebrafish embryos. In addition, ethanol-induced growth retardation and craniofacial defects in zebrafish larvae were dramatically diminished by the microinjection of miRNA-135a mimics. These results demonstrated that ethanol-induced downregulation of miR-135a contributes to ethanol-induced apoptosis in NCCs by upregulating Siah1 and activating the p38 MAPK/p53 pathway and that the overexpression of miRNA-135a can protect against ethanol-induced apoptosis in NCCs and craniofacial defects in a zebrafish model of FASD.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yang Yun
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, China
| | - Huadong Fan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Yihong Li
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Lanhai Lu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, United States.,University of Louisville Alcohol Research Center, Louisville, KY, United States
| |
Collapse
|
10
|
Sánchez-Martín P, Komatsu M. Physiological Stress Response by Selective Autophagy. J Mol Biol 2020; 432:53-62. [DOI: 10.1016/j.jmb.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
11
|
Hughes SE, Hemenway E, Guo F, Yi K, Yu Z, Hawley RS. The E3 ubiquitin ligase Sina regulates the assembly and disassembly of the synaptonemal complex in Drosophila females. PLoS Genet 2019; 15:e1008161. [PMID: 31107865 PMCID: PMC6544331 DOI: 10.1371/journal.pgen.1008161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/31/2019] [Accepted: 04/26/2019] [Indexed: 01/04/2023] Open
Abstract
During early meiotic prophase, homologous chromosomes are connected along their entire lengths by a proteinaceous tripartite structure known as the synaptonemal complex (SC). Although the components that comprise the SC are predominantly studied in this canonical ribbon-like structure, they can also polymerize into repeated structures known as polycomplexes. We find that in Drosophila oocytes, the ability of SC components to assemble into canonical tripartite SC requires the E3 ubiquitin ligase Seven in absentia (Sina). In sina mutant oocytes, SC components assemble into large rod-like polycomplexes instead of proper SC. Thus, the wild-type Sina protein inhibits the polymerization of SC components, including those of the lateral element, into polycomplexes. These polycomplexes persist into meiotic stages when canonical SC has been disassembled, indicating that Sina also plays a role in controlling SC disassembly. Polycomplexes induced by loss-of-function sina mutations associate with centromeres, sites of double-strand breaks, and cohesins. Perhaps as a consequence of these associations, centromere clustering is defective and crossing over is reduced. These results suggest that while features of the polycomplexes can be recognized as SC by other components of the meiotic nucleus, polycomplexes nonetheless fail to execute core functions of canonical SC.
Collapse
Affiliation(s)
- Stacie E. Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Elizabeth Hemenway
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Fengli Guo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
12
|
Ghosh S, Taylor JL, Mendoza TM, Dang T, Burk DH, Yu Y, Kilroy G, Floyd ZE. Siah2 modulates sex-dependent metabolic and inflammatory responses in adipose tissue to a high-fat diet challenge. Biol Sex Differ 2019; 10:19. [PMID: 30987673 PMCID: PMC6466809 DOI: 10.1186/s13293-019-0233-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/31/2019] [Indexed: 02/08/2023] Open
Abstract
Background The obesity-related risk of developing metabolic syndrome is higher in males than in females of reproductive age, likely due to estrogen-mediated reduced adipose tissue inflammation and fibrosis with hypertrophied adipocytes. Depletion of the ubiquitin ligase Siah2 reduced white adipose tissue inflammation and improved glucose metabolism in obese male mice. Siah2 is a transcriptional target of estrogen, but data is lacking about the effect of Siah2 on adipose tissue of females. We therefore evaluated the impact of Siah2 deficiency on white and brown adipose tissue in females of reproductive age. Methods Body composition, adipose tissue morphology, brown adipose tissue gene, and protein expression and adipocyte sizing were evaluated in wild-type and Siah2KO female and male mice fed a low-fat or high-fat diet. Glucose and insulin tolerance, fasting glucose, insulin, fatty acids and triglycerides, and gene expression of inflammation markers in perigonadal fat were evaluated in wild-type and Siah2KO female mice. Microarray analysis of brown fat gene expression was carried out in both sexes. Statistical analysis was assessed by unpaired two-tailed t test and repeated measures ANOVA. Results Siah2 deficiency improves glucose and insulin tolerance in the presence of hypertrophied white adipocytes in high-fat-fed female mice with percent fat comparable to male mice. While previous studies showed Siah2KO reduces the white adipose tissue inflammatory response in male mice, the response in females is biased toward the upregulation of M2-like markers in white adipose tissue. In contrast, loss of Siah2 leads to increased whitening of brown fat in males, but not in females. This corresponded to increased expression of markers of inflammation (F4/80, Ccl2) and thermogenic genes (Pgc1alpha, Dio2, Ucp-1) and proteins (PGC-1α, UCP-1) in females. Contrary to expectations, increased expression of thermogenic markers in females was coupled with a downregulation of ERalpha and ERRgamma protein levels. Conclusions The most striking sex-related effect of Siah2 deficiency is reduced whitening of brown fat in high-fat-fed females. Protection from accumulating unilocular adipocytes in the brown fat corresponds to increased expression of thermogenic genes and proteins in female, but not in male mice. These results raise the possibility that Siah2 contributes to the estrogen-related effects on brown fat function in males and females. Electronic supplementary material The online version of this article (10.1186/s13293-019-0233-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sujoy Ghosh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.,Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Tamra M Mendoza
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Thanh Dang
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H Burk
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Gail Kilroy
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
13
|
Lima TI, Valentim RR, Araújo HN, Oliveira AG, Favero BC, Menezes ES, Araújo R, Silveira LR. Role of NCoR1 in mitochondrial function and energy metabolism. Cell Biol Int 2018; 42:734-741. [PMID: 29660213 DOI: 10.1002/cbin.10973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Mitochondrial number and shape are constantly changing in response to increased energy demands. The ability to synchronize mitochondrial pathways to respond to energy fluctuations within the cell is a central aspect of mammalian homeostasis. This dynamic process depends on the coordinated activation of transcriptional complexes to promote the expression of genes encoding for mitochondrial proteins. Recent evidence has shown that the nuclear corepressor NCoR1 is an essential metabolic switch which acts on oxidative metabolism signaling. Here, we provide an overview of the emerging role of NCoR1 in the transcriptional control of energy metabolism. The identification and characterization of NCoR1 as a central, evolutionary conserved player in mitochondrial function have revealed a novel layer of metabolic control. Defining the precise mechanisms by which NCoR1 acts on energy homeostasis will ultimately contribute towards the development of novel therapies for the treatment of metabolic diseases such as obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Tanes I Lima
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (Ribeirão Preto Campus), Ribeirão Preto, São Paulo, Brazil
| | - Rafael R Valentim
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Hygor N Araújo
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - André G Oliveira
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Bianca C Favero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Eveline S Menezes
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Rafaela Araújo
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Cottone E, Orso F, Biglia N, Sismondi P, De Bortoli M. Role of Coactivators and Corepressors in Steroid and Nuclear Receptor Signaling: Potential Markers of Tumor Growth and Drug Sensitivity. Int J Biol Markers 2018; 16:151-66. [PMID: 11605727 DOI: 10.1177/172460080101600301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nuclear receptors regulate target gene expression in response to steroid and thyroid hormones, retinoids, vitamin D and other ligands. These ligand-dependent transcription factors function by contacting various nuclear cooperating proteins, called coactivators and corepressors, which mediate local chromatin remodeling as well as communication with the basal transcriptional apparatus. Nuclear receptors and their coregulatory proteins play a role in cancer and other diseases, one leading example being the estrogen receptor pathway in breast cancer. Coregulators are often present in limiting amounts in cell nuclei and modifications of their level of expression and/or structure lead to alterations in nuclear receptor functioning, which may be as pronounced as a complete inversion of signaling, i.e. from stimulating to repressing certain genes in response to an identical stimulus. In addition, hemizygous knock-out of certain coactivator genes has been demonstrated to produce cancer-prone phenotypes in mice. Thus, assessment of coactivator and corepressor expression and structure in tumors may turn out to be essential to determine the role of nuclear receptors in cancer and to predict prognosis and response to therapy.
Collapse
Affiliation(s)
- E Cottone
- Department of Animal and Human Biology, University of Turin, Italy
| | | | | | | | | |
Collapse
|
15
|
Jing Y, Nguyen MM, Wang D, Pascal LE, Guo W, Xu Y, Ai J, Deng FM, Masoodi KZ, Yu X, Zhang J, Nelson JB, Xia S, Wang Z. DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor. Oncogene 2017; 37:638-650. [PMID: 28991234 PMCID: PMC5794523 DOI: 10.1038/onc.2017.371] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/03/2017] [Accepted: 08/25/2017] [Indexed: 11/24/2022]
Abstract
Androgen receptor (AR) activation is critical for prostate cancer development and progression, including castration-resistance. The nuclear export signal of AR (NESAR) plays an important role in AR intracellular trafficking and proteasome-dependent degradation. Here, we identified the RNA helicase DHX15 as a novel AR co-activator using a yeast mutagenesis screen and revealed that DHX15 regulates AR activity by modulating E3 ligase Siah2-mediated AR ubiquitination independent of its ATPase activity. DHX15 and Siah2 form a complex with AR, through NESAR. DHX15 stabilized Siah2 and enhanced its E3 ubiquitin ligase activity, resulting in AR activation. Importantly, DHX15 was upregulated in prostate cancer specimens and its expression was correlated with Gleason scores and PSA recurrence. Furthermore, DHX15 immunostaining correlated with Siah2. Finally, DHX15 knockdown inhibited the growth of C4-2 prostate tumor xenografts in mice. Collectively, our data argue that DHX15 enhances AR transcriptional activity and contributes to prostate cancer progression through Siah2.
Collapse
Affiliation(s)
- Y Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M M Nguyen
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L E Pascal
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W Guo
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Y Xu
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Urology, The Second Xiangya Hospital of Central South University, Hunan, China.,The third Xiangya Hospital of Central South University, Changsha, China
| | - J Ai
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - F-M Deng
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - K Z Masoodi
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, J&K, India
| | - X Yu
- Department of Geriatrics, Guangzhou General Hospital of Guangzhou Military Command; Guangdong Provincial Key Laboratory of Geriatric Infection and Organ Function Support; Guangzhou Key Laboratory of Geriatric Infection and Organ Function Support; Guangzhou, Guangdong, China.,Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - J Zhang
- Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J B Nelson
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Z Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Molecular Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C, Bauer A, Xu W, Yan X, Cong F. The SIAH E3 ubiquitin ligases promote Wnt/β-catenin signaling through mediating Wnt-induced Axin degradation. Genes Dev 2017; 31:904-915. [PMID: 28546513 PMCID: PMC5458757 DOI: 10.1101/gad.300053.117] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 11/25/2022]
Abstract
In this study, Ji et al. identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. Their results suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin and promote its degradation, which represents an important feed-forward mechanism to achieve sustained Wnt/β-catenin signaling. The Wnt/β-catenin signaling pathway plays essential roles in embryonic development and adult tissue homeostasis. Axin is a concentration-limiting factor responsible for the formation of the β-catenin destruction complex. Wnt signaling itself promotes the degradation of Axin. However, the underlying molecular mechanism and biological relevance of this targeting of Axin have not been elucidated. Here, we identify SIAH1/2 (SIAH) as the E3 ligase mediating Wnt-induced Axin degradation. SIAH proteins promote the ubiquitination and proteasomal degradation of Axin through interacting with a VxP motif in the GSK3-binding domain of Axin, and this function of SIAH is counteracted by GSK3 binding to Axin. Structural analysis reveals that the Axin segment responsible for SIAH binding is also involved in GSK3 binding but adopts distinct conformations in Axin/SIAH and Axin/GSK3 complexes. Knockout of SIAH1 blocks Wnt-induced Axin ubiquitination and attenuates Wnt-induced β-catenin stabilization. Our data suggest that Wnt-induced dissociation of the Axin/GSK3 complex allows SIAH to interact with Axin not associated with GSK3 and promote its degradation and that SIAH-mediated Axin degradation represents an important feed-forward mechanism to achieve sustained Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Lei Ji
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Bo Jiang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomo Jiang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Olga Charlat
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Amy Chen
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Craig Mickanin
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Andreas Bauer
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | - Xiaoxue Yan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cong
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
|
18
|
Privalsky ML, Snyder CA, Goodson ML. Corepressor diversification by alternative mRNA splicing is species specific. BMC Evol Biol 2016; 16:221. [PMID: 27756201 PMCID: PMC5069798 DOI: 10.1186/s12862-016-0781-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SMRT and NCoR are corepressor paralogs that help mediate transcriptional repression by a variety of transcription factors, including the nuclear hormone receptors. The functions of both corepressors are extensively diversified in mice by alternative mRNA splicing, generating a series of protein variants that differ in different tissues and that exert different, even diametrically opposite, biochemical and biological effects from one another. RESULTS We report here that the alternative splicing previously reported for SMRT appears to be a relatively recent evolutionary phenomenon, with only one of these previously identified sites utilized in a teleost fish and a limited additional number of the additional known sites utilized in a bird, reptile, and marsupial. In contrast, extensive SMRT alternative splicing at these sites was detected among the placental mammals. The alternative splicing of NCoR previously identified in mice (and shown to regulate lipid and carbohydrate metabolism) is likely to have arisen separately and after that of SMRT, and includes an example of convergent evolution. CONCLUSIONS We propose that the functions of both SMRT and NCoR have been diversified by alternative splicing during evolution to allow customization for different purposes in different tissues and different species.
Collapse
Affiliation(s)
- Martin L Privalsky
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Chelsea A Snyder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael L Goodson
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Adam MG, Matt S, Christian S, Hess-Stumpp H, Haegebarth A, Hofmann TG, Algire C. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle 2016; 14:3734-47. [PMID: 26654769 PMCID: PMC4825722 DOI: 10.1080/15384101.2015.1104441] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.
Collapse
Affiliation(s)
- M Gordian Adam
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany.,b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | - Sonja Matt
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Sven Christian
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| | | | | | - Thomas G Hofmann
- a Cellular Senescence Group ; German Cancer Research Center DKFZ ; Heidelberg , Germany
| | - Carolyn Algire
- b GTRG Oncology II; GDD; Bayer Pharma AG ; Berlin , Germany
| |
Collapse
|
20
|
Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beißbarth T, Wingender E, Gültas M. Computational Identification of Key Regulators in Two Different Colorectal Cancer Cell Lines. Front Genet 2016; 7:42. [PMID: 27092172 PMCID: PMC4820448 DOI: 10.3389/fgene.2016.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors (TFs) are gene regulatory proteins that are essential for an effective regulation of the transcriptional machinery. Today, it is known that their expression plays an important role in several types of cancer. Computational identification of key players in specific cancer cell lines is still an open challenge in cancer research. In this study, we present a systematic approach which combines colorectal cancer (CRC) cell lines, namely 1638N-T1 and CMT-93, and well-established computational methods in order to compare these cell lines on the level of transcriptional regulation as well as on a pathway level, i.e., the cancer cell-intrinsic pathway repertoire. For this purpose, we firstly applied the Trinity platform to detect signature genes, and then applied analyses of the geneXplain platform to these for detection of upstream transcriptional regulators and their regulatory networks. We created a CRC-specific position weight matrix (PWM) library based on the TRANSFAC database (release 2014.1) to minimize the rate of false predictions in the promoter analyses. Using our proposed workflow, we specifically focused on revealing the similarities and differences in transcriptional regulation between the two CRC cell lines, and report a number of well-known, cancer-associated TFs with significantly enriched binding sites in the promoter regions of the signature genes. We show that, although the signature genes of both cell lines show no overlap, they may still be regulated by common TFs in CRC. Based on our findings, we suggest that canonical Wnt signaling is activated in 1638N-T1, but inhibited in CMT-93 through cross-talks of Wnt signaling with the VDR signaling pathway and/or LXR-related pathways. Furthermore, our findings provide indication of several master regulators being present such as MLK3 and Mapk1 (ERK2) which might be important in cell proliferation, migration, and invasion of 1638N-T1 and CMT-93, respectively. Taken together, we provide new insights into the invasive potential of these cell lines, which can be used for development of effective cancer therapy.
Collapse
Affiliation(s)
- Darius Wlochowitz
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Martin Haubrock
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Jetcy Arackal
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen Göttingen, Germany
| | - Alexander Wolff
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen Göttingen, Germany
| | - Edgar Wingender
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| | - Mehmet Gültas
- Institute of Bioinformatics, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
21
|
Maneix L, Catic A. Touch and go: nuclear proteolysis in the regulation of metabolic genes and cancer. FEBS Lett 2016; 590:908-23. [PMID: 26832397 PMCID: PMC4833644 DOI: 10.1002/1873-3468.12087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
Abstract
The recruitment of transcription factors to promoters and enhancers is a critical step in gene regulation. Many of these proteins are quickly removed from DNA after they completed their function. Metabolic genes in particular are dynamically regulated and continuously adjusted to cellular requirements. Transcription factors controlling metabolism are therefore under constant surveillance by the ubiquitin–proteasome system, which can degrade DNA‐bound proteins in a site‐specific manner. Several of these metabolic transcription factors are critical to cancer cells, as they promote uncontrolled growth and proliferation. This review highlights recent findings in the emerging field of nuclear proteolysis and outlines novel paradigms for cancer treatment, with an emphasis on multiple myeloma.
Collapse
Affiliation(s)
- Laure Maneix
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - André Catic
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
van der Willik KD, Timmermans MM, van Deurzen CHM, Look MP, Reijm EA, van Zundert WJHP, Foekens R, Trapman-Jansen AMAC, den Bakker MA, Westenend PJ, Martens JWM, Berns EMJJ, Jansen MPHM. SIAH2 protein expression in breast cancer is inversely related with ER status and outcome to tamoxifen therapy. Am J Cancer Res 2016; 6:270-284. [PMID: 27186402 PMCID: PMC4859659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023] Open
Abstract
Our previous study demonstrated that high mRNA levels for Seven in Absentia Homolog 2 (SIAH2) correlated with high Estrogen Receptor (ER) mRNA levels and with longer progression-free survival (PFS) after first-line tamoxifen. Others showed high SIAH2 protein levels in ER-negative breast cancer associated with an unfavorable relapse-free survival. In the current study, we investigated SIAH2 protein expression to clarify the discrepancy between protein and mRNA findings and to determine its diagnostic value in breast cancer patients. Tissue microarrays (TMAs) containing core specimens of primary breast tumors were immunohistochemically stained for SIAH2 protein. The TMAs analyzed a cohort of 746 patients with primary breast cancer (PBC) and a cohort of 245 patients with ER-positive metastatic breast cancer (MBC) treated with first-line tamoxifen. SIAH2 staining was scored for intensity and proportion of positive tumor cells and evaluated for its relationship with metastasis-free survival (MFS) and PFS. Multivariate survival analyses included traditional prognostic or predictive factors, respectively. The PBC-cohort had 263 patients with high SIAH2 protein expression and decreased expression of ER protein and mRNA levels (P = 0.005 and P = 0.003, respectively). High SIAH2 levels correlated with significant unfavorable MFS in lymph node negative, ER-positive breast cancer patients. The MBC-cohort had 86 patients with increased SIAH2 protein expression. High SIAH2 expression was associated with an unfavorable PFS after first-line tamoxifen in multivariate analyses (HR = 1.45; 95% CI, 1.07-1.96; P = 0.015). In conclusion, SIAH2 protein expression is especially observed in ER-negative tumors. Its prognostic value in breast cancer does not add to current prognostic markers. The proportion of SIAH2-positive cells can be used as biomarker to predict tamoxifen treatment failure in MBC patients.
Collapse
Affiliation(s)
- Kimberly D van der Willik
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Mieke M Timmermans
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Carolien HM van Deurzen
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Maxime P Look
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Esther A Reijm
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Wendy JHP van Zundert
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Renée Foekens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Anita MAC Trapman-Jansen
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Michael A den Bakker
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
- Department of Pathology, Maasstad HospitalRotterdam, The Netherlands
| | | | - John WM Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Els MJJ Berns
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| | - Maurice PHM Jansen
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical CenterRotterdam, The Netherlands
| |
Collapse
|
23
|
Kilroy G, Carter LE, Newman S, Burk DH, Manuel J, Möller A, Bowtell DD, Mynatt RL, Ghosh S, Floyd ZE. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation. Obesity (Silver Spring) 2015; 23:2223-32. [PMID: 26380945 PMCID: PMC4633373 DOI: 10.1002/oby.21220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. METHODS Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. RESULTS Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. CONCLUSIONS Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation.
Collapse
Affiliation(s)
- Gail Kilroy
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | - Susan Newman
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - David H. Burk
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin Manuel
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Andreas Möller
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - David D. Bowtell
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | - Sujoy Ghosh
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Cardiovascular and Metabolic Disease Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore
| | - Z. Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Corresponding author: Elizabeth Floyd, PhD, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, Phone: 225-763-2724, FAX: 225-763-0273,
| |
Collapse
|
24
|
Ubiquitin ligase Siah2 regulates RevErbα degradation and the mammalian circadian clock. Proc Natl Acad Sci U S A 2015; 112:12420-5. [PMID: 26392558 DOI: 10.1073/pnas.1501204112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Regulated degradation of proteins by the proteasome is often critical to their function in dynamic cellular pathways. The molecular clock underlying mammalian circadian rhythms relies on the rhythmic expression and degradation of its core components. However, because the tools available for identifying the mechanisms underlying the degradation of a specific protein are limited, the mechanisms regulating clock protein degradation are only beginning to be elucidated. Here we describe a cell-based functional screening approach designed to quickly identify the ubiquitin E3 ligases that induce the degradation of potentially any protein of interest. We screened the nuclear hormone receptor RevErbα (Nr1d1), a key constituent of the mammalian circadian clock, for E3 ligases that regulate its stability and found Seven in absentia2 (Siah2) to be a key regulator of RevErbα stability. Previously implicated in hypoxia signaling, Siah2 overexpression destabilizes RevErbα/β, and siRNA depletion of Siah2 stabilizes endogenous RevErbα. Moreover, Siah2 depletion delays circadian degradation of RevErbα and lengthens period length. These results demonstrate the utility of functional screening approaches for identifying regulators of protein stability and reveal Siah2 as a previously unidentified circadian clockwork regulator that mediates circadian RevErbα turnover.
Collapse
|
25
|
Fan L, Peng G, Hussain A, Fazli L, Guns E, Gleave M, Qi J. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells. J Biol Chem 2015; 290:20865-20879. [PMID: 26160177 DOI: 10.1074/jbc.m115.662155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells.
Collapse
Affiliation(s)
- Lingling Fan
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Guihong Peng
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Arif Hussain
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Emma Guns
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
26
|
Huang J, Cardamone MD, Johnson HE, Neault M, Chan M, Floyd ZE, Mallette FA, Perissi V. Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein Pathway Suppressor 2 (GPS2) from Proteasomal Degradation. J Biol Chem 2015; 290:19044-54. [PMID: 26070566 DOI: 10.1074/jbc.m115.637660] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 12/18/2022] Open
Abstract
G protein pathway suppressor 2 (GPS2) is a multifunctional protein involved in the regulation of a number of metabolic organs. First identified as part of the NCoR-SMRT corepressor complex, GPS2 is known to play an important role in the nucleus in the regulation of gene transcription and meiotic recombination. In addition, we recently reported a non-transcriptional role of GPS2 as an inhibitor of the proinflammatory TNFα pathway in the cytosol. Although this suggests that the control of GPS2 localization may be an important determinant of its molecular functions, a clear understanding of GPS2 differential targeting to specific cellular locations is still lacking. Here we show that a fine balance between protein stabilization and degradation tightly regulates GPS2 nuclear function. Our findings indicate that GPS2 is degraded upon polyubiquitination by the E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the exchange factor TBL1 is required to protect GPS2 from degradation, with methylation of GPS2 by arginine methyltransferase PRMT6 regulating the interaction with TBL1 and inhibiting proteasome-dependent degradation. Overall, our findings indicate that regulation of GPS2 by posttranslational modifications provides an effective strategy for modulating its molecular function within the nuclear compartment.
Collapse
Affiliation(s)
- Jiawen Huang
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - M Dafne Cardamone
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Holly E Johnson
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mathieu Neault
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada
| | - Michelle Chan
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Z Elizabeth Floyd
- the Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, and
| | - Frédérick A Mallette
- the Chromatin Structure and Cellular Senescence Research Unit, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Quebec H1T 2M4, Canada, the Département de Médecine, Université de Montréal, Montréal, Quebec H1T 2M4, Canada
| | - Valentina Perissi
- From the Biochemistry Department, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
27
|
SHI HENGLIANG, ZHENG BAO, WU YUXUAN, TANG YUAN, WANG LEI, GAO YONG, GONG HUI, DU JIN, YU RUTONG. Ubiquitin ligase Siah1 promotes the migration and invasion of human glioma cells by regulating HIF-1α signaling under hypoxia. Oncol Rep 2014; 33:1185-90. [DOI: 10.3892/or.2014.3695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/05/2014] [Indexed: 11/06/2022] Open
|
28
|
Sun H, Chen X, Yuan F, Liu J, Zhao Y, Chen SY. Involvement of seven in absentia homolog-1 in ethanol-induced apoptosis in neural crest cells. Neurotoxicol Teratol 2014; 46:26-31. [PMID: 25193017 PMCID: PMC4250320 DOI: 10.1016/j.ntt.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023]
Abstract
Ethanol-induced apoptosis in selected cell populations is a major component of pathogenesis underlying ethanol-induced teratogenesis. However, there is a fundamental gap in understanding how ethanol leads to apoptosis in embryos. In this study, we investigate the role of seven in absentia homolog-1 (Siah1) protein, an E3 ubiquitin ligase, in ethanol-induced apoptosis. Using an in vitro model of neural crest cell (NCC), JoMa1.3 cells, we found that exposure to 100mM ethanol resulted in a significant increase in Siah1 mRNA expression in NCCs, an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). Treatment with 100mM ethanol for 24h also significantly increased the protein expression of Siah1 in JoMa1.3 cells. The nuclear translocation and accumulation of Siah1 was evidenced in the cells exposed to ethanol. In addition, we have found that the inhibition of Siah1 function with siRNA prevents ethanol-induced increase in Siah1 protein expression and nuclear translocation in NCCs. Down-regulation of Siah1 by siRNA also greatly diminished ethanol-induced cell death and caspase-3 activation, indicating that inhibition of Siah1 can attenuate ethanol-induced apoptosis. These results strongly suggest that Siah1 plays an important role in ethanol-induced apoptosis in NCCs.
Collapse
Affiliation(s)
- Haijing Sun
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Xiaopan Chen
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Fuqiang Yuan
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Jie Liu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, United States
| | - Shao-Yu Chen
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, United States.
| |
Collapse
|
29
|
Wong MM, Guo C, Zhang J. Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2014; 2:169-187. [PMID: 25374920 PMCID: PMC4219314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Nuclear receptor corepressor (NCoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) function as corepressors for diverse transcription factors including nuclear receptors such as estrogen receptors and androgen receptors. Deregulated functions of NCoR and SMRT have been observed in many types of cancers and leukemias. NCoR and SMRT directly bind to transcription factors and nucleate the formation of stable complexes that include histone deacetylase 3, transducin b-like protein 1/TBL1-related protein 1, and G-protein pathway suppressor 2. These NCoR/SMRT-interacting proteins also show deregulated functions in cancers. In this review, we summarize the literature on the mechanism, regulation, and function of the core components of NCoR/SMRT complexes in the context of their involvement in cancers and leukemias. While the current studies support the view that the corepressors are promising targets for cancer treatment, elucidation of the mechanisms of corepressors involved in individual types of cancers is likely required for effective therapy.
Collapse
Affiliation(s)
- Madeline M Wong
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Chun Guo
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| | - Jinsong Zhang
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine St. Louis, Missouri 63104
| |
Collapse
|
30
|
Schroeder A, Jimenez R, Young B, Privalsky ML. The ability of thyroid hormone receptors to sense t4 as an agonist depends on receptor isoform and on cellular cofactors. Mol Endocrinol 2014; 28:745-57. [PMID: 24673558 DOI: 10.1210/me.2013-1335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
T4 (3,5,3',5'-tetraiodo-l-thyronine) is classically viewed as a prohormone that must be converted to the T3 (3,5,3'-triiodo-l-thyronine) form for biological activity. We first determined that the ability of reporter genes to respond to T4 and to T3 differed for the different thyroid hormone receptor (TR) isoforms, with TRα1 generally more responsive to T4 than was TRβ1. The response to T4 vs T3 also differed dramatically in different cell types in a manner that could not be attributed to differences in deiodinase activity or in hormone affinity, leading us to examine the role of TR coregulators in this phenomenon. Unexpectedly, several coactivators, such as steroid receptor coactivator-1 (SRC1) and thyroid hormone receptor-associated protein 220 (TRAP220), were recruited to TRα1 nearly equally by T4 as by T3 in vitro, indicating that TRα1 possesses an innate potential to respond efficiently to T4 as an agonist. In contrast, release of corepressors, such as the nuclear receptor coreceptor NCoRω, from TRα1 by T4 was relatively inefficient, requiring considerably higher concentrations of this ligand than did coactivator recruitment. Our results suggest that cells, by altering the repertoire and abundance of corepressors and coactivators expressed, may regulate their ability to respond to T4, raising the possibility that T4 may function directly as a hormone in specific cellular or physiological contexts.
Collapse
Affiliation(s)
- Amy Schroeder
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California at Davis, Davis, California 95616
| | | | | | | |
Collapse
|
31
|
Genome-wide map of nuclear protein degradation shows NCoR1 turnover as a key to mitochondrial gene regulation. Cell 2014; 155:1380-95. [PMID: 24315104 DOI: 10.1016/j.cell.2013.11.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/04/2013] [Accepted: 11/08/2013] [Indexed: 01/03/2023]
Abstract
Transcription factor activity and turnover are functionally linked, but the global patterns by which DNA-bound regulators are eliminated remain poorly understood. We established an assay to define the chromosomal location of DNA-associated proteins that are slated for degradation by the ubiquitin-proteasome system. The genome-wide map described here ties proteolysis in mammalian cells to active enhancers and to promoters of specific gene families. Nuclear-encoded mitochondrial genes in particular correlate with protein elimination, which positively affects their transcription. We show that the nuclear receptor corepressor NCoR1 is a key target of proteolysis and physically interacts with the transcription factor CREB. Proteasome inhibition stabilizes NCoR1 in a site-specific manner and restrains mitochondrial activity by repressing CREB-sensitive genes. In conclusion, this functional map of nuclear proteolysis links chromatin architecture with local protein stability and identifies proteolytic derepression as highly dynamic in regulating the transcription of genes involved in energy metabolism.
Collapse
|
32
|
Stebbins JL, Santelli E, Feng Y, De SK, Purves A, Motamedchaboki K, Wu B, Ronai ZA, Liddington RC, Pellecchia M. Structure-based design of covalent Siah inhibitors. ACTA ACUST UNITED AC 2013; 20:973-82. [PMID: 23891150 DOI: 10.1016/j.chembiol.2013.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
Abstract
The E3 ubiquitin ligase Siah regulates key cellular events that are central to cancer development and progression. A promising route to Siah inhibition is disrupting its interactions with adaptor proteins. However, typical of protein-protein interactions, traditional unbiased approaches to ligand discovery did not produce viable hits against this target, despite considerable effort and a multitude of approaches. Ultimately, a rational structure-based design strategy was successful for the identification of Siah inhibitors in which peptide binding drives specific covalent bond formation with the target. X-ray crystallography, mass spectrometry, and functional data demonstrate that these peptide mimetics are efficient covalent inhibitors of Siah and antagonize Siah-dependent regulation of Erk and Hif signaling in the cell. The proposed strategy may result useful as a general approach to the design of peptide-based inhibitors of other protein-protein interactions.
Collapse
Affiliation(s)
- John L Stebbins
- Signal Transduction Program and Cell Death Program, Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Qi J, Tripathi M, Mishra R, Sahgal N, Fazil L, Ettinger S, Placzek WJ, Claps G, Chung LW, Bowtell D, Gleave M, Bhowmick N, Ronai ZA. The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell 2013; 23:332-46. [PMID: 23518348 PMCID: PMC3750989 DOI: 10.1016/j.ccr.2013.02.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/22/2012] [Accepted: 02/13/2013] [Indexed: 11/23/2022]
Abstract
Understanding the mechanism underlying the regulation of the androgen receptor (AR), a central player in the development of castration-resistant prostate cancer (CRPC), holds promise for overcoming the challenge of treating CRPC. We demonstrate that the ubiquitin ligase Siah2 targets a select pool of NCOR1-bound, transcriptionally-inactive AR for ubiquitin-dependent degradation, thereby promoting expression of select AR target genes implicated in lipid metabolism, cell motility, and proliferation. Siah2 is required for prostate cancer cell growth under androgen-deprivation conditions in vitro and in vivo, and Siah2 inhibition promotes prostate cancer regression upon castration. Notably, Siah2 expression is markedly increased in human CRPCs. Collectively, we find that selective regulation of AR transcriptional activity by the ubiquitin ligase Siah2 is important for CRPC development.
Collapse
Affiliation(s)
- Jianfei Qi
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla 92037, CA, USA
| | - Manisha Tripathi
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA
| | - Rajeev Mishra
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA
| | - Natasha Sahgal
- Bioinformatics and Statistical Genetics, Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Ladan Fazil
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Susan Ettinger
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - William J. Placzek
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla 92037, CA, USA
| | - Giuseppina Claps
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla 92037, CA, USA
| | - Leland W.K. Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA
| | - David Bowtell
- Research Division, Peter McCallum Cancer Centre, Melbourne, VIC 3002, Australia
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Neil Bhowmick
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles 90048, CA, USA
| | - Ze'ev A. Ronai
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla 92037, CA, USA
| |
Collapse
|
34
|
Lee SB, Kim CK, Lee KH, Ahn JY. S-nitrosylation of B23/nucleophosmin by GAPDH protects cells from the SIAH1-GAPDH death cascade. ACTA ACUST UNITED AC 2013; 199:65-76. [PMID: 23027902 PMCID: PMC3461512 DOI: 10.1083/jcb.201205015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S-nitrosylation of B23/nucleophosmin mediates neuroprotective effects by binding SIAH1, displacing GAPDH, and preventing SIAH1 E3 ligase activity. B23/nucleophosmin is a multifunctional protein that participates in cell survival signaling by shuttling between the nucleolus/nucleoplasm and nucleus/cytoplasm. In this paper, we report a novel neuroprotective function of B23 through regulation of the SIAH1–glyceraldehyde-3-phosphate dehydrogenase (GAPDH) death cascade. B23 physiologically bound to both SIAH1 and GAPDH, disrupting the SIAH1–GAPDH complex in the nucleus in response to nitrosative stress. S-nitrosylation of B23 at cysteine 275 by trans-nitrosylation from GAPDH dramatically reduced the interaction between SIAH1 and GAPDH. S-nitrosylation of B23 enhanced B23–SIAH1 binding and mediated the neuroprotective actions of B23 by abrogating the E3 ligase activity of SIAH1. In mice, overexpression of B23 notably inhibited N-methyl-d-aspartate–mediated neurotoxicity, whereas expression of the C275S mutant, which is defective in binding to SIAH1, did not prevent neurotoxicity. Thus, B23 regulates neuronal survival by preventing SIAH1–GAPDH death signaling under stress-induced conditions in the brain.
Collapse
Affiliation(s)
- Sang Bae Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | | | | | | |
Collapse
|
35
|
Grishina I, Debus K, García-Limones C, Schneider C, Shresta A, García C, Calzado MA, Schmitz ML. SIAH-mediated ubiquitination and degradation of acetyl-transferases regulate the p53 response and protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2287-96. [PMID: 23044042 DOI: 10.1016/j.bbamcr.2012.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/26/2012] [Accepted: 09/30/2012] [Indexed: 12/01/2022]
Abstract
Posttranslational modification of proteins by lysine acetylation regulates many biological processes ranging from signal transduction to chromatin compaction. Here we identify the acetyl-transferases CBP/p300, Tip60 and PCAF as new substrates for the ubiquitin E3 ligases SIAH1 and SIAH2. While CBP/p300 can undergo ubiquitin/proteasome-dependent degradation by SIAH1 and SIAH2, the two other acetyl-transferases are exclusively degraded by SIAH2. Accordingly, SIAH-deficient cells show enhanced protein acetylation, thus revealing SIAH proteins as indirect regulators of the cellular acetylation status. Functional experiments show that Tip60/PCAF-mediated acetylation of the tumor suppressor p53 is antagonized by the p53 target gene SIAH2 which mediates ubiquitin/proteasome-mediated degradation of both acetyl-transferases and consequently diminishes p53 acetylation and transcriptional activity. The p53 kinase HIPK2 mediates hierarchical phosphorylation of SIAH2 at 5 sites, which further boosts its activity as a ubiquitin E3 ligase for several substrates and therefore dampens the late p53 response.
Collapse
Affiliation(s)
- Inna Grishina
- Department of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus Liebig University, Member of the German Center for Lung Research, 35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Oestrogen causes ATBF1 protein degradation through the oestrogen-responsive E3 ubiquitin ligase EFP. Biochem J 2012; 444:581-90. [PMID: 22452784 DOI: 10.1042/bj20111890] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We reported previously that the tumour suppressor ATBF1 (AT motif-binding factor 1) formed an autoregulatory feedback loop with oestrogen-ERα (oestrogen receptor α) signalling to regulate oestrogen-dependent cell proliferation in breast cancer cells. In this loop ATBF1 inhibits the function of oestrogen-ERα signalling, whereas ATBF1 protein levels are fine-tuned by oestrogen-induced transcriptional up-regulation as well as UPP (ubiquitin-proteasome pathway)-mediated protein degradation. In the present study we show that EFP (oestrogen-responsive finger protein) is an E3 ubiquitin ligase mediating oestrogen-induced ATBF1 protein degradation. Knockdown of EFP increases ATBF1 protein levels, whereas overexpression of EFP decreases ATBF1 protein levels. EFP interacts with and ubiquitinates ATBF1 protein. Furthermore, we show that EFP is an important factor in oestrogen-induced ATBF1 protein degradation in which some other factors are also involved. In human primary breast tumours the levels of ATBF1 protein are positively correlated with the levels of EFP protein, as both are directly up-regulated ERα target gene products. However, the ratio of ATBF1 protein to EFP protein is negatively correlated with EFP protein levels. Functionally, ATBF1 antagonizes EFP-mediated cell proliferation. These findings not only establish EFP as the E3 ubiquitin ligase for oestrogen-induced ATBF1 protein degradation, but further support the autoregulatory feedback loop between ATBF1 and oestrogen-ERα signalling and thus implicate ATBF1 in oestrogen-dependent breast development and carcinogenesis.
Collapse
|
37
|
Kilroy G, Kirk-Ballard H, Carter LE, Floyd ZE. The ubiquitin ligase Siah2 regulates PPARγ activity in adipocytes. Endocrinology 2012; 153:1206-18. [PMID: 22294748 PMCID: PMC3281538 DOI: 10.1210/en.2011-1725] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Moderate reductions in peroxisome proliferator-activated receptor (PPAR)γ levels control insulin sensitivity as effectively as activation of PPARγ in adipocytes by the thiazolidinediones. That observation suggests that PPARγ activity can be regulated by modulating the amount of PPARγ protein in adipocytes. Activation of PPARγ in adipocytes is linked to changes in PPARγ protein levels via increased degradation of PPARγ proteins by the ubiquitin proteasome system. Identification of the ubiquitin ligase or ligases that recognize ligand bound PPARγ is an essential step in determining the physiological significance of the relationship between activation and ubiquitin-dependent degradation of PPARγ. Using an RNA interference-based screen, we identified five RING (really interesting new gene)-type ubiquitin ligases that alter PPARγ protein levels in adipocytes. Here, we demonstrate that Drosophila seven-in-absentia homolog 2 (Siah2), a mammalian homolog of Drosophila seven-in-absentia, regulates PPARγ ubiquitylation and ligand-dependent activation of PPARγ in adipocytes. We also demonstrate that Siah2 expression is up-regulated during adipogenesis and that PPARγ interacts with Siah2 during adipogenesis. In addition, Siah2 is required for adipogenesis. These data suggest that modulation of PPARγ protein levels by the ubiquitin ligase Siah2 is essential in determining the physiological effects of PPARγ activation in adipocytes.
Collapse
Affiliation(s)
- Gail Kilroy
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA
| | | | | | | |
Collapse
|
38
|
Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta Gen Subj 2011; 1820:736-42. [PMID: 21803124 DOI: 10.1016/j.bbagen.2011.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death. SCOPE OF REVIEW The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death. MAJOR CONCLUSIONS S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects. GENERAL SIGNIFICANCE Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
39
|
Tolhurst RS, Thomas RS, Kyle FJ, Patel H, Periyasamy M, Photiou A, Thiruchelvam PTR, Lai CF, Al-Sabbagh M, Fisher RA, Barry S, Crnogorac-Jurcevic T, Martin LA, Dowsett M, Charles Coombes R, Kamalati T, Ali S, Buluwela L. Transient over-expression of estrogen receptor-α in breast cancer cells promotes cell survival and estrogen-independent growth. Breast Cancer Res Treat 2011; 128:357-68. [PMID: 20730598 DOI: 10.1007/s10549-010-1122-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 08/09/2010] [Indexed: 01/30/2023]
Abstract
Estrogen receptor-α (ERα) positive breast cancer frequently responds to inhibitors of ERα activity, such as tamoxifen, and/or to aromatase inhibitors that block estrogen biosynthesis. However, many patients become resistant to these agents through mechanisms that remain unclear. Previous studies have shown that expression of ERα in ERα-negative breast cancer cell lines frequently inhibits their growth. In order to determine the consequence of ERα over-expression in ERα-positive breast cancer cells, we over-expressed ERα in the MCF-7 breast cancer cell line using adenovirus gene transduction. ERα over-expression led to ligand-independent expression of the estrogen-regulated genes pS2 and PR and growth in the absence of estrogen. Interestingly, prolonged culturing of these cells in estrogen-free conditions led to the outgrowth of cells capable of growth in cultures from ERα transduced, but not in control cultures. From these cultures a line, MLET5, was established which remained ERα-positive, but grew in an estrogen-independent manner. Moreover, MLET5 cells were inhibited by anti-estrogens showing that ERα remains important for their growth. Gene expression microarray analysis comparing MCF-7 cells with MLET5 highlighted apoptosis as a major functional grouping that is altered in MLET5 cells, such that cell survival would be favoured. This conclusion was further substantiated by the demonstration that MLET5 show resistance to etoposide-induced apoptosis. As the gene expression microarray analysis also shows that the apoptosis gene set differentially expressed in MLET5 is enriched for estrogen-regulated genes, our findings suggest that transient over-expression of ERα could lead to increased cell survival and the development of estrogen-independent growth, thereby contributing to resistance to endocrine therapies in breast cancer patients.
Collapse
Affiliation(s)
- Robert S Tolhurst
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Herpes simplex virus immediate-early protein ICP0 is targeted by SIAH-1 for proteasomal degradation. J Virol 2011; 85:7644-57. [PMID: 21632771 DOI: 10.1128/jvi.02207-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus (HSV) immediate-early protein ICP0 is a transcriptional activator with E3 ubiquitin ligase activity that induces the degradation of ND10 proteins, including the promyelocytic leukemia protein (PML) and Sp100. Moreover, ICP0 has a role in the derepression of viral genomes and in the modulation of the host interferon response to virus infection. Here, we report that ICP0 interacts with SIAH-1, a cellular E3 ubiquitin ligase that is involved in multiple cellular pathways and is itself capable of mediating PML degradation. This novel virus-host interaction profoundly stabilized SIAH-1 and recruited this cellular E3 ligase into ICP0-containing nuclear bodies. Moreover, SIAH-1 mediated the polyubiquitination of HSV ICP0 in vitro and in vivo. After infection of SIAH-1 knockdown cells with HSV, higher levels of ICP0 were produced, ICP0 was less ubiquitinated, and the half-life of this multifunctional viral regulatory protein was increased. These results indicate an inhibitory role of SIAH-1 during lytic infection by targeting ICP0 for proteasomal degradation.
Collapse
|
41
|
Zhu XG, Kim DW, Goodson ML, Privalsky ML, Cheng SY. NCoR1 regulates thyroid hormone receptor isoform-dependent adipogenesis. J Mol Endocrinol 2011; 46:233-44. [PMID: 21389087 PMCID: PMC3457783 DOI: 10.1530/jme-10-0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We previously showed that two thyroid hormone receptor (TR) isoforms--TRα1 and TRβ1--differentially regulate thyroid hormone (triiodothyroxine, T(3))-stimulated adipogenesis in vivo. This study aims to understand the role of the nuclear receptor corepressor, NCoR1, in TR isoform-dependent adipogenesis. We found that T(3)-stimulated adipogenesis of 3T3-L1 cells was accompanied by progressive loss of NCoR1 protein levels. In 3T3-L1 cells stably expressing a mutated TRα1, PV (L1-α1PV cells), the T(3)-stimulated adipogenesis was more strongly inhibited than that in 3T3-L1 cells stably expressing an identical mutation in TRβ1 (L1-β1PV cells). The stronger inhibition of adipogenesis in L1-α1PV cells was associated with a higher NCoR1 protein level. These results indicate that the degree of loss of NCoR1 correlates with the extent of adipogenesis. siRNA knockdown of NCoR1 promoted adipogenesis of control 3T3-L1 cells and reversed the inhibited adipogenesis of L1-α1PV and L1-β1PV cells, indicating that NCoR1 plays an essential role in TR isoform-dependent adipogenesis. An ubiquitin ligase, mSiah2, that targets NCoR1 for proteasome degradation was upregulated on day 1 before the onset of progressive loss of NCoR1. NCoR1 was found to associate with mSiah2 and with TR, TRα1PV, or TRβ1PV, but a stronger interaction of NCoR1 with TRα1PV than with TRβ1PV was detected. Furthermore, TRα1PV-NCoR1 complex was more avidly recruited than TRβ1PV-NCoR1 to the promoter of the C/ebpα gene, leading to more inhibition in its expression. These results indicate that differential interaction of NCoR1 with TR isoforms accounted for the TR isoform-dependent regulation of adipogenesis and that aberrant interaction of NCoR1 with TR could underlie the pathogenesis of lipid disorders in hypothyroidism.
Collapse
Affiliation(s)
- Xu-Guang Zhu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Center for Cancer Research, 37 Convent Drive, Room 5128, Bethesda, Marryland 20892-4264, USA
| | | | | | | | | |
Collapse
|
42
|
Shahani N, Sawa A. Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation. Antioxid Redox Signal 2011; 14:1493-504. [PMID: 20812870 DOI: 10.1089/ars.2010.3580] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric oxide (NO) mediates cellular signaling pathways that regulate a plethora of physiological processes. One of the signaling mechanisms mediated by NO is through S-nitrosylation of cysteine residues in target proteins, which is now regarded as an important redox-based physiological action. Deregulation of the protein S-nitrosylation upon nitrosative stress, however, has also been linked to various human diseases, such as neurodegenerative disorders. Between these physiological and pathophysiological roles, there are mechanisms whereby a milder level of nitrosative stress provides S-nitrosylation of some proteins that counteracts the pathological processes, serving as a negative feedback mechanism. In addition, NO has recently emerged as a mediator of epigenetic gene expression and chromatin changes. In this review, these molecular mechanisms, especially those in the central nervous system and neurodegenerative disorders, are described.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, 600N Wolfe St., Baltimore, MD 21287, USA
| | | |
Collapse
|
43
|
Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 2011; 23:317-23. [PMID: 20727968 PMCID: PMC3084531 DOI: 10.1016/j.cellsig.2010.08.003] [Citation(s) in RCA: 466] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/10/2010] [Indexed: 11/23/2022]
Abstract
Multiple roles for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been recently appreciated. In addition to the cytoplasm where the majority of GAPDH is located under the basal condition, GAPDH is also found in the particulate fractions, such as the nucleus, the mitochondria, and the small vesicular fractions. When cells are exposed to various stressors, dynamic subcellular re-distribution of GAPDH occurs. Here we review these multifunctional properties of GAPDH, especially linking them to its oligomerization, posttranslational modification, and subcellular localization. This includes mechanistic descriptions of how S-nitrosylation of GAPDH under oxidative stress may lead to cell death/dysfunction via nuclear translocation of GAPDH, which is counteracted by a cytosolic GOSPEL. GAPDH is also involved in various diseases, especially neurodegenerative disorders and cancers. Therapeutic strategies to these conditions based on molecular understanding of GAPDH are discussed.
Collapse
Affiliation(s)
- Carlos Tristan
- Department of Psychiatry, Johns Hopkins University School of Medicine Baltimore MD 21287, USA
| | - Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine Baltimore MD 21287, USA
| | - Thomas W. Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine Baltimore MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine Baltimore MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore MD 21287, USA
| |
Collapse
|
44
|
Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol Cell Biol 2010; 31:924-34. [PMID: 21189284 DOI: 10.1128/mcb.00576-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor κB (NF-κB) signaling controls a wide range of cellular functions such as tumor progression and invasion by inducing gene expression. Upon stimulation, NF-κB is translocated to the nucleus and binds to its target gene promoters to activate transcription by recruiting transcription coactivators. Although significant progress has been made in understanding NF-κB-mediated transactivation, little is known about how NF-κB is recruited to its target gene promoters. Here, we report that transducin β-like protein 1 (TBL1) controls the expression of NF-κB target genes by directly binding with NF-κB and facilitating its recruitment to target gene promoters. Tumor necrosis factor alpha stimulation triggered the formation of an NF-κB and TBL1 complex and subsequent target gene promoter binding. Knockdown of TBL1 impaired the recruitment of NF-κB to its target gene promoters. Interestingly, analysis of the Oncomine database revealed that TBL1 mRNA levels were significantly higher in invasive breast cancer tissues than in breast adenocarcinoma tissue. Consistently, TBL1 knockdown significantly reduced the invasive potential of breast cancer cells by inhibiting NF-κB. Our results reveal a new mechanism for the regulation of NF-κB activation, with important implications for the development of novel strategies for cancer therapy by targeting NF-κB.
Collapse
|
45
|
Zhao HL, Ueki N, Hayman MJ. The Ski protein negatively regulates Siah2-mediated HDAC3 degradation. Biochem Biophys Res Commun 2010; 399:623-8. [PMID: 20691163 PMCID: PMC2940706 DOI: 10.1016/j.bbrc.2010.07.127] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/17/2022]
Abstract
Ski acts as a transcriptional co-repressor by multiple direct and indirect interactions with several distinct repression complexes. Ski represses retinoic acid (RA) signaling by interacting with, and stabilizing, key components of the co-repressor complex, namely, HDAC3. However, little is known as to how the Ski protein can stabilize HDAC3. In the present study, we identified the Siah2 protein as a potential E3 ubiquitin ligase that mediated proteasomal degradation of HDAC3. Reciprocal co-immunoprecipitation assays further revealed that Ski interacts with Siah2. Furthermore, co-expression of the Ski protein stabilized the level of Siah2 protein. Since Siah2 regulates its own level of expression by self-degradation, the stabilization of Siah2 by Ski is an indication that Ski association leads to inhibition of Siah2 E3 ubiquitin ligase activity. Only wild-type Ski and Ski truncation mutants that were in the same complex with Siah2 could stabilize HDAC3 levels. Taken together, the results suggest that association with Ski leads to inhibition of Siah2 E3 ubiquitin ligase activity and in this way, the Ski protein inhibits Siah2-mediated proteasomal degradation of HDAC3.
Collapse
Affiliation(s)
- Hong-Ling Zhao
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
46
|
Xie W, Jin L, Mei Y, Wu M. E2F1 represses beta-catenin/TCF activity by direct up-regulation of Siah1. J Cell Mol Med 2010; 13:1719-1727. [PMID: 20187294 DOI: 10.1111/j.1582-4934.2008.00423.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Its activity is strictly controlled by the pRB/E2F pathway. In the majority of cancer cells, however, this pathway is frequently found deregulated, and the underlying mechanism involving transcriptional control by E2F1 has not yet been fully elucidated. Here we report the identification of two putative E2F1-binding sites located upstream from Siah1 transcription start site (+1). Chromatin immunoprecipitation assay reveals that transcription factor E2F1 is capable of binding to the putative sites, and luciferase reporter assay shows that E2F1 can activate transcription from the Siah1 promoter. Ectopic expression of E2F1 elevates the Siah1 level, hence suppressing the beta-catenin/TCF activity. Consistently, knock-down of endogenous E2F1 by a shRNA strategy results in reduced expression of Siah1. Moreover, repression of beta-catenin/TCF activity by E2F1 can be attenuated by shRNA-based repression of endogenous Siah1, implying that Siah1 is a bona fide E2F1 target gene, which at least partly, mediates the suppression of beta-catenin/TCF signalling pathway.
Collapse
Affiliation(s)
- Wei Xie
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Jin
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Mian Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
47
|
Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ, Weis WI, Wang CY, Chazin WJ. Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 2010; 285:13507-16. [PMID: 20181957 DOI: 10.1074/jbc.m109.049411] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Beta-catenin is a key component of the Wnt signaling pathway that functions as a transcriptional co-activator of Wnt target genes. Upon UV-induced DNA damage, beta-catenin is recruited for polyubiquitination and subsequent proteasomal degradation by a unique, p53-induced SCF-like complex (SCF(TBL1)), comprised of Siah-1, Siah-1-interacting protein (SIP), Skp1, transducin beta-like 1 (TBL1), and adenomatous polyposis coli (APC). Given the complexity of the various factors involved and the novelty of ubiquitination of the non-phosphorylated beta-catenin substrate, we have investigated Siah-1-mediated ubiquitination of beta-catenin in vitro and in cells. Overexpression and purification protocols were developed for each of the SCF(TBL1) proteins, enabling a systematic analysis of beta-catenin ubiquitination using an in vitro ubiquitination assay. This study revealed that Siah-1 alone was able to polyubiquitinate beta-catenin. In addition, TBL1 was shown to play a role in protecting beta-catenin from Siah-1 ubiquitination in vitro and from Siah-1-targeted proteasomal degradation in cells. Siah-1 and TBL1 were found to bind to the same armadillo repeat domain of beta-catenin, suggesting that polyubiquitination of beta-catenin is regulated by competition between Siah-1 and TBL1 during Wnt signaling.
Collapse
Affiliation(s)
- Yoana N Dimitrova
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:10. [PMID: 20144232 PMCID: PMC2831832 DOI: 10.1186/1756-9966-29-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 02/09/2010] [Indexed: 11/21/2022]
Abstract
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed.
Collapse
|
49
|
Emerging roles of the ubiquitin proteasome system in nuclear hormone receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:117-35. [PMID: 20374703 DOI: 10.1016/s1877-1173(09)87004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor (NR)-mediated transcription is intimately tied to the ubiquitin proteasome system (UPS). The UPS targets numerous NR and coregulator proteins, regulating their stability and altering their transcriptional activities through the posttranslational placement of ubiquitin marks on them. Differences in the manner in which ubiquitin is attached to target proteins or itself have distinct regulatory consequences. Protein monoubiquitination, polyubiquitination, the site of ubiquitin attachment to a target protein, and the type of polyubiquitin chain linkage all lead to different biological outcomes and have an important regulatory function in NR-mediated transcription. Consistent with its role in protein degradation, the UPS is able to limit the biological actions of both NRs and coregulators by reducing their protein concentrations in the cell. However, in spite of its destructive capabilities, the UPS can play a positive role in facilitating NR-mediated transcription as well. In addition, ubiquitin-like modifications such as SUMOylation also modify and regulate NRs and coregulators. The UPS forms a key biological system that underlies a sophisticated postranslational regulatory scheme from which complex and dynamic regulation of NR-mediated transcription can occur.
Collapse
|
50
|
Twomey E, Li Y, Lei J, Sodja C, Ribecco-Lutkiewicz M, Smith B, Fang H, Bani-Yaghoub M, McKinnell I, Sikorska M. Regulation of MYPT1 stability by the E3 ubiquitin ligase SIAH2. Exp Cell Res 2009; 316:68-77. [PMID: 19744480 DOI: 10.1016/j.yexcr.2009.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/25/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
Myosin phosphatase target subunit 1 (MYPT1), together with catalytic subunit of type1 delta isoform (PP1cdelta) and a small 20-kDa regulatory unit (M20), form a heterotrimeric holoenzyme, myosin phosphatase (MP), which is responsible for regulating the extent of myosin light chain phosphorylation. Here we report the identification and characterization of a molecular interaction between Seven in absentia homolog 2 (SIAH2) and MYPT1 that resulted in the proteasomal degradation of the latter in mammalian cells, including neurons and glia. The interaction involved the substrate binding domain of SIAH2 (aa 116-324) and a central region of MYPT1 (aa 445-632) containing a degenerate consensus Siah-binding motif RLAYVAP (aa 493-499) evolutionally conserved from fish to humans. These findings suggest a novel mechanism whereby the ability of MP to modulate myosin light chain might be regulated by the degradation of its targeting subunit MYPT1 through the SIAH2-ubiquitin-proteasomal pathway. In this manner, the turnover of MYPT1 would serve to limit the duration and/or magnitude of MP activity required to achieve a desired physiological effect.
Collapse
Affiliation(s)
- Erin Twomey
- Neurogenesis and Brain Repair Group, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, M-54, Ottawa, Canada ON K1A 0R6
| | | | | | | | | | | | | | | | | | | |
Collapse
|