1
|
Loo SK, Sica G, Wang X, Li T, Chen L, Gaither-Davis A, Huang Y, Burns TF, Stabile LP, Gao SJ. CASTOR1 phosphorylation predicts poor survival in male patients with KRAS-mutated lung adenocarcinoma. Cell Biosci 2024; 14:127. [PMID: 39385301 PMCID: PMC11465729 DOI: 10.1186/s13578-024-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Lung cancer, a leading global cause of cancer-related mortality, necessitates enhanced prognostic markers for improved treatment outcomes. We have previously shown a tumor suppressive role of cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), which is targeted for degradation upon phosphorylation at S14 (pCASTOR1) in multiple types of cancer. This study focuses on the predictive value of pCASTOR1 in lung adenocarcinoma (LUAD) patients with KRAS mutations. RESULTS Employing a newly developed pCASTOR1 specific antibody, we found that tumor cells exhibited significantly elevated pCASTOR1 scores compared to non-tumor cells (P < 0.05). Higher pCASTOR1 scores predicted poorer overall survival (OS) (HR = 3.3, P = 0.0008) and relapse-free survival (RFS) (HR = 3.0, P = 0.0035) in male patients with KRAS mutations. pCASTOR1 remained an independent predictor for OS (HR = 4.1, P = 0.0047) and RFS (HR = 3.5, P = 0.0342) after controlling for other factors. Notably, in early-stage LUAD, elevated pCASTOR1 scores were associated with significantly worse OS (HR = 3.3, P = 0.0176) and RFS (HR = 3.1, P = 0.0277) in male patients with KRAS mutations, akin to late-stage patients. CONCLUSION Elevated pCASTOR1 scores serve as biomarkers predicting poorer OS and RFS in male LUAD patients with KRAS mutations, offering potential clinical utility in optimizing treatment strategies for this subgroup.
Collapse
Affiliation(s)
- Suet Kee Loo
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gabriel Sica
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Presbyterian Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xian Wang
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tingting Li
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luping Chen
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Autumn Gaither-Davis
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy F Burns
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laura P Stabile
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Lara-Sáez I, Mencía Á, Recuero E, Li Y, García M, Oteo M, Gallego MI, Enguita AB, de Prado-Verdún D, A S, Wang W, García-Escudero R, Murillas R, Santos M. Nonviral CRISPR/Cas9 mutagenesis for streamlined generation of mouse lung cancer models. Proc Natl Acad Sci U S A 2024; 121:e2322917121. [PMID: 38959035 PMCID: PMC11252735 DOI: 10.1073/pnas.2322917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Functional analysis in mouse models is necessary to establish the involvement of a set of genetic variations in tumor development. A modeling platform to facilitate and cost-effectively analyze the role of multiple genes in carcinogenesis would be valuable. Here, we present an innovative strategy for lung mutagenesis using CRISPR/Cas9 ribonucleoproteins delivered via cationic polymers. This approach allows the simultaneous inactivation of multiple genes. We validate the effectiveness of this system by targeting a group of tumor suppressor genes, specifically Rb1, Rbl1, Pten, and Trp53, which were chosen for their potential to cause lung tumors, namely small cell lung carcinoma (SCLC). Tumors with histologic and transcriptomic features of human SCLC emerged after intratracheal administration of CRISPR/polymer nanoparticles. These tumors carried loss-of-function mutations in all four tumor suppressor genes at the targeted positions. These findings were reproduced in two different pure genetic backgrounds. We provide a proof of principle for simplified modeling of lung tumorigenesis to facilitate functional testing of potential cancer-related genes.
Collapse
Affiliation(s)
- Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Ángeles Mencía
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
| | - Enrique Recuero
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- Cellular and Molecular Genitourinary Oncology Group, Institute of Biomedical Research Hospital “12 de Octubre”, Madrid28041, Spain
| | - Yinghao Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Marta García
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
- Department of Biomedical Engineering, Polytechnic School, Carlos III University, Leganés, Madrid28911, Spain
| | - Marta Oteo
- Biomedical Applications and Pharmacokinetics Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
| | - Marta I. Gallego
- Unidad de Histología, Unidades Centrales Científico Tecnológicas, Instituto de Salud Carlos III, Madrid28220, Spain
| | - Ana Belén Enguita
- Pathology Department, University Hospital “12 de Octubre”, Madrid28041, Spain
| | - Diana de Prado-Verdún
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
| | - Sigen A
- Research and Clinical Translation Center of Gene Medicine and Tissue Engineering, School of Public Health, Anhui University of Science and Technology, Huainan232001, China
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Ramón García-Escudero
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- Cellular and Molecular Genitourinary Oncology Group, Institute of Biomedical Research Hospital “12 de Octubre”, Madrid28041, Spain
- Tumor Progression Mechanisms Program, Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| | - Rodolfo Murillas
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- CB06/07/0019 Unit, Centro de Investigación Biomédica en Red en Enfermedades Raras, Madrid28029, Spain
- Regenerative Medicine and Tissue Bioengineering Group, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid28040, Spain
| | - Mirentxu Santos
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid28040, Spain
- Cellular and Molecular Genitourinary Oncology Group, Institute of Biomedical Research Hospital “12 de Octubre”, Madrid28041, Spain
- Tumor Progression Mechanisms Program, Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| |
Collapse
|
3
|
Wang D, Li W, Albasha N, Griffin L, Chang H, Amaya L, Ganguly S, Zeng L, Keum B, González-Navajas JM, Levin M, AkhavanAghdam Z, Snyder H, Schwartz D, Tao A, Boosherhri LM, Hoffman HM, Rose M, Estrada MV, Varki N, Herdman S, Corr M, Webster NJG, Raz E, Bertin S. Long-term exposure to house dust mites accelerates lung cancer development in mice. J Exp Clin Cancer Res 2023; 42:26. [PMID: 36670473 PMCID: PMC9863279 DOI: 10.1186/s13046-022-02587-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Individuals with certain chronic inflammatory lung diseases have a higher risk of developing lung cancer (LC). However, the underlying mechanisms remain largely unknown. Here, we hypothesized that chronic exposure to house dust mites (HDM), a common indoor aeroallergen associated with the development of asthma, accelerates LC development through the induction of chronic lung inflammation (CLI). METHODS: The effects of HDM and heat-inactivated HDM (HI-HDM) extracts were evaluated in two preclinical mouse models of LC (a chemically-induced model using the carcinogen urethane and a genetically-driven model with oncogenic KrasG12D activation in lung epithelial cells) and on murine macrophages in vitro. Pharmacological blockade or genetic deletion of the Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1, interleukin-1β (IL-1β), and C-C motif chemokine ligand 2 (CCL2) or treatment with an inhaled corticosteroid (ICS) was used to uncover the pro-tumorigenic effect of HDM. RESULTS: Chronic intranasal (i.n) instillation of HDM accelerated LC development in the two mouse models. Mechanistically, HDM caused a particular subtype of CLI, in which the NLRP3/IL-1β signaling pathway is chronically activated in macrophages, and made the lung microenvironment conducive to tumor development. The tumor-promoting effect of HDM was significantly decreased by heat treatment of the HDM extract and was inhibited by NLRP3, IL-1β, and CCL2 neutralization, or ICS treatment. CONCLUSIONS Collectively, these data indicate that long-term exposure to HDM can accelerate lung tumorigenesis in susceptible hosts (e.g., mice and potentially humans exposed to lung carcinogens or genetically predisposed to develop LC).
Collapse
Affiliation(s)
- Dongjie Wang
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Li
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Center for Immunology, Inflammation and Immune-Mediated Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Natalie Albasha
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Lindsey Griffin
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Han Chang
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Lauren Amaya
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Sneha Ganguly
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Liping Zeng
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Center for Immunology, Inflammation and Immune-Mediated Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - José M González-Navajas
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Hospital General Universitario de Alicante, Alicante, Spain
- Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain
| | | | | | | | | | - Ailin Tao
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Center for Immunology, Inflammation and Immune-Mediated Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Laela M Boosherhri
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California San Diego, La Jolla, CA, USA
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California San Diego, La Jolla, CA, USA
| | - Michael Rose
- Tissue Technology Shared Resource, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Monica Valeria Estrada
- Tissue Technology Shared Resource, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Nissi Varki
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Scott Herdman
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| | - Nicholas J G Webster
- Division of Endocrinology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA
- Medical Research Service, Veteran Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eyal Raz
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| | - Samuel Bertin
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| |
Collapse
|
4
|
Gouzerh F, Ganem G, Pichevin A, Dormont L, Thomas F. Ability of animals to detect cancer odors. Biochim Biophys Acta Rev Cancer 2023; 1878:188850. [PMID: 36528192 DOI: 10.1016/j.bbcan.2022.188850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The olfactory capacity of animals has long been used by humans to help with various activities, e.g., hunting, detecting mines, locating people, and diagnosing diseases. Cancer is among the leading diseases causing death worldwide. Several recent studies have underscored the benefit of using scent to detect cancer, and this paper will review the studies using animals to detect tumor scents. A large variety of animals have been used for this purpose-dogs, rodents, insects, and nematodes-and have shown their capacity to detect cancer, with a success rate close to 90%. Here we discuss these studies, their methodologies, and the animal models used. Finally, we discuss the medical perspectives for cancer diagnosis using odors.
Collapse
Affiliation(s)
- Flora Gouzerh
- Centre de Recherches Écologiques et Évolutives sur le Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224- CNRS 5290- Université de Montpellier, 34394 Montpellier, France; Centre d'Ecologie Fonctionnelle et Evolutive, Université́ de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34293 Montpellier, France.
| | - Guila Ganem
- Institut des Sciences de l'Evolution, ISEM, Université Montpellier, CNRS, IRD, 34095 Montpellier, France
| | - Anaïs Pichevin
- Centre d'Ecologie Fonctionnelle et Evolutive, Université́ de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34293 Montpellier, France
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive, Université́ de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34293 Montpellier, France
| | - Frédéric Thomas
- Centre de Recherches Écologiques et Évolutives sur le Cancer, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR IRD 224- CNRS 5290- Université de Montpellier, 34394 Montpellier, France
| |
Collapse
|
5
|
Montagna DR, Duarte A, Chiarella P, Rearte B, Bustuoabad OD, Vermeulen M, Ruggiero RA. Inhibition of hyperprogressive cancer disease induced by immune-checkpoint blockade upon co-treatment with meta-tyrosine and p38 pathway inhibitor. BMC Cancer 2022; 22:845. [PMID: 35922755 PMCID: PMC9347122 DOI: 10.1186/s12885-022-09941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Background Although immune-checkpoint inhibitors (ICI) are overall promissory for cancer treatment, they entail, in some cases, an undesired side-effect called hyperprogressive-cancer disease (HPD) associated with acceleration of tumor growth and shortened survival. Methods To understand the mechanisms of HPD we assayed the ICI therapy on two murine tumors widely different regarding immunogenicity and, subsequently, on models of local recurrences and metastases of these tumors. To potentiate the immune response (IR), we combined ICI with meta-tyrosine—that counteracts immune-suppressive signals—and a selective inhibitor of p38 pathway that proved to counteract the phenomenon of tumor-immunostimulation. Results ICI were therapeutically effective against both tumor models (proportionally to their immunogenicity) but only when they faced incipient tumors. In contrast, ICI produced acceleration of large and residual tumors. The combined treatment strongly inhibited the growth of large tumors and it managed to cure 80% of mice with local recurrences and 60% of mice bearing residual metastases. Conclusions Tumor enhancement was paradoxically correlated to a weak increase of the antitumor IR suggesting that a weak IR – different from a strong tumor-inhibitory one—may produce stimulation of tumor growth, mimicking the HPD observed in some clinical settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09941-2.
Collapse
Affiliation(s)
- Daniela R Montagna
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina.
| | - Alejandra Duarte
- Laboratory of Experimental Immunology, IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Paula Chiarella
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Bárbara Rearte
- Laboratory of Physiology of Inflammatory Processes, IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Oscar D Bustuoabad
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratory of Antigen Presenting Cells and Inflammatory Response, IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| | - Raúl A Ruggiero
- Laboratory of Experimental Oncology, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Sinjab A, Rahal Z, Kadara H. Cell-by-Cell: Unlocking Lung Cancer Pathogenesis. Cancers (Basel) 2022; 14:3424. [PMID: 35884485 PMCID: PMC9320562 DOI: 10.3390/cancers14143424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 01/09/2023] Open
Abstract
For lung cancers, cellular trajectories and fates are strongly pruned by cell intrinsic and extrinsic factors. Over the past couple of decades, the combination of comprehensive molecular and genomic approaches, as well as the use of relevant pre-clinical models, enhanced micro-dissection techniques, profiling of rare preneoplastic lesions and surrounding tissues, as well as multi-region tumor sequencing, have all provided in-depth insights into the early biology and evolution of lung cancers. The advent of single-cell sequencing technologies has revolutionized our ability to interrogate these same models, tissues, and cohorts at an unprecedented resolution. Single-cell tracking of lung cancer pathogenesis is now transforming our understanding of the roles and consequences of epithelial-microenvironmental cues and crosstalk during disease evolution. By focusing on non-small lung cancers, specifically lung adenocarcinoma subtype, this review aims to summarize our knowledge base of tumor cells-of-origin and tumor-immune dynamics that have been primarily fueled by single-cell analysis of lung adenocarcinoma specimens at various stages of disease pathogenesis and of relevant animal models. The review will provide an overview of how recent reports are rewriting the mechanistic details of lineage plasticity and intra-tumor heterogeneity at a magnified scale thanks to single-cell studies of early- to late-stage lung adenocarcinomas. Future advances in single-cell technologies, coupled with analysis of minute amounts of rare clinical tissues and novel animal models, are anticipated to help transform our understanding of how diverse micro-events elicit macro-scale consequences, and thus to significantly advance how basic genomic and molecular knowledge of lung cancer evolution can be translated into successful targets for early detection and prevention of this lethal disease.
Collapse
Affiliation(s)
- Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Z.R.); (H.K.)
| | | | | |
Collapse
|
7
|
Khadse A, Haakensen VD, Silwal-Pandit L, Hamfjord J, Micke P, Botling J, Brustugun OT, Lingjærde OC, Helland Å, Kure EH. Prognostic Significance of the Loss of Heterozygosity of KRAS in Early-Stage Lung Adenocarcinoma. Front Oncol 2022; 12:873532. [PMID: 35574381 PMCID: PMC9098994 DOI: 10.3389/fonc.2022.873532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a common disease with a poor prognosis. Genomic alterations involving the KRAS gene are common in lung carcinomas, although much is unknown about how different mutations, deletions, and expressions influence the disease course. The first approval of a KRAS-directed inhibitor was recently approved by the FDA. Mutations in the KRAS gene have been associated with poor prognosis for lung adenocarcinomas, but implications of the loss of heterozygosity (LOH) of KRAS have not been investigated. In this study, we have assessed the LOH of KRAS in early-stage lung adenocarcinoma by analyzing DNA copy number profiles and have investigated the effect on patient outcome in association with mRNA expression and somatic hotspot mutations. KRAS mutation was present in 36% of cases and was associated with elevated mRNA expression. LOH in KRAS was associated with a favorable prognosis, more prominently in KRAS mutated than in wild-type patients. The presence of both LOH and mutation in KRAS conferred a better prognosis than KRAS mutation alone. For wild-type tumors, no difference in prognosis was observed between patients with and without LOH in KRAS. Our study indicates that LOH in KRAS is an independent prognostic factor that may refine the existing prognostic groups of lung adenocarcinomas.
Collapse
Affiliation(s)
- Anand Khadse
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | - Vilde D. Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Vilde D. Haakensen,
| | - Laxmi Silwal-Pandit
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Julian Hamfjord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elin H. Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| |
Collapse
|
8
|
Xiang Y, Luettich K, Martin F, Battey JND, Trivedi K, Neau L, Wong ET, Guedj E, Dulize R, Peric D, Bornand D, Ouadi S, Sierro N, Büttner A, Ivanov NV, Vanscheeuwijck P, Hoeng J, Peitsch MC. Discriminating Spontaneous From Cigarette Smoke and THS 2.2 Aerosol Exposure-Related Proliferative Lung Lesions in A/J Mice by Using Gene Expression and Mutation Spectrum Data. FRONTIERS IN TOXICOLOGY 2022; 3:634035. [PMID: 35295134 PMCID: PMC8915865 DOI: 10.3389/ftox.2021.634035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Mice, especially A/J mice, have been widely employed to elucidate the underlying mechanisms of lung tumor formation and progression and to derive human-relevant modes of action. Cigarette smoke (CS) exposure induces tumors in the lungs; but, non-exposed A/J mice will also develop lung tumors spontaneously with age, which raises the question of discriminating CS-related lung tumors from spontaneous ones. However, the challenge is that spontaneous tumors are histologically indistinguishable from the tumors occurring in CS-exposed mice. We conducted an 18-month inhalation study in A/J mice to assess the impact of lifetime exposure to Tobacco Heating System (THS) 2.2 aerosol relative to exposure to 3R4F cigarette smoke (CS) on toxicity and carcinogenicity endpoints. To tackle the above challenge, a 13-gene gene signature was developed based on an independent A/J mouse CS exposure study, following by a one-class classifier development based on the current study. Identifying gene signature in one data set and building classifier in another data set addresses the feature/gene selection bias which is a well-known problem in literature. Applied to data from this study, this gene signature classifier distinguished tumors in CS-exposed animals from spontaneous tumors. Lung tumors from THS 2.2 aerosol-exposed mice were significantly different from those of CS-exposed mice but not from spontaneous tumors. The signature was also applied to human lung adenocarcinoma gene expression data (from The Cancer Genome Atlas) and discriminated cancers in never-smokers from those in ever-smokers, suggesting translatability of our signature genes from mice to humans. A possible application of this gene signature is to discriminate lung cancer patients who may benefit from specific treatments (i.e., EGFR tyrosine kinase inhibitors). Mutational spectra from a subset of samples were also utilized for tumor classification, yielding similar results. “Landscaping” the molecular features of A/J mouse lung tumors highlighted, for the first time, a number of events that are also known to play a role in human lung tumorigenesis, such as Lrp1b mutation and Ros1 overexpression. This study shows that omics and computational tools provide useful means of tumor classification where histopathological evaluation alone may be unsatisfactory to distinguish between age- and exposure-related lung tumors.
Collapse
Affiliation(s)
- Yang Xiang
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - James N D Battey
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Keyur Trivedi
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Laurent Neau
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International R&D, Philip Morris International Research Laboratories Pte. Ltd., Singapore, Singapore
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - David Bornand
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Sonia Ouadi
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
9
|
Platel A, Dusautoir R, Kervoaze G, Dourdin G, Gateau E, Talahari S, Huot L, Simar S, Ollivier A, Laine W, Kluza J, Gosset P, Garçon G, Anthérieu S, Guidice JML, Nesslany F. Comparison of the in vivo genotoxicity of electronic and conventional cigarettes aerosols after subacute, subchronic and chronic exposures. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127246. [PMID: 34844363 DOI: 10.1016/j.jhazmat.2021.127246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects. In this context, the aim of our study was to compare, on a mouse model and using a nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two power settings (18 W and 30 W) and conventional cigarette (3R4F) smoke. The standard comet assay, micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in mouse model.
Collapse
Affiliation(s)
- Anne Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Romain Dusautoir
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Gwenola Kervoaze
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - Gonzague Dourdin
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Eulalie Gateau
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Smaïl Talahari
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Ludovic Huot
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Sophie Simar
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Anaïs Ollivier
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - William Laine
- UMR 9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France.
| | - Jérôme Kluza
- UMR 9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France.
| | - Philippe Gosset
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Sébastien Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Fabrice Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
10
|
Drosten M, Barbacid M. Targeting KRAS mutant lung cancer: light at the end of the tunnel. Mol Oncol 2021; 16:1057-1071. [PMID: 34951114 PMCID: PMC8895444 DOI: 10.1002/1878-0261.13168] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
For decades, KRAS mutant lung adenocarcinomas (LUAD) have been refractory to therapeutic strategies based on personalized medicine owing to the complexity of designing inhibitors to selectively target KRAS and downstream targets with acceptable toxicities. The recent development of selective KRASG12C inhibitors represents a landmark after 40 years of intense research efforts since the identification of KRAS as a human oncogene. Here, we discuss the mechanisms responsible for the rapid development of resistance to these inhibitors, as well as potential strategies to overcome this limitation. Other therapeutic strategies aimed at inhibiting KRAS oncogenic signaling by targeting either upstream activators or downstream effectors are also reviewed. Finally, we discuss the effect of targeting the mitogen‐activated protein kinase (MAPK) pathway, both based on the failure of MEK and ERK inhibitors in clinical trials, as well as on the recent identification of RAF1 as a potential target due to its MAPK‐independent activity. These new developments, taken together, are likely to open new avenues to effectively treat KRAS mutant LUAD.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Mariano Barbacid
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
11
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
12
|
Kadara H, Tran LM, Liu B, Vachani A, Li S, Sinjab A, Zhou XJ, Dubinett SM, Krysan K. Early Diagnosis and Screening for Lung Cancer. Cold Spring Harb Perspect Med 2021; 11:a037994. [PMID: 34001525 PMCID: PMC8415293 DOI: 10.1101/cshperspect.a037994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer interception refers to actively blocking the cancer development process by preventing progression of premalignancy to invasive disease. The rate-limiting steps for effective lung cancer interception are the incomplete understanding of the earliest molecular events associated with lung carcinogenesis, the lack of preclinical models of pulmonary premalignancy, and the challenge of developing highly sensitive and specific methods for early detection. Recent advances in cancer interception are facilitated by developments in next-generation sequencing, computational methodologies, as well as the renewed emphasis in precision medicine and immuno-oncology. This review summarizes the current state of knowledge in the areas of molecular abnormalities in lung cancer continuum, preclinical human models of lung cancer pathogenesis, and the advances in early lung cancer diagnostics.
Collapse
Affiliation(s)
- Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Linh M Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Anil Vachani
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania and Philadelphia VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xianghong J Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Steven M Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, California 90024, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| |
Collapse
|
13
|
Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer 2021; 7:916-929. [PMID: 34303648 DOI: 10.1016/j.trecan.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Unraveling the multifaceted cellular and physiological processes associated with metastasis is best achieved by using in vivo models that recapitulate the requisite tumor cell-intrinsic and -extrinsic mechanisms at the organismal level. We discuss the current status of mouse models of metastasis. We consider how mouse models can refine our understanding of the underlying biological and molecular processes that promote metastasis, and we envisage how the application of new technologies will further enhance investigations of metastasis at single-cell resolution in the context of the whole organism. Our view is that investigations based on state-of-the-art mouse models can propel a holistic understanding of the biology of metastasis, which will ultimately lead to the discovery of new therapeutic opportunities.
Collapse
Affiliation(s)
- Arianna Giacobbe
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
14
|
Miura A, Yamada D, Nakamura M, Tomida S, Shimizu D, Jiang Y, Takao T, Yamamoto H, Suzawa K, Shien K, Yamane M, Sakaguchi M, Toyooka S, Takarada T. Oncogenic potential of human pluripotent stem cell-derived lung organoids with HER2 overexpression. Int J Cancer 2021; 149:1593-1604. [PMID: 34152598 DOI: 10.1002/ijc.33713] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most common types among lung cancers generally arising from terminal airway and understanding of multistep carcinogenesis is crucial to develop novel therapeutic strategy for LUAD. Here we used human induced pluripotent stem cells (hiPSCs) to establish iHER2-hiPSCs in which doxycycline induced the expression of the oncoprotein human epidermal growth factor receptor 2 (HER2)/ERBB2. Lung progenitors that differentiated from iHER2-hiPSCs, which expressed NKX2-1/TTF-1 known as a lung lineage maker, were cocultured with human fetal fibroblast and formed human lung organoids (HLOs) comprising alveolar type 2-like cells. HLOs that overexpressed HER2 transformed to tumor-like structures similar to atypical adenomatous hyperplasia, which is known for lung precancerous lesion and upregulated the activities of oncogenic signaling cascades such as RAS/RAF/MAPK and PI3K/AKT/mTOR. The degree of morphological irregularity and proliferation capacity were significantly higher in HLOs from iHER2-hiPSCs. Moreover, the transcriptome profile of the HLOs shifted from a normal lung tissue-like state to one characteristic of clinical LUAD with HER2 amplification. Our results suggest that hiPSC-derived HLOs may serve as a model to recapitulate the early tumorigenesis of LUAD and would provide new insights into the molecular basis of tumor initiation and progression.
Collapse
Affiliation(s)
- Akihiro Miura
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Nakamura
- Precision Health, Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Dai Shimizu
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yan Jiang
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoka Takao
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
15
|
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Ye J, Tanimoto M, Wu L, Mukai Y, Imaida K, Matsuda Y. Relationship between Lung Carcinogenesis and Chronic Inflammation in Rodents. Cancers (Basel) 2021; 13:cancers13122910. [PMID: 34200786 PMCID: PMC8230400 DOI: 10.3390/cancers13122910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Lung cancer is the most common cause of cancer-related deaths worldwide. There are various risk factors for lung cancer, including tobacco smoking, inhalation of dust particles, chronic inflammation, and genetic factors. Chronic inflammation has been considered a key factor that promotes tumor progression via production of cytokines, chemokines, cytotoxic mediators, and reactive oxygen species by inflammatory cells. Here, we review rodent models of lung tumor induced by tobacco, tobacco-related products, and pro-inflammatory materials as well as genetic modifications, and discuss the relationship between chronic inflammation and lung tumor. Through this review, we hope to clarify the effects of chronic inflammation on lung carcinogenesis and help develop new treatments for lung cancer. Abstract Lung cancer remains the leading cause of cancer-related deaths, with an estimated 1.76 million deaths reported in 2018. Numerous studies have focused on the prevention and treatment of lung cancer using rodent models. Various chemicals, including tobacco-derived agents induce lung cancer and pre-cancerous lesions in rodents. In recent years, transgenic engineered rodents, in particular, those generated with a focus on the well-known gene mutations in human lung cancer (KRAS, EGFR, and p53 mutations) have been widely studied. Animal studies have revealed that chronic inflammation significantly enhances lung carcinogenesis, and inhibition of inflammation suppresses cancer progression. Moreover, the reduction in tumor size by suppression of inflammation in animal experiments suggests that chronic inflammation influences the promotion of tumorigenesis. Here, we review rodent lung tumor models induced by various chemical carcinogens, including tobacco-related carcinogens, and transgenics, and discuss the roles of chronic inflammation in lung carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoko Matsuda
- Correspondence: ; Tel.: +81-87-891-2109; Fax: +81-87-891-2112
| |
Collapse
|
16
|
Cyclooxygenase-2 induces neoplastic transformation by inhibiting p53-dependent oncogene-induced senescence. Sci Rep 2021; 11:9853. [PMID: 33972599 PMCID: PMC8110573 DOI: 10.1038/s41598-021-89220-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Much in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.
Collapse
|
17
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
18
|
Davenport ML, Echols JB, Silva AD, Anderson JC, Owens P, Yates C, Wei Q, Harada S, Hurst DR, Edmonds MD. miR-31 Displays Subtype Specificity in Lung Cancer. Cancer Res 2021; 81:1942-1953. [PMID: 33558335 PMCID: PMC8137562 DOI: 10.1158/0008-5472.can-20-2769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
miRNA rarely possess pan-oncogenic or tumor-suppressive properties. Most miRNAs function under tissue-specific contexts, acting as either tumor suppressors in one tissue, promoting oncogenesis in another, or having no apparent role in the regulation of processes associated with the hallmarks of cancer. What has been less clear is the role of miRNAs within cell types of the same tissue and the ability within each cell type to contribute to oncogenesis. In this study, we characterize the role of one such tissue-specific miRNA, miR-31, recently identified as the most oncogenic miRNA in lung adenocarcinoma, across the histologic spectrum of human lung cancer. Compared with normal lung tissue, miR-31 was overexpressed in patient lung adenocarcinoma, squamous cell carcinoma, and large-cell neuroendocrine carcinoma, but not small-cell carcinoma or carcinoids. miR-31 promoted tumor growth in mice of xenografted human adenocarcinoma and squamous cell carcinoma cell lines, but not in large- or small-cell carcinoma lines. While miR-31 did not promote primary tumor growth of large- and small-cell carcinoma, it did promote spontaneous metastasis. Mechanistically, miR-31 altered distinct cellular signaling programs within each histologic subtype, resulting in distinct phenotypic differences. This is the first report distinguishing diverse functional roles for this miRNA across the spectrum of lung cancers and suggests that miR-31 has broad clinical value in human lung malignancy. SIGNIFICANCE: These findings demonstrate the oncogenic properties of miR-31 in specific subtypes of lung cancer and highlight it as a potential therapeutic target in these subtypes. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/1942/F1.large.jpg.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Animals
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/secondary
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Proliferation
- Databases, Genetic
- Female
- Humans
- Liver Neoplasms/secondary
- Lung/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- MicroRNAs/metabolism
- Neoplasm Metastasis/genetics
- Neoplasm Transplantation
- Organ Specificity
- Signal Transduction/genetics
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
- Small Cell Lung Carcinoma/secondary
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
| | - John B Echols
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Austin D Silva
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joshua C Anderson
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Research Service, Department of Veterans Affairs, Denver, Colorado
| | - Clayton Yates
- Department of Biology, Tuskegee University, Tuskegee, Alabama
| | - Qing Wei
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shuko Harada
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas R Hurst
- Pathology Department, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mick D Edmonds
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
19
|
Ward NP, Kang YP, Falzone A, Boyle TA, DeNicola GM. Nicotinamide nucleotide transhydrogenase regulates mitochondrial metabolism in NSCLC through maintenance of Fe-S protein function. J Exp Med 2021; 217:151572. [PMID: 32196080 PMCID: PMC7971138 DOI: 10.1084/jem.20191689] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/06/2020] [Accepted: 02/19/2020] [Indexed: 01/30/2023] Open
Abstract
Human lung tumors exhibit robust and complex mitochondrial metabolism, likely precipitated by the highly oxygenated nature of pulmonary tissue. As ROS generation is a byproduct of this metabolism, reducing power in the form of nicotinamide adenine dinucleotide phosphate (NADPH) is required to mitigate oxidative stress in response to this heightened mitochondrial activity. Nicotinamide nucleotide transhydrogenase (NNT) is known to sustain mitochondrial antioxidant capacity through the generation of NADPH; however, its function in non-small cell lung cancer (NSCLC) has not been established. We found that NNT expression significantly enhances tumor formation and aggressiveness in mouse models of lung tumor initiation and progression. We further show that NNT loss elicits mitochondrial dysfunction independent of substantial increases in oxidative stress, but rather marked by the diminished activities of proteins dependent on resident iron-sulfur clusters. These defects were associated with both NADPH availability and ROS accumulation, suggesting that NNT serves a specific role in mitigating the oxidation of these critical protein cofactors.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| | - Yun Pyo Kang
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| | - Aimee Falzone
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| | - Theresa A Boyle
- Department of Molecular Pathology, Moffitt Cancer Center, Tampa, FL
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
20
|
Tavernari D, Battistello E, Dheilly E, Petruzzella AS, Mina M, Sordet-Dessimoz J, Peters S, Krueger T, Gfeller D, Riggi N, Oricchio E, Letovanec I, Ciriello G. Nongenetic Evolution Drives Lung Adenocarcinoma Spatial Heterogeneity and Progression. Cancer Discov 2021; 11:1490-1507. [PMID: 33563664 DOI: 10.1158/2159-8290.cd-20-1274] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Cancer evolution determines molecular and morphologic intratumor heterogeneity and challenges the design of effective treatments. In lung adenocarcinoma, disease progression and prognosis are associated with the appearance of morphologically diverse tumor regions, termed histologic patterns. However, the link between molecular and histologic features remains elusive. Here, we generated multiomics and spatially resolved molecular profiles of histologic patterns from primary lung adenocarcinoma, which we integrated with molecular data from >2,000 patients. The transition from indolent to aggressive patterns was not driven by genetic alterations but by epigenetic and transcriptional reprogramming reshaping cancer cell identity. A signature quantifying this transition was an independent predictor of patient prognosis in multiple human cohorts. Within individual tumors, highly multiplexed protein spatial profiling revealed coexistence of immune desert, inflamed, and excluded regions, which matched histologic pattern composition. Our results provide a detailed molecular map of lung adenocarcinoma intratumor spatial heterogeneity, tracing nongenetic routes of cancer evolution. SIGNIFICANCE: Lung adenocarcinomas are classified based on histologic pattern prevalence. However, individual tumors exhibit multiple patterns with unknown molecular features. We characterized nongenetic mechanisms underlying intratumor patterns and molecular markers predicting patient prognosis. Intratumor patterns determined diverse immune microenvironments, warranting their study in the context of current immunotherapies.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Daniele Tavernari
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elena Battistello
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland
| | - Elie Dheilly
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland
| | - Aaron S Petruzzella
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland
| | - Marco Mina
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Solange Peters
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Thorsten Krueger
- Division of Thoracic Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Gfeller
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolo Riggi
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Institute of Pathology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Elisa Oricchio
- Swiss Cancer Center Leman, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), EPFL, Lausanne, Switzerland
| | - Igor Letovanec
- Swiss Cancer Center Leman, Lausanne, Switzerland. .,Institute of Pathology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.,Department of Pathology, Central Institute, Hôpital du Valais, Sion, Switzerland
| | - Giovanni Ciriello
- Swiss Cancer Center Leman, Lausanne, Switzerland. .,Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
21
|
Du X, Li D, Wang G, Fan Y, Li N, Chai L, Li G, Li J. Chemoprotective effect of atorvastatin against benzo(a)pyrene-induced lung cancer via the inhibition of oxidative stress and inflammatory parameters. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:355. [PMID: 33708982 PMCID: PMC7944302 DOI: 10.21037/atm-20-7770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Lung cancer affects approximately 9% of women and 17% of men worldwide, and has a mortality rate of 17%. Previously published studies have suggested that oxidative stress expansion can lead to lung cancer. The aim of the current study was to analyze the possible inhibitory pathway of atorvastatin against lung cancer cells in an in vivo model. Methods The cytotoxic effects of atorvastatin on lung cancer cell lines H460 and A549 were analyzed, as well as cell cycle arrest and cell morphology. Benzo(a)pyrene (BaP) was used for the induction of lung cancer in experimental rats, and atorvastatin (5, 10, and 20 mg/kg body weight) was used for treatment in a dose-dependent manner. Body weight and lung tumors were calculated at regular intervals. Antioxidants, pro-inflammatory cytokines, phase I and II antioxidant enzymes, polyamine enzymes, and apoptosis markers were determined at end of the experimental study. Results Cell cycle arrest occurred at the G2/M phase after atorvastatin treatment. Atorvastatin increased cytochrome C expression and caspase activity in a dose-dependent manner, and increased the activity of antioxidative enzymes, such as GPx, SOD, GST, reduced glutathione, and catalase, and reduced the level of nitrate and LPO. It also altered the xanthine oxidase (XO), Lactic Acid Dehydrogenase (LDH), quinone reductase (QR), UDP-glucuronosyltransferase (UDP-GT), adenosine deaminase (ADA), Aryl hydrocarbon hydroxylase (AHH), 5'-nucleotidase, cytochrome P450, cytochrome B5 and NADPH cytochrome C reductase levels. Atorvastatin was found to modulate polyamine enzyme levels, such as histamine, spermine, spermidine, and putrescine, and significantly (P<0.001) reduced the pro-inflammatory cytokine levels, such as tumor necrosis factor-α. Interleukin (IL)-6 and interleukin-1β (IL-1β) increased caspase-3 and caspase-9 levels in a dose-dependent manner. Conclusions Our findings indicate that atorvastatin can inhibit lung cancer through apoptosis.
Collapse
Affiliation(s)
- Xusheng Du
- Department of Respiratory, Affiliated Xi'an Central Hospital, The Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Dongfan Li
- Department of Respiratory, Affiliated Xi'an Central Hospital, The Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Guanjie Wang
- Department of Oncology, Affiliated Xi'an Central Hospital, The Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Yali Fan
- Department of Respiratory, Affiliated Xi'an Central Hospital, The Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Namiao Li
- Department of Respiratory, Affiliated Xi'an Central Hospital, The Medical School of Xi'an Jiaotong University, Xi'an, China.,Medical College, Yan'an University, Yan'an, China
| | - Lili Chai
- Department of Pathology, Affiliated Xi'an Central Hospital, The Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Guangshun Li
- Department of Thoracic Surgery, Xi'an Central Hospital, Xi'an, China
| | - Jianying Li
- Department of Respiratory, Affiliated Xi'an Central Hospital, The Medical School of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Zhang HJ, Chang WJ, Jia CY, Qiao L, Zhou J, Chen Q, Zheng XW, Zhang JH, Li HC, Yang ZY, Liu ZH, Liu GC, Ji SP, Lu F. Destrin Contributes to Lung Adenocarcinoma Progression by Activating Wnt/β-Catenin Signaling Pathway. Mol Cancer Res 2020; 18:1789-1802. [PMID: 32878967 DOI: 10.1158/1541-7786.mcr-20-0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/09/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Lung cancer, especially lung adenocarcinoma, is one of the most common neoplasms worldwide. However, the mechanisms underlying its initiation, development, and metastasis are still poorly understood. Destrin (DSTN) is a member of ADF/cofilin family. Its detailed biological function remains unknown, although it is reported that DSTN is involved in cytoskeleton remodeling and regulation of actin filament turnover. Recent evidence has shown that high expression of cofilin-1 is associated with invasion and poor prognosis of several types of human tumors, but the detailed mechanism is still entirely unclear, particularly in lung cancer tumorigenesis and malignancy. Here, we report that DSTN was highly expressed in a mouse lung cancer model induced by urethane and in clinical lung adenocarcinoma tissue samples. Its expression level was positively correlated with cancer development, as well as metastasis to the liver and lymph nodes. Consistently, it was directly associated with the poor prognosis of lung adenocarcinoma patients. Furthermore, we also found that DSTN promotes cell proliferation, invasion, and migration in vitro, and facilitates subcutaneous tumor formation and lung metastasis via intravenous injection in vivo. Mechanically, DSTN associates with and facilitates nuclear translocation of β-catenin, which promotes epithelial-to-mesenchymal transition (EMT). Taken together, our results indicated that DSTN enhances lung cancer malignancy through facilitating β-catenin nuclear translocation and inducing EMT. Combined with multivariate analyses, DSTN might potentially serve as a therapeutic target and an independent prognostic marker of lung adenocarcinoma. IMPLICATIONS: This finding indicates that DSTN facilitates β-catenin nuclear translocation and promotes malignancy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Hui-Juan Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Wen-Jing Chang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Cai-Yun Jia
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Ling Qiao
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Jing Zhou
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Qing Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Xiao-Wei Zheng
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China.,Department of Clinical Laboratory, Puyang Hospital of Traditional Chinese Medicine, Puyang, P.R. China
| | - Jian-Hua Zhang
- Department of Clinical Laboratory, Puyang Hospital of Traditional Chinese Medicine, Puyang, P.R. China
| | - Hong-Chao Li
- Department of Pathology, Puyang Oilfeld General Hospital, Puyang, P.R. China
| | - Zheng-Yan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Zhong-Hua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng, P.R. China
| | - Guang-Chao Liu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China
| | - Shao-Ping Ji
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, P.R. China.
| | - Feng Lu
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, P.R. China.
| |
Collapse
|
24
|
Alsafadi HN, Uhl FE, Pineda RH, Bailey KE, Rojas M, Wagner DE, Königshoff M. Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. Am J Respir Cell Mol Biol 2020; 62:681-691. [PMID: 31991090 PMCID: PMC7401444 DOI: 10.1165/rcmb.2019-0276tr] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine
- Vascular Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ricardo H. Pineda
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Mauricio Rojas
- Division of Respiratory, Allergy and Critical Care Medicine, The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darcy E. Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
25
|
Platel A, Privat K, Talahari S, Delobel A, Dourdin G, Gateau E, Simar S, Saleh Y, Sotty J, Antherieu S, Canivet L, Alleman LY, Perdrix E, Garçon G, Denayer FO, Lo Guidice JM, Nesslany F. Study of in vitro and in vivo genotoxic effects of air pollution fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) particles on lung models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134666. [PMID: 31812380 DOI: 10.1016/j.scitotenv.2019.134666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Air pollution and particulate matter (PM) are classified as carcinogenic to humans. Pollutants evidence for public health concern include coarse (PM10) and fine (PM2.5) particles. However, ultrafine particles (PM0.1) are assumed to be more toxic than larger particles, but data are still needed to better understand their mechanism of action. In this context, the aim of our work was to investigate the in vitro and in vivo genotoxic potential of fine (PM2.5-018) and quasi ultra-fine (PM0.18) particles from an urban-industrial area (Dunkirk, France) by using comet, micronucleus and/or gene mutation assays. In vitro assessment was performed with 2 lung immortalized cell lines (BEAS-2B and NCI-H292) and primary normal human bronchial epithelial cells (NHBE) grown at the air-liquid interface or in submerged conditions (5 µg PM/cm2). For in vivo assessment, tests were performed after acute (24 h, 100 µg PM/animal), subacute (1 month, 10 µg PM/animal) and subchronic (3 months, 10 µg PM/animal) intranasal exposure of BALB/c mice. In vitro, our results show that PM2.5-018 and PM0.18 induced primary DNA damage but no chromosomal aberrations in immortalized cells. Negative results were noted in primary cells for both endpoints. In vivo assays revealed that PM2.5-018 and PM0.18 induced no significant increases in DNA primary damage, chromosomal aberrations or gene mutations, whatever the duration of exposure. This investigation provides initial answers regarding the in vitro and in vivo genotoxic mode of action of PM2.5-018 and PM0.18 at moderate doses and highlights the need to develop standardized specific methodologies for assessing the genotoxicity of PM. Moreover, other mechanisms possibly implicated in pulmonary carcinogenesis, e.g. epigenetics, should be investigated.
Collapse
Affiliation(s)
- A Platel
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - K Privat
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Talahari
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - A Delobel
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - G Dourdin
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - E Gateau
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Simar
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - Y Saleh
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - J Sotty
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Antherieu
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - L Canivet
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France; Ecole des Mines de Douai, Département Chimie et Environnement, 941 Rue Charles Bourseul, BP 10838, 59508 Douai Cedex, France.
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France; Ecole des Mines de Douai, Département Chimie et Environnement, 941 Rue Charles Bourseul, BP 10838, 59508 Douai Cedex, France.
| | - G Garçon
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - F O Denayer
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - J M Lo Guidice
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - F Nesslany
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| |
Collapse
|
26
|
Singh K, Pruski MA, Polireddy K, Jones NC, Chen Q, Yao J, Dar WA, McAllister F, Ju C, Eltzschig HK, Younes M, Moran C, Karmouty-Quintana H, Ying H, Bailey JM. Mst1/2 kinases restrain transformation in a novel transgenic model of Ras driven non-small cell lung cancer. Oncogene 2020; 39:1152-1164. [PMID: 31570790 DOI: 10.1038/s41388-019-1031-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022]
Abstract
Non-small cell lung cancer remains a highly lethal malignancy. Using the tamoxifen inducible Hnf1b:CreERT2 (H) transgenic mouse crossed to the LsL-KrasG12D (K) transgenic mouse, we recently discovered that an Hnf1b positive cell type in the lung is sensitive to adenoma formation when expressing a mutant KrasG12D allele. In these mice, we observe adenoma formation over a time frame of three to six months. To study specificity of the inducible Hnf1b:CreERT2 in the lung, we employed lineage tracing using an mTmG (G) reporter allele. This technique revealed recombined, GFP+ cells were predominantly SPC+. We further employed this technique in HKG mice to determine Hnf1b+ cells give rise to adenomas that express SPC and TTF1. Review of murine lung tissue confirmed a diagnosis of adenoma and early adenocarcinoma, a pathologic subtype of non-small cell lung cancer. Our expanded mouse model revealed loss of Mst1/2 promotes aggressive lung adenocarcinoma and large-scale proteomic analysis revealed upregulation of PKM2 in the lungs of mice with genetic deletion of Mst1/2. PKM2 is a known metabolic regulator in proliferating cells and cancer. Using a human lung adenocarcinoma cell line, we show pharmacologic inhibition of Mst1/2 increases the abundance of PKM2, indicating genetic loss or pharmacologic inhibition of Mst1/2 directly modulates the abundance of PKM2. In conclusion, here we report a novel model of non-small cell lung cancer driven by a mutation in Kras and deletion of Mst1/2 kinases. Tumor development is restricted to a subset of alveolar type II cells expressing Hnf1b. Our data show loss of Mst1/2 regulates levels of a potent metabolic regulator, PKM2.
Collapse
Affiliation(s)
- Kanchan Singh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Melissa A Pruski
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kishore Polireddy
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Neal C Jones
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Qingzheng Chen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Wasim A Dar
- Division of Immunology and Organ Transplantation, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Mamoun Younes
- Department of Pathology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cesar Moran
- Department of Pathology, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MDAnderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer M Bailey
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Proteasome-dependent degradation of Smad7 is critical for lung cancer metastasis. Cell Death Differ 2019; 27:1795-1806. [PMID: 31767934 DOI: 10.1038/s41418-019-0459-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is one of the cancers with highest morbidity and mortality rates and the metastasis of lung cancer is a leading cause of death. Mechanisms of lung cancer metastasis are yet to be fully understood. Herein, we demonstrate that mice deficient for REGγ, a proteasome activator, exhibited a significant reduction in tumor size, numbers, and metastatic rate with prolonged survival in a conditional Kras/p53 mutant lung cancer model. REGγ enhanced the TGFβ-Smad signaling pathway by ubiquitin-ATP-independent degradation of Smad7, an inhibitor of the TGFβ pathway. Activated TGFβ signaling in REGγ-positive lung cancer cells led to diminished expression of E-cadherin, a biomarker of epithelial-mesenchymal transitions (EMT), and elevated mesenchymal markers compared with REGγ-deficient lung cancer cells. REGγ overexpression was found in lung cancer patients with metastasis, correlating with the reduction of E-Cadherin/Smad7 and a poor prognosis. Overall, our study indicates that REGγ promotes lung cancer metastasis by activating TGF-β signaling via degradation of Smad7. Thus, REGγ may serve as a novel therapeutic target for lung cancers with poor prognosis.
Collapse
|
28
|
Kanellakis NI, Giannou AD, Pepe MAA, Agalioti T, Zazara DE, Giopanou I, Psallidas I, Spella M, Marazioti A, Arendt KAM, Lamort AS, Champeris Tsaniras S, Taraviras S, Papadaki H, Lilis I, Stathopoulos GT. Tobacco chemical-induced mouse lung adenocarcinoma cell lines pin the prolactin orthologue proliferin as a lung tumour promoter. Carcinogenesis 2019; 40:1352-1362. [PMID: 30828726 DOI: 10.1093/carcin/bgz047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
Lung adenocarcinoma (LADC) is the leading cause of cancer death worldwide. Nevertheless, syngeneic mouse models of the disease are sparse, and cell lines suitable for transplantable and immunocompetent mouse models of LADC remain unmet needs. We established multiple mouse LADC cell lines by repeatedly exposing two mouse strains (FVB, Balb/c) to the tobacco carcinogens urethane or diethylnitrosamine and by culturing out the resulting lung tumours for prolonged periods of time. Characterization of the resulting cell lines (n = 7) showed that they were immortal and phenotypically stable in vitro, and oncogenic, metastatic and lethal in vivo. The primary tumours that gave rise to the cell lines, as well as secondary tumours generated by transplantation of the cell lines, displayed typical LADC features, such as glandular architecture and mucin and thyroid transcription factor 1 expression. Moreover, these cells exhibited marked molecular similarity with human smokers' LADC, including carcinogen-specific Kras point mutations (KrasQ61R in urethane- and KrasQ61H in diethylnitrosamine-triggered cell lines) and Trp53 deletions and displayed stemness features. Interestingly, all cell lines overexpressed proliferin, a murine prolactin orthologue, which functioned as a lung tumour promoter. Furthermore, prolactin was overexpressed and portended poor prognosis in human LADC. In conclusion, we report the first LADC cell lines derived from mice exposed to tobacco carcinogens. These cells closely resemble human LADC and provide a valuable tool for the functional investigation of the pathobiology of the disease.
Collapse
Affiliation(s)
- Nikolaos I Kanellakis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Mario A A Pepe
- Lung Carcinogenesis Group, Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Ludwig-Maximilian University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Dimitra E Zazara
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Psallidas
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Kristina A M Arendt
- Lung Carcinogenesis Group, Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Ludwig-Maximilian University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Anne Sophie Lamort
- Lung Carcinogenesis Group, Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Ludwig-Maximilian University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | | | - Stavros Taraviras
- Stem Cell Biology Laboratory, Department of Physiology, Faculty of Medicine, Greece
| | - Helen Papadaki
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
- Lung Carcinogenesis Group, Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Ludwig-Maximilian University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| |
Collapse
|
29
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
30
|
Saleh Y, Antherieu S, Dusautoir R, Y Alleman L, Sotty J, De Sousa C, Platel A, Perdrix E, Riffault V, Fronval I, Nesslany F, Canivet L, Garçon G, Lo-Guidice JM. Exposure to Atmospheric Ultrafine Particles Induces Severe Lung Inflammatory Response and Tissue Remodeling in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071210. [PMID: 30987320 PMCID: PMC6479904 DOI: 10.3390/ijerph16071210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
Exposure to particulate matter (PM) is leading to various respiratory health outcomes. Compared to coarse and fine particles, less is known about the effects of chronic exposure to ultrafine particles, despite their higher number and reactivity. In the present study, we performed a time-course experiment in mice to better analyze the lung impact of atmospheric ultrafine particles, with regard to the effects induced by fine particles collected on the same site. Trace element and PAH analysis demonstrated the almost similar chemical composition of both particle fractions. Mice were exposed intranasally to FF or UFP according to acute (10, 50 or 100 µg of PM) and repeated (10 µg of PM 3 times a week during 1 or 3 months) exposure protocols. More particle-laden macrophages and even greater chronic inflammation were observed in the UFP-exposed mice lungs. Histological analyses revealed that about 50% of lung tissues were damaged in mice exposed to UFP for three months versus only 35% in FF-exposed mice. These injuries were characterized by alveolar wall thickening, macrophage infiltrations, and cystic lesions. Taken together, these results strongly motivate the update of current regulations regarding ambient PM concentrations to include UFP and limit their emission.
Collapse
Affiliation(s)
- Yara Saleh
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Sébastien Antherieu
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Romain Dusautoir
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Laurent Y Alleman
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Jules Sotty
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Corentin De Sousa
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Anne Platel
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Esperanza Perdrix
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Véronique Riffault
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Isabelle Fronval
- Département Sciences de l'Atmosphère et Génie de l'Environnement (SAGE), IMT Lille Douai, Université de Lille, 59000 Lille, France.
| | - Fabrice Nesslany
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Ludivine Canivet
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Guillaume Garçon
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| | - Jean-Marc Lo-Guidice
- EA4483-IMPECS, Institut Pasteur de Lille, Université de Lille, CHU Lille, 59045 Lille CEDEX, France.
| |
Collapse
|
31
|
Guo X, Liu Y, Kim JL, Kim EY, Kim EQ, Jansen A, Li K, Chan M, Keenan BT, Conejo-Garcia J, Lim DC. Effect of cyclical intermittent hypoxia on Ad5CMVCre induced solitary lung cancer progression and spontaneous metastases in the KrasG12D+; p53fl/fl; myristolated p110fl/fl ROSA-gfp mouse. PLoS One 2019; 14:e0212930. [PMID: 30811514 PMCID: PMC6392281 DOI: 10.1371/journal.pone.0212930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological data suggests that obstructive sleep apnea (OSA) is associated with increased cancer incidence and mortality. We investigate the effects of cyclical intermittent hypoxia (CIH), akin to the underlying pathophysiology of OSA, on lung cancer progression and metastatic profile in a mouse model. METHODS Intrathoracic injection of Ad5CMVCre virus into a genetically engineered mouse (GEM) KrasG12D+/-; p53fl/fl; myristolated-p110αfl/fl-ROSA-gfp was utilized to induce a solitary lung cancer. Male mice were then exposed to either CIH or Sham for 40-41 days until harvest. To monitor malignant progression, serial micro CT scans with respiratory gating (no contrast) was performed. To detect spontaneous metastases in distant organs, H&E and immunohistochemistry were performed. RESULTS Eighty-eight percent of injected Ad5CMVCre virus was recovered from left lung tissue, indicating reliable and accurate injections. Serial micro CT demonstrated that CIH increases primary lung tumor volume progression compared to Sham on days 33 (p = 0.004) and 40 (p<0.001) post-injection. In addition, CIH increases variability in tumor volume on day 19 (p<0.0001), day 26 (p<0.0001), day 33 (p = 0.025) and day 40 (p = 0.004). Finally, metastases are frequently detected in heart, mediastinal lymph nodes, and right lung using H&E and immunohistochemistry. CONCLUSIONS Using a GEM mouse model of metastatic lung cancer, we report that male mice with solitary lung cancer have accelerated malignant progression and increased variability in tumor growth when exposed to cyclical intermittent hypoxia. Our results indicate that cyclical intermittent hypoxia is a pathogenic factor in non-small cell lung cancer that promotes the more rapid growth of developing tumors.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jessica L. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Y. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edison Q. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandria Jansen
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine Li
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - May Chan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jose Conejo-Garcia
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Diane C. Lim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
32
|
Podmirseg SR, Vosper J, Hengst L. p27 Kip1 - p(RhoB)lematic in lung cancer. J Pathol 2019; 248:3-5. [PMID: 30549261 PMCID: PMC6492176 DOI: 10.1002/path.5218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide, with adenocarcinomas of the non‐small cell lung carcinoma (NSCLC) subtype accounting for the majority of cases. Therefore, an urgent need exists for a more detailed dissection of the molecular events driving NSCLC development and the identification of clinically relevant biomarkers. Even though originally identified as a tumour suppressor, recent studies associate the cytoplasmically (mis)localised CDK inhibitor p27Kip1 (p27) with unfavourable responses to chemotherapy and poor outcomes in NSCLC, supporting the hypothesis that the protein can execute oncogenic activities. In a recent issue of The Journal of Pathology, Calvayrac and coworkers uncover a novel molecular mechanism that can explain this oncogenic role of p27. They demonstrate that cytoplasmic p27 binds and inhibits the small GTPase RhoB and thereby relieves a selection pressure for RhoB loss that is frequently observed in NSCLC. This is supported not only by studies with genetically modified mice, but also through identification of a cohort of human lung cancer patients with cytoplasmic p27 and continued RhoB expression, where this signature correlates with decreased survival. This not only establishes a potentially useful biomarker, but also provides yet another facet of the complex roles p27 undertakes in tumourigenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Silvio R Podmirseg
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Jonathan Vosper
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Ludger Hengst
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
33
|
Huang L, Duan S, Shao H, Zhang A, Chen S, Zhang P, Wang N, Wang W, Wu Y, Wang J, Liu H, Yao W, Zhang Q, Feng F. NLRP3 deletion inhibits inflammation-driven mouse lung tumorigenesis induced by benzo(a)pyrene and lipopolysaccharide. Respir Res 2019; 20:20. [PMID: 30696442 PMCID: PMC6352353 DOI: 10.1186/s12931-019-0983-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background Inflammatory micro-environment has been proposed to play a critical role in lung tumorigenesis. NLRP3 is known as an intracellular receptor involving inflammation and has been reported which is increasingly associated with tumor development, but the role in inflammation-driven lung cancer has not been fully clarified. In this study, we investigated whether lipopolysaccharide (LPS)-induced pulmonary inflammation could contribute to lung tumorigenesis induced by benzo(a)pyrene [B(a)p] in C57BL/6J mice and the role of NLRP3 in the pathogenesis. Methods NLRP3−/− mice and C57BL/6J mice (wide-type, WT) were instilled intratracheally with B(a)p (1 mg/mouse) once a week for 4 times [the week of the last time of B(a)p treatment named Week 0], and mice were then instilled intratracheally with LPS at Week 3, 2.5 μg/mouse, once every three weeks for 5 times. At Week 30, the incidence, number, size and histopathology of lung tumor were analyzed. Results Mice exposed to B(a)p or B(a)p plus LPS could induce lung tumors, whereas LPS or vehicles treatment could not induce lung tumorigenesis. In WT mice, B(a)p plus LPS exposure significantly increased tumor incidence, mean tumor count and tumor size of visible tumors of lungs compared with B(a)p treatment alone, and NLRP3 deletion inhibited lung tumorigenesis induced by B(a)p or B(a)p plus LPS. Histopathological examination found LPS-induced pulmonary inflammatory changes enhanced lung tumorigenesis induced by B(a)p in WT mice, deletion of NLRP3 improved the inflammatory changes induced by LPS and the number and size of pathological tumor nests induced by B(a)p or B(a)p plus LPS. In addition, we found B(a)p treatment and B(a)p plus LPS treatment predominately induced the development of adenoma. Conclusion LPS enhanced B(a)p-induced lung tumorigenesis in WT and NLRP3−/− mice of C57BL/6J strain, and NLRP3 deletion inhibits lung tumorigenesis induced by B(a)p or B(a)p plus LPS.
Collapse
Affiliation(s)
- Li Huang
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Shuyin Duan
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Hua Shao
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Aihua Zhang
- Department of Nephrology, the Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuang Chen
- Institute of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Cancer, Cancer, the Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, China
| | - Na Wang
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Wei Wang
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Yongjun Wu
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Jing Wang
- Department of Pulmonary Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hong Liu
- Department of Pulmonary Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wu Yao
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, Henan province, China.
| |
Collapse
|
34
|
Calvayrac O, Nowosad A, Cabantous S, Lin LP, Figarol S, Jeannot P, Serres MP, Callot C, Perchey RT, Creff J, Taranchon-Clermont E, Rouquette I, Favre G, Pradines A, Manenti S, Mazieres J, Lee H, Besson A. Cytoplasmic p27 Kip1 promotes tumorigenesis via suppression of RhoB activity. J Pathol 2018; 247:60-71. [PMID: 30206932 DOI: 10.1002/path.5167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023]
Abstract
The cell cycle inhibitor p27Kip1 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms. Here, we investigated how cytoplasmic p27 participates in the development of non-small cell lung carcinomas. We provide molecular and genetic evidence that the oncogenic role of p27 is mediated, at least in part, by binding to and inhibiting the GTPase RhoB, which normally acts as a tumor suppressor in the lung. Genetically modified mice revealed that RhoB expression is preferentially lost in tumors in which p27 is absent and maintained in tumors expressing wild-type p27 or p27CK- , a mutant that cannot inhibit CDKs. Moreover, although the absence of RhoB promoted tumorigenesis in p27-/- animals, it had no effect in p27CK- knock-in mice, suggesting that cytoplasmic p27 may act as an oncogene, at least in part, by inhibiting the activity of RhoB. Finally, in a cohort of lung cancer patients, we identified a subset of tumors harboring cytoplasmic p27 in which RhoB expression is maintained and these characteristics were strongly associated with decreased patient survival. Thus, monitoring p27 localization and RhoB levels in non-small cell lung carcinoma patients appears to be a powerful prognostic marker for these tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Calvayrac
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Lin-Po Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Sarah Figarol
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Pauline Jeannot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Murielle P Serres
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud T Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Estelle Taranchon-Clermont
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Service de Pathologie, IUCT-Oncopole, CHU de Toulouse, Toulouse, France
| | - Isabelle Rouquette
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Service de Pathologie, IUCT-Oncopole, CHU de Toulouse, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Anne Pradines
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Stephane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Julien Mazieres
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France.,Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
35
|
Grzeskowiak CL, Kundu ST, Mo X, Ivanov AA, Zagorodna O, Lu H, Chapple RH, Tsang YH, Moreno D, Mosqueda M, Eterovic K, Fradette JJ, Ahmad S, Chen F, Chong Z, Chen K, Creighton CJ, Fu H, Mills GB, Gibbons DL, Scott KL. In vivo screening identifies GATAD2B as a metastasis driver in KRAS-driven lung cancer. Nat Commun 2018; 9:2732. [PMID: 30013058 PMCID: PMC6048166 DOI: 10.1038/s41467-018-04572-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Genetic aberrations driving pro-oncogenic and pro-metastatic activity remain an elusive target in the quest of precision oncology. To identify such drivers, we use an animal model of KRAS-mutant lung adenocarcinoma to perform an in vivo functional screen of 217 genetic aberrations selected from lung cancer genomics datasets. We identify 28 genes whose expression promoted tumor metastasis to the lung in mice. We employ two tools for examining the KRAS-dependence of genes identified from our screen: 1) a human lung cell model containing a regulatable mutant KRAS allele and 2) a lentiviral system permitting co-expression of DNA-barcoded cDNAs with Cre recombinase to activate a mutant KRAS allele in the lungs of mice. Mechanistic evaluation of one gene, GATAD2B, illuminates its role as a dual activity gene, promoting both pro-tumorigenic and pro-metastatic activities in KRAS-mutant lung cancer through interaction with c-MYC and hyperactivation of the c-MYC pathway.
Collapse
Affiliation(s)
- Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiulei Mo
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrei A Ivanov
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Oksana Zagorodna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hengyu Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard H Chapple
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yiu Huen Tsang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniela Moreno
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maribel Mosqueda
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karina Eterovic
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sumreen Ahmad
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zechen Chong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chad J Creighton
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| | - Kenneth L Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
36
|
Stevens LE, Arnal-Estapé A, Nguyen DX. Pre-Conditioning the Airways of Mice with Bleomycin Increases the Efficiency of Orthotopic Lung Cancer Cell Engraftment. J Vis Exp 2018:56650. [PMID: 30010648 PMCID: PMC6102009 DOI: 10.3791/56650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lung cancer is a deadly treatment refractory disease that is biologically heterogeneous. To understand and effectively treat the full clinical spectrum of thoracic malignancies, additional animal models that can recapitulate diverse human lung cancer subtypes and stages are needed. Allograft or xenograft models are versatile and enable the quantification of tumorigenic capacity in vivo, using malignant cells of either murine or human origin. However, previously described methods of lung cancer cell engraftment have been performed in non-physiological sites, such as the flank of mice, due to the inefficiency of orthotopic transplantation of cells into the lungs. In this study, we describe a method to enhance orthotopic lung cancer cell engraftment by pre-conditioning the airways of mice with the fibrosis inducing agent bleomycin. As a proof-of-concept experiment, we applied this approach to engraft tumor cells of the lung adenocarcinoma subtype, obtained from either mouse or human sources, into various strains of mice. We demonstrate that injuring the airways with bleomycin prior to tumor cell injection increases the engraftment of tumor cells from 0-17% to 71-100%. Significantly, this method enhanced lung tumor incidence and subsequent outgrowth using different models and mouse strains. In addition, engrafted lung cancer cells disseminate from the lungs into relevant distant organs. Thus, we provide a protocol that can be used to establish and maintain new orthotopic models of lung cancer with limiting amounts of cells or biospecimen and to quantitatively assess the tumorigenic capacity of lung cancer cells in physiologically relevant settings.
Collapse
Affiliation(s)
| | | | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine; Department of Medical Oncology, Yale University School of Medicine;
| |
Collapse
|
37
|
Jiang X, Yang Z. Multiple biological functions of transcription factor 21 in the development of various cancers. Onco Targets Ther 2018; 11:3533-3539. [PMID: 29950858 PMCID: PMC6016277 DOI: 10.2147/ott.s164033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcription factor 21 (TCF21) is a basic helix–loop–helix transcription factor that binds to DNA and regulates cell differentiation and cell fate specification through mesenchymal–epithelial transition during development. The TCF21 gene is epigenetically inactivated in many types of human cancers and exerts a wide variety of functions, including the regulation of epithelial–mesenchymal transition, invasion, metastasis, cell cycle, and autophagy. This review focuses on research progress in relation to the roles of TCF21 in tumor development. We systematically consider multiple pathological functions of TCF21 in various cancers, revealing the molecular bases of its diverse biological roles and providing new directions for future research.
Collapse
Affiliation(s)
- Xiaodi Jiang
- Department of Infectious Disease, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan L, Dai H, Luo J, Mao B, Cao Y, Yu X, Jiang H, Zhao X. HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Am J Cancer Res 2018; 8:3517-3529. [PMID: 30026863 PMCID: PMC6037029 DOI: 10.7150/thno.24401] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the most frequent cancer type and the leading cause of tumor-associated deaths worldwide. TP53 is an important tumor suppressor gene and is frequently inactivated in lung cancer. E3 ligases targeting p53, such as MDM2, are involved in the development of lung cancer. The E3 ligase HUWE1, which targets many tumor-associated proteins including p53, has been reported to be highly expressed in lung cancer; however, its role in lung tumorigenesis is unclear. Methods: The expression of HUWE1 and p53 in lung cancer cells was modulated and the phenotypes were assessed by performing soft agar colony forming assays, cell cycle analysis, BrdU incorporation assays, and xenograft tumor growth assays. The effect on tumorigenesis in genetically-engineered mice was also analyzed. The mechanism through which HUWE1 sustained lung cancer cell malignancy was confirmed by western blotting. HUWE1 expression in clinical lung cancer was identified by immunohistochemistry and validated by analyzing lung adenocarcinoma and lung squamous carcinoma samples from the Cancer Genome Atlas (TCGA) database. Finally, we assessed the association between HUWE1 expression and patient outcome using online survival analysis software including survival information from the caBIG, GEO, and TCGA database. Results: Inactivation of HUWE1 in a human lung cancer cell line inhibited proliferation, colony-forming capacity, and tumorigenicity. Mechanistically, this phenotype was driven by increased p53, which was due to attenuated proteasomal degradation by HUWE1. Up-regulation of p53 inhibited cancer cell malignancy, mainly through the induction of p21 expression and the down-regulation of HIF1α. Huwe1 deletion completely abolished the development of EGFRVIII-induced lung cancer in Huwe1 conditional knockout mice. Furthermore, survival analysis of lung cancer patients showed that increased HUWE1 expression is significantly associated with worse prognosis. Conclusion: Our data suggest that HUWE1 plays a critical role in lung cancer and that the HUWE1-p53 axis might be a potential target for lung cancer therapy.
Collapse
|
39
|
Park JW, Kim IY, Choi JW, Lim HJ, Shin JH, Kim YN, Lee SH, Son Y, Sohn M, Woo JK, Jeong JH, Lee C, Bae YS, Seong JK. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res 2018; 16:1287-1298. [PMID: 29724814 DOI: 10.1158/1541-7786.mcr-17-0726] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
AHNAK is known to be a tumor suppressor in breast cancer due to its ability to activate the TGFβ signaling pathway. However, the role of AHNAK in lung tumor development and progression remains unknown. Here, the Ahnak gene was disrupted to determine its effect on lung tumorigenesis and the mechanism by which it triggers lung tumor development was investigated. First, AHNAK protein expression was determined to be decreased in human lung adenocarcinomas compared with matched nonneoplastic lung tissues. Then, Ahnak -/- mice were used to investigate the role of AHNAK in pulmonary tumorigenesis. Ahnak -/- mice showed increased lung volume and thicker alveolar walls with type II pneumocyte hyperplasia. Most importantly, approximately 20% of aged Ahnak -/- mice developed lung tumors, and Ahnak -/- mice were more susceptible to urethane-induced pulmonary carcinogenesis than wild-type mice. Mechanistically, Ahnak deficiency promotes the cell growth of lung epithelial cells by suppressing the TGFβ signaling pathway. In addition, increased numbers of M2-like alveolar macrophages (AM) were observed in Ahnak -/- lungs, and the depletion of AMs in Ahnak -/- lungs alleviated lung hyperplastic lesions, suggesting that M2-like AMs promoted the progression of lung hyperplastic lesions in Ahnak-null mice. Collectively, AHNAK suppresses type II pneumocyte proliferation and inhibits tumor-promoting M2 alternative activation of macrophages in mouse lung tissue. These results suggest that AHNAK functions as a novel tumor suppressor in lung cancer.Implications: The tumor suppressor function of AHNAK, in murine lungs, occurs by suppressing alveolar epithelial cell proliferation and modulating lung microenvironment. Mol Cancer Res; 16(8); 1287-98. ©2018 AACR.
Collapse
Affiliation(s)
- Jun Won Park
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Ji Won Choi
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hee Jung Lim
- Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | - Jae Hoon Shin
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yo Na Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seo Hyun Lee
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeri Son
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Mira Sohn
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Jong Kyu Woo
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea
| | | | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea. .,Korea Mouse Phenotyping Center (KMPC), Seoul, Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
40
|
Wang R, Li Y, Hu E, Kong F, Wang J, Liu J, Shao Q, Hao Y, He D, Xiao X. S100A7 promotes lung adenocarcinoma to squamous carcinoma transdifferentiation, and its expression is differentially regulated by the Hippo-YAP pathway in lung cancer cells. Oncotarget 2018; 8:24804-24814. [PMID: 28177901 PMCID: PMC5421890 DOI: 10.18632/oncotarget.15063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/09/2017] [Indexed: 02/04/2023] Open
Abstract
Our previous study revealed that S100A7 was selectively expressed in lung squamous cell carcinoma tissues but not in adenocarcinoma. Thus far, the functions of S100A7 in lung cancer have remained largely unknown. Here, we reveal that S100A7 overexpression facilitates the transdifferentiation from adenocarcinoma (ADC) to squamous carcinoma (SCC) in several lung cancer cells, which is confirmed by an increase in DNp63 expression and a decrease in thyroid transcription factor 1 (TTF1) and aspartic proteinase napsin (napsin A) expression. Further study finds that activation of the Hippo pathway induces S100A7 expression and further confirms that nuclear YAP acts as a repressor of S100A7 in H292 cells. Subsequently, we verify that TEAD1 is required for YAP transcriptional repression of S100A7. More importantly, we determine that S100A7 overexpression partially rescues lung ADC to SCC transdifferentiation inhibited by YAP overexpression in all tested cells, suggesting that S100A7 and YAP have the opposite effects on lung ADC to SCC conversion. Taken together, our study demonstrates for the first time that S100A7 not only functions as a facilitator of adenous-squamous carcinoma phenotypic transition in lung cancer cells but also that its expression is differentially regulated by the Hippo-YAP pathway.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Yunguang Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Enze Hu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Fei Kong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Junhao Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Jin Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Qirui Shao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Ying Hao
- The Department of Basic Theory, College of Sports, Northwest Normal University, Lanzhou, China
| | - Dacheng He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| | - Xueyuan Xiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
41
|
Singh AP, Adrianzen Herrera D, Zhang Y, Perez-Soler R, Cheng H. Mouse models in squamous cell lung cancer: impact for drug discovery. Expert Opin Drug Discov 2018; 13:347-358. [PMID: 29394493 DOI: 10.1080/17460441.2018.1437137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Squamous cell lung cancer (SQCLC) is the second most common subtype of non-small cell lung cancer (NSCLC) and has limited therapeutic options. Its development is likely a result of a multistep process in response to chronic tobacco exposure, involving sequential metaplasia, dysplasia and invasive carcinoma. Its complex genomic landscape has recently been revealed but no driver mutations have been validated that could lead to molecularly targeted therapy as have emerged in lung adenocarcinoma. Few preclinical murine models exist for testing and developing novel therapeutics in SQCLC. Areas covered: This review discusses the pathophysiology and molecular underpinnings of SQCLC that have limited the development of animal models. It then explores the advantages and limitations of a variety of existing mouse models and illustrates their potential application in drug discovery and chemoprevention. Expert opinion: There are several challenges in the development of mouse models for SQCLC, such as lack of validated driver genetic alterations, unclear cell of origin, and difficulty in reproducing the sophisticated tumor microenvironment of human disease. Nevertheless, several successful SQCLC murine models have emerged, especially Patient Derived Xenografts (PDXs) and Genetically Engineered Mouse Models (GEMMs). Continued efforts are needed to generate more SQCLC animal models to better understand its carcinogenesis and metastasis and to further test novel therapeutic strategies.
Collapse
Affiliation(s)
- Aditi P Singh
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Diego Adrianzen Herrera
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Yifei Zhang
- b Department of Medicine , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Roman Perez-Soler
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| | - Haiying Cheng
- a Department of Oncology , Montefiore Medical Center/Albert Einstein College of Medicine , Bronx , NY , USA
| |
Collapse
|
42
|
Mervai Z, Egedi K, Kovalszky I, Baghy K. Diethylnitrosamine induces lung adenocarcinoma in FVB/N mouse. BMC Cancer 2018; 18:157. [PMID: 29415661 PMCID: PMC5803903 DOI: 10.1186/s12885-018-4068-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/29/2018] [Indexed: 12/16/2022] Open
Abstract
Background Diethylnitrosamine is a well known carcinogen that induces cancers of various organs in mice and rats. Using FVB/N mouse strain, here we show that diethylnitrosamine induces primarily lung adenocarcinomas with modest tumor development in the liver, offering a new model to study chemical carcinogenesis in the lung. Methods Animals were exposed to a single high dose of diethylnitrosamine, and more than 70% of the mice developed lung cancer. To obtain a new transplantable tumor line, pieces of primary tumors were inoculated and maintained subcutaneously in the same mouse strain. We used immunohistochemistry to characterize the tumor for main lung adenocarcinoma markers. We searched for mutations in KRAS exon 2 and EGFR exon 19, 21 with Sanger sequencing. We also compared the normal lung tissue with the diethylnitrosamine induced primary adenocarcinoma, and with the subcutaneously maintained adenocarcinoma using Western blot technique for main cell cycle markers and to identify the main pathways. Results Primary and subcutaneous tumors express cytokeratin-7 and thyroid transcription factor-1, markers characteristic to lung adenocarcinoma. In addition, no mutations were found in the hot spot regions of KRAS and EGFR genes. We found high mTOR activation, but the level of p-Akt Ser473 and p-Akt Thr308 decreased in the tumorous samples. Conclusions We established a new lung adenocarcinoma model using FVB/N mouse strain and diethylnitrosamine. We believe that this new model system would be highly useful in lung cancer research. Electronic supplementary material The online version of this article (10.1186/s12885-018-4068-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zsolt Mervai
- Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Krisztina Egedi
- Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Kornélia Baghy
- Department of Pathology and Experimental Cancer Research, Budapest, Hungary.
| |
Collapse
|
43
|
Chiarella P, Vermeulen M, Montagna DR, Vallecorsa P, Strazza AR, Meiss RP, Bustuoabad OD, Ruggiero RA, Prehn RT. Improvement of Antitumor Therapies Based on Vaccines and Immune-Checkpoint Inhibitors by Counteracting Tumor-Immunostimulation. Front Oncol 2018; 8:6. [PMID: 29435437 PMCID: PMC5790794 DOI: 10.3389/fonc.2018.00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR) evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors), counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.
Collapse
Affiliation(s)
- Paula Chiarella
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Mónica Vermeulen
- Department of Immunology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Daniela R. Montagna
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Pablo Vallecorsa
- Department of Pathology, Instituto de Estudios Oncológicos, Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Ariel Ramiro Strazza
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Roberto P. Meiss
- Department of Pathology, Instituto de Estudios Oncológicos, Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | | | - Raúl A. Ruggiero
- Department of Experimental Oncology, Instituto de Medicina Experimental, Academia Nacional de Medicina (CONICET), Academia Nacional de Medicina de Buenos Aires, Ciudad autónoma de Buenos Aires, Argentina
| | - Richmond T. Prehn
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
44
|
Ng Kee Kwong F, Nicholson AG, Harrison CL, Hansbro PM, Adcock IM, Chung KF. Is mitochondrial dysfunction a driving mechanism linking COPD to nonsmall cell lung carcinoma? Eur Respir Rev 2017; 26:170040. [PMID: 29070578 PMCID: PMC9488999 DOI: 10.1183/16000617.0040-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/17/2017] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients are at increased risk of developing nonsmall cell lung carcinoma, irrespective of their smoking history. Although the mechanisms behind this observation are not clear, established drivers of carcinogenesis in COPD include oxidative stress and sustained chronic inflammation. Mitochondria are critical in these two processes and recent evidence links increased oxidative stress in COPD patients to mitochondrial damage. We therefore postulate that mitochondrial damage in COPD patients leads to increased oxidative stress and chronic inflammation, thereby increasing the risk of carcinogenesis.The functional state of the mitochondrion is dependent on the balance between its biogenesis and degradation (mitophagy). Dysfunctional mitochondria are a source of oxidative stress and inflammasome activation. In COPD, there is impaired translocation of the ubiquitin-related degradation molecule Parkin following activation of the Pink1 mitophagy pathway, resulting in excessive dysfunctional mitochondria. We hypothesise that deranged pathways in mitochondrial biogenesis and mitophagy in COPD can account for the increased risk in carcinogenesis. To test this hypothesis, animal models exposed to cigarette smoke and developing emphysema and lung cancer should be developed. In the future, the use of mitochondria-based antioxidants should be studied as an adjunct with the aim of reducing the risk of COPD-associated cancer.
Collapse
Affiliation(s)
- Francois Ng Kee Kwong
- Experimental Studies, National Heart and Lung Institute, Imperial College London, London, UK
- Dept of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Andrew G Nicholson
- Experimental Studies, National Heart and Lung Institute, Imperial College London, London, UK
- Dept of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Newcastle, Australia
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Kian Fan Chung
- Experimental Studies, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
45
|
Giannou AD, Marazioti A, Kanellakis NI, Giopanou I, Lilis I, Zazara DE, Ntaliarda G, Kati D, Armenis V, Giotopoulou GA, Krontira AC, Lianou M, Agalioti T, Vreka M, Papageorgopoulou M, Fouzas S, Kardamakis D, Psallidas I, Spella M, Stathopoulos GT. NRAS destines tumor cells to the lungs. EMBO Mol Med 2017; 9:672-686. [PMID: 28341702 PMCID: PMC5697015 DOI: 10.15252/emmm.201606978] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lungs are frequently affected by cancer metastasis. Although NRAS mutations have been associated with metastatic potential, their exact role in lung homing is incompletely understood. We cross-examined the genotype of various tumor cells with their ability for automatic pulmonary dissemination, modulated NRAS expression using RNA interference and NRAS overexpression, identified NRAS signaling partners by microarray, and validated them using Cxcr1- and Cxcr2-deficient mice. Mouse models of spontaneous lung metastasis revealed that mutant or overexpressed NRAS promotes lung colonization by regulating interleukin-8-related chemokine expression, thereby initiating interactions between tumor cells, the pulmonary vasculature, and myeloid cells. Our results support a model where NRAS-mutant, chemokine-expressing circulating tumor cells target the CXCR1-expressing lung vasculature and recruit CXCR2-expressing myeloid cells to initiate metastasis. We further describe a clinically relevant approach to prevent NRAS-driven pulmonary metastasis by inhibiting chemokine signaling. In conclusion, NRAS promotes the colonization of the lungs by various tumor types in mouse models. IL-8-related chemokines, NRAS signaling partners in this process, may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.
Collapse
Affiliation(s)
- Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Nikolaos I Kanellakis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Dimitra E Zazara
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Danai Kati
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Vasileios Armenis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgia A Giotopoulou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Anthi C Krontira
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Marina Lianou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Malamati Vreka
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Munich, Germany
| | - Maria Papageorgopoulou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Sotirios Fouzas
- Pneumology Unit, Department of Pediatrics, Faculty of Medicine, University of Patras, Rio, Greece
| | - Dimitrios Kardamakis
- Department of Radiation Oncology and Stereotactic Radiotherapy, Faculty of Medicine, University of Patras, Rio, Greece
| | - Ioannis Psallidas
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Greece .,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
46
|
Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 2017; 17:725-737. [PMID: 29077690 DOI: 10.1038/nrc.2017.87] [Citation(s) in RCA: 490] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small-cell lung cancer (SCLC) is a deadly tumour accounting for approximately 15% of lung cancers and is pathologically, molecularly, biologically and clinically very different from other lung cancers. While the majority of tumours express a neuroendocrine programme (integrating neural and endocrine properties), an important subset of tumours have low or absent expression of this programme. The probable initiating molecular events are inactivation of TP53 and RB1, as well as frequent disruption of several signalling networks, including Notch signalling. SCLC, when diagnosed, is usually widely metastatic and initially responds to cytotoxic therapy but nearly always rapidly relapses with resistance to further therapies. There were no important therapeutic clinical advances for 30 years, leading SCLC to be designated a 'recalcitrant cancer'. Scientific studies are hampered by a lack of tissue availability. However, over the past 5 years, there has been a worldwide resurgence of studies on SCLC, including comprehensive molecular analyses, the development of relevant genetically engineered mouse models and the establishment of patient-derived xenografts. These studies have led to the discovery of new potential therapeutic vulnerabilities for SCLC and therefore to new clinical trials. Thus, while the past has been bleak, the future offers greater promise.
Collapse
Affiliation(s)
- Adi F Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
| | - Paul A Bunn
- Division of Medical Oncology, University of Colorado Cancer Center, 12801 East 17th Avenue, Aurora, Colorado 80045, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
- Departments of Internal Medicine and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75230-8593, USA
| |
Collapse
|
47
|
Guasch G. [Animal models for the study of cancer stem cells]. Bull Cancer 2017; 104:1064-1067. [PMID: 29157554 DOI: 10.1016/j.bulcan.2017.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Géraldine Guasch
- Centre de recherche en cancérologie de Marseille (CRCM), Inserm, U1068, 13009 Marseille, France; CNRS, UMR7258, 13009 Marseille, France; Institut Paoli-Calmettes, 13009 Marseille, France; Aix-Marseille université, UM 105, 13284 Marseille, France.
| |
Collapse
|
48
|
Liu J, Cho SN, Wu SP, Jin N, Moghaddam SJ, Gilbert JL, Wistuba I, DeMayo FJ. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer 2017; 112:47-56. [PMID: 29191600 PMCID: PMC5718380 DOI: 10.1016/j.lungcan.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer related deaths worldwide and mutation activating KRAS is one of the most frequent mutations found in lung adenocarcinoma. Identifying regulators of KRAS may aid in the development of therapies to treat this disease. The mitogen-induced gene 6, MIG-6, is a small adaptor protein modulating signaling in cells to regulate the growth and differentiation in multiple tissues. Here, we investigated the role of Mig-6 in regulating adenocarcinoma progression in the lungs of genetically engineered mice with activation of Kras. MATERIALS AND METHODS Using the CCSPCre mouse to specifically activate expression of the oncogenic KrasG12D in Club cells, we investigated the expression of Mig-6 in CCSPCreKrasG12D-induced lung tumors. To determine the role of Mig-6 in KrasG12D-induced lung tumorigenesis, Mig-6 was conditionally ablated in the Club cells by breeding Mig6f/f mice to CCSPCreKrasG12D mice, yielding CCSPCreMig-6d/dKrasG12D mice (Mig-6d/dKrasG12D). RESULTS We found that Mig-6 expression is decreased in CCSPCreKrasG12D-induced lung tumors. Ablation of Mig-6 in the KrasG12D background led to enhanced tumorigenesis and reduced life expectancy. During tumor progression, there was increased airway hyperplasia, a heightened inflammatory response, reduced apoptosis in KrasG12D mouse lungs, and an increase of total and phosphorylated ERBB4 protein levels. Mechanistically, Mig-6 deficiency attenuates the cell apoptosis of lung tumor expressing KRASG12D partially through activating the ErbB4 pathway. CONCLUSIONS In summary, Mig-6 deficiency promotes the development of KrasG12D-induced lung adenoma through reducing the cell apoptosis in KrasG12D mouse lungs partially by activating the ErbB4 pathway.
Collapse
Affiliation(s)
- Jian Liu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Sung-Nam Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Nili Jin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L Gilbert
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA.
| |
Collapse
|
49
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
50
|
Hasegawa K, Sato A, Tanimura K, Uemasu K, Hamakawa Y, Fuseya Y, Sato S, Muro S, Hirai T. Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation. Respir Res 2017; 18:150. [PMID: 28784128 PMCID: PMC5545863 DOI: 10.1186/s12931-017-0635-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
Backgound Alveolar type 2 (AT2) cells play important roles in maintaining adult lung homeostasis. AT2 cells isolated from the lung have revealed the cell-specific functions of AT2 cells. Comprehensive molecular and transcriptional profiling of purified AT2 cells would be helpful for elucidating the underlying mechanisms of their cell-specific functions. To enable the further purification of AT2 cells, we aimed to discriminate AT2 cells from non-AT2 lung epithelial cells based on surface antigen expression via fluorescence activated cell sorting (FACS). Methods Single-cell suspensions obtained from enzymatically digested murine lungs were labeled for surface antigens (CD45/CD31/epithelial cell adhesion molecule (EpCAM)/ major histocompatibility complex class II (MHCII)) and for pro-surfactant protein C (proSP-C), followed by FACS analysis for surface antigen expression on AT2 cells. AT2 cells were sorted, and purity was evaluated by immunofluorescence and FACS. This newly developed strategy for AT2 cell isolation was validated in different strains and ages of mice, as well as in a lung injury model. Results FACS analysis revealed that EpCAM+ epithelial cells existed in 3 subpopulations based on EpCAM and MHCII expression: EpCAMmedMHCII+ cells (Population1:P1), EpCAMhiMHCII− cells (P2), and EpCAMlowMHCII− cells (P3). proSP-C+ cells were enriched in P1 cells, and the purity values of the sorted AT2 cells in P1 were 99.0% by immunofluorescence analysis and 98.0% by FACS analysis. P2 cells were mainly composed of ciliated cells and P3 cells were composed of AT1 cells, respectively, based on the gene expression analysis and immunofluorescence. EpCAM and MHCII expression levels were not significantly altered in different strains or ages of mice or following lipopolysaccharide (LPS)-induced lung injury. Conclusions We successfully classified murine distal lung epithelial cells based on EpCAM and MHCII expression. The discrimination of AT2 cells from non-AT2 epithelial cells resulted in the isolation of pure AT2 cells. Highly pure AT2 cells will provide accurate and deeper insights into the cell-specific mechanisms of alveolar homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12931-017-0635-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koichi Hasegawa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan.
| | - Kazuya Tanimura
- Pulmonary Medicine, Kishiwada City Hospital, 1001 Gakuhara Kishiwada, Osaka, 596-8501, Japan
| | - Kiyoshi Uemasu
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Yoko Hamakawa
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Yoshinori Fuseya
- Pulmonary Medicine, Otsu City Hospital, 2 Chome-9-9 Motomiya Otsu, Shiga, 520-0804, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Shigeo Muro
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara Shogoin Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|