1
|
Gao J, Zhao D, Nouri HR, Chu HW, Huang H. Transcriptional Regulation of Mouse Mast Cell Differentiation and the Role of Human Lung Mast Cells in Airway Inflammation. Immunol Rev 2025; 331:e70026. [PMID: 40211768 PMCID: PMC12017346 DOI: 10.1111/imr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025]
Abstract
Mast cells (MCs) play a critical role in allergic inflammation, anaphylaxis, and chronic inflammatory diseases such as asthma, COPD, and osteoarthritis. Dysregulated MC activation can lead to MC activation syndrome (MACS), which is observed in patients with long COVID. MCs express the high-affinity receptor for IgE and, upon activation, release mediators and cytokines that trigger anaphylactic shock and promote allergic inflammation. They also interact with epithelial and nerve cells, which are crucial in forming a complex network of cell-cell and gene-gene interactions driving chronic inflammation that can confer resistance to treatment. In this review, in the context of the literature, we focus on experiments conducted in our laboratory investigating how transcription factors and enhancers regulate genes critical in mouse MC differentiation and function related to human lung inflammation.
Collapse
Affiliation(s)
- Junfeng Gao
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Dianzheng Zhao
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Hamid Reza Nouri
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Mallo M. The Link Between TGF-β Signaling and Chromatin Dynamics Takes an Unexpected Path. Bioessays 2025:e70013. [PMID: 40296304 DOI: 10.1002/bies.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
The TGF-β/BMP signaling superfamily plays critical roles in regulating a wide range of physiological and pathological processes. A recent study on Tgfbr1 function during mouse embryonic development found that, in the absence of this gene, the primordium of the external genitalia changes its fate, forming an additional set of hindlimbs and resulting in the so-called "six-legged" mice. Analysis of these embryos demonstrated that Tgfbr1 induces global remodeling of chromatin accessibility, establishing distinct regulatory elements that other morphogenetic factors use to drive either hindlimb or genital development. While global changes in chromatin structure have been previously associated with TGF-β signaling, the alterations seen in six-legged embryos differ significantly from previously described mechanisms. In this review, I discuss these distinctions and underscore the importance of studying biological processes within their natural tissue context, where essential tissue interactions are preserved.
Collapse
Affiliation(s)
- Moises Mallo
- Gulbenkian Institute for Molecular Medicine, Lisboa, Portugal
| |
Collapse
|
3
|
Xu S, Peng C, Ren R, Lu H, Zhao H, Xia S, Shen Y, Xu B, Zhang H, Cheng X, Blobel GA, Lan X. SWI/SNF complex-mediated ZNF410 cooperative binding maintains chromatin accessibility and enhancer activity. Cell Rep 2025; 44:115476. [PMID: 40158221 DOI: 10.1016/j.celrep.2025.115476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/21/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The clustering of multiple transcription factor binding sites (TFBSs) for the same TF has proved to be a pervasive feature of cis-regulatory elements in the eukaryotic genome. However, the contribution of binding sites within the homotypic clusters of TFBSs (HCTs) to TF binding and target gene expression remains to be understood. Here, we characterize the CHD4 enhancers that harbor unique functional ZNF410 HCTs genome wide. We uncover that ZNF410 controls chromatin accessibility and activity of the CHD4 enhancer regions. We demonstrate that ZNF410 binds to the HCTs in a collaborative fashion, further conferring transcriptional activation. In particular, three ZNF410 motifs (sub-HCTs) located at 3' end of the distal enhancer act as "switch motifs" to control chromatin accessibility and enhancer activity. Mechanistically, the SWI/SNF complex is selectively required to mediate cooperative ZNF410 binding for CHD4 expression. Together, our findings expose a complex functional hierarchy of homotypic clustered motifs, which cooperate to fine-tune target gene expression.
Collapse
Affiliation(s)
- Siyuan Xu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chuxuan Peng
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haowen Lu
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Han Zhao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Sijian Xia
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Yijie Shen
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Nussinov R, Yavuz BR, Jang H. Tumors and their microenvironments: Learning from pediatric brain pathologies. Biochim Biophys Acta Rev Cancer 2025; 1880:189328. [PMID: 40254040 DOI: 10.1016/j.bbcan.2025.189328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Early clues to tumors and their microenvironments come from embryonic development. Here we review the literature and consider whether the embryonic brain and its pathologies can serve as a better model. Among embryonic organs, the brain is the most heterogenous and complex, with multiple lineages leading to wide spectrum of cell states and types. Its dysregulation promotes neurodevelopmental brain pathologies and pediatric tumors. Embryonic brain pathologies point to the crucial importance of spatial heterogeneity over time, akin to the tumor microenvironment. Tumors dedifferentiate through genetic mutations and epigenetic modulations; embryonic brains differentiate through epigenetic modulations. Our innovative review proposes learning developmental brain pathologies to target tumor evolution-and vice versa. We describe ways through which tumor pharmacology can learn from embryonic brains and their pathologies, and how learning tumor, and its microenvironment, can benefit targeting neurodevelopmental pathologies. Examples include pediatric low-grade versus high-grade brain tumors as in rhabdomyosarcomas and gliomas.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Cadefau-Fabregat M, Martínez-Cebrián G, Lorenzi L, Weiss FD, Frank AK, Castelló-García JM, Julià-Vilella E, Gámez-García A, Yera L, de Castro CPM, Wang YF, Meissner F, Vaquero A, Merkenschlager M, Porse BT, Cuartero S. Mutant CEBPA promotes tolerance to inflammatory stress through deficient AP-1 activation. Nat Commun 2025; 16:3492. [PMID: 40221437 PMCID: PMC11993602 DOI: 10.1038/s41467-025-58712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The CEBPA transcription factor is frequently mutated in acute myeloid leukemia (AML). Mutations in the CEBPA gene, which are typically biallelic, result in the production of a shorter isoform known as p30. Both the canonical 42-kDa isoform (p42) and the AML-associated p30 isoform bind chromatin and activate transcription, but the specific transcriptional programs controlled by each protein and how they are linked to a selective advantage in AML is not well understood. Here, we show that cells expressing the AML-associated p30 have reduced baseline inflammatory gene expression and display altered dynamics of transcriptional induction in response to LPS, consequently impacting cytokine secretion. This confers p30-expressing cells an increased resistance to the adverse effects of prolonged exposure to inflammatory signals. Mechanistically, we show that these differences primarily arise from the differential regulation of AP-1 family proteins. In addition, we find that the impaired function of the AP-1 member ATF4 in p30-expressing cells alters their response to ER stress. Collectively, these findings uncover a link between mutant CEBPA, inflammation and the stress response, potentially revealing a vulnerability in AML.
Collapse
Affiliation(s)
- Maria Cadefau-Fabregat
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Lucía Lorenzi
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Felix D Weiss
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Eric Julià-Vilella
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Andrés Gámez-García
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Laura Yera
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Carini Picardi Morais de Castro
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Doctoral Program in Biomedicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Felix Meissner
- Institute of Innate Immunity, Department for Systems Immunology and Proteomics, Medical Faculty, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Matthias Merkenschlager
- MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| |
Collapse
|
6
|
Simonis A, Theobald SJ, Koch AE, Mummadavarapu R, Mudler JM, Pouikli A, Göbel U, Acton R, Winter S, Albus A, Holzmann D, Albert MC, Hallek M, Walczak H, Ulas T, Koch M, Tessarz P, Hänsel-Hertsch R, Rybniker J. Persistent epigenetic memory of SARS-CoV-2 mRNA vaccination in monocyte-derived macrophages. Mol Syst Biol 2025; 21:341-360. [PMID: 40133533 PMCID: PMC11965535 DOI: 10.1038/s44320-025-00093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Immune memory plays a critical role in the development of durable antimicrobial immune responses. How precisely mRNA vaccines train innate immune cells to shape protective host defense mechanisms remains unknown. Here we show that SARS-CoV-2 mRNA vaccination significantly establishes histone H3 lysine 27 acetylation (H3K27ac) at promoters of human monocyte-derived macrophages, suggesting epigenetic memory. However, we found that two consecutive vaccinations were required for the persistence of H3K27ac, which matched with pro-inflammatory innate immune-associated transcriptional changes and antigen-mediated cytokine secretion. H3K27ac at promoter regions were preserved for six months and a single mRNA booster vaccine potently restored their levels and release of macrophage-derived cytokines. Interestingly, we found that H3K27ac at promoters is enriched for G-quadruplex DNA secondary structure-forming sequences in macrophage-derived nucleosome-depleted regions, linking epigenetic memory to nucleic acid structure. Collectively, these findings reveal that mRNA vaccines induce a highly dynamic and persistent training of innate immune cells enabling a sustained pro-inflammatory immune response.
Collapse
Affiliation(s)
- Alexander Simonis
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Anna E Koch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Ram Mummadavarapu
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne, 50931, Germany
| | - Julie M Mudler
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Andromachi Pouikli
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne, 50931, Germany
| | - Ulrike Göbel
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard Acton
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Babraham Institute, Cambridge, UK
| | - Sandra Winter
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Alexandra Albus
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Dmitriy Holzmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Marie-Christine Albert
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Henning Walczak
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Biochemistry I, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, United Kingdom
| | - Thomas Ulas
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), University of Bonn, Bonn, Germany
- PRECISE Plattform for Single Cell Genomics and Epigenomics, DZNE, University of Bonn, Bonn and West German Genome Center, Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Manuel Koch
- Institute of Biochemistry I, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Dental, Oral and Maxillofacial Medicine (central facilities), Medical Faculty and University of Cologne, Cologne, Germany
| | - Peter Tessarz
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, Cologne, 50931, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Robert Hänsel-Hertsch
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany.
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50937, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Shafiq S, Hamashima K, Guest LA, Al-Anbaki AH, Amaral FMR, Wiseman DH, Kouskoff V, Lacaud G, Loh YH, Batta K. Competing dynamic gene regulatory networks involved in fibroblast reprogramming to hematopoietic progenitor cells. Stem Cell Reports 2025:102473. [PMID: 40185089 DOI: 10.1016/j.stemcr.2025.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025] Open
Abstract
Direct reprogramming of somatic cells offers a potentially safer therapeutic approach to generate patient-specific hematopoietic cells. However, this strategy is limited by stochasticity of reprogramming. Investigating the gene regulatory networks involved during reprogramming would help generate functional cells in adequate numbers. To address this, we developed an inducible system to reprogram fibroblasts to hematopoietic progenitor cells by ectopically expressing the two transcription factors SCL and LMO2. Transcriptome and epigenome analysis at different stages of reprogramming revealed uniform silencing of fibroblast genes and upregulation of the hemogenic endothelial program. Integrated analysis suggested that the transcription factors FLI1, GATA1/2, and KLF14 are direct targets of SCL/LMO2, which subsequently induce the hematopoietic program. Single-cell RNA sequencing revealed conflicting and competing fate decisions at intermediate stages of reprogramming. Inhibiting signaling pathways associated with competing neuronal fate enhanced reprogramming efficiency. In conclusion, this study identifies early/intermediate reprogramming events and associated pathways that could be targeted to improve reprogramming efficiency.
Collapse
Affiliation(s)
- Samiyah Shafiq
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK; Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Republic of Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Republic of Singapore
| | - Laura A Guest
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Ali H Al-Anbaki
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Daniel H Wiseman
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Valerie Kouskoff
- Developmental Haematopoiesis Group, Division of Developmental Biology and Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Republic of Singapore
| | - Kiran Batta
- Epigenetics of Haematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Lin YF, Buddle ERS, Schultz H, Zhou X, Ongaro L, Loka M, Alonso CAI, Boehm U, Duggavathi R, Bernard DJ. Gonadotropin-releasing hormone regulates transcription of the inhibin B co-receptor, TGFBR3L, via early growth response one. J Biol Chem 2025; 301:108405. [PMID: 40090584 PMCID: PMC12018112 DOI: 10.1016/j.jbc.2025.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Follicle-stimulating hormone (FSH), a product of pituitary gonadotrope cells, regulates gonadal function and fertility. FSH production is stimulated by gonadotropin-releasing hormone (GnRH) and activin-class ligands of the TGFβ family. Inhibin A and B are TGFβ proteins that suppress FSH synthesis by competitively binding activin type II receptors in concert with the co-receptors betaglycan (TGFBR3) and TGFBR3L. Betaglycan mediates the actions of both inhibins and is broadly expressed. In contrast, TGFBR3L is inhibin B-specific and selectively expressed in gonadotropes. This cell-restricted expression is driven, in part, by steroidogenic factor 1 (SF-1, NR5A1), which stimulates Tgfbr3l/TGFBR3L transcription via two conserved promoter elements. Tgfbr3l expression is lost in mice lacking SF-1 in gonadotropes. However, SF-1 alone is unlikely to fully explain gonadotrope-restricted Tgfbr3l/TGFBR3L expression. Here, we report that GnRH induces binding of the transcription factor, early growth response 1 (EGR1), to the murine Tgfbr3l and human TGFBR3L promoters at a conserved cis-element between the two SF-1 binding sites. In homologous LβT2 cells, GnRH stimulation of Tgfbr3l/TGFBR3L promoter-reporters depends on EGR1 binding to this cis-element. In heterologous cells, over-expressed EGR1 independently and synergistically with SF-1 activates Tgfbr3l/TGFBR3L promoter-reporter activities. In vivo, Tgfbr3l mRNA expression is reduced in the pituitaries of: 1) GnRH-deficient mice, 2) wild-type mice treated with a GnRH receptor antagonist, and 3) gonadotrope-specific Egr1 knockout mice. Gonadectomy, which increases GnRH pulse frequency, enhances Tgfbr3l expression in control but not gonadotrope-specific Egr1 knockouts. Collectively, these data indicate that GnRH stimulates Tgfbr3l/TGFBR3L transcription via EGR1, which acts with SF-1 through conserved promoter elements.
Collapse
Affiliation(s)
- Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Evan R S Buddle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Mary Loka
- Integrated Program in Neuroscience, McGill University Montréal, Québec, Canada
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; Integrated Program in Neuroscience, McGill University Montréal, Québec, Canada.
| |
Collapse
|
9
|
Cheng Y, Wang X, Ding Y, Zhang H, Jia Z, Raikhel AS. The AaFoxA factor regulates female reproduction through chromatin remodeling in the mosquito vector Aedes aegypti. Proc Natl Acad Sci U S A 2025; 122:e2411758122. [PMID: 39993202 DOI: 10.1073/pnas.2411758122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
Female mosquitoes are vectors of many devastating human diseases because they require blood feeding to initiate reproduction. Thus, elucidation of molecular mechanisms managing female mosquito reproduction is essential. Although the regulation of gene expression during the mosquito gonadotrophic cycle has been studied in detail, how this process is controlled at the chromatin level remains unclear. Chromatin must be accessible for transcription factors (TFs) governing gene expression. A specialized class of TFs, called pioneer factors (PFs), binds and remodels closed chromatin, permitting other TFs to bind DNA and activate the gene expression. Here, we identified a homolog of the vertebrate PF FoxA in the mosquito Aedes aegypti and used the CRISPR-Cas9 system to generate mosquitoes deficient in AaFoxA. We found that ovary development was severely retarded in mutant females. Multiomics and molecular biology analyses have shown that AaFoxA increased histone acetylation and decreased methylation of H3K27 by controlling the chromatin accessibility of histone modification enzymes and chromatin remodelers. AaFoxA is bound to the loci of chromatin remodelers, changing their chromatin accessibility and modulating their temporal expression patterns. AaFoxA increased the accessibility of the ecdysone receptor (EcR) and E74 loci, indicating the important role of AaFoxA in the hormonal regulation of mosquito reproductive events. Further, the CUT&RUN and ATAC-seq analyses revealed that AaFoxA temporarily bound closed chromatin, making it differentially accessible during the mosquito gonadotrophic cycle. Hence, this study demonstrates that AaFoxA modulates chromatin dynamics throughout female mosquito reproduction.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xuesong Wang
- Interdepartmental Graduate Program of Genetics, Genomics and Bioinformatics, University of California, Riverside, CA 92521
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Yike Ding
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Houhong Zhang
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Alexander S Raikhel
- Department of Entomology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
10
|
Yasmin IA, Dharmarajan A, Warrier S. A novel function of the Wnt antagonist secreted frizzled-related protein 4 as a transcriptional regulator of Dickkopf-1, another Wnt antagonist, in glioblastoma cell line U87MG. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119918. [PMID: 39938692 DOI: 10.1016/j.bbamcr.2025.119918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/03/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Wnt/β-catenin pathway dysregulation is associated with glioblastoma multiforme (GBM) pathogenesis and Wnt antagonists are downregulated in GBM. Wnt antagonist secreted frizzled-related protein 4 (sFRP4) has a tissue-specific, anti-metastatic and anti-stemness property. Our lab previously reported that gene silencing of sFRP4 in GBM cell line U87MG increases expression of another Wnt antagonist, Dickkopf-1 (Dkk1) and sFRP4 has a DNA binding ability. These findings in accordance with the nuclear localization of sFRP4 led to our present hypothesis that sFRP4 presumably negatively regulates Dkk1 and it probably interacts with the promoter region of Dkk1. Methylation-specific PCR (MSP), chromatin accessibility real-time PCR (ChART-PCR) assay, chromatin immunoprecipitation (ChIP), and quantitative DNA-protein interaction enzyme-linked immunosorbent assay (qDPI-ELISA) were carried out to test our hypothesis. We demonstrated that sFRP4 overexpression does not alter the methylation status of the Dkk1 promoter region. sFRP4 overexpression inhibits DNA-transcription factor interaction and enables chromatin accessibility to DNase I. Pertinently, sFRP4 has strong putative binding sites in the Dkk1 promoter region and its overexpression disrupts its interaction with the Dkk1 promoter. Interestingly, sFRP4 has the strongest affinity towards the -282 to +118 bp region. Downregulation of Dkk1 by overexpressed sFRP4 occurs by inhibition of the direct interaction of sFRP4 with the promoter region of Dkk1 as observed with low concentrations of sFRP4. We report for the first time a novel function of the Wnt antagonist sFRP4 acting as a transcription factor for another Wnt antagonist Dkk1, throwing open a new vista in the complex interplay between different antagonists of the Wnt pathway.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India.
| |
Collapse
|
11
|
Zhou BR, Orris B, Guan R, Lian T, Bai Y. Structural insights into the recognition of native nucleosomes by pioneer transcription factors. Curr Opin Struct Biol 2025; 92:103024. [PMID: 40024204 DOI: 10.1016/j.sbi.2025.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Pioneer transcription factors possess the unique ability to bind to nucleosomal DNA and locally open closed chromatin, enabling the binding of additional chromatin-associated factors. These factors are pivotal in determining cell fate. Structural studies of pioneer transcription factors interacting with nucleosomes have predominantly relied on model systems incorporating canonical DNA motifs within synthetic, strongly positioned DNA. However, recent advances have revealed structures of several pioneer transcription factors bound to their native nucleosome targets at gene enhancers involved in cell reprogramming. These findings offer fresh insights into how pioneer transcription factors recognize and disrupt compact chromatin. In this review, we summarize these recent discoveries and explore their broader implications.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Benjamin Orris
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA.
| |
Collapse
|
12
|
Desai K, Wanggou S, Luis E, Whetstone H, Yu C, Vanner RJ, Selvadurai HJ, Lee L, Vijay J, Jaramillo JE, Fan J, Guilhamon P, Kushida M, Li X, Stein G, Kesari S, Simons BD, Huang X, Dirks PB. OLIG2 mediates a rare targetable stem cell fate transition in sonic hedgehog medulloblastoma. Nat Commun 2025; 16:1092. [PMID: 39904987 PMCID: PMC11794873 DOI: 10.1038/s41467-024-54858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/22/2024] [Indexed: 02/06/2025] Open
Abstract
Functional cellular heterogeneity in tumours often underlies incomplete response to therapy and relapse. Previously, we demonstrated that the growth of the paediatric brain malignancy, sonic hedgehog subgroup medulloblastoma, is rooted in a dysregulated developmental hierarchy, the apex of which is defined by characteristically quiescent SOX2+ stem-like cells. Integrating gene expression and chromatin accessibility patterns in distinct cellular compartments, we identify the transcription factor Olig2 as regulating the stem cell fate transition from quiescence to activation, driving the generation of downstream neoplastic progenitors. Inactivation of Olig2 blocks stem cell activation and tumour output. Targeting this rare OLIG2-driven proliferative programme with a small molecule inhibitor, CT-179, dramatically attenuates early tumour formation and tumour regrowth post-therapy, and significantly increases median survival in vivo. We demonstrate that targeting transition from quiescence to proliferation at the level of the tumorigenic cell could be a pivotal medulloblastoma treatment strategy.
Collapse
Affiliation(s)
- Kinjal Desai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Siyi Wanggou
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Erika Luis
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Heather Whetstone
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Chunying Yu
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Robert J Vanner
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hayden J Selvadurai
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Lilian Lee
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jinchu Vijay
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Julia E Jaramillo
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Jerry Fan
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Michelle Kushida
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Xuejun Li
- Department of Neurosurgery, and Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gregory Stein
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
| | - Santosh Kesari
- Curtana Pharmaceuticals, Inc, Austin, TX, 78756, USA
- Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, and the Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Xi Huang
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Peter B Dirks
- Developmental and Stem Cell Biology Program, and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
13
|
Liu G, Zhang R, Wu Z, Yu J, Lou H, Zhu J, Liu J, Gou J, Ni Z, Sun Q, Liang R. TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:355-374. [PMID: 39714104 PMCID: PMC11814923 DOI: 10.1111/jipb.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood. Here we report that TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate starch biosynthesis and quality in wheat. Genome-edited tadl mutant lines had smaller and lighter grains with lower total starch and amylose contents compared to wild type (WT). Correspondingly, the transcript levels of starch biosynthesis-related genes, including TaSUS1, TaSUS2, TaAGPL2, TaSBEIIa, TaGBSSII, and TaSWEET2a, were markedly lower at 15 d after flowering (DAF) in tadl mutants. TaDL physically interacted with TaB3 and TaNF-YB1 and activated the transcription of TaSUS2 and TaAGPL2 through direct binding to their promoter regions. A null mutant of TaB3 also affected grain filling, with phenotypes similar to those of tadl mutants, whereas overexpression of TaNF-YB1 promoted grain filling. Our study demonstrated that TaDL plays an essential role in starch biosynthesis and identified an elite allele (TaDL-BI) associated with starch content, providing insights into the underlying molecular mechanism of wheat grain filling, which may be useful in breeding of high-yielding wheat and quality improvement.
Collapse
Affiliation(s)
- Guoyu Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Runqi Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Ziyan Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jiazheng Yu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Hongyao Lou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jun Zhu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Jinying Gou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Rongqi Liang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
14
|
König L, Schmidts M. The role of chromatin-related epigenetic modulations in CAKUT. Curr Top Dev Biol 2025; 163:169-227. [PMID: 40254345 DOI: 10.1016/bs.ctdb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent a major health burden in humans. Phenotypes range from renal hypoplasia or renal agenesis, cystic renal dysplasia, duplicated or horseshoe kidneys to obstruction of the ureteropelvic junction, megaureters, duplicated ureters, urethral valves or bladder malformations. Over the past decade, next-generation sequencing has identified numerous causative genes; however, the genetic basis of most cases remains unexplained. It is assumed that environmental factors have a significant impact on the phenotype, but, overall, the pathogenesis has remained poorly understood. Interestingly however, CAKUT is a common phenotypic feature in two human syndromes, Kabuki and Koolen-de Vries syndrome, caused by dysfunction of genes encoding for KMT2D and KANSL1, both members of protein complexes playing an important role in histone modifications. In this chapter, we discuss current knowledge regarding epigenetic modulation in renal development and a putatively under-recognized role of epigenetics in CAKUT.
Collapse
Affiliation(s)
- Luise König
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Kim W, Kim DW, Wang Z, Liu M, Townsend JP, Trail F. Transcription factor-dependent regulatory networks of sexual reproduction in Fusarium graminearum. mBio 2025; 16:e0303024. [PMID: 39589130 PMCID: PMC11708053 DOI: 10.1128/mbio.03030-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Transcription factors (TFs) involved in sexual reproduction in filamentous fungi have been characterized. However, we have little understanding of how these TFs synergize within regulatory networks resulting in sexual development. We investigated 13 TFs in Fusarium graminearum, whose knockouts exhibited abortive or arrested phenotypes during sexual development to elucidate the transcriptional regulatory cascade underlying the development of the sexual fruiting bodies. A Bayesian network of the TFs was inferred based on transcriptomic data from key stages of sexual development. We evaluated in silico knockout impacts to the networks of the developmental phenotypes among the TFs and guided knockout transcriptomics experiments to properly assess regulatory roles of genes with same developmental phenotypes. Additional transcriptome data were collected for the TF knockouts guided by the stage at which their phenotypes appeared and by the cognate in silico prediction. Global TF networks revealed that TFs within the mating-type locus (MAT genes) trigger a transcriptional cascade involving TFs that affected early stages of sexual development. Notably, PNA1, whose knockout mutants produced exceptionally small protoperithecia, was shown to be an upstream activator for MAT genes and several TFs essential for ascospore production. In addition, knockout mutants of SUB1 produced excessive numbers of protoperithecia, wherein MAT genes and pheromone-related genes exhibited dysregulated expression. We conclude that PNA1 and SUB1 play central and suppressive roles in initiating sexual reproduction, respectively. This comprehensive investigation contributes to our understanding of the transcriptional framework governing the multicellular body plan during sexual reproduction in F. graminearum.IMPORTANCEUnderstanding transcriptional regulation of sexual development is crucial to the elucidation of the complex reproductive biology in Fusarium graminearum. We performed gene knockouts on 13 transcription factors (TFs), demonstrating knockout phenotypes affecting distinct stages of sexual development. Using transcriptomic data across stages of sexual development, we inferred a Bayesian network of these TFs that guided experiments to assess the robustness of gene interactions using a systems biology approach. We discovered that the mating-type locus (MAT genes) initiates a transcriptional cascade, with PNA1 identified as an upstream activator essential for early sexual development and ascospore production. Conversely, SUB1 was found to play a suppressive role, with knockout mutants exhibiting excessive protoperithecia due to abnormally high expression of MAT and pheromone-related genes. These findings highlight the central roles of PNA1 and SUB1 in regulating other gene activity related to sexual reproduction, contributing to a deeper understanding of the mechanisms of the multiple TFs that regulate sexual development.
Collapse
Affiliation(s)
- Wonyong Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Da-Woon Kim
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Meng Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
16
|
Pampari A, Shcherbina A, Kvon EZ, Kosicki M, Nair S, Kundu S, Kathiria AS, Risca VI, Kuningas K, Alasoo K, Greenleaf WJ, Pennacchio LA, Kundaje A. ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.25.630221. [PMID: 39829783 PMCID: PMC11741299 DOI: 10.1101/2024.12.25.630221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Despite extensive mapping of cis-regulatory elements (cREs) across cellular contexts with chromatin accessibility assays, the sequence syntax and genetic variants that regulate transcription factor (TF) binding and chromatin accessibility at context-specific cREs remain elusive. We introduce ChromBPNet, a deep learning DNA sequence model of base-resolution accessibility profiles that detects, learns and deconvolves assay-specific enzyme biases from regulatory sequence determinants of accessibility, enabling robust discovery of compact TF motif lexicons, cooperative motif syntax and precision footprints across assays and sequencing depths. Extensive benchmarks show that ChromBPNet, despite its lightweight design, is competitive with much larger contemporary models at predicting variant effects on chromatin accessibility, pioneer TF binding and reporter activity across assays, cell contexts and ancestry, while providing interpretation of disrupted regulatory syntax. ChromBPNet also helps prioritize and interpret regulatory variants that influence complex traits and rare diseases, thereby providing a powerful lens to decode regulatory DNA and genetic variation.
Collapse
Affiliation(s)
- Anusri Pampari
- Department of Computer Science, Stanford University, Stanford CA, 94305
| | - Anna Shcherbina
- Department of Biomedical Data Sciences, Stanford University, Stanford CA, 94305
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford CA, 94305
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford CA, 94305
| | | | | | | | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - William James Greenleaf
- Department of Genetics, Stanford University, Stanford CA, 94305
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford CA, 94305
- Department of Genetics, Stanford University, Stanford CA, 94305
| |
Collapse
|
17
|
Perkins ML, Crocker J, Tkačik G. Chromatin enables precise and scalable gene regulation with factors of limited specificity. Proc Natl Acad Sci U S A 2025; 122:e2411887121. [PMID: 39793086 PMCID: PMC11725945 DOI: 10.1073/pnas.2411887121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs). Under what conditions and by how much can chromatin reduce regulatory errors on a global scale? We use a theoretical approach to compare two scenarios for gene regulation: one that relies on TF binding to free DNA alone and one that uses a combination of TFs and chromatin-regulating PFs to achieve desired gene expression patterns. We find, first, that chromatin effectively silences groups of genes that should be simultaneously OFF, thereby allowing more accurate graded control of expression for the remaining ON genes. Second, chromatin buffers the deleterious consequences of nontarget binding as the number of OFF genes grows, permitting a substantial expansion in regulatory complexity. Third, chromatin-based regulation productively co-opts nontarget TF binding for ON genes in order to establish a "leaky" baseline expression level, which targeted activator or repressor binding subsequently up- or down-modulates. Thus, on a global scale, using chromatin simultaneously alleviates pressure for high specificity of regulatory interactions and enables an increase in genome size with minimal impact on global expression error.
Collapse
Affiliation(s)
- Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117Heidelberg, Germany
| | - Gašper Tkačik
- Institute of Science and Technology Austria, AT-3400Klosterneuburg, Austria
| |
Collapse
|
18
|
Levitsky VG, Raditsa VV, Tsukanov AV, Mukhin AM, Zhimulev IF, Merkulova TI. Asymmetry of Motif Conservation Within Their Homotypic Pairs Distinguishes DNA-Binding Domains of Target Transcription Factors in ChIP-Seq Data. Int J Mol Sci 2025; 26:386. [PMID: 39796242 PMCID: PMC11720554 DOI: 10.3390/ijms26010386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation. We categorized the target TFs from M. musculus ChIP-seq and A. thaliana ChIP-seq/DAP-seq experiments according to the structure of their DNA-binding domains (DBDs) into classes. We studied homotypic pairs of motifs, using the same recognition model for each motif. Asymmetric and symmetric pairs consist of motifs of remote and close recognition scores. We found that asymmetric pairs of motifs predominate for all TF classes. TFs from the murine/plant 'Basic helix-loop-helix (bHLH)', 'Basic leucine zipper (bZIP)', and 'Tryptophan cluster' classes and murine 'p53 domain' and 'Rel homology region' classes showed the highest enrichment of asymmetric homotypic pairs of motifs. Pioneer TFs, despite their DBD types, have a higher significance of asymmetry within homotypic pairs of motifs compared to other TFs. Asymmetry within homotypic CEs is a promising new feature decrypting the mechanisms of gene transcription regulation.
Collapse
Affiliation(s)
- Victor G. Levitsky
- Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (V.V.R.); (A.V.T.); (A.M.M.); (T.I.M.)
- Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir V. Raditsa
- Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (V.V.R.); (A.V.T.); (A.M.M.); (T.I.M.)
| | - Anton V. Tsukanov
- Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (V.V.R.); (A.V.T.); (A.M.M.); (T.I.M.)
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia;
| | - Aleksey M. Mukhin
- Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (V.V.R.); (A.V.T.); (A.M.M.); (T.I.M.)
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, Novosibirsk 630090, Russia;
| | - Tatyana I. Merkulova
- Department of System Biology, Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (V.V.R.); (A.V.T.); (A.M.M.); (T.I.M.)
- Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Shaban HA, Gasser SM. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ 2025; 32:9-15. [PMID: 37596440 PMCID: PMC11748698 DOI: 10.1038/s41418-023-01197-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Collapse
Affiliation(s)
- Haitham A Shaban
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1005, Lausanne, Switzerland.
- Agora Cancer Research Center Lausanne, Rue du Bugnon 25A, 1005, Lausanne, Switzerland.
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, 33 El-Behouth St., Dokki, Giza, 12311, Egypt.
| | - Susan M Gasser
- Fondation ISREC, Rue du Bugnon 25A, 1005, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Rozek W, Kwasnik M, Socha W, Czech B, Rola J. Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus. Int J Mol Sci 2024; 26:12. [PMID: 39795871 PMCID: PMC11720657 DOI: 10.3390/ijms26010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing. The analysis revealed 133 significantly differentially regulated snoRNAs (131 upregulated and 2 downregulated), including 93 SNORD, 38 SNORA, and 2 SCARNA. The most upregulated was SNORD58 (log2FoldChange = 9.61), while the only downregulated snoRNAs were SNORD3 (log2FC = -2.98) and SNORA74 (log2FC = -2.67). Several snoRNAs previously described as involved in viral infections were upregulated, including SNORD27, SNORD28, SNORD29, SNORD58, and SNORD44. In total, 533 interactors of dysregulated snoRNAs were identified using the RNAinter database with an assigned confidence score ≥ 0.25. The main groups of predicted interactors were transcription factors (TFs, 169 interactors) and RNA-binding proteins (RBPs, 130 interactors). Among the most important were pioneer TFs such as POU5F1, SOX2, CEBPB, and MYC, while in the RBP category, notable interactors included Polr2a, TNRC6A, IGF2BP3, and FMRP. Our results suggest that snoRNAs are involved in pro-viral activity, although follow-up studies including experimental validation would be beneficial.
Collapse
Affiliation(s)
- Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | | | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| |
Collapse
|
21
|
Azzarelli R, Gillen S, Connor F, Lundie-Brown J, Puletti F, Drummond R, Raffaelli A, Philpott A. Phospho-regulation of ASCL1-mediated chromatin opening during cellular reprogramming. Development 2024; 151:dev204329. [PMID: 39575884 DOI: 10.1242/dev.204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The proneural transcription factor ASCL1 regulates neurogenesis and drives somatic cell reprogramming into neurons. However, not all cell types can be reprogrammed by ASCL1, raising the questions of what provides competence and how we can overcome barriers to enable directed differentiation. Here, we investigate how levels of ASCL1 and its phosphorylation modulate its activity over progressive lineage restriction of mouse embryonic stem cells. We find that inhibition of ASCL1 phosphorylation enhances reprogramming of both mesodermal and neuroectodermal cells, while pluripotent cells remain refractory to ASCL1-directed neuronal differentiation. By performing RNA-seq and ATAC-seq in neuroectoderm, we find that un(der)phosphorylated ASCL1 causes increased chromatin accessibility at sites proximal to neuronal genes, accompanied by their increased expression. Combined analysis of protein stability and proneural function of phosphomutant and phosphomimetic ASCL1 reveals that protein stability plays only a marginal role in regulating activity, while changes in amino acid charge cannot fully explain enhanced activity of the serine-proline mutant variants of ASCL1. Our work provides new insights into proneural factor activity and regulation, and suggests ways to optimize reprogramming protocols in cancer and regenerative medicine.
Collapse
Affiliation(s)
- Roberta Azzarelli
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sarah Gillen
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Frances Connor
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Jethro Lundie-Brown
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Francesca Puletti
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Rosalind Drummond
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Ana Raffaelli
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Anna Philpott
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| |
Collapse
|
22
|
Orlovsky K, Appel E, Hantisteanu S, Olender T, Lotem J, Levanon D, Groner Y. Runx3, Brn3a and Isl1 interplay orchestrates the transcriptional program in the early stages of proprioceptive neuron development. PLoS Genet 2024; 20:e1011401. [PMID: 39715266 PMCID: PMC11729954 DOI: 10.1371/journal.pgen.1011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/13/2025] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The development and diversification of sensory proprioceptive neurons, which reside in the dorsal root ganglia (DRG) and express the tropomyosin receptor kinase C (TrkC), depend on the transcription factor (TF) Runx3. Runx3-deficient mice develop severe limb ataxia due to TrkC neuron cell death. Two additional TFs Pou4f1 (also called Brn3a) and Isl1 also play an important role in sensory neuron development. Thus, we aimed to unravel the chromatin state of early-developing TrkC neurons and decipher the Runx3 high-confidence target genes (HCT) and the possible cooperation between Runx3, Brn3a and Isl1 in the regulation of these genes. METHODS Runx3 expression is driven by the gene proximal P2 promoter. Transcriptome analysis was conducted by RNA-seq on RNA isolated from heterozygous (P2+/-) vs. homozygous (P2-/-) TrkC neurons and differentially expressed genes (DEGs) were determined. Genome-wide occupancy of Runx3, Brn3a, Isl1 and histone H3 acetylated on lysine 27 (H3K27Ac) was determined using CUT&RUN. The landscape of Transposase-accessible chromatin was analyzed via ATAC-seq. FINDINGS The intersection of Runx3 genomic occupancy-associated genes and DEG data discovered 244 Runx3 HCT. Brn3a and Isl1 were found to bind to numerous genomic loci, some of which overlapped with Runx3. Most genomic regions bound by each of these three TFs or co-bound by them resided in distantly located enhancer regions rather than in gene promoters. In activated and suppressed neuronal Runx3 HCT, Runx3 cooperated mainly with Brn3a to regulate expression through distantly located enhancers. Interestingly, suppression of non-neuronal immune genes was mainly managed via Runx3 without Brn3a. The distribution of ATAC and H3K27Ac marked regions in Runx3 peaks containing at least one RUNX binding site (Runx3_RBS) revealed that while most promoter regions were marked by ATAC, a prominent fraction of intron/intergenic regions occupied by Runx3, Brn3a or Isl1 were unmarked by ATAC and/or H3K27Ac. CONCLUSIONS These analyses shed new light on the interplay of Runx3, Brn3a, Isl1, and open chromatin regions in regulating the Runx3 HCT in the early developmental stages of TrkC neurons.
Collapse
Affiliation(s)
- Kira Orlovsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Appel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shay Hantisteanu
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoram Groner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
23
|
Wang H, Li A, Bian H, Jin L, Ma S, Wang H, Yang Y, Bravo A, Soberón M, Liu K. Transcriptional regulation of Cry2Ab toxin receptor ABCA2 gene in insects involves GATAe and splicing of a 5' UTR intron. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106211. [PMID: 39672621 DOI: 10.1016/j.pestbp.2024.106211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Bacillus thuringiensis (Bt) produces Cry toxins that are used to control insect pests worldwide. However, evolution of insect resistance threatens the sustainable application of these toxins. In some cases, Cry toxin resistance has been linked to mutations affecting toxin receptors expression. Previous work identified HaGATAe transcriptional factor (TF) to be involved in the expression of multiple Cry1 receptor genes. Also, it was reported that 5´untranslated region (UTR) could be involved in regulation of gene expression in eukaryotic cells. The ABCA2 protein functions as Cry2A toxin receptor in multiple lepidopteran species. Here, we investigated regulation of HaABCA2 expression in Helicoverpa armigera and in different insect cell lines. Transient expression of HaABCA2 gene resulted in susceptibility to Cry2Ab in Sf9 cells. Transient expression of HaGATAe transcriptional factor in Sf9 cells enhanced the expression of multiple larval midgut proteins including SfABCA2, increasing the susceptibility to activated Cry2Ab. The silencing of HaGATAe expression in H. armigera larvae by RNAi, resulted in lower expression of HaABCA2 which correlated with reduced susceptibility to Cry2Ab. The GATAe-binding site in the promoter of HaABCA2 gene was identified by systematic truncations, site directed mutagenesis and DNA Pull-down analysis. In addition, 5' RACE analysis revealed that HaABCA2 transcripts in larval midgut cells had at least three different 5' UTRs. Here we also show that the retention of an intron in one of these 5' UTRs significantly inhibited the HaABCA2 expression. A short sequence after the start codon of translation of HaABCA2 was identified to be required for the intron removal. These findings provide new insight for mechanism of Cry2Ab resistance in H. armigera.
Collapse
Affiliation(s)
- Haixia Wang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Anjing Li
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Huiran Bian
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Lang Jin
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Silu Ma
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Hanyue Wang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan 430070, China.
| |
Collapse
|
24
|
Bhat-Nakshatri P, Gao H, Khatpe AS, Adebayo AK, McGuire PC, Erdogan C, Chen D, Jiang G, New F, German R, Emmert L, Sandusky G, Storniolo AM, Liu Y, Nakshatri H. Single-nucleus chromatin accessibility and transcriptomic map of breast tissues of women of diverse genetic ancestry. Nat Med 2024; 30:3482-3494. [PMID: 39122969 PMCID: PMC11976273 DOI: 10.1038/s41591-024-03011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 08/12/2024]
Abstract
Single-nucleus analysis allows robust cell-type classification and helps to establish relationships between chromatin accessibility and cell-type-specific gene expression. Here, using samples from 92 women of several genetic ancestries, we developed a comprehensive chromatin accessibility and gene expression atlas of the breast tissue. Integrated analysis revealed ten distinct cell types, including three major epithelial subtypes (luminal hormone sensing, luminal adaptive secretory precursor (LASP) and basal-myoepithelial), two endothelial and adipocyte subtypes, fibroblasts, T cells, and macrophages. In addition to the known cell identity genes FOXA1 (luminal hormone sensing), EHF and ELF5 (LASP), TP63 and KRT14 (basal-myoepithelial), epithelial subtypes displayed several uncharacterized markers and inferred gene regulatory networks. By integrating breast epithelial cell gene expression signatures with spatial transcriptomics, we identified gene expression and signaling differences between lobular and ductal epithelial cells and age-associated changes in signaling networks. LASP cells and fibroblasts showed genetic ancestry-dependent variability. An estrogen receptor-positive subpopulation of LASP cells with alveolar progenitor cell state was enriched in women of Indigenous American ancestry. Fibroblasts from breast tissues of women of African and European ancestry clustered differently, with accompanying gene expression differences. Collectively, these data provide a vital resource for further exploring genetic ancestry-dependent variability in healthy breast biology.
Collapse
Affiliation(s)
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aditi S Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adedeji K Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Patrick C McGuire
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cihat Erdogan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Duojiao Chen
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Guanglong Jiang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Felicia New
- NanoString Technology Inc., Seattle, WA, USA
| | - Rana German
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lydia Emmert
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anna Maria Storniolo
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- VA Roudebush Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
25
|
Bonev B, Castelo-Branco G, Chen F, Codeluppi S, Corces MR, Fan J, Heiman M, Harris K, Inoue F, Kellis M, Levine A, Lotfollahi M, Luo C, Maynard KR, Nitzan M, Ramani V, Satijia R, Schirmer L, Shen Y, Sun N, Green GS, Theis F, Wang X, Welch JD, Gokce O, Konopka G, Liddelow S, Macosko E, Ali Bayraktar O, Habib N, Nowakowski TJ. Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery. Nat Neurosci 2024; 27:2292-2309. [PMID: 39627587 PMCID: PMC11999325 DOI: 10.1038/s41593-024-01806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells. Here, we summarize the most promising and robust technologies in these areas, discuss their strengths and limitations and discuss key computational approaches for analysis of these complex datasets. We highlight how data sharing and integration, documentation, visualization and benchmarking of results contribute to transparency, reproducibility, collaboration and democratization in neuroscience, and discuss needs and opportunities for future technology development and analysis.
Collapse
Affiliation(s)
- Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Manolis Kellis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ariel Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mo Lotfollahi
- Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vijay Ramani
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Rahul Satijia
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Lucas Schirmer
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yin Shen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Na Sun
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gilad S Green
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabian Theis
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiao Wang
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ozgun Gokce
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Evan Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tomasz J Nowakowski
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Guillermier C, Kumar NV, Bracken RC, Alvarez D, O'Keefe J, Gurkar A, Brown JD, Steinhauser ML. Nanoscale imaging of DNA-RNA identifies transcriptional plasticity at heterochromatin. Life Sci Alliance 2024; 7:e202402849. [PMID: 39288993 PMCID: PMC11408601 DOI: 10.26508/lsa.202402849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
The three-dimensional structure of DNA is a biophysical determinant of transcription. The density of chromatin condensation is one determinant of transcriptional output. Chromatin condensation is generally viewed as enforcing transcriptional suppression, and therefore, transcriptional output should be inversely proportional to DNA compaction. We coupled stable isotope tracers with multi-isotope imaging mass spectrometry to quantify and image nanovolumetric relationships between DNA density and newly made RNA within individual nuclei. Proliferative cell lines and cycling cells in the murine small intestine unexpectedly demonstrated no consistent relationship between DNA density and newly made RNA, even though localized examples of this phenomenon were detected at nuclear-cytoplasmic transitions. In contrast, non-dividing hepatocytes demonstrated global reduction in newly made RNA and an inverse relationship between DNA density and transcription, driven by DNA condensates at the nuclear periphery devoid of newly made RNA. Collectively, these data support an evolving model of transcriptional plasticity that extends at least to a subset of chromatin at the extreme of condensation as expected of heterochromatin.
Collapse
Affiliation(s)
- Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen Vg Kumar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronan C Bracken
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Diana Alvarez
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John O'Keefe
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aditi Gurkar
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Brown
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Cardiovascular Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Matrenec R, Oropeza CE, Dekoven E, Matrenec C, Maienschein-Cline M, Chau CS, Green SJ, Kaestner KH, McLachlan A. Foxa deficiency restricts hepatitis B virus biosynthesis through epigenic silencing. J Virol 2024; 98:e0137124. [PMID: 39377604 PMCID: PMC11575325 DOI: 10.1128/jvi.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
In the hepatis B virus (HBV) transgenic mouse model of chronic infection, the forkhead box protein A/hepatocyte nuclear factor 3 (Foxa/HNF3) family of pioneer transcription factors are required to support postnatal viral demethylation and subsequent HBV transcription and replication. Liver-specific Foxa-deficient mice with hepatic expression of only Foxa3 do not support HBV replication but display biliary epithelial hyperplasia with bridging fibrosis. However, liver-specific Foxa-deficient mice with hepatic expression of only Foxa1 or Foxa2 also successfully restrict viral transcription and replication but display only minimal alterations in liver physiology. These observations suggest that the level of Foxa activity, rather than the combination of specific Foxa genes, is a key determinant of HBV biosynthesis. Together, these findings suggest that targeting Foxa activity could lead to HBV DNA methylation and transcriptional inactivation, resulting in the resolution of chronic HBV infections that are responsible for approximately one million deaths annually worldwide. IMPORTANCE The current absence of curative therapies capable of resolving chronic hepatis B virus (HBV) infection is a major clinical problem associated with considerable morbidity and mortality. The small viral genome limits molecular targets for drug development, suggesting that the identification of cellular factors essential for HBV biosynthesis may represent alternative targets for therapeutic intervention. Genetic Foxa deficiency in the neonatal liver of HBV transgenic mice leads to the transcriptional silencing of viral DNA by CpG methylation without affecting viability or displaying an obvious phenotype. Therefore, limiting liver Foxa activity therapeutically may lead to the methylation of viral covalently closed circular DNA (cccDNA), resulting in its transcriptional silencing and ultimately the resolution of chronic HBV infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carly Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
28
|
Coppola U, Saha B, Kenney J, Waxman JS. A Foxf1-Wnt-Nr2f1 cascade promotes atrial cardiomyocyte differentiation in zebrafish. PLoS Genet 2024; 20:e1011222. [PMID: 39495809 PMCID: PMC11563408 DOI: 10.1371/journal.pgen.1011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/14/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Nr2f transcription factors (TFs) are conserved regulators of vertebrate atrial cardiomyocyte (AC) differentiation. However, little is known about the mechanisms directing Nr2f expression in ACs. Here, we identified a conserved enhancer 3' to the nr2f1a locus, which we call 3'reg1-nr2f1a (3'reg1), that can promote Nr2f1a expression in ACs. Sequence analysis of the enhancer identified putative Lef/Tcf and Foxf TF binding sites. Mutation of the Lef/Tcf sites within the 3'reg1 reporter, knockdown of Tcf7l1a, and manipulation of canonical Wnt signaling support that Tcf7l1a is derepressed via Wnt signaling to activate the transgenic enhancer and promote AC differentiation. Similarly, mutation of the Foxf binding sites in the 3'reg1 reporter, coupled with gain- and loss-of-function analysis supported that Foxf1 promotes expression of the enhancer and AC differentiation. Functionally, we find that Wnt signaling acts downstream of Foxf1 to promote expression of the 3'reg1 reporter within ACs and, importantly, both Foxf1 and Wnt signaling require Nr2f1a to promote a surplus of differentiated ACs. CRISPR-mediated deletion of the endogenous 3'reg1 abrogates the ability of Foxf1 and Wnt signaling to produce surplus ACs in zebrafish embryos. Together, our data support that downstream members of a conserved regulatory network involving Wnt signaling and Foxf1 function on a nr2f1a enhancer to promote AC differentiation in the zebrafish heart.
Collapse
Affiliation(s)
- Ugo Coppola
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bitan Saha
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer Kenney
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Developmental Biology Division, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
29
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
30
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
31
|
Asemota S, Effah W, Holt J, Johnson D, Cripe L, Ponnusamy S, Thiyagarajan T, Khosrosereshki Y, Hwang DJ, He Y, Grimes B, Fleming MD, Pritchard FE, Hendrix A, Fan M, Jain A, Choi HY, Makowski L, Hayes DN, Miller DD, Pfeffer LM, Santhanam B, Narayanan R. A molecular switch from tumor suppressor to oncogene in ER+ve breast cancer: Role of androgen receptor, JAK-STAT, and lineage plasticity. Proc Natl Acad Sci U S A 2024; 121:e2406837121. [PMID: 39312663 PMCID: PMC11459127 DOI: 10.1073/pnas.2406837121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Cancers develop resistance to inhibitors of oncogenes mainly due to target-centric mechanisms such as mutations and splicing. While inhibitors or antagonists force targets to unnatural conformation contributing to protein instability and resistance, activating tumor suppressors may maintain the protein in an agonistic conformation to elicit sustainable growth inhibition. Due to the lack of tumor suppressor agonists, this hypothesis and the mechanisms underlying resistance are not understood. In estrogen receptor (ER)-positive breast cancer (BC), androgen receptor (AR) is a druggable tumor suppressor offering a promising avenue for this investigation. Spatial genomics suggests that the molecular portrait of AR-expressing BC cells in tumor microenvironment corresponds to better overall patient survival, clinically confirming AR's role as a tumor suppressor. Ligand activation of AR in ER-positive BC xenografts reprograms cistromes, inhibits oncogenic pathways, and promotes cellular elasticity toward a more differentiated state. Sustained AR activation results in cistrome rearrangement toward transcription factor PROP paired-like homeobox 1, transformation of AR into oncogene, and activation of the Janus kinase/signal transducer (JAK/STAT) pathway, all culminating in lineage plasticity to an aggressive resistant subtype. While the molecular profile of AR agonist-sensitive tumors corresponds to better patient survival, the profile represented in the resistant phenotype corresponds to shorter survival. Inhibition of activated oncogenes in resistant tumors reduces growth and resensitizes them to AR agonists. These findings indicate that persistent activation of a context-dependent tumor suppressor may lead to resistance through lineage plasticity-driven tumor metamorphosis. Our work provides a framework to explore the above phenomenon across multiple cancer types and underscores the importance of factoring sensitization of tumor suppressor targets while developing agonist-like drugs.
Collapse
Affiliation(s)
- Sarah Asemota
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Jeremiah Holt
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN38163
| | - Linnea Cripe
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Suriyan Ponnusamy
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Thirumagal Thiyagarajan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Yekta Khosrosereshki
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163
| | - Yali He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163
| | - Brandy Grimes
- West Cancer Center and Research Institute, Memphis, TN38120
| | - Martin D. Fleming
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Frances E. Pritchard
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Ashley Hendrix
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Meiyun Fan
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Abhinav Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030
| | - Hyo Young Choi
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN38163
| | - Liza Makowski
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - D. Neil Hayes
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - Duane D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - Lawrence M. Pfeffer
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| | - Balaji Santhanam
- Center of Excellence for Data Driven Discovery and Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN38163
- University of Tennessee Health Science Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN38163
| |
Collapse
|
32
|
Baniulyte G, Hicks SM, Sammons MA. p53motifDB: integration of genomic information and tumor suppressor p53 binding motifs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614594. [PMID: 39386591 PMCID: PMC11463528 DOI: 10.1101/2024.09.24.614594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The tumor suppressor gene TP53 encodes the DNA binding transcription factor p53 and is one of the most commonly mutated genes in human cancer. Tumor suppressor activity requires binding of p53 to its DNA response elements and subsequent transcriptional activation of a diverse set of target genes. Despite decades of close study, the logic underlying p53 interactions with its numerous potential genomic binding sites and target genes is not yet fully understood. Here, we present a database of DNA and chromatin-based information focused on putative p53 binding sites in the human genome to allow users to generate and test new hypotheses related to p53 activity in the genome. Users can query genomic locations based on experimentally observed p53 binding, regulatory element activity, genetic variation, evolutionary conservation, chromatin modification state, and chromatin structure. We present multiple use cases demonstrating the utility of this database for generating novel biological hypotheses, such as chromatin-based determinants of p53 binding and potential cell type-specific p53 activity. All database information is also available as a precompiled sqlite database for use in local analysis or as a Shiny web application.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Sawyer M Hicks
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| |
Collapse
|
33
|
Zhang T, Liu S, Durojaye O, Xiong F, Fang Z, Ullah T, Fu C, Sun B, Jiang H, Xia P, Wang Z, Yao X, Liu X. Dynamic phosphorylation of FOXA1 by Aurora B guides post-mitotic gene reactivation. Cell Rep 2024; 43:114739. [PMID: 39276350 DOI: 10.1016/j.celrep.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
FOXA1 serves as a crucial pioneer transcription factor during developmental processes and plays a pivotal role as a mitotic bookmarking factor to perpetuate gene expression profiles and maintain cellular identity. During mitosis, the majority of FOXA1 dissociates from specific DNA binding sites and redistributes to non-specific binding sites; however, the regulatory mechanisms governing molecular dynamics and activity of FOXA1 remain elusive. Here, we show that mitotic kinase Aurora B specifies the different DNA binding modes of FOXA1 and guides FOXA1 biomolecular condensation in mitosis. Mechanistically, Aurora B kinase phosphorylates FOXA1 at Serine 221 (S221) to liberate the specific, but not the non-specific, DNA binding. Interestingly, the phosphorylation of S221 attenuates the FOXA1 condensation that requires specific DNA binding. Importantly, perturbation of the dynamic phosphorylation impairs accurate gene reactivation and cell proliferation, suggesting that reversible mitotic protein phosphorylation emerges as a fundamental mechanism for the spatiotemporal control of mitotic bookmarking.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Olanrewaju Durojaye
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhiyou Fang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Tahir Ullah
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Hao Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Xia
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Institute of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
34
|
Su C, Pastor WA, Emad A. Deciphering lineage-relevant gene regulatory networks during endoderm formation by InPheRNo-ChIP. Brief Bioinform 2024; 25:bbae592. [PMID: 39535258 PMCID: PMC11558691 DOI: 10.1093/bib/bbae592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the underlying gene regulatory networks (GRNs) that govern early human embryogenesis is critical for understanding developmental mechanisms yet remains challenging due to limited sample availability and the inherent complexity of the biological processes involved. To address this, we developed InPheRNo-ChIP, a computational framework that integrates multimodal data, including RNA-seq, transcription factor (TF)-specific ChIP-seq, and phenotypic labels, to reconstruct phenotype-relevant GRNs associated with endoderm development. The core of this method is a probabilistic graphical model that models the simultaneous effect of TFs on their putative target genes to influence a particular phenotypic outcome. Unlike the majority of existing GRN inference methods that are agnostic to the phenotypic outcomes, InPheRNo-ChIP directly incorporates phenotypic information during GRN inference, enabling the distinction between lineage-specific and general regulatory interactions. We integrated data from three experimental studies and applied InPheRNo-ChIP to infer the GRN governing the differentiation of human embryonic stem cells into definitive endoderm. Benchmarking against a scRNA-seq CRISPRi study demonstrated InPheRNo-ChIP's ability to identify regulatory interactions involving endoderm markers FOXA2, SMAD2, and SOX17, outperforming other methods. This highlights the importance of incorporating the phenotypic context during network inference. Furthermore, an ablation study confirms the synergistic contribution of ChIP-seq, RNA-seq, and phenotypic data, highlighting the value of multimodal integration for accurate phenotype-relevant GRN reconstruction.
Collapse
Affiliation(s)
- Chen Su
- Department of Electrical and Computer Engineering, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada
- The Rosalind and Morris Goodman Cancer Institute, 1160 Pine Avenue, Montreal, Quebec H3A 1A3, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, 845 Sherbrooke Street West, Montreal, Quebec H3A 0G4, Canada
- The Rosalind and Morris Goodman Cancer Institute, 1160 Pine Avenue, Montreal, Quebec H3A 1A3, Canada
- Mila, Quebec AI Institute, 6666 St-Urbain Street #200, Montreal, Quebec H2S 3H1, Canada
| |
Collapse
|
35
|
Grand RS, Pregnolato M, Baumgartner L, Hoerner L, Burger L, Schübeler D. Genome access is transcription factor-specific and defined by nucleosome position. Mol Cell 2024; 84:3455-3468.e6. [PMID: 39208807 PMCID: PMC11420395 DOI: 10.1016/j.molcel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Mammalian gene expression is controlled by transcription factors (TFs) that engage sequence motifs in a chromatinized genome, where nucleosomes can restrict DNA access. Yet, how nucleosomes affect individual TFs remains unclear. Here, we measure the ability of over one hundred TF motifs to recruit TFs in a defined chromosomal locus in mouse embryonic stem cells. This identifies a set sufficient to enable the binding of TFs with diverse tissue specificities, functions, and DNA-binding domains. These chromatin-competent factors are further classified when challenged to engage motifs within a highly phased nucleosome. The pluripotency factors OCT4-SOX2 preferentially engage non-nucleosomal and entry-exit motifs, but not nucleosome-internal sites, a preference that also guides binding genome wide. By contrast, factors such as BANP, REST, or CTCF engage throughout, causing nucleosomal displacement. This supports that TFs vary widely in their sensitivity to nucleosomes and that genome access is TF specific and influenced by nucleosome position in the cell.
Collapse
Affiliation(s)
- Ralph Stefan Grand
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland
| | - Lisa Baumgartner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
36
|
Jhamat N, Guo Y, Han J, Humblot P, Bongcam-Rudloff E, Andersson G, Niazi A. Enrichment of Cis-Acting Regulatory Elements in Differentially Methylated Regions Following Lipopolysaccharide Treatment of Bovine Endometrial Epithelial Cells. Int J Mol Sci 2024; 25:9832. [PMID: 39337320 PMCID: PMC11432661 DOI: 10.3390/ijms25189832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Endometritis is an inflammatory disease that negatively influences fertility and is common in milk-producing cows. An in vitro model for bovine endometrial inflammation was used to identify enrichment of cis-acting regulatory elements in differentially methylated regions (DMRs) in the genome of in vitro-cultured primary bovine endometrial epithelial cells (bEECs) before and after treatment with lipopolysaccharide (LPS) from E. coli, a key player in the development of endometritis. The enriched regulatory elements contain binding sites for transcription factors with established roles in inflammation and hypoxia including NFKB and Hif-1α. We further showed co-localization of certain enriched cis-acting regulatory motifs including ARNT, Hif-1α, and NRF1. Our results show an intriguing interplay between increased mRNA levels in LPS-treated bEECs of the mRNAs encoding the key transcription factors such as AHR, EGR2, and STAT1, whose binding sites were enriched in the DMRs. Our results demonstrate an extraordinary cis-regulatory complexity in these DMRs having binding sites for both inflammatory and hypoxia-dependent transcription factors. Obtained data using this in vitro model for bacterial-induced endometrial inflammation have provided valuable information regarding key transcription factors relevant for clinical endometritis in both cattle and humans.
Collapse
Affiliation(s)
- Naveed Jhamat
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Jilong Han
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
- SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| | - Adnan Niazi
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
- SLU-Global Bioinformatics Centre, Swedish University of Agricultural Sciences, P.O. Box 7023, SE-75007 Uppsala, Sweden
| |
Collapse
|
37
|
Zhou BR, Feng H, Huang F, Zhu I, Portillo-Ledesma S, Shi D, Zaret KS, Schlick T, Landsman D, Wang Q, Bai Y. Structural insights into the cooperative nucleosome recognition and chromatin opening by FOXA1 and GATA4. Mol Cell 2024; 84:3061-3079.e10. [PMID: 39121853 PMCID: PMC11344660 DOI: 10.1016/j.molcel.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Furong Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA
| | - Dan Shi
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Development Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Xu C, Kleinschmidt H, Yang J, Leith EM, Johnson J, Tan S, Mahony S, Bai L. Systematic dissection of sequence features affecting binding specificity of a pioneer factor reveals binding synergy between FOXA1 and AP-1. Mol Cell 2024; 84:2838-2855.e10. [PMID: 39019045 PMCID: PMC11334613 DOI: 10.1016/j.molcel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024]
Abstract
Despite the unique ability of pioneer factors (PFs) to target nucleosomal sites in closed chromatin, they only bind a small fraction of their genomic motifs. The underlying mechanism of this selectivity is not well understood. Here, we design a high-throughput assay called chromatin immunoprecipitation with integrated synthetic oligonucleotides (ChIP-ISO) to systematically dissect sequence features affecting the binding specificity of a classic PF, FOXA1, in human A549 cells. Combining ChIP-ISO with in vitro and neural network analyses, we find that (1) FOXA1 binding is strongly affected by co-binding transcription factors (TFs) AP-1 and CEBPB; (2) FOXA1 and AP-1 show binding cooperativity in vitro; (3) FOXA1's binding is determined more by local sequences than chromatin context, including eu-/heterochromatin; and (4) AP-1 is partially responsible for differential binding of FOXA1 in different cell types. Our study presents a framework for elucidating genetic rules underlying PF binding specificity and reveals a mechanism for context-specific regulation of its binding.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianyu Yang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erik M Leith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jenna Johnson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Sahrhage M, Paul NB, Beißbarth T, Haubrock M. The importance of DNA sequence for nucleosome positioning in transcriptional regulation. Life Sci Alliance 2024; 7:e202302380. [PMID: 38830772 PMCID: PMC11147951 DOI: 10.26508/lsa.202302380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Nucleosome positioning is a key factor for transcriptional regulation. Nucleosomes regulate the dynamic accessibility of chromatin and interact with the transcription machinery at every stage. Influences to steer nucleosome positioning are diverse, and the according importance of the DNA sequence in contrast to active chromatin remodeling has been the subject of long discussion. In this study, we evaluate the functional role of DNA sequence for all major elements along the process of transcription. We developed a random forest classifier based on local DNA structure that assesses the sequence-intrinsic support for nucleosome positioning. On this basis, we created a simple data resource that we applied genome-wide to the human genome. In our comprehensive analysis, we found a special role of DNA in mediating the competition of nucleosomes with cis-regulatory elements, in enabling steady transcription, for positioning of stable nucleosomes in exons, and for repelling nucleosomes during transcription termination. In contrast, we relate these findings to concurrent processes that generate strongly positioned nucleosomes in vivo that are not mediated by sequence, such as energy-dependent remodeling of chromatin.
Collapse
Affiliation(s)
- Malte Sahrhage
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Niels Benjamin Paul
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
- Department of Cardiology and Pneumology, University Medical Center, Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Martin Haubrock
- Department of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| |
Collapse
|
40
|
Sekulovski N, Wettstein JC, Carleton AE, Juga LN, Taniguchi LE, Ma X, Rao S, Schmidt JK, Golos TG, Lin CW, Taniguchi K. Temporally resolved early bone morphogenetic protein-driven transcriptional cascade during human amnion specification. eLife 2024; 12:RP89367. [PMID: 39051990 PMCID: PMC11272160 DOI: 10.7554/elife.89367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Jenna C Wettstein
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Amber E Carleton
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Lauren N Juga
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Linnea E Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Xiaolong Ma
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Sridhar Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
- Versiti Blood Research InstituteMilwaukeeUnited States
| | - Jenna K Schmidt
- Wisconsin National Primate Research CenterMilwaukeeUnited States
| | - Thaddeus G Golos
- Wisconsin National Primate Research CenterMilwaukeeUnited States
- Department of Obstetrics and Gynecology, University of Wisconsin - Madison School of Medicine and Public HealthMadisonUnited States
- Department of Comparative Biosciences, University of Wisconsin - Madison School of Veterinary MedicineMadisonUnited States
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of WisconsinMilwaukeeUnited States
| | - Kenichiro Taniguchi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
- Department of Pediatrics, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
41
|
Munshi R. How Transcription Factor Clusters Shape the Transcriptional Landscape. Biomolecules 2024; 14:875. [PMID: 39062589 PMCID: PMC11274464 DOI: 10.3390/biom14070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In eukaryotic cells, gene transcription typically occurs in discrete periods of promoter activity, interspersed with intervals of inactivity. This pattern deviates from simple stochastic events and warrants a closer examination of the molecular interactions that activate the promoter. Recent studies have identified transcription factor (TF) clusters as key precursors to transcriptional bursting. Often, these TF clusters form at chromatin segments that are physically distant from the promoter, making changes in chromatin conformation crucial for promoter-TF cluster interactions. In this review, I explore the formation and constituents of TF clusters, examining how the dynamic interplay between chromatin architecture and TF clustering influences transcriptional bursting. Additionally, I discuss techniques for visualizing TF clusters and provide an outlook on understanding the remaining gaps in this field.
Collapse
Affiliation(s)
- Rahul Munshi
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
42
|
Liao L, Martin PCN, Kim H, Panahandeh S, Won KJ. Data enhancement in the age of spatial biology. Adv Cancer Res 2024; 163:39-70. [PMID: 39271267 DOI: 10.1016/bs.acr.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Unveiling the intricate interplay of cells in their native environment lies at the heart of understanding fundamental biological processes and unraveling disease mechanisms, particularly in complex diseases like cancer. Spatial transcriptomics (ST) offers a revolutionary lens into the spatial organization of gene expression within tissues, empowering researchers to study both cell heterogeneity and microenvironments in health and disease. However, current ST technologies often face limitations in either resolution or the number of genes profiled simultaneously. Integrating ST data with complementary sources, such as single-cell transcriptomics and detailed tissue staining images, presents a powerful solution to overcome these limitations. This review delves into the computational approaches driving the integration of spatial transcriptomics with other data types. By illuminating the key challenges and outlining the current algorithmic solutions, we aim to highlight the immense potential of these methods to revolutionize our understanding of cancer biology.
Collapse
Affiliation(s)
- Linbu Liao
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark; Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Patrick C N Martin
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hyobin Kim
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sanaz Panahandeh
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kyoung Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
43
|
Fu B, Ma H, Liu D. Pioneer Transcription Factors: The First Domino in Zygotic Genome Activation. Biomolecules 2024; 14:720. [PMID: 38927123 PMCID: PMC11202083 DOI: 10.3390/biom14060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Zygotic genome activation (ZGA) is a pivotal event in mammalian embryogenesis, marking the transition from maternal to zygotic control of development. During the ZGA process that is characterized by the intricate cascade of gene expression, who tipped the first domino in a meticulously arranged sequence is a subject of paramount interest. Recently, Dux, Obox and Nr5a2 were identified as pioneer transcription factors that reside at the top of transcriptional hierarchy. Through co-option of retrotransposon elements as hubs for transcriptional activation, these pioneer transcription factors rewire the gene regulatory network, thus initiating ZGA. In this review, we provide a snapshot of the mechanisms underlying the functions of these pioneer transcription factors. We propose that ZGA is the starting point where the embryo's own genome begins to influence development trajectory, therefore in-depth dissecting the functions of pioneer transcription factors during ZGA will form a cornerstone of our understanding for early embryonic development, which will pave the way for advancing our grasp of mammalian developmental biology and optimizing in vitro production (IVP) techniques.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
44
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
45
|
Oriol F, Alberto M, Joachim AP, Patrick G, M BP, Ruben MF, Jaume B, Altair CH, Ferran P, Oriol G, Narcis FF, Baldo O. Structure-based learning to predict and model protein-DNA interactions and transcription-factor co-operativity in cis-regulatory elements. NAR Genom Bioinform 2024; 6:lqae068. [PMID: 38867914 PMCID: PMC11167492 DOI: 10.1093/nargab/lqae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Transcription factor (TF) binding is a key component of genomic regulation. There are numerous high-throughput experimental methods to characterize TF-DNA binding specificities. Their application, however, is both laborious and expensive, which makes profiling all TFs challenging. For instance, the binding preferences of ∼25% human TFs remain unknown; they neither have been determined experimentally nor inferred computationally. We introduce a structure-based learning approach to predict the binding preferences of TFs and the automated modelling of TF regulatory complexes. We show the advantage of using our approach over the classical nearest-neighbor prediction in the limits of remote homology. Starting from a TF sequence or structure, we predict binding preferences in the form of motifs that are then used to scan a DNA sequence for occurrences. The best matches are either profiled with a binding score or collected for their subsequent modeling into a higher-order regulatory complex with DNA. Co-operativity is modelled by: (i) the co-localization of TFs and (ii) the structural modeling of protein-protein interactions between TFs and with co-factors. We have applied our approach to automatically model the interferon-β enhanceosome and the pioneering complexes of OCT4, SOX2 (or SOX11) and KLF4 with a nucleosome, which are compared with the experimentally known structures.
Collapse
Affiliation(s)
- Fornes Oriol
- Centre for Molecular Medicine and Therapeutics. BC Children's Hospital Research Institute. Department of Medical Genetics. University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Meseguer Alberto
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | | | - Gohl Patrick
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Bota Patricia M
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Molina-Fernández Ruben
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Bonet Jaume
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
- Laboratory of Protein Design & Immunoengineering. School of Engineering. Ecole Polytechnique Federale de Lausanne. Lausanne 1015, Vaud, Switzerland
| | - Chinchilla-Hernandez Altair
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Pegenaute Ferran
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Gallego Oriol
- Live-Cell Structural Biology. Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| | - Fernandez-Fuentes Narcis
- Institute of Biological, Environmental and Rural Science. Aberystwyth University, SY23 3DA Aberystwyth, UK
| | - Oliva Baldo
- Structural Bioinformatics Lab (GRIB-IMIM). Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08005 Catalonia, Spain
| |
Collapse
|
46
|
Fève B, Cintid S, Beaupère C, Vatier C, Vigouroux C, Vali A, Capeau J, Grosfed A, Moldes M. Pink adipose tissue: A paradigm of adipose tissue plasticity. ANNALES D'ENDOCRINOLOGIE 2024; 85:248-251. [PMID: 38871512 DOI: 10.1016/j.ando.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Adipose tissue is highly plastic, as illustrated mainly by the transdifferentiation of white adipocytes into beige adipocytes, depending on environmental conditions. However, during gestation and lactation in rodent, there is an amazing phenomenon of transformation of subcutaneous adipose tissue into mammary glandular tissue, known as pink adipose tissue, capable of synthesizing and secreting milk. Recent work using transgenic lineage-tracing experiments, mainly carried out in Saverio Cinti's team, has demonstrated very convincingly that this process does indeed correspond to a transdifferentiation of white adipocytes into mammary alveolar cells (pink adipocytes) during gestation and lactation. This phenomenon is reversible, since during the post-lactation phase, pink adipocytes revert to the white adipocyte phenotype. The molecular mechanisms underlying this reversible transdifferentiation remain poorly understood.
Collapse
Affiliation(s)
- Bruno Fève
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France; Service d'endocrinologie, CRMR PRISIS, AP-HP, hôpital Saint-Antoine, 75012 Paris, France.
| | - Saverio Cintid
- Center for the Study of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Carine Beaupère
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Camille Vatier
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France; Service d'endocrinologie, CRMR PRISIS, AP-HP, hôpital Saint-Antoine, 75012 Paris, France
| | - Corinne Vigouroux
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France; Service d'endocrinologie, CRMR PRISIS, AP-HP, hôpital Saint-Antoine, 75012 Paris, France
| | - Anna Vali
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Jacqueline Capeau
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Alexandra Grosfed
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| | - Marthe Moldes
- Centre de recherche Saint-Antoine, UMR_938, Inserm, Sorbonne université, 75012 Paris, France; Institute of CardioMetabolism and Nutrition, ICAN, Inserm, Sorbonne université, 75013 Paris, France
| |
Collapse
|
47
|
Perugini J, Smorlesi A, Acciarini S, Mondini E, Colleluori G, Pirazzini C, Kwiatkowska KM, Garagnani P, Franceschi C, Zingaretti MC, Dani C, Giordano A, Cinti S. Adipo-Epithelial Transdifferentiation in In Vitro Models of the Mammary Gland. Cells 2024; 13:943. [PMID: 38891075 PMCID: PMC11171678 DOI: 10.3390/cells13110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Subcutaneous adipocytes are crucial for mammary gland epithelial development during pregnancy. Our and others' previous data have suggested that adipo-epithelial transdifferentiation could play a key role in the mammary gland alveolar development. In this study, we tested whether adipo-epithelial transdifferentiation occurs in vitro. Data show that, under appropriate co-culture conditions with mammary epithelial organoids (MEOs), mature adipocytes lose their phenotype and acquire an epithelial one. Interestingly, even in the absence of MEOs, extracellular matrix and diffusible growth factors are able to promote adipo-epithelial transdifferentiation. Gene and protein expression studies indicate that transdifferentiating adipocytes exhibit some characteristics of milk-secreting alveolar glands, including significantly higher expression of milk proteins such as whey acidic protein and β-casein. Similar data were also obtained in cultured human multipotent adipose-derived stem cell adipocytes. A miRNA sequencing experiment on the supernatant highlighted mir200c, which has a well-established role in the mesenchymal-epithelial transition, as a potential player in this phenomenon. Collectively, our data show that adipo-epithelial transdifferentiation can be reproduced in in vitro models where this phenomenon can be investigated at the molecular level.
Collapse
Affiliation(s)
- Jessica Perugini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Arianna Smorlesi
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Samantha Acciarini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Eleonora Mondini
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
| | - Katarzyna Malgorzata Kwiatkowska
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
- IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy; (C.P.); (K.M.K.); (P.G.); (C.F.)
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, 603005 Nizhny Novgorod, Russia
| | - Maria Cristina Zingaretti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Christian Dani
- Faculté de Médecine, CNRS, INSERM, iBV, Université Côte d’Azur, CEDEX 2, F-06107 Nice, France;
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity, Marche Polytechnic University—United Hospitals, 60126 Ancona, Italy; (J.P.); (A.S.); (S.A.); (E.M.); (G.C.); (M.C.Z.); (A.G.)
| |
Collapse
|
48
|
Luo S, Hu Q, Jiang B, Zhang Z, Sun D. Bioinformatics analysis for constructing a cellular senescence-related age-related macular degeneration diagnostic model and identifying relevant disease subtypes to guide treatment. Aging (Albany NY) 2024; 16:8044-8069. [PMID: 38742956 PMCID: PMC11131993 DOI: 10.18632/aging.205804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Age-related macular degeneration (AMD) is a condition causing progressive central vision loss. Growing evidence suggests a link between cellular senescence and AMD. However, the exact mechanism by which cellular senescence leads to AMD remains unclear. Employing machine learning, we established an AMD diagnostic model. Through unsupervised clustering, two distinct AMD subtypes were identified. GO, KEGG, and GSVA analyses explored the diverse biological functions associated with the two subtypes. By WGCNA, we constructed a coexpression network of differential genes between the subtypes, revealing the regulatory role of hub genes at the level of transcription factors and miRNAs. We identified 5 genes associated with inflammation for the construction of the AMD diagnostic model. Additionally, we observed that the level of cellular senescence and pathways related to programmed cell death (PCD), such as ferroptosis, necroptosis, and pyroptosis, exhibited higher expression levels in subtype B than A. Immune microenvironments also differed between the subtypes, indicating potentially distinct pathogenic mechanisms and therapeutic targets. In summary, by leveraging cellular senescence-associated gene expression, we developed an AMD diagnostic model. Furthermore, we identified two subtypes with varying expression patterns of senescence genes, revealing their differential roles in programmed cell death, disease progression, and immune microenvironments within AMD.
Collapse
Affiliation(s)
- Shan Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhongyu Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
49
|
Grasberger H, Dumitrescu AM, Liao XH, Swanson EG, Weiss RE, Srichomkwun P, Pappa T, Chen J, Yoshimura T, Hoffmann P, França MM, Tagett R, Onigata K, Costagliola S, Ranchalis J, Vollger MR, Stergachis AB, Chong JX, Bamshad MJ, Smits G, Vassart G, Refetoff S. STR mutations on chromosome 15q cause thyrotropin resistance by activating a primate-specific enhancer of MIR7-2/MIR1179. Nat Genet 2024; 56:877-888. [PMID: 38714869 PMCID: PMC11472772 DOI: 10.1038/s41588-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/14/2024] [Indexed: 05/22/2024]
Abstract
Thyrotropin (TSH) is the master regulator of thyroid gland growth and function. Resistance to TSH (RTSH) describes conditions with reduced sensitivity to TSH. Dominantly inherited RTSH has been linked to a locus on chromosome 15q, but its genetic basis has remained elusive. Here we show that non-coding mutations in a (TTTG)4 short tandem repeat (STR) underlie dominantly inherited RTSH in all 82 affected participants from 12 unrelated families. The STR is contained in a primate-specific Alu retrotransposon with thyroid-specific cis-regulatory chromatin features. Fiber-seq and RNA-seq studies revealed that the mutant STR activates a thyroid-specific enhancer cluster, leading to haplotype-specific upregulation of the bicistronic MIR7-2/MIR1179 locus 35 kb downstream and overexpression of its microRNA products in the participants' thyrocytes. An imbalance in signaling pathways targeted by these micro-RNAs provides a working model for this cause of RTSH. This finding broadens our current knowledge of genetic defects altering pituitary-thyroid feedback regulation.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra M Dumitrescu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Elliott G Swanson
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Roy E Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Theodora Pappa
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Junfeng Chen
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Phillip Hoffmann
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Rebecca Tagett
- Michigan Medicine BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI, USA
| | | | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mitchell R Vollger
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Jessica X Chong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
- Center of Human Genetics, Hôpital Erasme, Hôpital Universitaire de Bruxelles, and Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Gilbert Vassart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Committee on Genetics, The University of Chicago, Chicago, IL, USA.
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Liu L, He W, Xu P, Wei W, Wang J, Liu K. Contribution of the transcription factor SfGATAe to Bt Cry toxin resistance in Spodoptera frugiperda through reduction of ABCC2 expression. Int J Biol Macromol 2024; 267:131459. [PMID: 38593893 DOI: 10.1016/j.ijbiomac.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.
Collapse
Affiliation(s)
- Leilei Liu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China.
| | - Wenfeng He
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Peiwen Xu
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wei
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Jintao Wang
- Center of Applied Biotechnology, School of Life Sciences and Technology, Wuhan University of Bioengineering, Wuhan, Hubei, China
| | - Kaiyu Liu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|