1
|
Alotaibi F, Aba Alkhayl FF, Foudah AI, Azhar Kamal M, Moglad EH, Khan S, Rehman ZU, Warsi MK, Jawaid T, Alam A. Investigating the effects of four medicinal plants against dengue virus through QSAR modeling and molecular dynamics studies. J Biomol Struct Dyn 2025; 43:4063-4080. [PMID: 38197579 DOI: 10.1080/07391102.2024.2301744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
The Dengue virus (DENV) has been increasingly recognized as a prevalent viral pathogen responsible for global transmission of infection. It has been established that DENV's NS5 methyltransferase (MTase) controls viral replication. As a result, NS5 MTase is considered a potentially useful drug target for DENV. In this study, the two phases of virtual screening were conducted using the ML-based QSAR model and molecular docking to identify potential compounds against NS5 of DENV. Four medicinal plants [Aloe vera, Cannabis sativa (Hemp), Ocimum sanctum (Holy Basil; Tulsi), and Zingiber officinale (Ginger)] that showed anti-viral properties were selected for sourcing the phytochemicals and screening them against NS5. Additionally, re-docking at higher exhaustiveness and interaction analysis were performed which resulted in the identification of the top four hits (135398658, 5281675, 119394, and 969516) which showed comparable results with the control Sinefungin (SFG). Post molecular dynamics simulation, 135398658 showed the lowest RMSD (0.4-0.5 nm) and the maximum number of hydrogen bonds (eight hydrogen bonds) after the control while 5281675 and 969516 showed comparable hydrogen bonds to the control. These compounds showed direct interactions with the catalytic site residues GLU111 and ASP131, in addition to this these compounds showed stable complex formation as depicted by principal component analysis and free energy landscape. 135398658 showed lower total binding free energy (ΔGTotal = -36.56 kcal/mol) than the control, while 5281675 had comparable values to the control (ΔGTotal = -34.1 kcal/mol). Overall, the purpose of this study was to identify phytochemicals that inhibit NS5 function, that could be further tested experimentally to treat dengue virus (DENV).
Collapse
Affiliation(s)
- Faisal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi, Saudi Arabia
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum, Sudan
| | - Shamshir Khan
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Zia Ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
2
|
Sharma KK, Raghuvamsi PV, Aik DYK, Marzinek JK, Bond PJ, Wohland T. Structural flexibility in the ordered domain of the dengue virus strain 2 capsid protein is critical for chaperoning viral RNA replication. Cell Mol Life Sci 2025; 82:184. [PMID: 40293525 PMCID: PMC12037954 DOI: 10.1007/s00018-025-05712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Viral replication necessitates intricate nucleic acid rearrangements, including annealing and strand displacement to achieve the viral RNA functional structure. Often a single RNA chaperone performs these seemingly incompatible functions. This raises the question of what structural and dynamic features of such chaperones govern distinct RNA rearrangements. While cationic intrinsically disordered regions promote annealing by playing a charge-screening role, how the same chaperone mediates strand displacement remains elusive. Here, we investigate the annealing and strand displacement of the 5' upstream AUG region (5UAR) as chaperoned by the Dengue virus strain 2 capsid protein (Denv2C) as a model RNA chaperone. Through single molecule analysis and molecular simulations, we demonstrate that Denv2C regulates nucleic acid melting, folding, annealing, and strand displacement via flexibility in its ordered region. A mutation that renders the Denv2C ordered region rigid, converts Denv2C into a mere annealer. Our findings underscore the role of Denv2C's disordered region as a "macromolecular counterion" during RNA annealing, while a flexible ordered region is crucial for effective strand displacement.
Collapse
Affiliation(s)
- Kamal K Sharma
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Palur Venkata Raghuvamsi
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Daniel Y K Aik
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Thorsten Wohland
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117557, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
3
|
Obi JO, Kihn KC, McQueen L, Fields JK, Snyder GA, Deredge DJ. Structural dynamics of the dengue virus non-structural 5 (NS5) interactions with promoter stem-loop A (SLA). NPJ VIRUSES 2025; 3:30. [PMID: 40295851 PMCID: PMC12003724 DOI: 10.1038/s44298-025-00112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
The dengue virus (DENV) NS5 protein, essential for viral RNA synthesis, is an attractive antiviral drug target. DENV NS5 interacts with the stem-loop A (SLA) promoter at the 5'-untranslated region of the viral genome to initiate negative-strand synthesis. However, the conformational dynamics of this interaction remains unclear. Our study explores the structural dynamics of DENV serotype 2 NS5 (DENV2 NS5) in complex with SLA, employing surface plasmon resonance (SPR), hydrogen-deuterium exchange mass spectrometry (HDX-MS), computational modeling, and cryoEM. Our findings reveal that DENV2 NS5 binds SLA in a closed conformation, with interdomain cooperation between its methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, critical for the interaction. SLA binding induces conformational changes in both domains, highlighting NS5's multifunctional role in viral replication. Our cryoEM results visualizes the DENV2 NS5-SLA complex, confirming a conserved SLA binding across DENV serotypes and provides key insights for antiviral strategies targeting NS5's conformational states.
Collapse
Affiliation(s)
- Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Kyle C Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Linfah McQueen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - James K Fields
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Greg A Snyder
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Ogola EO, Roy A, Wollenberg K, Ochwoto M, Bloom ME. Strange relatives: the enigmatic arbo-jingmenviruses and orthoflaviviruses. NPJ VIRUSES 2025; 3:24. [PMID: 40295693 PMCID: PMC11971299 DOI: 10.1038/s44298-025-00106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
Arthropod - and vertebrate-associated jingmenviruses (arbo-JMV) have segmented positive-strand RNA genomes and are provisional members of the genus Orthoflavivirus (family Flaviviridae). Current investigations have described arbo-JMV infection in vertebrate hosts in proximity to humans. This raises concerns about the virus host range and public health implications. This review explores the genomic and evolutionary relationship between arbo-JMV and orthoflaviviruses and evaluates the potential of arbo-JMV to pose a public health threat.
Collapse
Affiliation(s)
- Edwin O Ogola
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| | - Amitava Roy
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Missiani Ochwoto
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Marshall E Bloom
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
5
|
Anumanthan G, Sahay B, Mergia A. Current Dengue Virus Vaccine Developments and Future Directions. Viruses 2025; 17:212. [PMID: 40006967 PMCID: PMC11861685 DOI: 10.3390/v17020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Dengue fever (DF), a leading arboviral disease globally, is caused by the Dengue virus (DENV) and represents a significant public health concern, with an estimated 390 million cases reported annually. Due to the complexity of the various dengue variants and the severity of the disease, vaccination emerges as the essential strategy for combating this widespread infectious disease. The absence of specific antiviral medications underscores the critical need for developing a Dengue vaccine. This review aims to present the current status and future prospects of Dengue vaccine development. Further, this review elaborates on the various strategies employed in vaccine development, including attenuated, inactivated, subunit, and viral vector vaccines. Each approach is evaluated based on its immunogenicity, safety, and efficacy, drawing on data from preclinical and clinical studies to highlight the strengths and limitations of each candidate vaccine. The current study sheds light on future directions and research priorities in developing Dengue vaccines. In conclusion, the development of a Dengue vaccine holds significant potential for reducing the global burden of DF. However, challenges remain in terms of vaccine safety, efficacy, delivery, and availability. Overcoming these challenges, coupled with advancements in vaccine technology, could lead to better control and prevention of Dengue, thereby enhancing public health and quality of life.
Collapse
Affiliation(s)
| | | | - Ayalew Mergia
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32611, USA (B.S.)
| |
Collapse
|
6
|
Yuan H, Luo Y, Zou J, Zhang J, Zhang J, Cao G, Cao S, Chen H, Song Y. Cellular NONO protein binds to the flavivirus replication complex and promotes positive-strand RNA synthesis. J Virol 2024; 98:e0029724. [PMID: 39499073 PMCID: PMC11650977 DOI: 10.1128/jvi.00297-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
A cellular protein, non-POU-domain-containing octamer binding protein (NONO), bound to the replication complex of Japanese encephalitis virus (JEV) by directly interacting with the viral 3' UTR RNA and NS3 protein. These interactions were also identified in West Nile virus (WNV) and Zika virus (ZIKV). The infection of JEV or the expression of JEV NS3 protein in cells could induce relocation of NONO protein from the nucleus to the cytoplasm. In JEV-infected cells, the NS3, NS5, and viral RNA could be concurrently detected in the immunoprecipitation by the NONO-specific antibody, suggesting that NONO could integrate into the replication complex of JEV. Further results of co-immunoprecipitation assays showed that NONO protein interacted with NS3 helicase domains 1 and 2 by its two RNA recognize motifs (RRMs). The knockdown and knockout of NONO in cells could significantly reduce the replication of JEV and ZIKV but had no effect on the replication of vesicular stomatitis virus (VSV). The effect of NONO protein on JEV proliferation occurred during the replication stage, rather than the attachment and entry stages. The level of viral positive-strand RNA in NONO knockout cells was significantly reduced than that in wild-type cells at 12-48 h post-JEV infection. However, the level of negative-strand virus RNA had no difference between NONO knockout and wild-type cells at 12-24 h post-infection. In summary, our study identified a cellular protein that bound to the replication complex of flavivirus and facilitated the synthesis of positive-strand RNA.IMPORTANCEOver half of the world's population is at risk of flaviviruses infection, posing a serious global health concern. To date, there are no antiviral drugs or treatments for the severe symptoms caused by the infection of flaviviruses. Some cellular proteins could participate in the replication of virus, and these cellular proteins were also ideal targets in antiviral strategy. Here, we identified cellular NONO protein was recruited by flavivirus NS3 protein to the cytoplasm, serving as a "scaffold" for viral replication complex. Our findings also revealed that NONO protein was critical for flavivirus positive-strand RNA synthesis. Specific areas where NONO interacted with flavivirus NS3 proteins and viral UTRs have also been identified. These results propose a new mechanism for cellular protein to participate in flavivirus replication and also raise a new potential anti-flavivirus strategy.
Collapse
Affiliation(s)
- Honggen Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yun Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jinhua Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Obi JO, Kihn KC, McQueen L, Fields JK, Snyder GA, Deredge DJ. Structural Dynamics of the Dengue Virus Non-structural 5 (NS5) Interactions with Promoter Stem Loop A (SLA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626708. [PMID: 39677779 PMCID: PMC11642867 DOI: 10.1101/2024.12.03.626708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The dengue virus (DENV) NS5 protein plays a central role in dengue viral RNA synthesis which makes it an attractive target for antiviral drug development. DENV NS5 is known to interact with the stem-loop A (SLA) promoter at the 5'-untranslated region (5'-UTR) of the viral genome as a molecular recognition signature for the initiation of negative strand synthesis at the 3' end of the viral genome. However, the conformational dynamics involved in these interactions are yet to be fully elucidated. Our study explores the structural dynamics of NS5 from DENV serotype 2 (DENV2 NS5) in complex with SLA, employing surface plasmon resonance (SPR), hydrogen - deuterium exchange coupled to mass spectrometry (HDX-MS), computational modeling, and cryoEM single particle analysis to delineate the molecular details of their interaction. Our findings indicate that DENV2 NS5 binds SLA in a closed conformation with significant interdomain cooperation between the methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, a feature integral to the interaction. Our HDX-MS studies reveal SLA-induced conformational changes in both domains of DENV2 NS5, reflecting a potential mechanism for dengue NS5's multifunctional role in viral replication. Lastly, our cryoEM structure provides the first visualization of the DENV2 NS5-SLA complex, confirming a conserved SLA binding mode across DENV serotypes. These insights obtained from our study enhance our understanding of dengue NS5's complex conformational landscape, supporting the potential development of antiviral strategies targeting dengue NS5's conformational states.
Collapse
Affiliation(s)
- Juliet O. Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Kyle C. Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Linfah McQueen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - James K. Fields
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Greg A. Snyder
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| |
Collapse
|
8
|
Jacquat AG, Theumer MG, Dambolena JS. Selective and non-selective evolutionary signatures found in the simplest replicative biological entities. J Evol Biol 2024; 37:862-876. [PMID: 38822575 DOI: 10.1093/jeb/voae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Mitoviruses, which are considered evolutionary relics of extinct alpha-proteobacteria RNA phages, represent one of the simplest self-replicating biological systems. This study aims to quantitatively describe genomes and identify potential genomic signatures that support the protein phylogenetic-based classification criterion. Genomic variables, such as mononucleotide and dinucleotide composition, codon usage bias, and minimal free energy derived from optimized predicted RNA secondary structure, were analyzed. From the values obtained, the main evolutionary pressures were discussed, indicating that natural selection plays a significant role in shaping mitovirus genomes. However, neutral evolution also makes a significant contribution. This study reveals a significant discovery of structural divergence in Kvaramitovirus. The energy minimization approach employed to study 2D folding in this study reveals a distinct spatial organization of their genomes, providing evidence for the hypothesis of a single evolutionary event of circularization in the most recent common ancestor of the lineage. This hypothesis was discussed in light of recent discoveries by other researchers that partially support the existence of mitoviruses with circular genomes. Finally, this study represents a significant advancement in the understanding of mitoviruses, as it quantitatively describes the nucleotide sequence at the family and genus taxonomic levels. Additionally, we provide hypotheses that can be experimentally validated to inspire new research and address the gaps in knowledge of this fascinating, basally divergent RNA virus lineage.
Collapse
Affiliation(s)
- Andrés Gustavo Jacquat
- Facultad de Ciencias Exactas Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Martín Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas (FCQ), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - José Sebastián Dambolena
- Facultad de Ciencias Exactas Físicas y Naturales (FCEFyN), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
9
|
Brillet K, Janczuk-Richter M, Poon A, Laukart-Bradley J, Ennifar E, Lebars I. Characterization of SLA RNA promoter from dengue virus and its interaction with the viral non-structural NS5 protein. Biochimie 2024; 222:87-100. [PMID: 38408720 DOI: 10.1016/j.biochi.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The Dengue virus (DENV) is the most significant arthropod-borne viral pathogen in humans with 400 million infections annually. DENV comprises four distinct serotypes (DENV-1 to -4) which complicates vaccine development. Any of the four serotypes can cause clinical illness but with distinctive infection dynamics. Variations in sequences identified within the four genomes induce structural differences in crucial RNA motifs that were suggested to be correlated to the degree of pathogenicity among DENV-1 to -4. In particular, the RNA Stem-loop A (SLA) at the 5'-end of the genome, acts as a key regulator of the viral replication cycle by interacting with the viral NS5 polymerase to initiate the minus-strand viral RNA synthesis and later to methylate and cap the synthesized RNA. The molecular details of this interaction remain not fully described. Here, we report the solution secondary structures of SLA from DENV-1 to -4. Our results highlight that the four SLA exhibit structural and dynamic differences. Secondly, to determine whether SLA RNA contains serotype-specific determinants for the recognition by the viral NS5 protein, we investigated interactions between SLA from DENV -1 to -4 and DENV2 NS5 using combined biophysical approaches. Our results show that NS5 from DENV2 is able to bind SLA from other serotypes, but that other viral or host factors may be necessary to stabilize the complex and promote the catalytically active state of the NS5. By contrast, we show that a serotype-specific binding is driven by specific interactions involving conformational changes within the SLA RNA.
Collapse
Affiliation(s)
- Karl Brillet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000, Strasbourg, France
| | | | - Amanda Poon
- Creoptix AG (a Malvern Panalytical Brand), CH-8820, Wädenswil, Switzerland
| | | | - Eric Ennifar
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000, Strasbourg, France
| | - Isabelle Lebars
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000, Strasbourg, France.
| |
Collapse
|
10
|
Ramos-Lorente SE, Berzal-Herranz B, Romero-López C, Berzal-Herranz A. Recruitment of the 40S ribosomal subunit by the West Nile virus 3' UTR promotes the cross-talk between the viral genomic ends for translation regulation. Virus Res 2024; 343:199340. [PMID: 38387694 PMCID: PMC10907855 DOI: 10.1016/j.virusres.2024.199340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.
Collapse
Affiliation(s)
- Sara Esther Ramos-Lorente
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| | - Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Av. del Conocimiento 17, 18016 Armilla Granada, Spain.
| |
Collapse
|
11
|
Abram QH, Landry BN, Wang AB, Kothe RF, Hauch HC, Sagan SM. The myriad roles of RNA structure in the flavivirus life cycle. RNA Biol 2024; 21:14-30. [PMID: 38797925 PMCID: PMC11135854 DOI: 10.1080/15476286.2024.2357857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.
Collapse
Affiliation(s)
- Quinn H. Abram
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Breanna N. Landry
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Alex B. Wang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Ronja F. Kothe
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah C.H. Hauch
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Selena M. Sagan
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Scott S, Li Y, Bermek O, Griffith JD, Lemon SM, Choi K. Binding of microRNA-122 to the hepatitis C virus 5' untranslated region modifies interactions with poly(C) binding protein 2 and the NS5B viral polymerase. Nucleic Acids Res 2023; 51:12397-12413. [PMID: 37941151 PMCID: PMC10711565 DOI: 10.1093/nar/gkad1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Hepatitis C virus (HCV) requires two cellular factors, microRNA-122 (miR-122) and poly(C) binding protein 2 (PCBP2), for optimal replication. These host factors compete for binding to the 5' end of the single-stranded RNA genome to regulate the viral replication cycle. To understand how they interact with the RNA, we measured binding affinities of both factors for an RNA probe representing the 5' 45 nucleotides of the HCV genome (HCV45). Isothermal titration calorimetry revealed two, unequal miR-122 binding sites in HCV45, high-affinity (S1) and low-affinity (S2), differing roughly 100-fold in binding affinity. PCBP2 binds a site overlapping S2 with affinity similar to miR-122 binding to S2. PCBP2 circularizes the genome by also binding to the 3' UTR, bridging the 5' and 3' ends of the genome. By competing with PCBP2 for binding at S2, miR-122 disrupts PCBP2-mediated genome circularization. We show that the viral RNA-dependent RNA polymerase, NS5B, also binds to HCV45, and that the binding affinity of NS5B is increased in the presence of miR-122, suggesting miR-122 promotes recruitment of the polymerase. We propose that competition between miR-122 and PCBP2 for HCV45 functions as a translation-to-replication switch, determining whether the RNA genome templates protein synthesis or RNA replication.
Collapse
Affiliation(s)
- Seth Scott
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - You Li
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Oya Bermek
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Stanley M Lemon
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
13
|
Salazar Flórez JE, Segura Cardona ÁM, Restrepo Jaramillo BN, Arboleda Naranjo M, Giraldo Cardona LS, Echeverri Rendón ÁP. Immune system gene polymorphisms associated with severe dengue in Latin America: a systematic review. Rev Inst Med Trop Sao Paulo 2023; 65:e58. [PMID: 38055376 DOI: 10.1590/s1678-9946202365058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 12/08/2023] Open
Abstract
One of the main challenges in the clinical management of dengue is the early identification of cases that could progress to severe forms of the disease. A biomarker that may enable this identification is the presence of genetic polymorphisms in genes associated with immune responses. The objective of this study was to perform a systematic review of the Latin American literature on these genes. An electronic literature search was carried out in PubMed, Scopus, Lilacs, and the Virtual Health Library, and reference lists of systematic reviews in the area. Case-control studies conducted in Latin American countries examining at least one form of genetic polymorphism related to immune responses against severe dengue were included. In total, 424 articles were identified and 26 were included in this systematic review. Of the 26 selected articles, 16 reported polymorphisms associated with the risk of developing severe dengue (Risk); Similarly, 16 articles reported polymorphisms associated with a decreased risk of severe dengue (Protective). The final analysis revealed that multiple polymorphisms in immune system genes were early markers of the progression of dengue in Latin Americans and found that polymorphisms of the TNF-alpha gene may have a critical role in dengue pathogenesis.
Collapse
Affiliation(s)
- Jorge Emilio Salazar Flórez
- Universidad CES, Grupo de Epidemiología y Bioestadística, Medellín, Colombia
- Fundación Universitaria San Martín, Grupo GEINCRO, Sabaneta, Colombia
| | | | | | | | | | | |
Collapse
|
14
|
Liu Y, Guan W, Liu H. Subgenomic Flaviviral RNAs of Dengue Viruses. Viruses 2023; 15:2306. [PMID: 38140548 PMCID: PMC10747610 DOI: 10.3390/v15122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wuxiang Guan
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
15
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
16
|
Modak A, Mishra SR, Awasthi M, Sreedevi S, Sobha A, Aravind A, Kuppusamy K, Sreekumar E. Higher-temperature-adapted dengue virus serotype 2 strain exhibits enhanced virulence in AG129 mouse model. FASEB J 2023; 37:e23062. [PMID: 37389962 DOI: 10.1096/fj.202300098r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
The factors that drive dengue virus (DENV) evolution, and selection of virulent variants are yet not clear. Higher environmental temperature shortens DENV extrinsic incubation period in mosquitoes, increases human transmission, and plays a critical role in outbreak dynamics. In the present study, we looked at the effect of temperature in altering the virus virulence. We found that DENV cultured at a higher temperature in C6/36 mosquito cells was significantly more virulent than the virus grown at a lower temperature. In a mouse model, the virulent strain induced enhanced viremia and aggressive disease with a short course, hemorrhage, severe vascular permeability, and death. Higher inflammatory cytokine response, thrombocytopenia, and severe histopathological changes in vital organs such as heart, liver, and kidney were hallmarks of the disease. Importantly, it required only a few passages for the virus to acquire a quasi-species population harboring virulence-imparting mutations. Whole genome comparison with a lower temperature passaged strain identified key genomic changes in the structural protein-coding regions as well as in the 3'UTR of the viral genome. Our results point out that virulence-enhancing genetic changes could occur in the dengue virus genome under enhanced growth temperature conditions in mosquito cells.
Collapse
Affiliation(s)
- Ayan Modak
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Srishti Rajkumar Mishra
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Mansi Awasthi
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Sreeja Sreedevi
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Archana Sobha
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Arya Aravind
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Krithiga Kuppusamy
- Bioscience Research & Training Centre (BRTC), Kerala Veterinary and Animal Sciences University, Bio360 Life Sciences Park, Thiruvananthapuram, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Bio360 Life Sciences Park, Thiruvananthapuram, India
| |
Collapse
|
17
|
Osawa T, Aoki M, Ehara H, Sekine SI. Structures of dengue virus RNA replicase complexes. Mol Cell 2023:S1097-2765(23)00470-7. [PMID: 37478848 DOI: 10.1016/j.molcel.2023.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Dengue is a mosquito-borne viral infection caused by dengue virus (DENV), a member of the flaviviruses. The DENV genome is a 5'-capped positive-sense RNA with a unique 5'-stem-loop structure (SLA), which is essential for RNA replication and 5' capping. The virus-encoded proteins NS5 and NS3 are responsible for viral genome replication, but the structural basis by which they cooperatively conduct the required tasks has remained unclear. Here, we report the cryoelectron microscopy (cryo-EM) structures of SLA-bound NS5 (PC), NS3-bound PC (PC-NS3), and an RNA-elongating NS5-NS3 complex (EC). While SLA bridges the NS5 methyltransferase and RNA-dependent RNA polymerase domains in PC, the NS3 helicase domain displaces it in elongation complex (EC). The SLA- and NS3-binding sites overlap with that of human STAT2. These structures illuminate the key steps in DENV genome replication, namely, SLA-dependent replication initiation, processive RNA elongation, and 5' capping of the nascent genomic RNA, thereby providing foundations to combat flaviviruses.
Collapse
Affiliation(s)
- Takuo Osawa
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mari Aoki
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
18
|
Álvarez-Díaz DA, Usme-Ciro JA, Corchuelo S, Naizaque JR, Rivera JA, Castiblanco-Martínez HD, Torres-Fernández O, Rengifo AC. 5'/3' RACE method for sequencing the 5' and 3' untranslated regions of Zika virus. Arch Virol 2023; 168:204. [PMID: 37428234 DOI: 10.1007/s00705-023-05820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
The spread of Zika virus (ZIKV) from the African continent to the Americas promoted its molecular evolution, as reflected by mutations in its RNA genome. Most of the ZIKV genome sequences in the GenBank database have incomplete 5' and 3' UTR sequences, reflecting the deficiency of whole-genome sequencing technologies to resolve the sequences of the genome ends. We modified a protocol for rapid amplification of cDNA ends (RACE) to determine the complete sequences of the 5' and 3' UTRs of a previously reported ZIKV isolate (GenBank no. MH544701.1). This strategy is useful for determining 5' and 3' UTR sequences of ZIKV isolates and will be useful for comparative genomics applications.
Collapse
Affiliation(s)
- Diego Alejandro Álvarez-Díaz
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - José Aldemar Usme-Ciro
- Centro de Investigación en Salud para el Trópico-CIST, Universidad Cooperativa de Colombia, Santa Marta, Colombia
| | - Sheryll Corchuelo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - Julián Ricardo Naizaque
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - Jorge Alonso Rivera
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | | | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
19
|
Bardossy ES, Volpe S, Alvarez DE, Filomatori CV. A conserved Y-shaped RNA structure in the 3'UTR of chikungunya virus genome as a host-specialized element that modulates viral replication and evolution. PLoS Pathog 2023; 19:e1011352. [PMID: 37126493 PMCID: PMC10174580 DOI: 10.1371/journal.ppat.1011352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/11/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
RNA viral genomes compact information into functional RNA structures. Here, using chikungunya virus as a model, we investigated the structural requirements of conserved RNA elements in the 3' untranslated region (3'UTR) for viral replication in mosquito and mammalian cells. Using structural predictions and co-variation analysis, we identified a highly stable and conserved Y-shaped structure (SLY) at the end of the 3'UTR that is duplicated in the Asian lineage. Functional studies with mutant viruses showed that the SLY has host-specific functions during viral replication and evolution. The SLY positively modulates viral replication in mosquito cells but has the opposite effect in mammalian cells. Additional structural/functional analyses showed that maintaining the Y-shaped fold and specific nucleotides in the loop are critical for full SLY functionality and optimal viral replication in mosquito cells. Experimental adaptation of viruses with duplicated SLYs to mammalian cells resulted in the generation of heterogeneous viral populations comprising variants with diverse 3'UTRs, contrasting with the homogeneous populations from viruses without SLY copies. Altogether, our findings constitute the first evidence of an RNA secondary structure in the 3'UTR of chikungunya virus genome that plays host-dependent functions.
Collapse
Affiliation(s)
- Eugenia Soledad Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| | - Sebastiano Volpe
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| | - Diego Ezequiel Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| | - Claudia Verónica Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnología, Universidad de San Martín, Buenos Aires, Argentina
| |
Collapse
|
20
|
Li D, Lu HT, Ding YZ, Wang HJ, Ye JL, Qin CF, Liu ZY. Specialized cis-Acting RNA Elements Balance Genome Cyclization to Ensure Efficient Replication of Yellow Fever Virus. J Virol 2023; 97:e0194922. [PMID: 37017533 PMCID: PMC10134800 DOI: 10.1128/jvi.01949-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Genome cyclization is essential for viral RNA (vRNA) replication of the vertebrate-infecting flaviviruses, and yet its regulatory mechanisms are not fully understood. Yellow fever virus (YFV) is a notorious pathogenic flavivirus. Here, we demonstrated that a group of cis-acting RNA elements in YFV balance genome cyclization to govern efficient vRNA replication. It was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) is conserved in the YFV clade and is important for efficient YFV propagation. By using two different replicon systems, we found that the function of the DCS-HP is determined primarily by its secondary structure and, to a lesser extent, by its base-pair composition. By combining in vitro RNA binding and chemical probing assays, we found that the DCS-HP orchestrates the balance of genome cyclization through two different mechanisms, as follows: the DCS-HP assists the correct folding of the 5' end in a linear vRNA to promote genome cyclization, and it also limits the overstabilization of the circular form through a potential crowding effect, which is influenced by the size and shape of the DCS-HP structure. We also provided evidence that an A-rich sequence downstream of the DCS-HP enhances vRNA replication and contributes to the regulation of genome cyclization. Interestingly, diversified regulatory mechanisms of genome cyclization, involving both the downstream of the 5'-cyclization sequence (CS) and the upstream of the 3'-CS elements, were identified among different subgroups of the mosquito-borne flaviviruses. In summary, our work highlighted how YFV precisely controls the balance of genome cyclization to ensure viral replication. IMPORTANCE Yellow fever virus (YFV), the prototype of the Flavivirus genus, can cause devastating yellow fever disease. Although it is preventable by vaccination, there are still tens of thousands of yellow fever cases per year, and no approved antiviral medicine is available. However, the understandings about the regulatory mechanisms of YFV replication are obscure. In this study, by a combination of bioinformatics, reverse genetics, and biochemical approaches, it was shown that the downstream of the 5'-cyclization sequence hairpin (DCS-HP) promotes efficient YFV replication by modulating the conformational balance of viral RNA. Interestingly, we found specialized combinations for the downstream of the 5'-cyclization sequence (CS) and upstream of the 3'-CS elements in different groups of the mosquito-borne flaviviruses. Moreover, possible evolutionary relationships among the various downstream of the 5'-CS elements were implied. This work highlighted the complexity of RNA-based regulatory mechanisms in the flaviviruses and will facilitate the design of RNA structure-targeted antiviral therapies.
Collapse
Affiliation(s)
- Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hai-Tao Lu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yu-Zhen Ding
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The Chinese People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Litov AG, Okhezin EV, Kholodilov IS, Belova OA, Karganova GG. Conserved Sequences in the 5' and 3' Untranslated Regions of Jingmenvirus Group Representatives. Viruses 2023; 15:v15040971. [PMID: 37112951 PMCID: PMC10141212 DOI: 10.3390/v15040971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The Jingmenvirus group (JVG), with members such as Jingmen tick virus (JMTV), Alongshan virus (ALSV), Yanggou tick virus (YGTV), and Takachi virus (TAKV), is drawing attention due to evidence of it causing disease in humans and its unique genome architecture. In the current work, complete untranslated regions (UTRs) of four strains of ALSV and eight strains of YGTV were obtained. An analysis of these sequences, as well as JVG sequences from GenBank, uncovered several regions within viral UTRs that were highly conserved for all the segments and viruses. Bioinformatics predictions suggested that the UTRs of all the segments of YGTV, ALSV, and JMTV could form similar RNA structures. The most notable feature of these structures was a stable stem-loop with one (5' UTR) or two (3' UTR) AAGU tetraloops on the end of a hairpin.
Collapse
Affiliation(s)
- Alexander G Litov
- Laboratory of Biology of Arboviruses, FSASI "Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS" (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Egor V Okhezin
- Laboratory of Biology of Arboviruses, FSASI "Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS" (Institute of Poliomyelitis), 108819 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan S Kholodilov
- Laboratory of Biology of Arboviruses, FSASI "Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS" (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Oxana A Belova
- Laboratory of Biology of Arboviruses, FSASI "Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS" (Institute of Poliomyelitis), 108819 Moscow, Russia
| | - Galina G Karganova
- Laboratory of Biology of Arboviruses, FSASI "Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS" (Institute of Poliomyelitis), 108819 Moscow, Russia
| |
Collapse
|
22
|
Nazneen F, Thompson EA, Blackwell C, Bai JS, Huang F, Bai F. An effective live-attenuated Zika vaccine candidate with a modified 5' untranslated region. NPJ Vaccines 2023; 8:50. [PMID: 37005424 PMCID: PMC10066991 DOI: 10.1038/s41541-023-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has caused devastating congenital Zika syndrome (CZS), including microcephaly, congenital malformation, and fetal demise in human newborns in recent epidemics. ZIKV infection can also cause Guillain-Barré syndrome (GBS) and meningoencephalitis in adults. Despite intensive research in recent years, there are no approved vaccines or antiviral therapeutics against CZS and adult Zika diseases. In this report, we developed a novel live-attenuated ZIKV strain (named Z7) by inserting 50 RNA nucleotides (nt) into the 5' untranslated region (UTR) of a pre-epidemic ZIKV Cambodian strain, FSS13025. We used this particular ZIKV strain as it is attenuated in neurovirulence, immune antagonism, and mosquito infectivity compared with the American epidemic isolates. Our data demonstrate that Z7 replicates efficiently and produces high titers without causing apparent cytopathic effects (CPE) in Vero cells or losing the insert sequence, even after ten passages. Significantly, Z7 induces robust humoral and cellular immune responses that completely prevent viremia after a challenge with a high dose of an American epidemic ZIKV strain PRVABC59 infection in type I interferon (IFN) receptor A deficient (Ifnar1-/-) mice. Moreover, adoptive transfer of plasma collected from Z7 immunized mice protects Ifnar1-/- mice from ZIKV (strain PRVABC59) infection. These results suggest that modifying the ZIKV 5' UTR is a novel strategy to develop live-attenuated vaccine candidates for ZIKV and potentially for other flaviviruses.
Collapse
Affiliation(s)
- Farzana Nazneen
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - E Ashley Thompson
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Claire Blackwell
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jonathan S Bai
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Faqing Huang
- Chemistry and Biochemistry Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cell and Molecular Biology Program, Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
23
|
Chiang TK, Kimchi O, Dhaliwal HK, Villarreal DA, Vasquez FF, Manoharan VN, Brenner MP, Garmann RF. Measuring intramolecular connectivity in long RNA molecules using two-dimensional DNA patch-probe arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532302. [PMID: 36993626 PMCID: PMC10055002 DOI: 10.1101/2023.03.12.532302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We describe a simple method to infer intramolecular connections in a population of long RNA molecules in vitro. First we add DNA oligonucleotide "patches" that perturb the RNA connections, then we use a microarray containing a complete set of DNA oligonucleotide "probes" to record where perturbations occur. The pattern of perturbations reveals couplings between different regions of the RNA sequence, from which we infer connections as well as their prevalences in the population. We validate this patch-probe method using the 1,058-nucleotide RNA genome of satellite tobacco mosaic virus (STMV), which has previously been shown to have multiple long-range connections. Our results not only indicate long duplexes that agree with previous structures but also reveal the prevalence of competing connections. Together, these results suggest that globally-folded and locally-folded structures coexist in solution. We show that the prevalence of connections changes when pseudouridine, an important component of natural and synthetic RNA molecules, is substituted for uridine in STMV RNA.
Collapse
|
24
|
Zerfu B, Kassa T, Legesse M. Epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection, and its trend in Ethiopia: a comprehensive literature review. Trop Med Health 2023; 51:11. [PMID: 36829222 PMCID: PMC9950709 DOI: 10.1186/s41182-023-00504-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Dengue fever is a dengue virus infection, emerging rapidly and posing public health threat worldwide, primarily in tropical and subtropical countries. Nearly half of the world's population is now at risk of contracting the dengue virus, including new countries with no previous history-like Ethiopia. However, little is known about the epidemiology and impact of the disease in different countries. This is especially true in countries, where cases have recently begun to be reported. This review aims to summarize epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection and its trend in Ethiopia. It may help countries, where dengue fever is not yet on the public health list-like Ethiopia to alert healthcare workers to consider the disease for diagnosis and treatment. The review retrieved and incorporated 139 published and organizational reports showing approximately 390 million new infections. About 100 million of these infections develop the clinical features of dengue, and thousands of people die annually from severe dengue fever in 129 countries. It is caused by being bitten by a dengue virus-infected female mosquito, primarily Aedes aegypti and, lesser, Ae. albopictus. Dengue virus is a member of the Flavivirus genus of the Flaviviridae family and has four independent but antigen-related single-stranded positive-sense RNA virus serotypes. The infection is usually asymptomatic but causes illnesses ranging from mild febrile illness to fatal dengue hemorrhagic fever or shock syndrome. Diagnosis can be by detecting the virus genome using nucleic acids amplification tests or testing NS1 antigen and/or anti-dengue antibodies from serum, plasma, circulating blood cells, or other tissues. Dengue cases and outbreaks have increased in recent decades, with a significant public health impact. Ethiopia has had nearly annual outbreaks since 2013, devastating an already fragmented health system and economy. Standardization of medication, population-level screening for early diagnosis and prompt treatment, and minimization of mosquito bites reduce overall infection and mortality rates.
Collapse
Affiliation(s)
- Biruk Zerfu
- Department of Medical Laboratory Science, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia. .,Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Tesfu Kassa
- grid.7123.70000 0001 1250 5688Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mengistu Legesse
- grid.7123.70000 0001 1250 5688Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
25
|
Upstone L, Colley R, Harris M, Goonawardane N. Functional characterization of 5' untranslated region (UTR) secondary RNA structures in the replication of tick-borne encephalitis virus in mammalian cells. PLoS Negl Trop Dis 2023; 17:e0011098. [PMID: 36689554 PMCID: PMC9894543 DOI: 10.1371/journal.pntd.0011098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 02/02/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Tick-borne Encephalitis Virus (TBEV) is an emerging flavivirus that causes neurological disorders including viral encephalitis of varying severity. Whilst secondary RNA structures within the 5' untranslated regions (UTRs) of many flaviviruses determine both virus replication and pathogenic outcomes in humans, these elements have not been systematically investigated for TBEV. In this study, we investigated the role of predicted RNA secondary elements of the first 107 nucleotides (nts) of the viral genome forming the stem-loop A (SLA). Experiments were performed in replicons and infectious TBEV system. This region comprises three distinct structures: 5' stem 0 (S0), stem-loop 1 (SL1) and stem-loop 2 (SL2). S0 was found to be essential for virus infection as mutations in the lower stem of this region significantly reduced virus replication. Point mutations in SL1 that preserved the Y-shape confirmation delayed viral RNA replication but did not abolish virus infectivity. Deletion of SL2 did not abolish infectivity but had a negligible effect on virus propagation. No correlation was observed between in vitro translation efficiency and virus infectivity, suggesting that the 5'UTR functions independently to virus translation. Together, these findings reveal distinct RNA elements within the 5'UTR that are essential for the stability and replication of viral RNA. We further identify changes in RNA folding that lead to altered TBEV infectivity and pathogenesis.
Collapse
Affiliation(s)
- Laura Upstone
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Robin Colley
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Niluka Goonawardane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
26
|
Ullah A, Atia-Tul-Wahab, Gong P, Khan AM, Choudhary MI. Identification of new inhibitors of NS5 from dengue virus using saturation transfer difference (STD-NMR) and molecular docking studies. RSC Adv 2022; 13:355-369. [PMID: 36605638 PMCID: PMC9768849 DOI: 10.1039/d2ra04836a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid spread of dengue virus has now emerged as a major health problem worldwide, particularly in tropical and sub-tropical regions. Nearly half of the human population is at risk of getting infection. Among the proteomes of dengue virus, nonstructural protein NS5 is conserved across the genus Flavivirus. NS5 comprises methyltransferase enzyme (MTase) domain, which helps in viral RNA capping, and RNA-dependent RNA polymerase (RdRp) domain, which is important for the virus replication. Negative modulation of NS5 decreases its activity and associated functions. Despite recent advances, there is still an immense need for effective approaches toward drug discovery against dengue virus. Drug repurposing is an approach to identify the new therapeutic indications of already approved drugs, for the treatment of both common and rare diseases, and can potentially lower the cost, and time required for drug discovery and development. In this study, we evaluated 75 compounds (grouped into 15 mixtures), including 13 natural compounds and 62 drugs, by using biophysical methods, for their ability to interact with NS5 protein, which were further validated by molecular docking and simulation studies. Our current study led to the identification of 12 ligands, including both 9 US-FDA approved drugs and 3 natural products that need to be further studied as potential antiviral agents against dengue virus.
Collapse
Affiliation(s)
- Asmat Ullah
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Atia-Tul-Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Peng Gong
- Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan Hubei 430071 China
| | - Abdul Mateen Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - M Iqbal Choudhary
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah-21589 Saudi Arabia
| |
Collapse
|
27
|
Herod MR, Ward JC, Tuplin A, Harris M, Stonehouse NJ, McCormick CJ. Positive strand RNA viruses differ in the constraints they place on the folding of their negative strand. RNA (NEW YORK, N.Y.) 2022; 28:1359-1376. [PMID: 35918125 PMCID: PMC9479745 DOI: 10.1261/rna.079125.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Genome replication of positive strand RNA viruses requires the production of a complementary negative strand RNA that serves as a template for synthesis of more positive strand progeny. Structural RNA elements are important for genome replication, but while they are readily observed in the positive strand, evidence of their existence in the negative strand is more limited. We hypothesized that this was due to viruses differing in their capacity to allow this latter RNA to adopt structural folds. To investigate this, ribozymes were introduced into the negative strand of different viral constructs; the expectation being that if RNA folding occurred, negative strand cleavage and suppression of replication would be seen. Indeed, this was what happened with hepatitis C virus (HCV) and feline calicivirus (FCV) constructs. However, little or no impact was observed for chikungunya virus (CHIKV), human rhinovirus (HRV), hepatitis E virus (HEV), and yellow fever virus (YFV) constructs. Reduced cleavage in the negative strand proved to be due to duplex formation with the positive strand. Interestingly, ribozyme-containing RNAs also remained intact when produced in vitro by the HCV polymerase, again due to duplex formation. Overall, our results show that there are important differences in the conformational constraints imposed on the folding of the negative strand between different positive strand RNA viruses.
Collapse
Affiliation(s)
- Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christopher J McCormick
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
- Institute for Life Sciences, University of Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
28
|
Sun YT, Varani G. Structure of the dengue virus RNA promoter. RNA (NEW YORK, N.Y.) 2022; 28:1210-1223. [PMID: 35750488 PMCID: PMC9380747 DOI: 10.1261/rna.079197.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Dengue virus, a single-stranded positive sense RNA virus, is the most prevalent mosquito-borne pathogen in the world. Like all RNA viruses, it uses conserved structural elements within its genome to control essential replicative steps. A 70 nt stem-loop RNA structure (called SLA), found at the 5'-end of the genome of all flaviviruses, functions as the promoter for viral replication. This highly conserved structure interacts with the viral polymerase NS5 to initiate RNA synthesis. Here, we report the NMR structure of a monomeric SLA from dengue virus serotype 1, assembled to high-resolution from independently folded structural elements. The DENV1 SLA has an L-shaped structure, where the top and side helices are coaxially stacked, and the bottom helix is roughly perpendicular to them. Because the sequence is highly conserved among different flavivirus genomes, it is very likely that the three-dimensional fold and local structure of SLA are also conserved among flaviviruses and required for efficient replication. This work provides structural insight into the dengue promoter and provides the foundation for the discovery of new antiviral drugs that target this essential replicative step.
Collapse
Affiliation(s)
- Yi-Ting Sun
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| |
Collapse
|
29
|
Impact of the Potential m6A Modification Sites at the 3′UTR of Alfalfa Mosaic Virus RNA3 in the Viral Infection. Viruses 2022; 14:v14081718. [PMID: 36016339 PMCID: PMC9414508 DOI: 10.3390/v14081718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
We have previously reported the presence of m6A in the AMV (Alfamovirus, Bromoviridae) genome. Interestingly, two of these putative m6A-sites are in hairpin (hp) structures in the 3’UTR of the viral RNA3. One site (2012AAACU2016) is in the loop of hpB, within the coat protein binding site 1 (CPB1), while the other (1900UGACC1904) is in the lower stem of hpE, a loop previously associated with AMV negative-strand RNA synthesis. In this work, we have performed in vivo experiments to assess the role of these two regions, containing the putative m6A-sites in the AMV cycle, by introducing compensatory point mutations to interfere with or abolish the m6A-tag of these sites. Our results suggest that the loop of hpB could be involved in viral replication/accumulation. Meanwhile, in the 1900UGACC1904 motif of the hpE, the maintenance of the adenosine residue and the lower stem hpE structure are necessary for in vivo plus-strand accumulation. These results extend our understanding of the requirements for hpE in the AMV infection cycle, indicating that both the residue identity and the base-pairing capacity in this structure are essential for viral accumulation.
Collapse
|
30
|
Dengue Virus NS4b N-Terminus Disordered Region Interacts with NS3 Helicase C-Terminal Subdomain to Enhance Helicase Activity. Viruses 2022; 14:v14081712. [PMID: 36016333 PMCID: PMC9412862 DOI: 10.3390/v14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Dengue virus replicates its single-stranded RNA genome in membrane-bound complexes formed on the endoplasmic reticulum, where viral non-structural proteins (NS) and RNA co-localize. The NS proteins interact with one another and with the host proteins. The interaction of the viral helicase and protease, NS3, with the RNA-dependent RNA polymerase, NS5, and NS4b proteins is critical for replication. In vitro, NS3 helicase activity is enhanced by interaction with NS4b. We characterized the interaction between NS3 and NS4b and explained a possible mechanism for helicase activity modulation by NS4b. Our bacterial two-hybrid assay results showed that the N-terminal 57 residues region of NS4b is enough to interact with NS3. The molecular docking of the predicted NS4b structure onto the NS3 structure revealed that the N-terminal disordered region of NS4b wraps around the C-terminal subdomain (CTD) of the helicase. Further, NS3 helicase activity is enhanced upon interaction with NS4b. Molecular dynamics simulations on the NS4b-docked NS3 crystal structure and intrinsic tryptophan fluorescence studies suggest that the interaction results in NS3 CTD domain motions. Based on the interpretation of our results in light of the mechanism explained for NS3 helicase, NS4b–NS3 interaction modulating CTD dynamics is a plausible explanation for the helicase activity enhancement.
Collapse
|
31
|
Abstract
The positive-sense flavivirus RNA genome bears a cap 1 structure essential for RNA stability and viral protein translation, and the formation of cap 1 requires the virally encoded nonstructural protein NS5 harboring guanylyltransferase (GTase), cap guanine N7 methyltransferase (N7 MTase), and 5'-nucleotide ribose 2'-O MTase activities in its single-domain MTase module. Despite numerous MTase-containing structures reported, the structural evidence for a critical GMP-enzyme intermediate formation and RNA repositioning when transitioning among different reactions is missing. Here, we report 10 high-resolution MTase crystal structures of Omsk hemorrhagic fever virus (OHFV), a representative high-consequence tick-borne flavivirus, capturing previously unidentified GMP-arginine adduct structures and a rarely observed capped RNA conformation. These structures help us thread capping events in the canonical model with a structure-based hypothesis involving the flipping of the 5' nucleotide, while the observation of an m7GMP-arginine adduct is compatible with an alternate capping model that decouples the N7 and 2'-O methylation steps. IMPORTANCE The methyltransferase (MTase) domain of flavivirus NS5 is unique in harboring guanylyltransferase (GTase), N7 MTase, and 2'-O MTase activities, playing a central role in viral RNA capping. However, the detailed mechanisms of the multistep capping process remain elusive. Here, we report 10 crystal structures of a flavivirus MTase to help understand the guanylyl transfer from GTP to the GTase itself and the transition between guanylyl transfer and methylation steps. In particular, a previously unobserved GMP-arginine covalent intermediate was captured multiple times in MTase crystal soaking trials with GTP present in the soaking solution, supporting its role in bridging the guanylyl transfer from GTP to the GTase and subsequent transfer to the 5'-diphosphate RNA.
Collapse
|
32
|
Kutschera LS, Wolfinger MT. Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evol 2022; 8:veac051. [PMID: 35822110 PMCID: PMC9272599 DOI: 10.1093/ve/veac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the aetiological agent of tick-borne
encephalitis, an infectious disease of the central nervous system that is often associated
with severe sequelae in humans. While TBEV is typically classified into three subtypes,
recent evidence suggests a more varied range of TBEV subtypes and lineages that differ
substantially in the architecture of their 3ʹ untranslated region (3ʹUTR). Building on
comparative genomic approaches and thermodynamic modelling, we characterize the TBEV UTR
structureome diversity and propose a unified picture of pervasive non-coding RNA structure
conservation. Moreover, we provide an updated phylogeny of TBEV, building on more than 220
publicly available complete genomes, and investigate the molecular epidemiology and
phylodynamics with Nextstrain, a web-based visualization framework for real-time pathogen
evolution.
Collapse
Affiliation(s)
- Lena S Kutschera
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
33
|
Du Pont KE, McCullagh M, Geiss BJ. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1688. [PMID: 34472205 PMCID: PMC8888775 DOI: 10.1002/wrna.1688] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Flaviviruses are a major health concern because over half of the world population is at risk of infection and there are very few antiviral therapeutics to treat diseases resulting from infection. Replication is an essential part of the flavivirus survival. One of the viral proteins, NS3 helicase, is critical for unwinding the double stranded RNA intermediate during flaviviral replication. The helicase performs the unwinding of the viral RNA intermediate structure in an ATP-dependent manner. NS3 helicase is a member of the Viral/DEAH-like subfamily of the superfamily 2 helicase containing eight highly conserved structural motifs (I, Ia, II, III, IV, IVa, V, and VI) localized between the ATP-binding and RNA-binding pockets. Of these structural motifs only three are well characterized for function in flaviviruses (I, II, and VI). The roles of the other structural motifs are not well understood for NS3 helicase function, but comparison of NS3 with other superfamily 2 helicases within the viral/DEAH-like, DEAH/RHA, and DEAD-box subfamilies can be used to elucidate the roles of these structural motifs in the flavivirus NS3 helicase. This review aims to summarize the role of each conserved structural motif within flavivirus NS3 in RNA helicase function. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Kelly E. Du Pont
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brian J. Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
34
|
Mishra B, Aduri R. The RNA Secondary Structure Analysis Reveals Potential for Emergence of Pathogenic Flaviviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:10-29. [PMID: 34694573 DOI: 10.1007/s12560-021-09502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The Flavivirus genus is divided into four groups: Mosquito-borne flaviviruses, Tick-borne flaviviruses, no-known vector flaviviruses, and Insect specific flaviviruses. Millions of people are affected worldwide every year due to the flaviviral infections. The 5' UTR of the RNA genome plays a critical role in the biology of flaviviruses. To explore any correlation between the topology of the 5' UTR and pathogenesis, a global scale study of the RNA secondary structure of different groups of flaviviruses has been conducted. We found that most of the pathogenic flaviviruses, irrespective of their mode of transmission, tend to form a Y shaped topology in the Stem loop A of the 5' UTR. Some of the current non-pathogenic flaviviruses were also observed to form Y shaped structure. Based on this study, it has been proposed that the flaviviruses having the Y shaped topology in their 5' UTR regions may have the potential to become pathogenic.
Collapse
Affiliation(s)
- Bibhudutta Mishra
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, 403726, India
- Department of Zoology, Centurion University of Technology and Management, Bhubaneswar Campus, Khurda, Jatni, 752050, Odisha, India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, 403726, India.
| |
Collapse
|
35
|
Balasubramanian A, Chatterjee J. Bioinformatics approach used in undergraduate research to predict siRNA as ZIKV therapeutics. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 50:237-245. [PMID: 35089641 DOI: 10.1002/bmb.21605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/12/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Undergraduate research is an important component of a B.Tech. Biotechnology program. In the present study, a customizable approach designed with open-source bioinformatics tools and databases was introduced to predict siRNAs for ZIKV therapeutics. With minimal prior exposure to bioinformatics, this workflow can be executed with detailed steps as demonstrated in this paper. All software, databases, and servers used in this research are open-source, allowing this project-based learning methodology to be implemented remotely as well. The workflow designed in the present study is flexible and customizable according to the mentor and student's requirements.
Collapse
|
36
|
Wang S, Chan KWK, Tan MJA, Flory C, Luo D, Lescar J, Forwood JK, Vasudevan SG. A conserved arginine in NS5 binds genomic 3' stem-loop RNA for primer-independent initiation of flavivirus RNA replication. RNA (NEW YORK, N.Y.) 2022; 28:177-193. [PMID: 34759006 PMCID: PMC8906541 DOI: 10.1261/rna.078949.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The commitment to replicate the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5' untranslated region (UTR) by the nonstructural protein NS5. We show that DENV2 NS5 arginine 888, located within the carboxy-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3'SL in the 3'UTR which contains the pentanucleotide 5'-CACAG-3' previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3'SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.
Collapse
Affiliation(s)
- Sai Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Charlotte Flory
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore
| | - Julian Lescar
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
- Department of Microbiology and Immunology, National University of Singapore, 117545 Singapore
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
37
|
Ponomareva EP, Ternovoi VA, Mikryukova TP, Protopopova EV, Tupota NL, Loktev VB. Genetic Variability of Tick-Borne Encephalitis Virus Genome 5'-UTR from Northern Eurasia. Mol Biol 2021. [DOI: 10.1134/s002689332102028x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
39
|
Liu H, Zhang J, Niu Y, Liang G. The 5' and 3' Untranslated Regions of the Japanese Encephalitis Virus (JEV): Molecular Genetics and Higher Order Structures. Front Microbiol 2021; 12:730045. [PMID: 34777278 PMCID: PMC8581615 DOI: 10.3389/fmicb.2021.730045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
The untranslated region (UTRs) of viral genome are important for viral replication and immune modulation. Japanese encephalitis virus (JEV) is the most significant cause of epidemic encephalitis worldwide. However, little is known regarding the characterization of the JEV UTRs. Here, systematic analyses of the UTRs of JEVs isolated from a variety of hosts worldwide spanning about 80 years were made. All the important cis-acting elements and structures were compared with other mosquito-borne Flaviviruses [West Nile virus (WNV), Yellow fever virus (YFV), Zika virus (ZIKV), Dengue virus (DENV)] and annotated in detail in the UTRs of different JEV genotypes. Our findings identified the JEV-specific structure and the sequence motif with unique JEV feature. (i) The 3’ dbsHP was identified as a small hairpin located in the DB region in the 3′ UTR of JEV, with the structure highly conserved among the JEV genotypes. (ii) The spacer sequence UARs of JEV consist of four discrete spacer sequences, whereas the UARs of other mosquito-borne Flaviviruses are continuous sequences. In addition, repetitive elements have been discovered in the UTRs of mosquito-borne Flaviviruses. The lengths, locations, and numbers of the repetitive elements of JEV also differed from other Flaviviruses (WNV, YFV, ZIKV, DENV). A 300 nt-length region located at the beginning of the 3′ UTR exhibited significant genotypic specificity. This study lays the basis for future research on the relationships between the JEV specific structures and elements in the UTRs, and their important biological function.
Collapse
Affiliation(s)
- Hong Liu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China.,Zibo Key Laboratory of Precise Gene Detection, Zibo, China
| | - Jun Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuzhen Niu
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guodong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
40
|
In Silico Analysis of Dengue Virus Serotype 2 Mutations Detected at the Intrahost Level in Patients with Different Clinical Outcomes. Microbiol Spectr 2021; 9:e0025621. [PMID: 34468189 PMCID: PMC8557815 DOI: 10.1128/spectrum.00256-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it may also be linked to viral pathogenesis. Intending to shed light on the viral determinants for severe dengue pathogenesis, we previously analyzed the DENV-2 intrahost genetic diversity in 68 patients clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18), performing viral whole-genome deep sequencing from clinical samples with an amplicon-free approach. From it, we identified a set of 141 relevant mutations distributed throughout the viral genome that deserved further attention. Therefore, we employed molecular modeling to recreate three-dimensional models of the viral proteins and secondary RNA structures to map the mutations and assess their potential effects. Results showed that, in general lines, disruptive variants were identified primarily among dengue fever cases. In contrast, potential immune-escape variants were associated mainly with warning signs and severe cases, in line with the latter's longer intrahost evolution times. Furthermore, several mutations were located on protein-surface regions, with no associated function. They could represent sites of further investigation, as the interaction of viral and host proteins is critical for both host immunomodulation and virus hijacking of the cellular machinery. The present analysis provides new information about the implications of the intrahost genetic diversity of DENV-2, contributing to the knowledge about the viral factors possibly involved in its pathogenesis within the human host. Strengthening our results with functional studies could allow many of these variants to be considered in the design of therapeutic or prophylactic compounds and the improvement of diagnostic assays. IMPORTANCE Previous evidence showed that intrahost genetic diversity in arboviruses may be linked to viral pathogenesis and that one or a few amino acid replacements within a single protein are enough to modify a biological feature of an RNA virus. To assess dengue virus serotype 2 determinants potentially involved in pathogenesis, we previously analyzed the intrahost genetic diversity of the virus in patients with different clinical outcomes and identified a set of 141 mutations that deserved further study. Thus, through a molecular modeling approach, we showed that disruptive variants were identified primarily among cases with mild dengue fever, while potential immune-escape variants were mainly associated with cases of greater severity. We believe that some of the variants pointed out in this study were attractive enough to be potentially considered in future intelligent designs of therapeutic or prophylactic compounds or the improvement of diagnostic tools. The present analysis provides new information about DENV-2 viral factors possibly involved in its pathogenesis within the human host.
Collapse
|
41
|
Baig MS, Krishnan A. A bioinformatics approach to investigate serum and hematopoietic cell-specific therapeutic microRNAs targeting the 3' UTRs of all four Dengue virus serotypes. Pathog Dis 2021; 79:6381691. [PMID: 34610125 DOI: 10.1093/femspd/ftab050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023] Open
Abstract
Hyperendemic circulation of all four Dengue virus (DENV) serotypes is a severe global public health problem, so any vaccine or therapeutics should be able to target all four of them. Cells of hemopoietic origin are believed to be primary sites of DENV replication. This study aimed to identify potential host miRNAs that target 3' UTR of all four DENV serotypes, thereby directly regulating viral gene expression or indirectly modulating the host system at different virus infection steps. We used four prediction algorithms viz. miRanda, RNA22, RNAhybrid and StarMir for predicting miRNA, targeting 3'UTR of all four DENV serotypes. Statistically, the most significant miRNA targets were screened based on their Log10 P-value (> 0.0001) of Gene Ontology (GO) term and Kyoto Encyclopaedia of Gene and Genome (KEGG) pathway enrichment analysis. The intersection test of at least three prediction tools identified a total of 30 miRNAs, which could bind to 3'UTR of all four DENV serotypes. Of the 30, eight miRNAs were of hematopoietic cell origin. GO term enrichment and KEGG analysis showed four hemopoietic origin miRNAs target genes of the biological processes mainly involved in the innate immune response, mRNA 3'-end processing, antigen processing and presentation and nuclear-transcribed mRNA catabolic process.
Collapse
Affiliation(s)
- Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India
| |
Collapse
|
42
|
Fay RL, Ngo KA, Kuo L, Willsey GG, Kramer LD, Ciota AT. Experimental Evolution of West Nile Virus at Higher Temperatures Facilitates Broad Adaptation and Increased Genetic Diversity. Viruses 2021; 13:1889. [PMID: 34696323 PMCID: PMC8540194 DOI: 10.3390/v13101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV, Flaviviridae, Flavivirus) is a mosquito-borne flavivirus introduced to North America in 1999. Since 1999, the Earth's average temperature has increased by 0.6 °C. Mosquitoes are ectothermic organisms, reliant on environmental heat sources. Temperature impacts vector-virus interactions which directly influence arbovirus transmission. RNA viral replication is highly error-prone and increasing temperature could further increase replication rates, mutation frequencies, and evolutionary rates. The impact of temperature on arbovirus evolutionary trajectories and fitness landscapes has yet to be sufficiently studied. To investigate how temperature impacts the rate and extent of WNV evolution in mosquito cells, WNV was experimentally passaged 12 times in Culex tarsalis cells, at 25 °C and 30 °C. Full-genome deep sequencing was used to compare genetic signatures during passage, and replicative fitness was evaluated before and after passage at each temperature. Our results suggest adaptive potential at both temperatures, with unique temperature-dependent and lineage-specific genetic signatures. Further, higher temperature passage was associated with significantly increased replicative fitness at both temperatures and increases in nonsynonymous mutations. Together, these data indicate that if similar selective pressures exist in natural systems, increases in temperature could accelerate emergence of high-fitness strains with greater phenotypic plasticity.
Collapse
Affiliation(s)
- Rachel L. Fay
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Kiet A. Ngo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Lili Kuo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Graham G. Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA;
| | - Laura D. Kramer
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| | - Alexander T. Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY 12144, USA; (R.L.F.); (L.D.K.)
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; (K.A.N.); (L.K.)
| |
Collapse
|
43
|
In-silico approaches towards the profiling of some anti-dengue virus as potent inhibitors against dengue NS-5 receptor. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Li D, Ye JL, Liu ZY. Generation and Application of a Luciferase Reporter Virus Based on Yellow Fever Virus 17D. Virol Sin 2021; 36:1456-1464. [PMID: 34342842 DOI: 10.1007/s12250-021-00428-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022] Open
Abstract
Yellow fever virus (YFV) is a re-emerging virus that can cause life-threatening yellow fever disease in humans. Despite the availability of an effective vaccine, little is known about the replication mechanism of YFV, and there are still no available specific anti-YFV medicines. Herein, by introducing the Renilla luciferase gene (Rluc) into an infectious clone of YFV vaccine strain 17D, we generated a recombinant virus 17D-Rluc.2A via reverse genetics approaches. The 17D-Rluc.2A had similar plaque morphology and comparable in vitro growth characteristics with its parental strain. Importantly, the reporter luciferase was efficiently expressed in 17D-Rluc.2A-infected mammalian and mosquito cells, and there was a good linear correlation between intracellular luciferase expression and extracellular infectious virion reproduction. Furthermore, by a combination of the 17D-Rluc.2A reporter virus and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) technology, the conserved 5'-SLA element was shown to be essential for YFV replication, highlighting the capability of 17D-Rluc.2A in the investigation of YFV replication. At last, we demonstrated that two compounds with distinct anti-viral mechanisms can effectively inhibit the viral propagation in 17D-Rluc.2A-infected cells, demonstrating its potential application in the evaluation of anti-viral medicines. Taken together, the 17D-Rluc.2A serves as a useful tool for the study of YFV replication and anti-YFV medicine development.
Collapse
Affiliation(s)
- Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
45
|
Samanta B. Structural evolution of SLA promoter in mosquito-borne flaviviruses: A sequence-structure based phylogenetic framework. Virology 2021; 562:110-120. [PMID: 34311294 DOI: 10.1016/j.virol.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022]
Abstract
All the flaviviruses have a Y-shaped stem-loop secondary structure known as the SLA element, and the structural features of this element are crucial to initiating the infection cycle. The present study particularly investigated how flaviviruses retained the common core SLA element secondary structure during the species evolution by selecting mosquito-borne flaviviruses (MBFVs) as a case study. The detailed search of nucleotide substitutions in species-wise consensus SLA secondary structure models suggested that the compensatory and hemi-compensatory base changes in the helices are crucial to preserving the common core secondary structure. In contrast to the coding region-based phylogeny, the SLA sequence-structure-based phylogenetic tree revealed an intriguing evolutionary relationship among MBFVs. Overall, this paper demonstrated for the first time the efficacy of RNA secondary structures as a phylogenetic marker to study the RNA virus evolution.
Collapse
Affiliation(s)
- Brajogopal Samanta
- Department of Microbiology and FST, GITAM Institute of Science, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
46
|
Akiyama BM, Graham ME, O′Donoghue Z, Beckham J, Kieft J. Three-dimensional structure of a flavivirus dumbbell RNA reveals molecular details of an RNA regulator of replication. Nucleic Acids Res 2021; 49:7122-7138. [PMID: 34133732 PMCID: PMC8266583 DOI: 10.1093/nar/gkab462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Mosquito-borne flaviviruses (MBFVs) including dengue, West Nile, yellow fever, and Zika viruses have an RNA genome encoding one open reading frame flanked by 5' and 3' untranslated regions (UTRs). The 3' UTRs of MBFVs contain regions of high sequence conservation in structured RNA elements known as dumbbells (DBs). DBs regulate translation and replication of the viral RNA genome, functions proposed to depend on the formation of an RNA pseudoknot. To understand how DB structure provides this function, we solved the x-ray crystal structure of the Donggang virus DB to 2.1Å resolution and used structural modeling to reveal the details of its three-dimensional fold. The structure confirmed the predicted pseudoknot and molecular modeling revealed how conserved sequences form a four-way junction that appears to stabilize the pseudoknot. Single-molecule FRET suggests that the DB pseudoknot is a stable element that can regulate the switch between translation and replication during the viral lifecycle by modulating long-range RNA conformational changes.
Collapse
Affiliation(s)
- Benjamin M Akiyama
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Monica E Graham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - Zoe O′Donoghue
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
| | - J David Beckham
- Department of Immunology and Microbiology, Aurora, CO 80045, USA
- Department of Medicine Division of Infectious Diseases, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
47
|
Yong XE, Palur VR, Anand GS, Wohland T, Sharma KK. Dengue virus 2 capsid protein chaperones the strand displacement of 5'-3' cyclization sequences. Nucleic Acids Res 2021; 49:5832-5844. [PMID: 34037793 PMCID: PMC8191770 DOI: 10.1093/nar/gkab379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 01/02/2023] Open
Abstract
By virtue of its chaperone activity, the capsid protein of dengue virus strain 2 (DENV2C) promotes nucleic acid structural rearrangements. However, the role of DENV2C during the interaction of RNA elements involved in stabilizing the 5′-3′ panhandle structure of DENV RNA is still unclear. Therefore, we determined how DENV2C affects structural functionality of the capsid-coding region hairpin element (cHP) during annealing and strand displacement of the 9-nt cyclization sequence (5CS) and its complementary 3CS. cHP has two distinct functions: a role in translation start codon selection and a role in RNA synthesis. Our results showed that cHP impedes annealing between 5CS and 3CS. Although DENV2C does not modulate structural functionality of cHP, it accelerates annealing and specifically promotes strand displacement of 3CS during 5′-3′ panhandle formation. Furthermore, DENV2C exerts its chaperone activity by favouring one of the active conformations of cHP. Based on our results, we propose mechanisms for annealing and strand displacement involving cHP. Thus, our results provide mechanistic insights into how DENV2C regulates RNA synthesis by modulating essential RNA elements in the capsid-coding region, that in turn allow for DENV replication.
Collapse
Affiliation(s)
- Xin Ee Yong
- NUS Graduate School Integrative Sciences and Engineering Programme, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - V Raghuvamsi Palur
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Thorsten Wohland
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Kamal K Sharma
- Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
48
|
Sarkar S, Armitage BA. Targeting a Potential G-Quadruplex Forming Sequence Found in the West Nile Virus Genome by Complementary Gamma-Peptide Nucleic Acid Oligomers. ACS Infect Dis 2021; 7:1445-1456. [PMID: 33886274 DOI: 10.1021/acsinfecdis.0c00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the United States, West Nile virus (WNV) infects approximately 2500 people per year, of which 100-200 cases are fatal. No antiviral drug or vaccine is currently available for WNV. In this study, we designed gamma-modified peptide nucleic acid (γPNA) oligomers to target a newly identified guanine-rich gene sequence in the WNV genome. The target is found in the NS5 protein-coding region and was previously predicted to fold into a G-quadruplex (GQ) structure. Biophysical techniques such as UV melting analysis, circular dichroism spectroscopy, and fluorescence spectroscopy demonstrated that the target RNA indeed folds into a moderately stable GQ structure at physiological temperature and potassium concentration. Successful invasion of the GQ by three complementary γPNAs was also characterized by the above-mentioned biophysical techniques. The γPNAs showed very strong binding to the target with low femtomolar affinity at physiological temperature. Targeting this potential guanine quadruplex forming sequence (PQS) and other related sequences with γPNA may represent a new approach for inhibiting both WNV replication and transcription, thereby representing a generally useful antiviral strategy.
Collapse
Affiliation(s)
- Srijani Sarkar
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
49
|
The Role of the Stem-Loop A RNA Promoter in Flavivirus Replication. Viruses 2021; 13:v13061107. [PMID: 34207869 PMCID: PMC8226660 DOI: 10.3390/v13061107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
An essential challenge in the lifecycle of RNA viruses is identifying and replicating the viral genome amongst all the RNAs present in the host cell cytoplasm. Yet, how the viral polymerase selectively recognizes and copies the viral RNA genome is poorly understood. In flaviviruses, the 5′-end of the viral RNA genome contains a 70 nucleotide-long stem-loop, called stem-loop A (SLA), which functions as a promoter for genome replication. During replication, flaviviral polymerase NS5 specifically recognizes SLA to both initiate viral RNA synthesis and to methylate the 5′ guanine cap of the nascent RNA. While the sequences of this region vary between different flaviviruses, the three-way junction arrangement of secondary structures is conserved in SLA, suggesting that viruses recognize a common structural feature to replicate the viral genome rather than a particular sequence. To better understand the molecular basis of genome recognition by flaviviruses, we recently determined the crystal structures of flavivirus SLAs from dengue virus (DENV) and Zika virus (ZIKV). In this review, I will provide an overview of (1) flaviviral genome replication; (2) structures of viral SLA promoters and NS5 polymerases; and (3) and describe our current model of how NS5 polymerases specifically recognize the SLA at the 5′ terminus of the viral genome to initiate RNA synthesis at the 3′ terminus.
Collapse
|
50
|
Mechanisms Underlying Host Range Variation in Flavivirus: From Empirical Knowledge to Predictive Models. J Mol Evol 2021; 89:329-340. [PMID: 34059925 DOI: 10.1007/s00239-021-10013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022]
Abstract
Preventing and controlling epidemics caused by vector-borne viruses are particularly challenging due to their diverse pool of hosts and highly adaptive nature. Many vector-borne viruses belong to the Flavivirus genus, whose members vary greatly in host range and specificity. Members of the Flavivirus genus can be categorized to four main groups: insect-specific viruses that are maintained solely in arthropod populations, mosquito-borne viruses and tick-borne viruses that are transmitted to vertebrate hosts by mosquitoes or ticks via blood feeding, and those with no-known vector. The mosquito-borne group encompasses the yellow fever, dengue, and West Nile viruses, all of which are globally spread and cause severe morbidity in humans. The Flavivirus genus is genetically diverse, and its members are subject to different host-specific and vector-specific selective constraints, which do not always align. Thus, understanding the underlying genetic differences that led to the diversity in host range within this genus is an important aspect in deciphering the mechanisms that drive host compatibility and can aid in the constant arms-race against viral threats. Here, we review the phylogenetic relationships between members of the genus, their infection bottlenecks, and phenotypic and genomic differences. We further discuss methods that utilize these differences for prediction of host shifts in flaviviruses and can contribute to viral surveillance efforts.
Collapse
|