1
|
Yang M, Tang Y, Zhu P, Lu H, Wan X, Guo Q, Xiao L, Liu C, Guo L, Liu W, Yang Y. The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia. Ann Hematol 2024; 103:3385-3398. [PMID: 38148344 DOI: 10.1007/s00277-023-05595-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia. However, the mechanism of E2A-PBX1 in the occurrence and progression of B-cell acute lymphoblastic leukaemia is not well understood. Here, we mainly review the roles of E2A and PBX1 in the differentiation and development of B lymphocytes, the mechanism of E2A-PBX1 gene fusion in B-cell acute lymphoblastic leukaemia, and the potential therapeutic approaches.
Collapse
Affiliation(s)
- Mengting Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanhui Tang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Zhu
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, People's Republic of China
| | - Haiquan Lu
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohong Wan
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Xiao
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunyan Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
| | - You Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Vuong LT, Mlodzik M. Wg/Wnt-signaling-induced nuclear translocation of β-catenin is attenuated by a β-catenin peptide through its interference with the IFT-A complex. Cell Rep 2024; 43:114362. [PMID: 38870008 PMCID: PMC11311196 DOI: 10.1016/j.celrep.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by β-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of β-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm34-87/β-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo. Arm34-87 expression antagonizes endogenous Wnt/Wg signaling, resulting in the reduction of its target expression. Arm34-87 inhibits Wg/Wnt signaling by interfering with nuclear translocation of endogenous Arm/β-catenin, and this can be modulated by levels of wild-type β-catenin or IFT140, with the Arm34-87 effect being enhanced or suppressed. Importantly, this mechanism is conserved in mammals with the equivalent β-catenin24-79 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt signaling can be regulated by a defined N-terminal β-catenin peptide and thus might serve as an entry point for therapeutic applications to attenuate Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA.
| |
Collapse
|
3
|
Lu Z, Zhang J, Wang H, Zhang K, Gu Z, Xu Y, Zhang J, Wang M, Han L, Xiang F, Zhou C. Rewiring of a KNOXI regulatory network mediated by UFO underlies the compound leaf development in Medicago truncatula. Nat Commun 2024; 15:2988. [PMID: 38582884 PMCID: PMC10998843 DOI: 10.1038/s41467-024-47362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Class I KNOTTED-like homeobox (KNOXI) genes are parts of the regulatory network that control the evolutionary diversification of leaf morphology. Their specific spatiotemporal expression patterns in developing leaves correlate with the degrees of leaf complexity between simple-leafed and compound-leafed species. However, KNOXI genes are not involved in compound leaf formation in several legume species. Here, we identify a pathway for dual repression of MtKNOXI function in Medicago truncatula. PINNATE-LIKE PENTAFOLIATA1 (PINNA1) represses the expression of MtKNOXI, while PINNA1 interacts with MtKNOXI and sequesters it to the cytoplasm. Further investigations reveal that UNUSUAL FLORAL ORGANS (MtUFO) is the direct target of MtKNOXI, and mediates the transition from trifoliate to pinnate-like pentafoliate leaves. These data suggest a new layer of regulation for morphological diversity in compound-leafed species, in which the conserved regulators of floral development, MtUFO, and leaf development, MtKNOXI, are involved in variation of pinnate-like compound leaves in M. truncatula.
Collapse
Affiliation(s)
- Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Juanjuan Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Shandong Peanut Research Institute, Qingdao, 266199, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiqun Gu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Min Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Fengning Xiang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Park YP, Roach T, Soh S, Zeumer-Spataro L, Choi SC, Ostrov DA, Yang Y, Morel L. Molecular Mechanisms of Lupus Susceptibility Allele PBX1D. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:727-734. [PMID: 37486226 PMCID: PMC10530199 DOI: 10.4049/jimmunol.2300362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Pre-B cell leukemia homeobox 1 (PBX1) controls chromatin accessibility to a large number of genes in various cell types. Its dominant negative splice isoform, PBX1D, which lacks the DNA and Hox-binding domains, is expressed more frequently in the CD4+ T cells from lupus-prone mice and patients with systemic lupus erythematosus than healthy control subjects. PBX1D overexpression in CD4+ T cells impaired regulatory T cell homeostasis and expanded inflammatory CD4+ T cells. In this study, we showed that PBX1 message expression is downregulated by activation in CD4+ T cells as well as in B cells. PBX1D protein was less stable than the normal isoform, PBX1B, and it is degraded through the ubiquitin-proteasome-dependent pathway. The DNA binding domain lacking in PBX1D has two putative ubiquitin binding sites, K292 and K293, that are predicted to be in direct contact with DNA. Mutation of K292-293 reduced PBX1B stability to a level similar to PBX1D and abrogated DNA binding. In addition, contrary to PBX1B, PBX1D is retained in the cytoplasm without the help of the cofactors MEIS or PREP1, indicating a different requirement for nuclear translocation. Overall, these findings suggest that multiple post-transcriptional mechanisms are responsible for PBX1D loss of function and induction of CD4+ T cell inflammatory phenotypes in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yuk Pheel Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - Tracoyia Roach
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Sujung Soh
- Research Institute of Women’s Health, Sookmyung Women’s University, 100 Cheongparo 47-gil, Yongsan-Gu, Seoul 04310, South Korea, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Seung-Chul Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL32610, USA
| | - Young Yang
- Research Institute of Women’s Health, Sookmyung Women’s University, 100 Cheongparo 47-gil, Yongsan-Gu, Seoul 04310, South Korea, USA
| | - Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, TX 78229-3900, USA
| |
Collapse
|
5
|
Vuong LT, Mlodzik M. Wg/Wnt-signaling induced nuclear translocation of β-catenin is attenuated by a β-catenin peptide through its interaction with IFT-A in development and cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544986. [PMID: 37398005 PMCID: PMC10312694 DOI: 10.1101/2023.06.14.544986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Wnt/Wingless (Wg) signaling is critical for many developmental patterning processes and linked to diseases, including cancer. Canonical Wnt-signaling is mediated by β-catenin, Armadillo/Arm in Drosophila transducing signal activation to a nuclear response. The IFT-A/Kinesin-2 complex is required to promote the nuclear translocation of β-catenin/Arm. Here, we define a small conserved N-terminal Arm/β-catenin (Arm 34-87 ) peptide, which binds IFT140, as a dominant interference tool to attenuate Wg/Wnt-signaling in vivo . Expression of Arm 34-87 is sufficient to antagonize endogenous Wnt/Wg-signaling activation resulting in marked reduction of Wg-signaling target gene expression. This effect is modulated by endogenous levels of Arm and IFT140, with the Arm 34-87 effect being enhanced or suppressed, respectively. Arm 34-87 thus inhibits Wg/Wnt-signaling by interfering with the nuclear translocation of endogenous Arm/β-catenin. Importantly, this mechanism is conserved in mammals with the equivalent β-catenin 34-87 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt-signaling can be regulated by a defined N-terminal peptide of Arm/β-catenin, and thus this might serve as an entry point for potential therapeutic applications to attenuate Wnt/β-catenin signaling.
Collapse
|
6
|
Bayala EX, Cisneros I, Massardo D, VanKuren NW, Kronforst MR. Divergent expression of aristaless1 and aristaless2 during embryonic appendage and pupal wing development in butterflies. BMC Biol 2023; 21:104. [PMID: 37170114 PMCID: PMC10173497 DOI: 10.1186/s12915-023-01602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Gene duplication events are critical for the evolution of new gene functions. Aristaless is a major regulator of distinct developmental processes. It is most known for its role during appendage development across animals. However, more recently other distinct biological functions have been described for this gene and its duplicates. Butterflies and moths have two copies of aristaless, aristaless1 (al1) and aristaless2 (al2), as a result of a gene duplication event. Previous work in Heliconius has shown that both copies appear to have novel functions related to wing color patterning. Here we expand our knowledge of the expression profiles associated with both ancestral and novel functions of Al1 across embryogenesis and wing pigmentation. Furthermore, we characterize Al2 expression, providing a comparative framework between gene copies within the same species, allowing us to understand the origin of new functions following gene duplication. RESULTS Our work shows that the expression of both Al1 and Al2 is associated with the ancestral function of sensory appendage (leg, mouth, spines, and eyes) development in embryos. Interestingly, Al1 exhibits higher expression earlier in embryogenesis while the highest levels of Al2 expression are shifted to later stages of embryonic development. Furthermore, Al1 localization appears extranuclear while Al2 co-localizes tightly with nuclei earlier, and then also expands outside the nucleus later in development. Cellular expression of Al1 and Al2 in pupal wings is broadly consistent with patterns observed during embryogenesis. We also describe, for the first time, how Al1 localization appears to correlate with zones of anterior/posterior elongation of the body during embryonic growth, showcasing a possible new function related to Aristaless' previously described role in appendage extension. CONCLUSIONS Overall, our data suggest that while both gene copies play a role in embryogenesis and wing pigmentation, the duplicates have diverged temporally and mechanistically across those functions. Our study helps clarify principles behind sub-functionalization and gene expression evolution associated with developmental functions following gene duplication events.
Collapse
Affiliation(s)
- Erick X Bayala
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | - Isabella Cisneros
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Darli Massardo
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas W VanKuren
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Bayala EX, VanKuren N, Massardo D, Kronforst MR. aristaless1 has a dual role in appendage formation and wing color specification during butterfly development. BMC Biol 2023; 21:100. [PMID: 37143075 PMCID: PMC10161628 DOI: 10.1186/s12915-023-01601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Highly diverse butterfly wing patterns have emerged as a powerful system for understanding the genetic basis of phenotypic variation. While the genetic basis of this pattern variation is being clarified, the precise developmental pathways linking genotype to phenotype are not well understood. The gene aristaless, which plays a role in appendage patterning and extension, has been duplicated in Lepidoptera. One copy, aristaless1, has been shown to control a white/yellow color switch in the butterfly Heliconius cydno, suggesting a novel function associated with color patterning and pigmentation. Here we investigate the developmental basis of al1 in embryos, larvae, and pupae using new antibodies, CRISPR/Cas9, RNAi, qPCR assays of downstream targets, and pharmacological manipulation of an upstream activator. RESULTS We find that Al1 is expressed at the distal tips of developing embryonic appendages consistent with its ancestral role. In developing wings, we observe Al1 accumulation within developing scale cells of white H. cydno during early pupation while yellow scale cells exhibit little Al1 at this time point. Reduced Al1 expression is also associated with yellow scale development in al1 knockouts and knockdowns. We propose that Al1 expression in future white scales might be related to an observed downregulation of the enzyme Cinnabar and other genes that synthesize and transport the yellow pigment, 3-hydroxykynurenine (3-OHK). Finally, we provide evidence that Al1 activation is under the control of Wnt signaling. CONCLUSIONS We propose a model in which high levels of Al1 during early pupation, which are mediated by Wnt, are important for melanic pigmentation and specifying white portions of the wing while reduced levels of Al1 during early pupation promote upregulation of proteins needed to move and synthesize 3-OHK, promoting yellow pigmentation. In addition, we discuss how the ancestral role of aristaless in appendage extension may be relevant in understanding the cellular mechanism behind color patterning in the context of the heterochrony hypothesis.
Collapse
Affiliation(s)
- Erick X Bayala
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA.
| | - Nicholas VanKuren
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Darli Massardo
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
8
|
Genome-wide analysis identifies Homothorax and Extradenticle as regulators of insulin in Drosophila Insulin-Producing cells. PLoS Genet 2022; 18:e1010380. [PMID: 36095003 PMCID: PMC9499297 DOI: 10.1371/journal.pgen.1010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/22/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Drosophila Insulin-Producing Cells (IPCs) are the main production site of the Drosophila Insulin-like peptides or dilps which have key roles in regulating growth, development, reproduction, lifespan and metabolism. To better understand the signalling pathways and transcriptional networks that are active in the IPCs we queried publicly available transcriptome data of over 180 highly inbred fly lines for dilp expression and used dilp expression as the input for a Genome-wide association study (GWAS). This resulted in the identification of variants in 125 genes that were associated with variation in dilp expression. The function of 57 of these genes in the IPCs was tested using an RNAi-based approach. We found that IPC-specific depletion of most genes resulted in differences in expression of one or more of the dilps. We then elaborated further on one of the candidate genes with the strongest effect on dilp expression, Homothorax, a transcription factor known for its role in eye development. We found that Homothorax and its binding partner Extradenticle are involved in regulating dilp2, -3 and -5 expression and that genetic depletion of both TFs shows phenotypes associated with reduced insulin signalling. Furthermore, we provide evidence that other transcription factors involved in eye development are also functional in the IPCs. In conclusion, we showed that this expression level-based GWAS approach identified genetic regulators implicated in IPC function and dilp expression. Insulin signalling has a central and evolutionarily conserved role in many processes including growth, development, reproduction, lifespan, stress resistance and metabolic homeostasis. In the fruitfly Drosophila melanogaster insulin-producing cells in the brain are the main source of three insulin-like peptides, Dilp2, -3 and -5. How the production and secretion of these three insulin-like peptides are regulated remains incompletely understood. In the current study, genome-wide association studies were used to identify 50 novel regulators of Dilp2, -3 and -5. We show that one of the top candidate regulators, Homothorax, is an important regulator of dilp2, -3 and –5 expression in the IPCs and is necessary for normal systemic insulin signalling and regulates adult size and developmental timing. We also show that the Hth interactor Extradenticle (Exd) is equally required in the adult but not in the larval IPCs. Finally, we show that most genes of the so-called retinal determination gene network are expressed in the IPCs and regulate normal dilp2 and -5 expression. Together, these results identify further regulatory levels active in the IPCs and implicate a reshuffled version of a previously identified gene regulatory network therein.
Collapse
|
9
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
10
|
Safgren SL, Olson RJ, Pinto E Vairo F, Bothun ED, Hanna C, Klee EW, Schimmenti LA. De novo PBX1 variant in a patient with glaucoma, kidney anomalies, and developmental delay: An expansion of the CAKUTHED phenotype. Am J Med Genet A 2022; 188:919-925. [PMID: 34797033 DOI: 10.1002/ajmg.a.62576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
An infant was referred for evaluation of congenital glaucoma and corneal clouding. In addition, he had a pelvic kidney, hypotonia, patent ductus arteriosus, abnormal pinnae, and developmental delay. Exome sequencing identified a previously unpublished de novo single nucleotide insertion in PBX1 c.400dupG (NM_002585.3), predicted to cause a frameshift resulting in a truncated protein with loss of function (p.Ala134Glyfs*65). Identification of this loss of function variant supports the diagnosis of congenital anomalies of the kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay (CAKUTHED). Here, we propose glaucoma as an extra-renal manifestation associated with PBX1-related disease due to the relationship of PBX1 with MEIS1, MEIS2, and FOXC1 transcription factors associated with eye development.
Collapse
Affiliation(s)
- Stephanie L Safgren
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rory J Olson
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto E Vairo
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Erick D Bothun
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christian Hanna
- Department of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Klee
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
Liu Y, Ao X, Zhou X, Du C, Kuang S. The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 2022; 26:1363-1379. [PMID: 35068042 PMCID: PMC8899182 DOI: 10.1111/jcmm.17196] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pre‐B‐cell leukaemia transcription factor (PBX) proteins are a subfamily of evolutionarily conserved, atypical homeodomain transcription factors that belong to the superfamily of three amino acid loop extension (TALE) homeodomain proteins. Members of the PBX family play crucial roles in regulating multiple pathophysiological processes, such as the development of organs, congenital cardiac defects and carcinogenesis. The dysregulation of PBXs has been shown to be closely associated with many diseases, particularly cancer. However, the detailed mechanisms of PBX dysregulation in cancer progression are still inconclusive. In this review, we summarize the recent advances in the structures, functions and regulatory mechanisms of PBXs, and discuss their underlying mechanisms in cancer progression. We also highlight the great potential of PBXs as biomarkers for the early diagnosis and prognostic evaluation of cancer as well as their therapeutic applications. The information reviewed here may expand researchers’ understanding of PBXs and could strengthen the clinical implication of PBXs in cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xiang Ao
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xuehao Zhou
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Chengcheng Du
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Shouxiang Kuang
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| |
Collapse
|
12
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
13
|
Gulotta MR, De Simone G, John J, Perricone U, Brancale A. A Computer-Based Methodology to Design Non-Standard Peptides Potentially Able to Prevent HOX-PBX1-Associated Cancer Diseases. Int J Mol Sci 2021; 22:5670. [PMID: 34073517 PMCID: PMC8198631 DOI: 10.3390/ijms22115670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
In the last decades, HOX proteins have been extensively studied due to their pivotal role in transcriptional events. HOX proteins execute their activity by exploiting a cooperative binding to PBX proteins and DNA. Therefore, an increase or decrease in HOX activity has been associated with both solid and haematological cancer diseases. Thus, inhibiting HOX-PBX interaction represents a potential strategy to prevent these malignancies, as demonstrated by the patented peptide HTL001 that is being studied in clinical trials. In this work, a computational study is described to identify novel potential peptides designed by employing a database of non-natural amino acids. For this purpose, residue scanning of the HOX minimal active sequence was performed to select the mutations to be further processed. According to these results, the peptides were point-mutated and used for Molecular Dynamics (MD) simulations in complex with PBX1 protein and DNA to evaluate complex binding stability. MM-GBSA calculations of the resulting MD trajectories were exploited to guide the selection of the most promising mutations that were exploited to generate twelve combinatorial peptides. Finally, the latter peptides in complex with PBX1 protein and DNA were exploited to run MD simulations and the ΔGbinding average values of the complexes were calculated. Thus, the analysis of the results highlighted eleven combinatorial peptides that will be considered for further assays.
Collapse
Affiliation(s)
- Maria Rita Gulotta
- Molecular Informatics Unit, Fondazione Ri.MED, Via Filippo Marini 14, 90128 Palermo, Italy; (G.D.S.); (U.P.)
| | - Giada De Simone
- Molecular Informatics Unit, Fondazione Ri.MED, Via Filippo Marini 14, 90128 Palermo, Italy; (G.D.S.); (U.P.)
| | - Justin John
- NRN Tech LTD, Henstaff Court, Llantrisant Road, Groesfaen CF72 8NG, UK;
| | - Ugo Perricone
- Molecular Informatics Unit, Fondazione Ri.MED, Via Filippo Marini 14, 90128 Palermo, Italy; (G.D.S.); (U.P.)
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK;
| |
Collapse
|
14
|
Reichlmeir M, Elias L, Schulte D. Posttranslational Modifications in Conserved Transcription Factors: A Survey of the TALE-Homeodomain Superclass in Human and Mouse. Front Cell Dev Biol 2021; 9:648765. [PMID: 33768097 PMCID: PMC7985065 DOI: 10.3389/fcell.2021.648765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) guide effector proteins like chromatin-modifying or -remodeling enzymes to distinct sites in the genome and thereby fulfill important early steps in translating the genome’s sequence information into the production of proteins or functional RNAs. TFs of the same family are often highly conserved in evolution, raising the question of how proteins with seemingly similar structure and DNA-binding properties can exert physiologically distinct functions or respond to context-specific extracellular cues. A good example is the TALE superclass of homeodomain-containing proteins. All TALE-homeodomain proteins share a characteristic, 63-amino acid long homeodomain and bind to similar sequence motifs. Yet, they frequently fulfill non-redundant functions even in domains of co-expression and are subject to regulation by different signaling pathways. Here we provide an overview of posttranslational modifications that are associated with murine and human TALE-homeodomain proteins and discuss their possible importance for the biology of these TFs.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lena Elias
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
15
|
Chang LW, Tseng IC, Wang LH, Sun YH. Isoform-specific functions of an evolutionarily conserved 3 bp micro-exon alternatively spliced from another exon in Drosophila homothorax gene. Sci Rep 2020; 10:12783. [PMID: 32732884 PMCID: PMC7392893 DOI: 10.1038/s41598-020-69644-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/14/2020] [Indexed: 12/03/2022] Open
Abstract
Micro-exons are exons of very small size (usually 3–30 nts). Some micro-exons are alternatively spliced. Their functions, regulation and evolution are largely unknown. Here, we present an example of an alternatively spliced 3 bp micro-exon (micro-Ex8) in the homothorax (hth) gene in Drosophila. Hth is involved in many developmental processes. It contains a MH domain and a TALE-class homeodomain (HD). It binds to another homeodomain Exd via its MH domain to promote the nuclear import of the Hth-Exd complex and serve as a cofactor for Hox proteins. The MH and HD domains in Hth as well as the HTh-Exd interaction are highly conserved in evolution. The alternatively spliced micro-exon lies between the exons encoding the MH and HD domains. We provide clear proof that the micro-Ex8 is produced by alternative splicing from a 48 bp full-length exon 8 (FL-Ex8) and the micro-Ex8 is the first three nt is FL-Ex8. We found that the micro-Ex8 is the ancient form and the 3 + 48 organization of alternatively spliced overlapping exons only emerged in the Schizophora group of Diptera and is absolutely conserved in this group. We then used several strategies to test the in vivo function of the two types of isoforms and found that the micro-Ex8 and FL-Ex8 isoforms have largely overlapping functions but also have non-redundant functions that are tissue-specific, which supports their strong evolutionary conservation. Since the different combinations of protein interaction of Hth with Exd and/or Hox can have different DNA target specificity, our finding of alternatively spliced isoforms adds to the spectrum of structural and functional diversity under developmental regulation.
Collapse
Affiliation(s)
- Ling-Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - I-Chieh Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Life Science, Chinese Culture University, Taipei, Taiwan, ROC
| | - Lan-Hsin Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC. .,Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
16
|
Fan Y, Li X, Mohammed AAAH, Liu Y, Gao X. miR-147b-modulated expression of vestigial regulates wing development in the bird cherry-oat aphid Rhopalosiphum padi. BMC Genomics 2020; 21:71. [PMID: 31969125 PMCID: PMC6977242 DOI: 10.1186/s12864-020-6466-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 01/08/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Most aphids exhibit wing polyphenism in which wingless and winged morphs produce depending on the population density and host plant quality. Although the influence of environmental factors on wing polyphenism of aphids have been extensively investigated, molecular mechanisms underlining morph differentiation (i.e. wing development /degeneration), one downstream aspect of the wing polyphenism, has been poorly understood. RESULTS We examined the expression levels of the twenty genes involved in wing development network, and only vestigial (vg) showed significantly different expression levels in both whole-body and wall-body of third instar nymphs, with 5.4- and 16.14- fold higher expression in winged lines compared to wingless lines, respectively in Rhopalosiphum padi. vg expression was higher in winged lines compared to wingless lines in third, fourth instar nymphs and adults. Larger difference expression was observed in third (21.38-fold) and fourth (20.91-fold) instar nymphs relative to adults (3.12-fold). Suppression of vg using RNAi repressed the wing development of third winged morphs. Furthermore, dual luciferase reporter assay revealed that the miR-147 can target the vg mRNA. Modulation of miR-147b levels by microinjection of its agomir (mimic) decreased vg expression levels and repressed wing development. CONCLUSIONS Our findings suggest that vg is essential for wing development in R. padi and that miR-147b modulates its expression.
Collapse
Affiliation(s)
- Yinjun Fan
- Department of Entomology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Xiuxia Li
- Department of Entomology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Abd Allah A. H. Mohammed
- Department of Entomology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Ying Liu
- Department of Entomology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193 People’s Republic of China
| |
Collapse
|
17
|
Van de Walle P, Geens E, Baggerman G, José Naranjo-Galindo F, Askjaer P, Schoofs L, Temmerman L. CEH-60/PBX regulates vitellogenesis and cuticle permeability through intestinal interaction with UNC-62/MEIS in Caenorhabditis elegans. PLoS Biol 2019; 17:e3000499. [PMID: 31675356 PMCID: PMC6824563 DOI: 10.1371/journal.pbio.3000499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/08/2019] [Indexed: 11/18/2022] Open
Abstract
The onset of sexual maturity involves dramatic changes in physiology and gene expression in many animals. These include abundant yolk protein production in egg-laying species, an energetically costly process under extensive transcriptional control. Here, we used the model organism Caenorhabditis elegans to provide evidence for the spatiotemporally defined interaction of two evolutionarily conserved transcription factors, CEH-60/PBX and UNC-62/MEIS, acting as a gateway to yolk protein production. Via proteomics, bimolecular fluorescence complementation (BiFC), and biochemical and functional readouts, we show that this interaction occurs in the intestine of animals at the onset of sexual maturity and suffices to support the reproductive program. Our electron micrographs and functional assays provide evidence that intestinal PBX/MEIS cooperation drives another process that depends on lipid mobilization: the formation of an impermeable epicuticle. Without this lipid-rich protective layer, mutant animals are hypersensitive to exogenous oxidative stress and are poor partners for mating. Dedicated communication between the hypodermis and intestine in C. elegans likely supports these physiological outcomes, and we propose a fundamental role for the conserved PBX/MEIS interaction in multicellular signaling networks that rely on lipid homeostasis.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Ellen Geens
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerpen, Belgium
- VITO, Mol, Belgium
| | | | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
18
|
Cooperation of axial and sex specific information controls Drosophila female genitalia growth by regulating the Decapentaplegic pathway. Dev Biol 2019; 454:145-155. [DOI: 10.1016/j.ydbio.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023]
|
19
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Eozenou C, Bashamboo A, Bignon-Topalovic J, Merel T, Zwermann O, Lourenco D, Lottmann H, Lichtenauer U, Rojo S, Beuschlein F, McElreavey K, Brauner R. The TALE homeodomain of PBX1 is involved in human primary testis-determination. Hum Mutat 2019; 40:1071-1076. [PMID: 31058389 DOI: 10.1002/humu.23780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/08/2022]
Abstract
Human sex-determination is a poorly understood genetic process, where gonad development depends on a cell fate decision that occurs in a somatic cell to commit to Sertoli (male) or granulosa (female) cells. A lack of testis-determination in the human results in 46,XY gonadal dysgenesis. A minority of these cases is explained by mutations in genes known to be involved in sex-determination. Here, we identified a de novo missense mutation, p.Arg235Gln in the highly conserved TALE homeodomain of the transcription factor Pre-B-Cell Leukemia Transcription Factor 1 (PBX1) in a child with 46,XY gonadal dysgenesis and radiocubital synostosis. This mutation, within the nuclear localization signal of the protein, modifies the ability of the PBX1 protein to localize to the nucleus. The mutation abolishes the physical interaction of PBX1 with two proteins known to be involved in testis-determination, CBX2 and EMX2. These results provide a mechanism whereby this mutation results specifically in the absence of testis-determination.
Collapse
Affiliation(s)
- Caroline Eozenou
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| | | | - Tiphanie Merel
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Oliver Zwermann
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Diana Lourenco
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Henri Lottmann
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Service de chirurgie viscérale pédiatrique, Paris, France
| | - Urs Lichtenauer
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Sandra Rojo
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Ken McElreavey
- Human Developmental Genetics, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Raja Brauner
- Pediatric Endocrinology Unit, Foundation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| |
Collapse
|
21
|
Shen LY, Zhou T, Du YB, Shi Q, Chen KN. Targeting HOX/PBX dimer formation as a potential therapeutic option in esophageal squamous cell carcinoma. Cancer Sci 2019; 110:1735-1745. [PMID: 30844117 PMCID: PMC6501045 DOI: 10.1111/cas.13993] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
Homeobox genes are known to be classic examples of the intimate relationship between embryogenesis and tumorigenesis, which are a family of transcriptional factors involved in determining cell identity during early development, and also dysregulated in many malignancies. Previously, HOXB7, HOXC6 and HOXC8 were found abnormally upregulated in esophageal squamous cell carcinoma (ESCC) tissues compared with normal mucosa and seen as poor prognostic predictors for ESCC patients, and were shown to promote cell proliferation and anti‐apoptosis in ESCC cells. These three HOX members have a high level of functional redundancy, making it difficult to target a single HOX gene. The aim of the present study was to explore whether ESCC cells are sensitive to HXR9 disrupting the interaction between multiple HOX proteins and their cofactor PBX, which is required for HOX functions. ESCC cell lines (KYSE70, KYSE150, KYSE450) were treated with HXR9 or CXR9, and coimmunoprecipitation and immunofluorescent colocalization were carried out to observe HOX/PBX dimer formation. To further investigate whether HXR9 disrupts the HOX pro‐oncogenic function, CCK‐8 assay and colony formation assay were carried out. Apoptosis was assessed by flow cytometry, and tumor growth in vivo was investigated in a xenograft model. RNA‐seq was used to study the transcriptome of HXR9‐treated cells. Results showed that HXR9 blocked HOX/PBX interaction, leading to subsequent transcription alteration of their potential target genes, which are involved in JAK‐signal transducer and activator of transcription (STAT) activation and apoptosis inducement. Meanwhile, HXR9 showed an antitumor phenotype, such as inhibiting cell proliferation, inducing cell apoptosis and significantly retarding tumor growth. Therefore, it is suggested that targeting HOX/PBX may be a novel effective treatment for ESCC.
Collapse
Affiliation(s)
- Lu-Yan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ting Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ya-Bing Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Qi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ke-Neng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
22
|
Vuong LT, Iomini C, Balmer S, Esposito D, Aaronson SA, Mlodzik M. Kinesin-2 and IFT-A act as a complex promoting nuclear localization of β-catenin during Wnt signalling. Nat Commun 2018; 9:5304. [PMID: 30546012 PMCID: PMC6294004 DOI: 10.1038/s41467-018-07605-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Wnt/Wg-signalling is critical signalling in all metazoans. Recent studies suggest that IFT-A proteins and Kinesin-2 modulate canonical Wnt/Wg-signalling independently of their ciliary role. Whether they function together in Wnt-signalling and their mechanistic role in the pathway remained unresolved. Here we demonstrate that Kinesin-2 and IFT-A proteins act as a complex during Drosophila Wg-signalling, affecting pathway activity in the same manner, interacting genetically and physically, and co-localizing with β-catenin, the mediator of Wnt/Wg-signalling on microtubules. Following pathway activation, Kinesin-2/IFT-A mutant cells exhibit high cytoplasmic β-catenin levels, yet fail to activate Wg-targets. In mutant tissues in both, Drosophila and mouse/MEFs, nuclear localization of β-catenin is markedly reduced. We demonstrate a conserved, motor-domain dependent function of the Kinesin-2/IFT-A complex in promoting nuclear translocation of β-catenin. We show that this is mediated by protecting β-catenin from a conserved cytoplasmic retention process, thus identifying a mechanism for Kinesin-2/IFT-A in Wnt-signalling that is independent of their ciliary role. IFT-A proteins and Kinesin-2 modulate canonical Wnt/Wg-signalling independent of their ciliary role, but how is unclear. Here, the authors show that Kinesin-2 and IFT-A act as a complex to promote nuclear translocation of β-catenin in Drosophila and mouse MEF Wnt signalling independent of its ciliary role.
Collapse
Affiliation(s)
- Linh T Vuong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Carlo Iomini
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Sophie Balmer
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Sloan Kettering Institute, New York, NY, 10029, USA
| | - Davide Esposito
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Stuart A Aaronson
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Kolb J, Anders-Maurer M, Müller T, Hau AC, Grebbin BM, Kallenborn-Gerhardt W, Behrends C, Schulte D. Arginine Methylation Regulates MEIS2 Nuclear Localization to Promote Neuronal Differentiation of Adult SVZ Progenitors. Stem Cell Reports 2018; 10:1184-1192. [PMID: 29641989 PMCID: PMC5998649 DOI: 10.1016/j.stemcr.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/19/2023] Open
Abstract
Adult neurogenesis is regulated by stem cell niche-derived extrinsic factors and cell-intrinsic regulators, yet the mechanisms by which niche signals impinge on the activity of intrinsic neurogenic transcription factors remain poorly defined. Here, we report that MEIS2, an essential regulator of adult SVZ neurogenesis, is subject to posttranslational regulation in the SVZ olfactory bulb neurogenic system. Nuclear accumulation of MEIS2 in adult SVZ-derived progenitor cells follows downregulation of EGFR signaling and is modulated by methylation of MEIS2 on a conserved arginine, which lies in close proximity to nested binding sites for the nuclear export receptor CRM1 and the MEIS dimerization partner PBX1. Methylation impairs interaction with CRM1 without affecting PBX1 dimerization and thereby allows MEIS2 nuclear accumulation, a prerequisite for neuronal differentiation. Our results describe a form of posttranscriptional modulation of adult SVZ neurogenesis whereby an extrinsic signal fine-tunes neurogenesis through posttranslational modification of a transcriptional regulator of cell fate.
Collapse
Affiliation(s)
- Jasmine Kolb
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Marie Anders-Maurer
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Tanja Müller
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Ann-Christin Hau
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Britta Moyo Grebbin
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | | | - Christian Behrends
- Institute of Biochemistry II, University Hospital Frankfurt, 60528 Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology, Edinger Institute, University Hospital Frankfurt, 60528 Frankfurt, Germany.
| |
Collapse
|
24
|
Zandvakili A, Campbell I, Gutzwiller LM, Weirauch MT, Gebelein B. Degenerate Pax2 and Senseless binding motifs improve detection of low-affinity sites required for enhancer specificity. PLoS Genet 2018; 14:e1007289. [PMID: 29617378 PMCID: PMC5902045 DOI: 10.1371/journal.pgen.1007289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/16/2018] [Accepted: 03/05/2018] [Indexed: 12/01/2022] Open
Abstract
Cells use thousands of regulatory sequences to recruit transcription factors (TFs) and produce specific transcriptional outcomes. Since TFs bind degenerate DNA sequences, discriminating functional TF binding sites (TFBSs) from background sequences represents a significant challenge. Here, we show that a Drosophila regulatory element that activates Epidermal Growth Factor signaling requires overlapping, low-affinity TFBSs for competing TFs (Pax2 and Senseless) to ensure cell- and segment-specific activity. Testing available TF binding models for Pax2 and Senseless, however, revealed variable accuracy in predicting such low-affinity TFBSs. To better define parameters that increase accuracy, we developed a method that systematically selects subsets of TFBSs based on predicted affinity to generate hundreds of position-weight matrices (PWMs). Counterintuitively, we found that degenerate PWMs produced from datasets depleted of high-affinity sequences were more accurate in identifying both low- and high-affinity TFBSs for the Pax2 and Senseless TFs. Taken together, these findings reveal how TFBS arrangement can be constrained by competition rather than cooperativity and that degenerate models of TF binding preferences can improve identification of biologically relevant low affinity TFBSs. While all cells in an organism share a common genome, each cell type must express the appropriate combination of genes needed for its specific function. Cells activate and repress different parts of the genome using transcription factor proteins that bind regulatory regions known as enhancers. We currently have an incomplete view of how enhancers recruit transcription factors to yield accurate gene activation and repression. This problem is complicated by the fact that most animals contain over a thousand different transcription factors, and each can generally bind multiple DNA sequences. Thus, it is difficult to predict which transcription factors interact with which enhancers. To gain insights into this process, we focused on determining how an enhancer that activates a gene needed to make liver-like cells is regulated in a precise manner in the fruit-fly embryo. We demonstrate that the specific activity of this enhancer depends on weak and overlapping transcription factor binding sites. Furthermore, we demonstrate that computational models that include weak transcription factor interactions yield better predictive accuracy. These results shed light on how DNA sequences determine enhancer activity and the types of strategies that are most useful for predicting transcription factor binding sites in the genome.
Collapse
Affiliation(s)
- Arya Zandvakili
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America
- Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Ian Campbell
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
| | - Matthew T. Weirauch
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
- Center for Autoimmune Genomics and Etiology & Division of Biomedical Informatics, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital, MLC, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
25
|
Khandelwal R, Sipani R, Govinda Rajan S, Kumar R, Joshi R. Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS. PLoS Genet 2017; 13:e1007043. [PMID: 29023471 PMCID: PMC5667929 DOI: 10.1371/journal.pgen.1007043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/02/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
Hox mediated neuroblast apoptosis is a prevalent way to pattern larval central nervous system (CNS) by different Hox genes, but the mechanism of this apoptosis is not understood. Our studies with Abdominal-A (Abd-A) mediated larval neuroblast (pNB) apoptosis suggests that AbdA, its cofactor Extradenticle (Exd), a helix-loop-helix transcription factor Grainyhead (Grh), and Notch signaling transcriptionally contribute to expression of RHG family of apoptotic genes. We find that Grh, AbdA, and Exd function together at multiple motifs on the apoptotic enhancer. In vivo mutagenesis of these motifs suggest that they are important for the maintenance of the activity of the enhancer rather than its initiation. We also find that Exd function is independent of its known partner homothorax in this apoptosis. We extend some of our findings to Deformed expressing region of sub-esophageal ganglia where pNBs undergo a similar Hox dependent apoptosis. We propose a mechanism where common players like Exd-Grh-Notch work with different Hox genes through region specific enhancers to pattern respective segments of larval central nervous system. Specification of the head to tail axis of the developing central nervous system is carried out by Hox genes. Hox mediated programmed cell death of the neural progenitor cells plays an important role in specification of this axis, but the molecular mechanism of this phenomenon is not well understood. We have studied this phenomenon in abdominal and subesophageal regions of larval central nervous system of Drosophila. We find that different Hox genes use a combination of common players (Extradenticle, Grainyhead and Notch) but employ region specific enhancers to cause progenitor cell death in different segments of developing central nervous system.
Collapse
Affiliation(s)
- Risha Khandelwal
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, India
| | - Rashmi Sipani
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, India
| | - Sriivatsan Govinda Rajan
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
| | - Raviranjan Kumar
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- Graduate Studies, Manipal University, Manipal, India
| | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, Nampally, Hyderabad, India
- * E-mail: ,
| |
Collapse
|
26
|
Zouaz A, Auradkar A, Delfini MC, Macchi M, Barthez M, Ela Akoa S, Bastianelli L, Xie G, Deng WM, Levine SS, Graba Y, Saurin AJ. The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription. EMBO J 2017; 36:2887-2906. [PMID: 28871058 DOI: 10.15252/embj.201695751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
In metazoans, the pausing of RNA polymerase II at the promoter (paused Pol II) has emerged as a widespread and conserved mechanism in the regulation of gene transcription. While critical in recruiting Pol II to the promoter, the role transcription factors play in transitioning paused Pol II into productive Pol II is, however, little known. By studying how Drosophila Hox transcription factors control transcription, we uncovered a molecular mechanism that increases productive transcription. We found that the Hox proteins AbdA and Ubx target gene promoters previously bound by the transcription pausing factor M1BP, containing paused Pol II and enriched with promoter-proximal Polycomb Group (PcG) proteins, yet lacking the classical H3K27me3 PcG signature. We found that AbdA binding to M1BP-regulated genes results in reduction in PcG binding, the release of paused Pol II, increases in promoter H3K4me3 histone marks and increased gene transcription. Linking transcription factors, PcG proteins and paused Pol II states, these data identify a two-step mechanism of Hox-driven transcription, with M1BP binding leading to Pol II recruitment followed by AbdA targeting, which results in a change in the chromatin landscape and enhanced transcription.
Collapse
Affiliation(s)
- Amel Zouaz
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ankush Auradkar
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | | | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Serge Ela Akoa
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Leila Bastianelli
- MGX-Montpellier GenomiX c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
27
|
De Kumar B, Parker HJ, Paulson A, Parrish ME, Pushel I, Singh NP, Zhang Y, Slaughter BD, Unruh JR, Florens L, Zeitlinger J, Krumlauf R. HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets. Genome Res 2017; 27:1501-1512. [PMID: 28784834 PMCID: PMC5580710 DOI: 10.1101/gr.219386.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
Abstract
Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Mark E Parrish
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Pathology
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
28
|
Morgan R, El-Tanani M, Hunter KD, Harrington KJ, Pandha HS. Targeting HOX/PBX dimers in cancer. Oncotarget 2017; 8:32322-32331. [PMID: 28423659 PMCID: PMC5458287 DOI: 10.18632/oncotarget.15971] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 12/30/2022] Open
Abstract
The HOX and PBX gene families encode transcription factors that have key roles in establishing the identity of cells and tissues in early development. Over the last 20 years it has become apparent that they are also dysregulated in a wide range of solid and haematological malignancies and have a predominantly pro-oncogenic function. A key mode of transcriptional regulation by HOX and PBX proteins is through their interaction as a heterodimer or larger complex that enhances their binding affinity and specificity for DNA, and there is growing evidence that this interaction is a potential therapeutic target in malignancies that include prostate, breast, renal, ovarian and lung cancer, melanoma, myeloma, and acute myeloid leukaemia. This review summarizes the roles of HOX and PBX genes in cancer and assesses the therapeutic potential of HOX/PBX dimer inhibition, including the availability of biomarkers for its application in precision medicine.
Collapse
Affiliation(s)
- Richard Morgan
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Kevin J. Harrington
- Targeted Therapy Team, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Hardev S. Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
29
|
Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Dmitry Penkov
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Leila Dardaei
- Massachusetts General Hospital Cancer Center; Charlestown MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
30
|
Abstract
Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan. However, there are a number of unresolved issues regarding how paralogous Hox factors achieve specificity to control distinct cell fates. First, how do Hox paralogs, which have very similar DNA binding preferences in vitro, drive different transcriptional programs in vivo? Second, the number of potential Hox binding sites within the genome is vast compared to the number of sites bound. Hence, what determines where in the genome Hox factors bind? Third, what determines whether a Hox factor will activate or repress a specific target gene? Here, we review the current evidence that is beginning to shed light onto these questions. In particular, we highlight how cooperative interactions with other transcription factors (especially PBC and HMP proteins) and the sequences of cis-regulatory modules provide a basis for the mechanisms of Hox specificity. We conclude by integrating a number of the concepts described throughout the review in a case study of a highly interrogated Drosophila cis-regulatory module named “The Distal-less Conserved Regulatory Element” (DCRE).
Collapse
Affiliation(s)
- Arya Zandvakili
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-636-3366
| | | | | |
Collapse
|
31
|
Di Lascio S, Belperio D, Benfante R, Fornasari D. Alanine Expansions Associated with Congenital Central Hypoventilation Syndrome Impair PHOX2B Homeodomain-mediated Dimerization and Nuclear Import. J Biol Chem 2016; 291:13375-93. [PMID: 27129232 PMCID: PMC4933246 DOI: 10.1074/jbc.m115.679027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/30/2022] Open
Abstract
Heterozygous mutations of the human PHOX2B gene, a key regulator of autonomic nervous system development, lead to congenital central hypoventilation syndrome (CCHS), a neurodevelopmental disorder characterized by a failure in the autonomic control of breathing. Polyalanine expansions in the 20-residues region of the C terminus of PHOX2B are the major mutations responsible for CCHS. Elongation of the alanine stretch in PHOX2B leads to a protein with altered DNA binding, transcriptional activity, and nuclear localization and the possible formation of cytoplasmic aggregates; furthermore, the findings of various studies support the idea that CCHS is not due to a pure loss of function mechanism but also involves a dominant negative effect and/or toxic gain of function for PHOX2B mutations. Because PHOX2B forms homodimers and heterodimers with its paralogue PHOX2A in vitro, we tested the hypothesis that the dominant negative effects of the mutated proteins are due to non-functional interactions with the wild-type protein or PHOX2A using a co-immunoprecipitation assay and the mammalian two-hybrid system. Our findings show that PHOX2B forms homodimers and heterodimerizes weakly with mutated proteins, exclude the direct involvement of the polyalanine tract in dimer formation, and indicate that mutated proteins retain partial ability to form heterodimers with PHOX2A. Moreover, in this study, we investigated the effects of the longest polyalanine expansions on the homeodomain-mediated nuclear import, and our data clearly show that the expanded C terminus interferes with this process. These results provide novel insights into the effects of the alanine tract expansion on PHOX2B folding and activity.
Collapse
Affiliation(s)
- Simona Di Lascio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Debora Belperio
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and
| | - Roberta Benfante
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| | - Diego Fornasari
- From the Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy and the National Research Council (CNR) Neuroscience Institute, 20129 Milan, Italy
| |
Collapse
|
32
|
Sharma PP, Tarazona OA, Lopez DH, Schwager EE, Cohn MJ, Wheeler WC, Extavour CG. A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. Proc Biol Sci 2016; 282:20150698. [PMID: 25948691 DOI: 10.1098/rspb.2015.0698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.
Collapse
Affiliation(s)
- Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Oscar A Tarazona
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Davys H Lopez
- Department of Biology, University of Florida, Gainesville, FL 32611, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Martin J Cohn
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
33
|
Uhl JD, Zandvakili A, Gebelein B. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes. PLoS Genet 2016; 12:e1005981. [PMID: 27058369 PMCID: PMC4825978 DOI: 10.1371/journal.pgen.1005981] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. Enhancers are regulatory elements that interact with transcription factor proteins to control cell-specific gene expression during development. Surprisingly, only a subset of enhancers are highly conserved at the sequence level, even though the expression patterns they control are often conserved and essential for proper development. Why some enhancer sequences are highly conserved whereas others are not is not well understood. In this study, we characterize a highly conserved enhancer that regulates gene expression in leg precursor cells. We find that this enhancer has dual regulatory activities that include gene activation in thoracic segments and gene repression in abdominal segments. Surprisingly, we show that the conserved enhancer can tolerate numerous sequence changes yet mediate robust transcription factor binding and abdominal repression. These findings are consistent with abdominal transcription factors binding numerous different configurations of binding sites. So, why is this enhancer highly conserved? We found that overlapping sequences within the enhancer also contribute to thoracic activation, suggesting the enhancer sequences are under added functional constraints. Altogether, our results provide new insights into why some enhancers are highly conserved at the sequence level while others can tolerate sequence changes.
Collapse
Affiliation(s)
- Juli D Uhl
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America.,Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Arya Zandvakili
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America.,Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America
| |
Collapse
|
34
|
Barrios N, Campuzano S. Expanding the Iroquois genes repertoire: a non-transcriptional function in cell cycle progression. Fly (Austin) 2016; 9:126-31. [PMID: 26760760 DOI: 10.1080/19336934.2016.1139654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Drosophila Iroquois (Iro) proteins are components of the TALE homeodomain family of transcriptional regulators. They play key roles in territorial specification and pattern formation. A recent study has disclosed a novel developmental function of the Iro proteins. In the eye and wing imaginal discs, they can regulate the size of the territories that they specify. They do so by cell-autonomously controlling cell cycle progression. Indeed, Iro proteins down-regulate the activity of the CyclinE/Cdk2 complex by a transcription-independent mechanism. This novel function is executed mainly through 2 evolutionarily conserved domains of the Iro proteins: the Cyclin Binding Domain and the IRO-box, which mediate their binding to CyclinE-containing protein complexes. Here we discuss the functional implications of the control of the cell cycle by Iro proteins for development and oncogenesis.
Collapse
Affiliation(s)
- Natalia Barrios
- a Department of Development and Differentiation ; Centro de Biología Molecular Severo Ochoa (CSIC-UAM) ; Madrid , Spain
| | - Sonsoles Campuzano
- a Department of Development and Differentiation ; Centro de Biología Molecular Severo Ochoa (CSIC-UAM) ; Madrid , Spain
| |
Collapse
|
35
|
Ishimaru Y, Nakamura T, Bando T, Matsuoka Y, Ohuchi H, Noji S, Mito T. Involvement of dachshund and Distal-less in distal pattern formation of the cricket leg during regeneration. Sci Rep 2015; 5:8387. [PMID: 25669615 PMCID: PMC4323655 DOI: 10.1038/srep08387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/19/2015] [Indexed: 12/02/2022] Open
Abstract
Cricket nymphs have the remarkable ability to regenerate a functional leg following amputation, indicating that the regenerating blastemal cells contain information for leg morphology. However, the molecular mechanisms that underlie regeneration of leg patterns remain poorly understood. Here, we analyzed phenotypes of the tibia and tarsus (three tarsomeres) obtained by knockdown with regeneration-dependent RNA interference (rdRNAi) against Gryllus dachshund (Gb'dac) and Distal-less (Gb'Dll). We found that depletion of Gb'Dll mRNA results in loss of the tarsal segments, while rdRNAi against Gb'dac shortens the tibia at the two most distal tarsomeres. These results indicate that Gb'Dll expression is indispensable for formation of the tarsus, while Gb'dac expression is necessary for elongation of the tibia and formation of the most proximal tarsomere. These findings demonstrate that mutual transcriptional regulation between the two is indispensable for formation of the tarsomeres, whereas Gb'dac is involved in determination of tibial size through interaction with Gb'ds/Gb'ft.
Collapse
Affiliation(s)
- Yoshiyasu Ishimaru
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima, 770-8506, Japan
| | - Taro Nakamura
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima, 770-8506, Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima, 770-8506, Japan
| | - Hideyo Ohuchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama City, Okayama, 700-8530, Japan
| | - Sumihare Noji
- Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 2-24 Shinkura-cho, Tokushima City, Tokushima 770-8501, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima, 770-8506, Japan
| |
Collapse
|
36
|
Characterisation of Drosophila Ubx CPTI000601 and hth CPTI000378 protein trap lines. ScientificWorldJournal 2014; 2014:191535. [PMID: 25389534 PMCID: PMC4214163 DOI: 10.1155/2014/191535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/01/2014] [Indexed: 11/23/2022] Open
Abstract
In Drosophila, protein trap strategies provide powerful approaches for the generation of tagged proteins expressed under endogenous control. Here, we describe expression and functional analysis to evaluate new Ubx and hth protein trap lines generated by the Cambridge Protein Trap project. Both protein traps exhibit spatial and temporal expression patterns consistent with the reported endogenous pattern in the embryo. In imaginal discs, Ubx-YFP is expressed throughout the haltere and 3rd leg imaginal discs, while Hth-YFP is expressed in the proximal regions of haltere and wing discs but not in the pouch region. The UbxCPTI000601 line is semilethal as a homozygote. No T3/A1 to T2 transformations were observed in the embryonic cuticle or the developing midgut. The homozygous survivors, however, exhibit a weak haltere phenotype with a few wing-like marginal bristles on the haltere capitellum. Although hthCPTI000378 is completely lethal as a homozygote, the hthCPTI000378/hthC1 genotype is viable. Using a hth deletion (Df(3R)BSC479) we show that hthCPTI000378/Df(3R)BSC479 adults are phenotypically normal. No transformations were observed in hthCPTI000378, hthCPTI000378/hthC1, or hthCPTI000378/Df(3R)BSC479 embryonic cuticles. We have successfully characterised the Ubx-YFP and Hth-YFP protein trap lines demonstrating that the tagged proteins show appropriate expression patterns and produce at least partially functional proteins.
Collapse
|
37
|
Smith FW, Jockusch EL. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum. Dev Biol 2014; 395:182-97. [DOI: 10.1016/j.ydbio.2014.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
|
38
|
Wernet MF, Desplan C. Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina. Development 2014; 141:918-28. [PMID: 24496628 DOI: 10.1242/dev.103127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A narrow band of ommatidia in the dorsal periphery of the Drosophila retina called the dorsal rim area (DRA) act as detectors for polarized light. The transcription factor Homothorax (Hth) is expressed in DRA inner photoreceptors R7 and R8 and is both necessary and sufficient to induce the DRA fate, including specialized morphology and unique Rhodopsin expression. Hth expression is the result of Wingless (Wg) pathway activity at the eye margins and restriction to the dorsal eye by the selector genes of the Iroquois complex (Iro-C). However, how the DRA is limited to exactly one or two ommatidial rows is not known. Although several factors regulating the Drosophila retinal mosaic are expressed in DRA ommatidia, the role of Hth in this transcriptional network is uncharacterized. Here we show that Hth functions together with its co-factor Extradenticle (Exd) to repress the R8-specific factor Senseless (Sens) in DRA R8 cells, allowing expression of an ultraviolet-sensitive R7 Rhodopsin (Rh3). Furthermore, Hth/Exd act in concert with the transcriptional activators Orthodenticle (Otd) and Spalt (Sal), to activate expression of Rh3 in the DRA. The resulting monochromatic coupling of Rh3 between R7 and R8 in DRA ommatidia is important for comparing celestial e-vector orientation rather than wavelengths. Finally, we show that Hth expression expands to many ommatidial rows in regulatory mutants of optomotorblind (omb), a transcription factor transducing Wg signaling at the dorsal and ventral eye poles. Therefore, locally restricted recruitment of the DRA-specific factor Hth alters the transcriptional network that regulates Rhodopsin expression across ommatidia.
Collapse
Affiliation(s)
- Mathias F Wernet
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Place, New York, NY 10003, USA
| | | |
Collapse
|
39
|
Hudry B, Thomas-Chollier M, Volovik Y, Duffraisse M, Dard A, Frank D, Technau U, Merabet S. Molecular insights into the origin of the Hox-TALE patterning system. eLife 2014; 3:e01939. [PMID: 24642410 PMCID: PMC3957477 DOI: 10.7554/elife.01939] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI:http://dx.doi.org/10.7554/eLife.01939.001 Any animal with a body that is symmetric about an imaginary line that runs from its head to its tail is known as a bilaterian. Humans and most animals are bilateral, whereas jellyfish and starfish are not. Bilateral symmetry can take many forms—as demonstrated by the differences between flies, frogs and humans—but all bilaterians express many of the same genes during development. One of these groups of genes is known as the Hox family. The expression of specific Hox genes at specific times instructs cells in the developing embryo to adopt different fates according to their position along the anterior–posterior (head to tail) axis. The patterning function of Hox genes relies on the presence of two additional cofactors that belong to the so-called TALE family. Although both Hox and TALE proteins were present early on during animal evolution, it is unclear how and when the interactions between them first began to generate symmetrical body plans. Now, Hudry et al. have provided insights into the origin of the Hox-TALE network by analysing the expression and molecular properties of Hox and TALE proteins from various multicellular and unicellular organisms. These experiments revealed that Hox and TALE proteins of the sea anemone Nematostella, which belongs to a group of animals called cnidarians that have radial rather than bilateral symmetry, interact with one another in a similar manner to the interactions seen in bilaterians. Hudry et al. then showed that two Nematostella Hox genes were able to substitute for their bilaterian equivalents in fruit flies, and that a Nematostella TALE gene was able to take over neuronal functions of its equivalent in Xenopus frogs. This striking conservation of function between species suggests that Hox and TALE genes were already working together in the common ancestor of all bilaterian and cnidarian animals. By contrast, TALE members from a unicellular amoeba were unable to interact with Hox proteins, suggesting that Hox–TALE interactions first emerged in multicellular animals. In addition to increasing our knowledge of highly conserved Hox signalling, these data provide insight into the molecular mechanisms that gave rise to the symmetrical body plan that has been adopted, and adapted, by the majority of animals since. DOI:http://dx.doi.org/10.7554/eLife.01939.002
Collapse
Affiliation(s)
- Bruno Hudry
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Smith FW, Angelini DR, Jockusch EL. A functional genetic analysis in flour beetles (Tenebrionidae) reveals an antennal identity specification mechanism active during metamorphosis in Holometabola. Mech Dev 2014; 132:13-27. [PMID: 24534744 DOI: 10.1016/j.mod.2014.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 11/27/2022]
Abstract
The antenna was the first arthropod ventral appendage to evolve non-leg identity. Models of antennal evolution have been based on comparisons of antennal and leg identity specification mechanisms in Drosophila melanogaster, a species in which appendages develop from highly derived imaginal discs during the larval period. We test for conservation of the Drosophila antennal identity specification mechanism at metamorphosis in Tribolium castaneum and three other flour beetle species (Tribolium confusum, Tribolium brevicornis and Latheticus oryzae) in the family Tenebrionidae. In Drosophila, loss of function of four transcription factors-homothorax, extradenticle, Distal-less, and spineless-causes large-scale transformations of the antenna to leg identity. Distal-less and spineless function similarly during metamorphosis in T. castaneum. RNA interference (RNAi) targeting homothorax (hth) or extradenticle (exd) caused transformation of the proximal antenna to distal leg identity in flour beetles, but did not affect the identity of the distal antenna. This differs from the functional domain of these genes in early instar Drosophila, where they are required for identity specification throughout the antenna, but matches their functional domain in late instar Drosophila. The similarities between antennal identity specification at metamorphosis in flour beetles and in late larval Drosophila likely reflect the conservation of an ancestral metamorphic developmental mechanism. There were two notable differences in hth/exd loss of function phenotypes between flies and beetles. Flour beetles retained all of their primary segments in both the antenna and legs, whereas flies undergo reduction and fusion of primary segments. This difference in ground state appendage morphology casts doubt on interpretations of developmental ground states as evolutionary atavisms. Additionally, adult Tribolium eyes were transformed to elytron-like structures; we provide a developmental hypothesis for this evolutionarily surprising transformation.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA.
| | - David R Angelini
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA; Department of Biology, Colby College, 5734 Mayflower Hill, Waterville, ME 04901, USA
| | - Elizabeth L Jockusch
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269-3043, USA
| |
Collapse
|
41
|
SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol 2014; 1196:255-78. [PMID: 25151169 DOI: 10.1007/978-1-4939-1242-1_16] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The closely related members of the Hox family of homeodomain transcription factors have similar DNA-binding preferences as monomers, yet carry out distinct functions in vivo. Transcription factors often bind DNA as multiprotein complexes, raising the possibility that complex formation might modify their DNA-binding specificities. To test this hypothesis we developed a new experimental and computational platform, termed SELEX-seq, to characterize DNA-binding specificities of Hox-based multiprotein complexes. We found that complex formation with the same cofactor reveals latent specificities that are not observed for monomeric Hox factors. The findings from this in vitro platform are consistent with in vivo data, and the "latent specificity" concept serves as a precedent for how the specificities of similar transcription factors might be distinguished in vivo. Importantly, the SELEX-seq platform is flexible and can be used to determine the relative affinities to any DNA sequence for any transcription factor or multiprotein complex.
Collapse
|
42
|
Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev Dyn 2014; 243:59-75. [PMID: 23873833 PMCID: PMC4232920 DOI: 10.1002/dvdy.24016] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/19/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022] Open
Abstract
TALE (three amino acids loop extension) homeodomain transcription factors are required in various steps of embryo development, in many adult physiological functions, and are involved in important pathologies. This review focuses on the PREP, MEIS, and PBX sub-families of TALE factors and aims at giving information on their biochemical properties, i.e., structure, interactors, and interaction surfaces. Members of the three sets of protein form dimers in which the common partner is PBX but they can also directly interact with other proteins forming higher-order complexes, in particular HOX. Finally, recent advances in determining the genome-wide DNA-binding sites of PREP1, MEIS1, and PBX1, and their partial correspondence with the binding sites of some HOX proteins, are reviewed. These studies have generated a few general rules that can be applied to all members of the three gene families. PREP and MEIS recognize slightly different consensus sequences: PREP prefers to bind to promoters and to have PBX as a DNA-binding partner; MEIS prefers HOX as partner, and both PREP and MEIS drive PBX to their own binding sites. This outlines the clear individuality of the PREP and MEIS proteins, the former mostly devoted to basic cellular functions, the latter more to developmental functions.
Collapse
Affiliation(s)
- E Longobardi
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milano, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Corsetti E, Azpiazu N. Functional dissection of the splice variants of the Drosophila gene homothorax (hth). Dev Biol 2013; 384:72-82. [PMID: 24075905 DOI: 10.1016/j.ydbio.2013.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 01/22/2023]
Abstract
Homothorax belongs to the TALE-homeodomain family of transcription factors, together with its vertebrate counterparts, the Meis family of proto-oncogenes. It fulfills many important different functions during embryonic and larval developments in Drosophila, which encompass from subdivision and specification of body parts to assembly of heterochromatin structures. Hth interacts with Extradenticle, another member of the TALE-homeodomain family of conserved transcription factors, to facilitate its entrance to the nucleus. The many different functions described for Hth rely on the complexity of the locus, from which six different isoforms arise. The isoforms can be grouped into full-length and short versions, which contain either one or the two conserved domains of the protein (homeodomain and Exd-interacting domain). We have used molecular and genetic tools to analyze the levels of expression, the distribution and the function of the isoforms during embryonic development. Our results clearly show that the isoforms display distinct levels of expression and are differentially distributed in the embryo. This detailed study also shows that during normal embryonic development not all the Hth isoforms translocate Exd into the nucleus, suggesting that both the proteins can also function separately. We have demonstrated that the full-length Hth protein activates transcription of exd, augmenting the levels of exd mRNA in the cell. The higher levels of Exd protein in those cells facilitate its entrance to the nucleus. Our work demonstrates that hth is a complex gene that should not be considered as a functional unit. The roles of the different isoforms probably rely on their distinct protein domains and conformations and, at the end, on interactions with particular partners.
Collapse
Affiliation(s)
- Elise Corsetti
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, C/Nicolas Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
44
|
Slattery M, Voutev R, Ma L, Nègre N, White KP, Mann RS. Divergent transcriptional regulatory logic at the intersection of tissue growth and developmental patterning. PLoS Genet 2013; 9:e1003753. [PMID: 24039600 PMCID: PMC3764184 DOI: 10.1371/journal.pgen.1003753] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/10/2013] [Indexed: 12/19/2022] Open
Abstract
The Yorkie/Yap transcriptional coactivator is a well-known regulator of cellular proliferation in both invertebrates and mammals. As a coactivator, Yorkie (Yki) lacks a DNA binding domain and must partner with sequence-specific DNA binding proteins in the nucleus to regulate gene expression; in Drosophila, the developmental regulators Scalloped (Sd) and Homothorax (Hth) are two such partners. To determine the range of target genes regulated by these three transcription factors, we performed genome-wide chromatin immunoprecipitation experiments for each factor in both the wing and eye-antenna imaginal discs. Strong, tissue-specific binding patterns are observed for Sd and Hth, while Yki binding is remarkably similar across both tissues. Binding events common to the eye and wing are also present for Sd and Hth; these are associated with genes regulating cell proliferation and “housekeeping” functions, and account for the majority of Yki binding. In contrast, tissue-specific binding events for Sd and Hth significantly overlap enhancers that are active in the given tissue, are enriched in Sd and Hth DNA binding sites, respectively, and are associated with genes that are consistent with each factor's previously established tissue-specific functions. Tissue-specific binding events are also significantly associated with Polycomb targeted chromatin domains. To provide mechanistic insights into tissue-specific regulation, we identify and characterize eye and wing enhancers of the Yki-targeted bantam microRNA gene and demonstrate that they are dependent on direct binding by Hth and Sd, respectively. Overall these results suggest that both Sd and Hth use distinct strategies – one shared between tissues and associated with Yki, the other tissue-specific, generally Yki-independent and associated with developmental patterning – to regulate distinct gene sets during development. The Hippo tumor suppressor pathway controls proliferation in a tissue-nonspecific fashion in Drosophila epithelial progenitor tissues via the transcriptional coactivator Yorkie (Yki). However, despite the tissue-nonspecific role that Yki plays in tissue growth, the transcription factors that recruit Yki to DNA, most notably Scalloped (Sd) and Homothorax (Hth), are important regulators of developmental patterning with many tissue-specific functions. Thus, these three transcriptional regulators – Yki, Sd, and Hth – provide a model for exploring the properties of protein-DNA interactions that regulate both tissue-shared and tissue-specific functions. With this goal in mind, we identified the positions in the fly genome that are bound by Yki, Sd, and Hth in the progenitors of the wing and eye-antenna structures of the fly. These data not only provide a global view of the Yki gene regulatory network, they reveal an unusual amount of tissue specificity in the genomic regions targeted by Sd and Hth, but not Yki. The data also reveal that tissue-specific binding is very likely to overlap tissue-specific enhancer regions, provide important clues for how tissue-specific Sd and Hth binding occurs, and support the idea that gene regulatory networks are plastic, with spatial differences in binding significantly impacting network structures.
Collapse
Affiliation(s)
- Matthew Slattery
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Roumen Voutev
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Lijia Ma
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Nicolas Nègre
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Université de Montpellier 2 and INRA, UMR1333 DGIMI, Montpellier, France
| | - Kevin P. White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ladam F, Sagerström CG. Hox regulation of transcription: more complex(es). Dev Dyn 2013; 243:4-15. [PMID: 23765878 DOI: 10.1002/dvdy.23997] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
Hox genes encode transcription factors with important roles during embryogenesis and tissue differentiation. Genetic analyses initially demonstrated that interfering with Hox genes has profound effects on the specification of cell identity, suggesting that Hox proteins regulate very specific sets of target genes. However, subsequent biochemical analyses revealed that Hox proteins bind DNA with relatively low affinity and specificity. Furthermore, it became clear that a given Hox protein could activate or repress transcription, depending on the context. A resolution to these paradoxes presented itself with the discovery that Hox proteins do not function in isolation, but interact with other factors in complexes. The first such "cofactors" were members of the Extradenticle/Pbx and Homothorax/Meis/Prep families. However, the list of Hox-interacting proteins has continued to grow, suggesting that Hox complexes contain many more components than initially thought. Additionally, the activities of the various components and the exact mechanisms whereby they modulate the activity of the complex remain puzzling. Here, we review the various proteins known to participate in Hox complexes and discuss their likely functions. We also consider that Hox complexes of different compositions may have different activities and discuss mechanisms whereby Hox complexes may be switched between active and inactive states.
Collapse
Affiliation(s)
- Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | |
Collapse
|
46
|
Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol 2013; 223:341-50. [DOI: 10.1007/s00427-013-0449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
|
47
|
Estacio-Gómez A, Moris-Sanz M, Schäfer AK, Perea D, Herrero P, Díaz-Benjumea FJ. Bithorax-complex genes sculpt the pattern of leucokinergic neurons in the Drosophila central nervous system. Development 2013; 140:2139-48. [PMID: 23633511 DOI: 10.1242/dev.090423] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the Hox genes are the main factors involved in the generation of diversity along the anterior/posterior body axis of segmented organisms, it is still largely unknown how these genes act in single cells to determine specific traits at precise developmental stages. The aim of this study was to understand the mechanisms by which Hox genes of the Bithorax complex (Bx-C) of Drosophila act to define segmental differences in the ventral nerve cord of the central nervous system. To achieve this, we have focused on the specification of the leucokinin-expressing neurons. We find that these neurons are specified from the same progenitor neuroblast at two different developmental stages: embryonic and larval neurogenesis. We show that genes of the Bx-C acted in postmitotic cells to specify the segment-specific appearance of leucokinergic cells in the larval and adult ventral nerve cord.
Collapse
Affiliation(s)
- Alicia Estacio-Gómez
- Centro de Biología Molecular-Severo Ochoa (CSIC-UAM), c/Nicolas Cabrera 1,Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Hughes S, Brabin C, Appleford PJ, Woollard A. CEH-20/Pbx and UNC-62/Meis function upstream of rnt-1/Runx to regulate asymmetric divisions of the C. elegans stem-like seam cells. Biol Open 2013; 2:718-27. [PMID: 23862020 PMCID: PMC3711040 DOI: 10.1242/bio.20134549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022] Open
Abstract
Caenorhabditis elegans seam cells divide in the stem-like mode throughout larval development, with the ability to both self-renew and produce daughters that differentiate. Seam cells typically divide asymmetrically, giving rise to an anterior daughter that fuses with the hypodermis and a posterior daughter that proliferates further. Previously we have identified rnt-1 (a homologue of the mammalian cancer-associated stem cell regulator Runx) as being an important regulator of seam development, acting to promote proliferation; rnt-1 mutants have fewer seam cells whereas overexpressing rnt-1 causes seam cell hyperplasia. We isolated the interacting CEH-20/Pbx and UNC-62/Meis TALE-class transcription factors during a genome-wide RNAi screen for novel regulators of seam cell number. Animals lacking wild type CEH-20 or UNC-62 display seam cell hyperplasia, largely restricted to the anterior of the worm, whereas double mutants have many additional seam cells along the length of the animal. The cellular basis of the hyperplasia involves the symmetrisation of normally asymmetric seam cell divisions towards the proliferative stem-like fate. The hyperplasia is completely suppressed in rnt-1 mutants, and rnt-1 is upregulated in ceh-20 and unc-62 mutants, suggesting that CEH-20 and UNC-62 function upstream of rnt-1 to limit proliferative potential to the appropriate daughter cell. In further support of this we find that CEH-20 is asymmetrically localised in seam daughters following an asymmetric division, being predominantly restricted to anterior nuclei whose fate is to differentiate. Thus, ceh-20 and unc-62 encode crucial regulators of seam cell division asymmetry, acting via rnt-1 to regulate the balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU , UK
| | | | | | | |
Collapse
|
49
|
Sharma PP, Schwager EE, Giribet G, Jockusch EL, Extavour CG. Distal-lessanddachshundpattern both plesiomorphic and apomorphic structures in chelicerates: RNA interference in the harvestmanPhalangium opilio(Opiliones). Evol Dev 2013; 15:228-42. [DOI: 10.1111/ede.12029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Evelyn E. Schwager
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology; University of Connecticut; 75 N. Eagleville Road, Storrs, CT 06269; USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street, Cambridge, MA 02138; USA
| |
Collapse
|
50
|
Barber BA, Liyanage VRB, Zachariah RM, Olson CO, Bailey MAG, Rastegar M. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells. Ann Anat 2013; 195:431-40. [PMID: 23756022 DOI: 10.1016/j.aanat.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Central nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system. MEIS1 is essential for embryonic development and Meis1 knockout mice dies at embryonic day (E) 14.5. However, Meis1/MEIS1 expression in the devolving forebrain, at this critical time-point has not been studied. Here, for the first time we characterize the region-specific expression of MEIS1 in E14.5 mouse forebrain, filling the gap of MEIS1 expression profile between E12.5 and E16.5. Previously, we reported MEIS1 transcriptional regulatory role in neuronal differentiation and established forebrain-derived neural stem cells (NSC) for gene therapy application of neuronal genes. Here, we show the dynamic expression of Meis1/MEIS1 during the differentiation of forebrain-derived NSC toward a glial lineage. Our results show that Meis1/MEIS1 expression is induced during NSC differentiation and is expressed in both differentiated neurons and astrocytes. Confirming these results, we detected MEIS1 expression in primary cultures of in vivo differentiated cortical neurons and astrocytes. We further demonstrate Meis1/MEIS1 expression relative to other TALE family members in the forebrain-derived NSC in the absence of Hox genes. Our data provide evidence that forebrain-derived NSC can be used as an accessible in vitro model to study the expression and function of TALE proteins, supporting their potential role in modulating NSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Benjamin A Barber
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | | | |
Collapse
|