1
|
Vargas LCZ, Ortíz-Ortíz J, Martínez YA, Viguri GEC, Rojas FIT, Ávila-López PA. Identification of ZNF384 as a regulator of epigenome in leukemia. Leuk Res 2025; 153:107691. [PMID: 40250193 DOI: 10.1016/j.leukres.2025.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Leukemia is a complex hematologic cancer driven by genetic and epigenetic changes that impact gene expression. Understanding these molecular mechanisms is essential for improving leukemia diagnosis and prognosis. This study examines the role of the zinc finger protein ZNF384 in the epigenome and its influence on gene regulation in leukemia. We analyzed next-generation sequencing data from The Encyclopedia of DNA Elements (ENCODE), integrating datasets such as chromatin immunoprecipitation sequencing (ChIP-seq) of ZNF384 and regulatory histone marks, RNA sequencing (RNA-seq), and Hi-C data from K562 and GM12878 cells. Additionally, we used RNA-seq from K562 ZNF384 knock-down (KD) cells generated via CRISPR interference (CRISPRi) to validate our findings. This enabled us to explore the chromatin interaction patterns of ZNF384 and its regulatory impact. Our results demonstrate that ZNF384 associates with promoters and enhancers in K562 and GM12878 cells, facilitating increased transcription levels. We also found ZNF384 enriched at topologically associating domain (TAD) boundaries and chromatin loops, suggesting a role in three-dimensional (3D) chromatin organization. Furthermore, we identified a significant binding of ZNF384 at SINE-Alu elements in both K562 and GM12878 cells. In summary, this study highlights the regulatory role of ZNF384 in the leukemia epigenome and its impact on gene expression. Understanding the oncogenic implications of ZNF384 may improve leukemia diagnosis and prognosis.
Collapse
Affiliation(s)
- Laura C Zárraga Vargas
- Laboratorio de Biología de Células Troncales, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico; Unidad de Diagnóstico y Medicina Molecular Dr. Ruy Pérez Tamayo, Hospital del Niño Morelense, Emiliano Zapata, Morelos, Mexico
| | - Julio Ortíz-Ortíz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero 39090, Mexico; Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero. Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo, Guerrero 39090, Mexico
| | - Yamelie A Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, Mexico; Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Gabriela E Campos Viguri
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico; Centro de Investigación Sobre Enfermedades Infecciosas y Cáncer, Instituto Nacional de Salud Pública. Cuernavaca, Morelos 62100, Mexico
| | - Francisco I Torres Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico
| | - Pedro A Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado postal 14-740, Ciudad de México 07360, Mexico.
| |
Collapse
|
2
|
Puidebat O, Egloff S. The 7SK snRNP complex: a critical regulator in carcinogenesis. Biochimie 2025:S0300-9084(25)00084-7. [PMID: 40368082 DOI: 10.1016/j.biochi.2025.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Cyclin-Dependent Kinase 9 (CDK9) is a critical regulator of transcriptional elongation, functioning within the Positive Transcription Elongation Factor b (P-TEFb) complex alongside Cyclin T1. P-TEFb facilitates the release of RNA polymerase II (RNAPII) from promoter-proximal pausing, thereby enabling productive transcriptional elongation. CDK9 activity is tightly controlled by the 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, comprising 7SK snRNA, LARP7, MEPCE, and HEXIM1/2. Under homeostatic conditions, the 7SK snRNP sequesters and inactivates a fraction of P-TEFb, maintaining it in a repressed state. However, in response to cellular stress or increased transcriptional demand, P-TEFb is released from 7SK snRNP, activating CDK9 to ensure precise, context-dependent transcriptional control. This regulatory switch allows dynamic adaptation to environmental and intracellular cues. Emerging evidence implicates 7SK snRNP deregulation in cancer progression. This review explores the intricate interplay between 7SK snRNP and CDK9, highlighting how disruptions in individual 7SK snRNP components drive transcriptional imbalances, amplify oncogenic programs, and promote a tumorigenic environment.
Collapse
Affiliation(s)
- Oriana Puidebat
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 118 Route de Narbonne, Toulouse Cedex, France
| | - Sylvain Egloff
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 118 Route de Narbonne, Toulouse Cedex, France.
| |
Collapse
|
3
|
Hu M, Fan Z. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2025; 17:24. [PMID: 40133254 PMCID: PMC11937254 DOI: 10.1038/s41368-025-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Collapse
Affiliation(s)
- Meijun Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Asghar A, Vladimirova O, Sobotka A, Hayden J, Wickramasinghe J, Dheekollu J, Minakuchi M, Murphy ME, Nishikura K, Lieberman PM. LANA-Dependent Transcription-Replication Conflicts and R-Loops at the Terminal Repeats (TR) Correlate with KSHV Episome Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642343. [PMID: 40161765 PMCID: PMC11952399 DOI: 10.1101/2025.03.10.642343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Transcription-replication conflicts frequently occur at repetitive DNA elements involved in genome maintenance functions. The KSHV terminal repeats (TR) function as the viral episome maintenance element when bound by the viral encoded nuclear antigen LANA. Here, we show that transcription-replication conflicts occur at or near LANA binding sites in the TR. We show by proximity ligation assay (PLA) that PCNA and RNAPII colocalize with LANA-nuclear bodies (LANA-NBs). Using DNA-RNA-IP (DRIP) assays with S9.6 antibody, we demonstrate that R-loops form at the TR. We find that these R-loops are also associated with histone H3pS10 a marker for R-loops associated with transcription-replication conflicts. Inhibitors of RNA polymerase eliminated LANA binding to the TR, along with the loss of R-loops and activation associated histone modifications, and the accumulation of heterochromatic marks. We show that LANA can induce all of these features on a plasmid containing 8, but not 2 copies of the TR, correlating strongly with episome maintenance function. Taken together, our study indicates that LANA induces histone modifications associated with RNA and DNA polymerase activity and the formation of R-loops that correlate with episome maintenance function. These findings provide new insights into mechanisms of KSHV episome maintenance during latency and more generally for genome maintenance of repetitive DNA.
Collapse
Affiliation(s)
- Asim Asghar
- The Wistar Institute, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Perner F, Gadrey JY, Armstrong SA, Kühn MWM. Targeting the Menin-KMT2A interaction in leukemia: Lessons learned and future directions. Int J Cancer 2025. [PMID: 39887730 DOI: 10.1002/ijc.35332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Chromosomal rearrangements involving the Mixed Lineage Leukemia gene (MLL1, KMT2A) are defining a genetically distinct subset in about 10% of human acute leukemias. Translocations involving the KMT2A-locus at chromosome 11q23 are resulting in the formation of a chimeric oncogene, where the N-terminal part of KMT2A is fused to a variety of translocation partners. The most frequently found fusion partners of KMT2A in acute leukemia are the C-terminal parts of AFF1, MLLT3, MLLT1 and MLLT10. Unfortunately, the presence of an KMT2A-rearrangements is associated with adverse outcomes in leukemia patients. Moreover, non-rearranged KMT2A-complexes have been demonstrated to be crucial for disease development and maintenance in NPM1-mutated and NUP98-rearranged leukemia, expanding the spectrum of genetic disease subtypes that are dependent on KMT2A. Recent advances in the development of targeted therapy strategies to disrupt the function of KMT2A-complexes in leukemia have led to the establishment of Menin-KMT2A interaction inhibitors that effectively eradicate leukemia in preclinical model systems and show favorable tolerability and significant efficacy in early-phase clinical trials. Indeed, one Menin inhibitor, Revumenib, was recently approved for the treatment of patients with relapsed or refractory KMT2A-rearranged acute leukemia. However, single agent therapy can lead to resistance. In this Review article we summarize our current understanding about the biology of pathogenic KMT2A-complex function in cancer, specifically leukemia, and give a systematic overview of lessons learned from recent clinical and preclinical studies using Menin inhibitors.
Collapse
Affiliation(s)
- Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
| | - Jayant Y Gadrey
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W M Kühn
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Coulée M, de la Iglesia A, Blanco M, Gobé C, Lapoujade C, Ialy-Radio C, Alvarez-Gonzalez L, Meurice G, Ruiz-Herrera A, Fouchet P, Cocquet J, El Khattabi L. Chromatin environment-dependent effects of DOT1L on gene expression in male germ cells. Commun Biol 2025; 8:138. [PMID: 39875559 PMCID: PMC11775102 DOI: 10.1038/s42003-024-07393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments. On the other hand, it activates the expression of genes enriched in H3K79me2 and located in H3K27me3-poor/H3K27ac-rich environments, predominantly X chromosome-linked genes, after meiosis I. This coincides with a significant increase in DOT1L expression at this stage and a genome-wide acquisition of H3K79me2, particularly on the sex chromosomes. Taken together, our results show that H3K79me2 positively correlates with male germ cell genetic program throughout spermatogenesis, with DOT1L predominantly inhibiting rather than activating gene expression. Interestingly, while DOT1L appears to directly regulate the (re)activation of X genes following meiotic sex chromosome inactivation, it also controls the timely expression of (autosomal) differentiation genes during spermatogenesis.
Collapse
Affiliation(s)
- Manon Coulée
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | | | - Mélina Blanco
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Clara Gobé
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Clémentine Lapoujade
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Côme Ialy-Radio
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France
| | - Lucia Alvarez-Gonzalez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | | | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Pierre Fouchet
- Université Paris Cité, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
- Laboratoire des Cellules Souches Germinales, Université Paris-Saclay, CEA, Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, Paris, France
| | - Julie Cocquet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
| | - Laïla El Khattabi
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014, Paris, France.
- Sorbonne Université, APHP Hôpital Pitié-Salpêtrière, Paris Brain Institute-ICM, INSERM U1127, CNRS, UMR 7225, Paris, France.
| |
Collapse
|
7
|
Li Z, Fierstein S, Tanaka-Yano M, Frenis K, Chen CC, Wang D, Falchetti M, Côté P, Curran C, Lu K, Liu T, Orkin S, Li H, Lummertz da Rocha E, Hu S, Zhu Q, Rowe RG. The epigenetic state of the cell of origin defines mechanisms of leukemogenesis. Leukemia 2025; 39:87-97. [PMID: 39354203 DOI: 10.1038/s41375-024-02428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Acute myeloid leukemia (AML) shows variable clinical outcome. The normal hematopoietic cell of origin impacts the clinical behavior of AML, with AML from hematopoietic stem cells (HSCs) prone to chemotherapy resistance in model systems. However, the mechanisms by which HSC programs are transmitted to AML are not known. Here, we introduce the leukemogenic MLL-AF9 translocation into defined human hematopoietic populations, finding that AML from HSCs is enriched for leukemic stem cells (LSCs) compared to AML from progenitors. By epigenetic profiling, we identify a putative inherited program from the normal HSC that collaborates with oncogene-driven programs to confer aggressive behavior in HSC-AML. We find that components of this program are required for HSC-AML growth and survival and identify RNA polymerase (RNAP) II-mediated transcription as a therapeutic vulnerability. Overall, we propose a mechanism as to how epigenetic programs from the leukemic cell of origin are inherited through transformation to impart the clinical heterogeneity of AML.
Collapse
Affiliation(s)
- Zhiheng Li
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sara Fierstein
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Mayuri Tanaka-Yano
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Dahai Wang
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | - Parker Côté
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Curran
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Kate Lu
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianxin Liu
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Stuart Orkin
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hojun Li
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
| | | | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qian Zhu
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA.
| | - R Grant Rowe
- Stem Cell Program and Stem Cell Transplantation Programs, Boston Children's Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Heikamp EB, Armstrong SA. Revumenib Revises the Treatment Landscape for KMT2A-r Leukemia. J Clin Oncol 2025; 43:85-88. [PMID: 39509656 PMCID: PMC11771282 DOI: 10.1200/jco-24-01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Emily B. Heikamp
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
9
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2025; 32:37-55. [PMID: 37620540 PMCID: PMC11742659 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
10
|
Todorovski I, Tsang MJ, Feran B, Fan Z, Gadipally S, Yoannidis D, Kong I, Bjelosevic S, Rivera S, Voulgaris O, Zethoven M, Hawkins E, Simpson K, Arnau GM, Papenfuss A, Johnstone R, Vervoort S. RNA kinetics influence the response to transcriptional perturbation in leukaemia cell lines. NAR Cancer 2024; 6:zcae039. [PMID: 39372038 PMCID: PMC11447529 DOI: 10.1093/narcan/zcae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Therapeutic targeting of dysregulated transcription has emerged as a promising strategy for the treatment of cancers, such as leukaemias. The therapeutic response to small molecule inhibitors of Bromodomain-Containing Proteins (BRD), such as BRD2 and BRD4, P300/cAMP-response element binding protein (CBP) and Cyclin Dependent Kinases (CDKs), is generally attributed to the selective disruption of oncogenic gene expression driven by enhancers, super-enhancers (SEs) and lineage-specific transcription factors (TFs), including the c-MYC oncogene. The selectivity of compounds targeting the transcriptional machinery may be further shaped by post-transcriptional processes. To quantitatively assess the contribution of post-transcriptional regulation in responses to transcription inhibition, we performed multi-omics analyses to accurately measure mRNA production and decay kinetics. We demonstrate that it is not only the selective disruption of mRNA production, but rather mRNA decay rates that largely influence the selectivity associated with transcriptional inhibition. Accordingly, genes down-regulated with transcriptional inhibitors are largely characterized by extremely rapid mRNA production and turnover. In line with this notion, stabilization of the c-MYC transcript through swapping of its 3' untranslated region (UTR) rendered c-MYC insensitive to transcriptional targeting. This failed to negate the impact on c-MYC downstream targets and did not abrogate therapeutic responses. Finally, we provide evidence that modulating post-transcriptional pathways, such as through ELAVL1 targeting, can sensitize long-lived mRNAs to transcriptional inhibition and be considered as a combination therapy approach in leukaemia. Taken together, these data demonstrate that mRNA kinetics influence the therapeutic response to transcriptional perturbation and can be modulated for novel therapeutic outcomes using transcriptional agents in leukaemia.
Collapse
Affiliation(s)
- Izabela Todorovski
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Mary-Jane Tsang
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Breon Feran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Zheng Fan
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Sreeja Gadipally
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - David Yoannidis
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Stefan Bjelosevic
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Sarahi Rivera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Olivia Voulgaris
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Magnus Zethoven
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Edwin D Hawkins
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Gisela Mir Arnau
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Anthony T Papenfuss
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Ricky W Johnstone
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| | - Stephin J Vervoort
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Guo X, Atla S, Nyalata S, Alugubelli YR, Chen PHC, Xu S, Liu WR. Prioritization of Eleven-Nineteen-Leukemia Inhibitors as Orally Available Drug Candidates for Acute Myeloid Leukemia. J Med Chem 2024; 67:20100-20117. [PMID: 39530508 PMCID: PMC11613437 DOI: 10.1021/acs.jmedchem.4c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Acute myeloid leukemia (AML) is the second most prevalent and fatal form of leukemia. The growth of AML cells harboring oncogenic MLL rearrangements relies on the YEATS domain-containing protein ENL. Many small molecule inhibitors targeting ENL have been developed. To prioritize these inhibitors for in vivo studies, a NanoBRET system was introduced to evaluate their cellular permeability and potency. This screening identified inhibitor 13 as a promising candidate. This inhibitor has remarkable metabolic stability and potent antiproliferative effects on MLL-fusion leukemia cell lines. In AML-xenografted mice, inhibitor 13 significantly improved survival. Subsequent optimization efforts led to the development of SR-C-107 (R), which exhibited strong activity against AML both at the cellular level (CC50 (MOLM-13): 1.25 ± 0.18 μM; CC50 (MV4-11): 0.81 ± 0.15 μM) and in vivo. These findings establish SR-C-107 (R) as a compelling candidate for AML treatment and lay the groundwork for the development of next-generation AML inhibitors.
Collapse
Affiliation(s)
- Xuejiao
Shirley Guo
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sandeep Atla
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Satyanarayana Nyalata
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yugendar R. Alugubelli
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Peng-Hsun Chase Chen
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, Bryan, Texas 77807, United States
| |
Collapse
|
12
|
Verbeek TCAI, Vrenken KS, Arentsen-Peters STCJM, Castro PG, van de Ven M, van Tellingen O, Pieters R, Stam RW. Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia. Commun Biol 2024; 7:1257. [PMID: 39362994 PMCID: PMC11450098 DOI: 10.1038/s42003-024-06916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
KMT2A-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards histone deacetylase (HDAC) inhibition. Most broad-spectrum HDAC inhibitors simultaneously target multiple human HDAC isoforms. Consequently, they often induce toxicity and especially in combination with other therapeutic agents. Therefore, more specifically targeting HDAC isoforms may represent a safer therapeutic strategy. Here we show that shRNA-mediated knock-down of the class IIA HDAC isoforms HDAC4, HDAC5, and HDAC7 results in apoptosis induction and cell cycle arrest in KMT2A-rearranged ALL cells. In concordance, the HDAC4/5 selective small molecule inhibitor LMK-235 effectively eradicates KMT2A-rearranged ALL cell lines as well as primary patient samples in vitro. However, using a xenograft mouse model of KMT2A-rearranged ALL we found that the maximum achievable dose of LMK-235 was insufficient to induce anti-leukemic effects in vivo. Similar results were obtained for the specific class IIA HDAC inhibitors MC1568 and TMP195. Finally, LMK-235 appeared to exert minimal anti-leukemic effects in vivo in combination with the BCL-2 inhibitor venetoclax, but not enough to prolong survival in treated mice. In conclusion, class IIA HDAC isoforms represent attractive therapeutic target in KMT2A-rearranged ALL, although clinical applications require the development of more stable and efficient specific HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rob Pieters
- Princess Máxima Center, Utrecht, The Netherlands
| | | |
Collapse
|
13
|
Wang L, Zhao JZ, Zhou FS, Lan J, Lu Q, Ren HC. Preclinical metabolism and disposition of [ 14C]GFH009, a novel selective CDK9 inhibitor. Xenobiotica 2024; 54:831-839. [PMID: 39526731 DOI: 10.1080/00498254.2024.2428716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
GFH009 is a potent and highly selective cyclin-dependent kinase 9 (CDK9) inhibitor currently under phase II clinical trials. In this study, we investigated the metabolism and disposition of GFH009 in Sprague-Dawley (SD) rats, as well as in vitro metabolism of CD-1 mouse, SD rat, beagle dog, cynomolgus monkey, and human.A radiolabelled study indicated that [14C]GFH009 was quickly and widely distributed throughout the body, but presented low levels in brain, testis, and epididymis after a single intravenous dose of 6 mg (100 µCi)/kg to SD rats.GFH009 undergoes systemic metabolic changes, primarily through O-demethylation, oxidation to carboxylic acid and N-dealkylation, cleavage off the methoxyisopropyl moiety being a minor pathway. These metabolic pathways were found to be mainly consistent both in vitro and in vivo.In SD rats, GFH009 was rapidly and completely eliminated, with faeces serving as the major excretion pathway and urine serving as the minor one. Besides, the major clearance pathway for GFH009 was excretion and the minor one was metabolism.GFH009 exhibits favourable drug metabolism and pharmacokinetics (DMPK) properties, which provides valuable insights into the disposition of GFH009 and can be used to guide future clinical studies.
Collapse
Affiliation(s)
- Li Wang
- GenFleet Therapeutics (Shanghai) Inc., Shanghai, P. R. China
| | - Jin-Zhu Zhao
- GenFleet Therapeutics (Shanghai) Inc., Shanghai, P. R. China
| | - Fu-Sheng Zhou
- GenFleet Therapeutics (Shanghai) Inc., Shanghai, P. R. China
| | - Jiong Lan
- GenFleet Therapeutics (Shanghai) Inc., Shanghai, P. R. China
| | - Qiang Lu
- GenFleet Therapeutics (Shanghai) Inc., Shanghai, P. R. China
| | - Hong-Can Ren
- GenFleet Therapeutics (Shanghai) Inc., Shanghai, P. R. China
| |
Collapse
|
14
|
Yang Z, Zhang G, Zhao R, Tian T, Zhi J, Wei G, Roeder RG, Jing L, Yu M. MLL-AF9 regulates transcriptional initiation in mixed lineage leukemic cells. J Biol Chem 2024; 300:107566. [PMID: 39002676 PMCID: PMC11345648 DOI: 10.1016/j.jbc.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
Mixed lineage leukemia-fusion proteins (MLL-FPs) are believed to maintain gene activation and induce MLL through aberrantly stimulating transcriptional elongation, but the underlying mechanisms are incompletely understood. Here, we show that both MLL1 and AF9, one of the major fusion partners of MLL1, mainly occupy promoters and distal intergenic regions, exhibiting chromatin occupancy patterns resembling that of RNA polymerase II in HEL, a human erythroleukemia cell line without MLL1 rearrangement. MLL1 and AF9 only coregulate over a dozen genes despite of their co-occupancy on thousands of genes. They do not interact with each other, and their chromatin occupancy is also independent of each other. Moreover, AF9 deficiency in HEL cells decreases global TBP occupancy while decreases CDK9 occupancy on a small number of genes, suggesting an accessory role of AF9 in CDK9 recruitment and a possible major role in transcriptional initiation via initiation factor recruitment. Importantly, MLL1 and MLL-AF9 occupy promoters and distal intergenic regions, exhibiting identical chromatin occupancy patterns in MLL cells, and MLL-AF9 deficiency decreased occupancy of TBP and TFIIE on major target genes of MLL-AF9 in iMA9, a murine acute myeloid leukemia cell line inducibly expressing MLL-AF9, suggesting that it can also regulate initiation. These results suggest that there is no difference between MLL1 and MLL-AF9 with respect to location and size of occupancy sites, contrary to what people have believed, and that MLL-AF9 may also regulate transcriptional initiation in addition to widely believed elongation.
Collapse
Affiliation(s)
- Zimei Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruoyu Zhao
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Tian
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junhong Zhi
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Yu
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Bianchi C, Margot H, Fernandes H, Pasquet M, Priqueler L, Roy-Peaud F, Bauduer F, Bayart S, Garnier N, Fain O, Van Gils J, Joly SB, Rialland F, Paillard C, Deparis M, Lambilliotte A, Leblanc T, Fahd M, Leverger G, Héritier S, Geneviève D, Rieux-Laucat F, Picard C, Neyraud C, Aladjidi N. Autoimmune cytopenia and Kabuki syndrome in paediatrics: Insights in 11 patients. Br J Haematol 2024; 204:1899-1907. [PMID: 38432067 DOI: 10.1111/bjh.19387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Kabuki syndrome (KS) is now listed in the Human Inborn Errors of Immunity (IEI) Classification. It is a rare disease caused by KMT2D and KDM6A variants, dominated by intellectual disability and characteristic facial features. Recurrently, pathogenic variants are identified in those genes in patients examined for autoimmune cytopenia (AIC), but interpretation remains challenging. This study aims to describe the genetic diagnosis and the clinical management of patients with paediatric-onset AIC and KS. Among 11 patients with AIC and KS, all had chronic immune thrombocytopenic purpura, and seven had Evans syndrome. All had other associated immunopathological manifestations, mainly symptomatic hypogammaglobinaemia. They had a median of 8 (5-10) KS-associated manifestations. Pathogenic variants were detected in KMT2D gene without clustering, during the immunological work-up of AIC in three cases, and the clinical strategy to validate them is emphasized. Eight patients received second-line treatments, mainly rituximab and mycophenolate mofetil. With a median follow-up of 17 (2-31) years, 8/10 alive patients still needed treatment for AIC. First-line paediatricians should be able to recognize and confirm KS in children with ITP or multiple AIC, to provide early appropriate clinical management and specific long-term follow-up. The epigenetic immune dysregulation in KS opens exciting new perspectives.
Collapse
MESH Headings
- Humans
- Vestibular Diseases/genetics
- Vestibular Diseases/diagnosis
- Child
- Face/abnormalities
- Female
- Male
- Child, Preschool
- Abnormalities, Multiple/genetics
- Adolescent
- Histone Demethylases/genetics
- Neoplasm Proteins/genetics
- Hematologic Diseases/genetics
- DNA-Binding Proteins/genetics
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Infant
- Thrombocytopenia/genetics
- Thrombocytopenia/diagnosis
- Thrombocytopenia/etiology
- Thrombocytopenia/therapy
- Anemia, Hemolytic, Autoimmune/genetics
- Anemia, Hemolytic, Autoimmune/diagnosis
- Anemia, Hemolytic, Autoimmune/therapy
- Autoimmune Diseases/genetics
- Autoimmune Diseases/diagnosis
- Rituximab/therapeutic use
- Mutation
- Cytopenia
Collapse
Affiliation(s)
- Chloé Bianchi
- Pediatric Haemato-Immunology, CIC1401, INSERM CICP, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE), Bordeaux University Hospital, Bordeaux, France
| | - Henri Margot
- Department of Medical Genetics, MRGM INSERM U1211, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
| | - Helder Fernandes
- Pediatric Haemato-Immunology, CIC1401, INSERM CICP, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE), Bordeaux University Hospital, Bordeaux, France
| | - Marlène Pasquet
- Pediatric Oncology Immunology Hematology Unit, Children's University Hospital, Toulouse, France
| | - Laurence Priqueler
- Department of Pediatrics, Mont de Marsan Hospital Center, Mont de Marsan, France
| | | | | | - Sophie Bayart
- Pediatric Hematology Unit, Rennes University Hospital, Rennes, France
| | - Nathalie Garnier
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon, Lyon, France
| | - Olivier Fain
- Sorbonne Université, Service de Médecine Interne, AP-HP Hôpital Saint Antoine, Paris, France
| | - Julien Van Gils
- Department of Medical Genetics, MRGM INSERM U1211, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
| | | | - Fanny Rialland
- Pediatric Oncology Immunology Hematology Unit, Nantes University Hospital, Nantes, France
| | - Catherine Paillard
- Department of Pediatric Hematology and Oncology, Hautepierre University Hospital, Strasbourg, France
| | - Marianna Deparis
- Pediatric Oncology-Hematology Unit, Caen University Hospital, Caen, France
| | - Anne Lambilliotte
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Lille University Hospital, Lille, France
| | - Thierry Leblanc
- Pediatric Hematology Unit, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE) Robert-Debré University Hospital, AP-HP, Paris, France
| | - Mony Fahd
- Pediatric Hematology Unit, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE) Robert-Debré University Hospital, AP-HP, Paris, France
| | - Guy Leverger
- Sorbonne University, AP-HP, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE) Armand Trousseau Hospital, Pediatric Hematology Oncology Unit, Paris, France
| | - Sébastien Héritier
- Sorbonne University, AP-HP, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE) Armand Trousseau Hospital, Pediatric Hematology Oncology Unit, Paris, France
| | - David Geneviève
- Department of Medical Genetics, Montpellier University Hospital, Montpellier University, INSERM U1183, Reference Center for Rare Disease Malformative Syndromes, Montpellier, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, IMAGINE Institute, Unité Mixte de recherche (UMR) 1163, INSERM, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris (AP-HP), Université de Paris cité, Paris, France
| | - Caroline Neyraud
- Pediatric Haemato-Immunology, CIC1401, INSERM CICP, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE), Bordeaux University Hospital, Bordeaux, France
| | - Nathalie Aladjidi
- Pediatric Haemato-Immunology, CIC1401, INSERM CICP, National Reference Center for Autoimmune Cytopenias in Children (CEREVANCE), Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
16
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
18
|
Che Z, Liu X, Dai Q, Fang K, Guo C, Yue J, Fang H, Xie P, Luo Z, Lin C. Distinct roles of two SEC scaffold proteins, AFF1 and AFF4, in regulating RNA polymerase II transcription elongation. J Mol Cell Biol 2024; 15:mjad049. [PMID: 37528066 PMCID: PMC11113081 DOI: 10.1093/jmcb/mjad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
The super elongation complex (SEC) containing positive transcription elongation factor b plays a critical role in regulating transcription elongation. AFF1 and AFF4, two members of the AF4/FMR2 family, act as central scaffold proteins of SEC and are associated with various human diseases. However, their precise roles in transcriptional control remain unclear. Here, we investigate differences in the genomic distribution patterns of AFF1 and AFF4 around transcription start sites (TSSs). AFF1 mainly binds upstream of the TSS, while AFF4 is enriched downstream of the TSS. Notably, disruption of AFF4 results in slow elongation and early termination in a subset of AFF4-bound active genes, whereas AFF1 deletion leads to fast elongation and transcriptional readthrough in the same subset of genes. Additionally, AFF1 knockdown increases AFF4 levels at chromatin, and vice versa. In summary, these findings demonstrate that AFF1 and AFF4 function antagonistically to regulate RNA polymerase II transcription.
Collapse
Affiliation(s)
- Zhuanzhuan Che
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Xiaoxu Liu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qian Dai
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Ke Fang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Chenghao Guo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Junjie Yue
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Haitong Fang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Peng Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Chengqi Lin
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
19
|
Zhong H, Zhang R, Li G, Huang P, Zhang Y, Zhu J, Kuang J, Hutchins AP, Qin D, Zhu P, Pei D, Li D. c-JUN is a barrier in hESC to cardiomyocyte transition. Life Sci Alliance 2023; 6:e202302121. [PMID: 37604584 PMCID: PMC10442936 DOI: 10.26508/lsa.202302121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
Loss of c-JUN leads to early mouse embryonic death, possibly because of a failure to develop a normal cardiac system. How c-JUN regulates human cardiomyocyte cell fate remains unknown. Here, we used the in vitro differentiation of human pluripotent stem cells into cardiomyocytes to study the role of c-JUN. Surprisingly, the knockout of c-JUN improved cardiomyocyte generation, as determined by the number of TNNT2+ cells. ATAC-seq data showed that the c-JUN defect led to increased chromatin accessibility on critical regulatory elements related to cardiomyocyte development. ChIP-seq data showed that the knockout c-JUN increased RBBP5 and SETD1B expression, leading to improved H3K4me3 deposition on key genes that regulate cardiogenesis. The c-JUN KO phenotype could be copied using the histone demethylase inhibitor CPI-455, which also up-regulated H3K4me3 levels and increased cardiomyocyte generation. Single-cell RNA-seq data defined three cell branches, and knockout c-JUN activated more regulons that are related to cardiogenesis. In summary, our data demonstrated that c-JUN could regulate cardiomyocyte cell fate by modulating H3K4me3 modification and chromatin accessibility and shed light on how c-JUN regulates heart development in humans.
Collapse
Affiliation(s)
- Hui Zhong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ran Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Guihuan Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ping Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yudan Zhang
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease and Guangzhou Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Dongwei Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
21
|
Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L, Shilatifard A. Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. Mol Cell 2023; 83:2896-2910.e4. [PMID: 37442129 PMCID: PMC10527981 DOI: 10.1016/j.molcel.2023.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Pan Y, Yao H, Chen G, Tan Q, Chang Q, Ma Y, Liang Z. Fetal Phenotype and Prenatal Diagnosis of Kabuki Syndrome. MATERNAL-FETAL MEDICINE 2023; 5:187-191. [PMID: 40416851 PMCID: PMC12096401 DOI: 10.1097/fm9.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 11/26/2022] Open
Abstract
Kabuki syndrome (MIM 147920) is an autosomal dominant rare disease featured with multiple malformations and mental retardation. The main clinical manifestations of Kabuki syndrome are characteristic facial features, skeletal abnormalities, dermatoglyphic abnormalities, postpartum growth retardation, mild to moderate mental retardation, as well as other structural and functional abnormalities that may involve multiple systems. The establishment of diagnosis needs to be combined with clinical phenotype and the discovery of pathogenic mutation. Compared with the abundant descriptions and records of genotype-phenotype of postpartum patients, few prenatal diagnosis cases of Kabuki syndrome had been reported, which partially result from lacking the knowledge of its phenotype in fetuses that might suggest the diagnosis. This report performed comprehensive prenatal examinations to identify a fetus's etiology with multiple structural anomalies characterized by ascites, thickening of local skin, and cardiac abnormalities. We ruled out intrauterine infection, thalassemia, and chromosome abnormality by corresponding tests. Finally, trio whole-exome sequencing revealed a de novo heterozygous variation c.15641g > A (p.r5214h) in exon 48 of the KMT2D gene was the fetus's genetic pathogeny causing Kabuki syndrome. This result suggests that Kabuki syndrome should be in the suspected etiology list for prenatal hydrops/ascites. Our study confirmed that prenatal whole-exome sequencing is an efficient tool for diagnosing fetal abnormalities, and a multidisciplinary team is necessary for providing pregnancy guidance to patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongyi Ma
- Department of Gynecology & Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400030, China
| | - Zhiqing Liang
- Department of Gynecology & Obstetrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400030, China
| |
Collapse
|
23
|
Pal S, Biswas D. Promoter-proximal regulation of gene transcription: Key factors involved and emerging role of general transcription factors in assisting productive elongation. Gene 2023:147571. [PMID: 37331491 DOI: 10.1016/j.gene.2023.147571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for thefine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.
Collapse
Affiliation(s)
- Sujay Pal
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata - 32, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
24
|
Turkalj S, Radtke FA, Vyas P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. Hemasphere 2023; 7:e914. [PMID: 37304938 PMCID: PMC10256410 DOI: 10.1097/hs9.0000000000000914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Felix A. Radtke
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
25
|
Chory EJ, Wang M, Ceribelli M, Michalowska AM, Golas S, Beck E, Klumpp-Thomas C, Chen L, McKnight C, Itkin Z, Wilson KM, Holland D, Divakaran S, Bradner J, Khan J, Gryder BE, Thomas CJ, Stanton BZ. High-throughput approaches to uncover synergistic drug combinations in leukemia. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:193-201. [PMID: 37121274 PMCID: PMC10449086 DOI: 10.1016/j.slasd.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
We report a comprehensive drug synergy study in acute myeloid leukemia (AML). In this work, we investigate a panel of cell lines spanning both MLL-rearranged and non-rearranged subtypes. The work comprises a resource for the community, with many synergistic drug combinations that could not have been predicted a priori, and open source code for automation and analyses. We base our definitions of drug synergy on the Chou-Talalay method, which is useful for visualizations of synergy experiments in isobolograms, and median-effects plots, among other representations. Our key findings include drug synergies affecting the chromatin state, specifically in the context of regulation of the modification state of histone H3 lysine-27. We report open source high throughput methodology such that multidimensional drug screening can be accomplished with equipment that is accessible to most laboratories. This study will enable preclinical investigation of new drug combinations in a lethal blood cancer, with data analysis and automation workflows freely available to the community.
Collapse
Affiliation(s)
- Emma J Chory
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.; Broad Institute of MIT and Harvard, Cambridge, MA, USA..
| | - Meng Wang
- Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Aleksandra M Michalowska
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Stefan Golas
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erin Beck
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - David Holland
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Sanjay Divakaran
- Cardio-Oncology Program, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Berkley E Gryder
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, Ohio 44106, United States
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA.; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Z Stanton
- Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH, USA.; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA..
| |
Collapse
|
26
|
Malik KK, Sridhara SC, Lone KA, Katariya PD, Pulimamidi D, Tyagi S. MLL methyltransferases regulate H3K4 methylation to ensure CENP-A assembly at human centromeres. PLoS Biol 2023; 21:e3002161. [PMID: 37379335 PMCID: PMC10335677 DOI: 10.1371/journal.pbio.3002161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/11/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The active state of centromeres is epigenetically defined by the presence of CENP-A interspersed with histone H3 nucleosomes. While the importance of dimethylation of H3K4 for centromeric transcription has been highlighted in various studies, the identity of the enzyme(s) depositing these marks on the centromere is still unknown. The MLL (KMT2) family plays a crucial role in RNA polymerase II (Pol II)-mediated gene regulation by methylating H3K4. Here, we report that MLL methyltransferases regulate transcription of human centromeres. CRISPR-mediated down-regulation of MLL causes loss of H3K4me2, resulting in an altered epigenetic chromatin state of the centromeres. Intriguingly, our results reveal that loss of MLL, but not SETD1A, increases co-transcriptional R-loop formation, and Pol II accumulation at the centromeres. Finally, we report that the presence of MLL and SETD1A is crucial for kinetochore maintenance. Altogether, our data reveal a novel molecular framework where both the H3K4 methylation mark and the methyltransferases regulate stability and identity of the centromere.
Collapse
Affiliation(s)
- Kausika Kumar Malik
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Sreerama Chaitanya Sridhara
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Kaisar Ahmad Lone
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Payal Deepakbhai Katariya
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Deepshika Pulimamidi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
27
|
Guo C, Zhang Y, Shuai S, Sigbessia A, Hao S, Xie P, Jiang X, Luo Z, Lin C. The super elongation complex (SEC) mediates phase transition of SPT5 during transcriptional pause release. EMBO Rep 2023; 24:e55699. [PMID: 36629390 PMCID: PMC9986819 DOI: 10.15252/embr.202255699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Release of promoter-proximally paused RNA Pol II into elongation is a tightly regulated and rate-limiting step in metazoan gene transcription. However, the biophysical mechanism underlying pause release remains unclear. Here, we demonstrate that the pausing and elongation regulator SPT5 undergoes phase transition during transcriptional pause release. SPT5 per se is prone to form clusters. The disordered domain in SPT5 is required for pause release and gene activation. During early elongation, the super elongation complex (SEC) induces SPT5 transition into elongation droplets. Depletion of SEC increases SPT5 pausing clusters. Furthermore, disease-associated SEC mutations impair phase properties of elongation droplets and transcription. Our study suggests that SEC-mediated SPT5 phase transition might be essential for pause release and early elongation and that aberrant phase properties could contribute to transcription abnormality in diseases.
Collapse
Affiliation(s)
- Chenghao Guo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yadi Zhang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Shimin Shuai
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Abire Sigbessia
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Shaohua Hao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Peng Xie
- Southeast University‐Allen Institute Joint Center, Institute for Brain and IntelligenceSoutheast UniversityNanjingChina
| | - Xu Jiang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Shenzhen Research InstituteSoutheast UniversityShenzhenChina
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and TechnologySoutheast UniversityNanjingChina
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongChina
- Shenzhen Research InstituteSoutheast UniversityShenzhenChina
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and TechnologySoutheast UniversityNanjingChina
- Key Laboratory of Technical Evaluation of Fertility Regulation of Non‐human primate, Fujian Provincial Maternity and Children's HospitalAffiliated Hospital of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
28
|
Wu X, Xie Y, Zhao K, Lu J. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Adv Cancer Res 2023; 158:387-421. [PMID: 36990537 DOI: 10.1016/bs.acr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription activation is associated with tumor development and resistance derived from chemotherapy or target therapy. The super elongation complex (SEC) is an important complex regulating gene transcription and expression in metazoans closely related to physiological activities. In normal transcriptional regulation, SEC can trigger promoter escape, limit proteolytic degradation of transcription elongation factors and increase the synthesis of RNA polymerase II (POL II), and regulate many normal human genes to stimulate RNA elongation. Dysregulation of SEC accompanied by multiple transcription factors in cancer promotes rapid transcription of oncogenes and induce cancer development. In this review, we summarized recent progress in understanding the mechanisms of SEC in regulating normal transcription, and importantly its roles in cancer development. We also highlighted the discovery of SEC complex target related inhibitors and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
29
|
Qiu KY, Zhou DH, Liao XY, Huang K, Li Y, Xu HG, Weng WJ, Xu LH, Fang JP. Prognostic value and outcome for acute lymphocytic leukemia in children with MLL rearrangement: a case-control study. BMC Cancer 2022; 22:1257. [DOI: 10.1186/s12885-022-10378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Abstract
Purpose
To evaluate the prognostic factors and outcome for acute lymphoblastic leukemia (ALL) in children with MLL rearrangement (MLL-r).
Methods
A total of 124 pediatric patients who were diagnosed with ALL were classified into two groups based on the MLL-r status by using a retrospective case-control study method from June 2008 to June 2020.
Results
The prevalence of MLL-r positive in the whole cohort was 4.9%. The complete remission (CR) rate on Day 33 in the MLL-r positive group was not statistically different from the negative group (96.8% vs 97.8%, P = 0.736). Multivariate analysis showed that T-cell, white blood cell counts (WBC) ≥ 50 × 109/L, MLL-AF4, and D15 minimal residual disease (MRD) positive were independent risk factors affecting the prognosis of MLL-r positive children. Stem cell transplantation (SCT) was a favorable independent prognostic factor affecting event-free survival (EFS) in MLL-r positive patients (P = 0.027), and there was a trend toward an independent prognostic effect on overall survival (OS) (P = 0.065). The 10-year predicted EFS for patients with MLL-AF4, MLL-PTD, MLL-ENL, other MLL partner genes, and MLL-r negative cases were 46.67 ± 28.61%, 85.71 ± 22.37%, 75 ± 32.41%, 75 ± 32.41%, and 77.33 ± 10.81%, respectively (P = 0.048). The 10-year predicted OS were 46.67 ± 28.61%, 85.71 ± 22.37%, 75 ± 32.41%, 75 ± 32.41%, and 85.2 ± 9.77%, respectively (P = 0.049). The 124 patients with ALL were followed up and eventually 5 (4%) cases relapsed, with a median relapse time of 3.9 years.
Conclusion
Patients with MLL-r positive ALL have moderate remission rates, but are prone to relapse with low overall survival. The outcome of MLL-r positive ALL was closely related to the partner genes, and clinical attention should be paid to screening for MLL partner genes and combining them with other prognostic factors for accurate risk stratification.
Collapse
|
30
|
Markouli M, Strepkos D, Piperi C. Impact of Histone Modifications and Their Therapeutic Targeting in Hematological Malignancies. Int J Mol Sci 2022; 23:13657. [PMID: 36362442 PMCID: PMC9654260 DOI: 10.3390/ijms232113657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Hematologic malignancies are a large and heterogeneous group of neoplasms characterized by complex pathogenetic mechanisms. The abnormal regulation of epigenetic mechanisms and specifically, histone modifications, has been demonstrated to play a central role in hematological cancer pathogenesis and progression. A variety of epigenetic enzymes that affect the state of histones have been detected as deregulated, being either over- or underexpressed, which induces changes in chromatin compaction and, subsequently, affects gene expression. Recent advances in the field of epigenetics have revealed novel therapeutic targets, with many epigenetic drugs being investigated in clinical trials. The present review focuses on the biological impact of histone modifications in the pathogenesis of hematologic malignancies, describing a wide range of therapeutic agents that have been discovered to target these alterations and are currently under investigation in clinical trials.
Collapse
Affiliation(s)
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.)
| |
Collapse
|
31
|
Okuda H, Miyamoto R, Takahashi S, Kawamura T, Ichikawa J, Harada I, Tamura T, Yokoyama A. RNA-binding proteins of KHDRBS and IGF2BP families control the oncogenic activity of MLL-AF4. Nat Commun 2022; 13:6688. [PMID: 36335100 PMCID: PMC9637093 DOI: 10.1038/s41467-022-34558-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
Abstract
Chromosomal translocation generates the MLL-AF4 fusion gene, which causes acute leukemia of multiple lineages. MLL-AF4 is a strong oncogenic driver that induces leukemia without additional mutations and is the most common cause of pediatric leukemia. However, establishment of a murine disease model via retroviral transduction has been difficult owning to a lack of understanding of its regulatory mechanisms. Here, we show that MLL-AF4 protein is post-transcriptionally regulated by RNA-binding proteins, including those of KHDRBS and IGF2BP families. MLL-AF4 translation is inhibited by ribosomal stalling, which occurs at regulatory sites containing AU-rich sequences recognized by KHDRBSs. Synonymous mutations disrupting the association of KHDRBSs result in proper translation of MLL-AF4 and leukemic transformation. Consequently, the synonymous MLL-AF4 mutant induces leukemia in vivo. Our results reveal that post-transcriptional regulation critically controls the oncogenic activity of MLL-AF4; these findings might be valuable in developing novel therapies via modulation of the activity of RNA-binding proteins.
Collapse
Affiliation(s)
- Hiroshi Okuda
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Ryo Miyamoto
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan
| | - Satoshi Takahashi
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.258799.80000 0004 0372 2033Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto Japan
| | - Takeshi Kawamura
- grid.26999.3d0000 0001 2151 536XResearch Center for Advanced Science and Technology (RCAST), The University of Tokyo, Bunkyo, Tokyo Japan
| | - Juri Ichikawa
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Ibuki Harada
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan
| | - Tomohiko Tamura
- grid.268441.d0000 0001 1033 6139Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa Japan ,grid.268441.d0000 0001 1033 6139Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa Japan
| | - Akihiko Yokoyama
- grid.272242.30000 0001 2168 5385Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata Japan ,grid.272242.30000 0001 2168 5385National Cancer Center Research Institute, Chuo, Tokyo Japan
| |
Collapse
|
32
|
Huang W, Zhu JY, Fu Y, van de Leemput J, Han Z. Lpt, trr, and Hcf regulate histone mono- and dimethylation that are essential for Drosophila heart development. Dev Biol 2022; 490:53-65. [PMID: 35853502 PMCID: PMC10728806 DOI: 10.1016/j.ydbio.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Mammalian KMT2C, KMT2D, and HCFC1 are expressed during heart development and have been associated with congenital heart disease, but their roles in heart development remain elusive. We found that the Drosophila Lpt and trr genes encode the N-terminal and C-terminal homologs, respectively, of mammalian KMT2C or KMT2D. Lpt and trr mutant embryos showed reduced cardiac progenitor cells. Silencing of Lpt, trr, or both simultaneously in the heart led to similar abnormal cardiac morphology, tissue fibrosis, and cardiac functional defects. Like KMT2D, Lpt and trr were found to modulate histone H3K4 mono- and dimethylation, but not trimethylation. Investigation of downstream genes regulated by mouse KMT2D in the heart showed that their fly homologs are similarly regulated by Lpt or trr in the fly heart, suggesting that Lpt and trr regulate an evolutionarily conserved transcriptional network for heart development. Moreover, we showed that cardiac silencing of Hcf, the fly homolog of mammalian HCFC1, leads to heart defects similar to those observed in Lpt and trr silencing, as well as reduced H3K4 monomethylation. Our findings suggest that Lpt and trr function together to execute the conserved function of mammalian KMT2C and KMT2D in histone H3 lysine K4 mono- and dimethylation required for heart development. Possibly aided by Hcf, which we show plays a related role in H3K4 methylation during fly heart development.
Collapse
Affiliation(s)
- Wen Huang
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulong Fu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Genomic Diagnostics and Bioinformatics, Department of Pathology, The University of Alabama at Birmingham, Alabama, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Chen Y, Li Q, Liu Y, Chen X, Jiang S, Lin W, Zhang Y, Liu R, Shao B, Chen C, Yuan Q, Zhou C. AFF4 regulates cellular adipogenic differentiation via targeting autophagy. PLoS Genet 2022; 18:e1010425. [PMID: 36149892 PMCID: PMC9534390 DOI: 10.1371/journal.pgen.1010425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Transcriptional elongation is a universal and critical step during gene expression. The super elongation complex (SEC) regulates the rapid transcriptional induction by mobilizing paused RNA polymerase II (Pol II). Dysregulation of SEC is closely associated with human diseases. However, the physiological role of SEC during development and homeostasis remains largely unexplored. Here we studied the function of SEC in adipogenesis by manipulating an essential scaffold protein AF4/FMR2 family member 4 (AFF4), which assembles and stabilizes SEC. Knockdown of AFF4 in human mesenchymal stem cells (hMSCs) and mouse 3T3-L1 preadipocytes inhibits cellular adipogenic differentiation. Overexpression of AFF4 enhances adipogenesis and ectopic adipose tissue formation. We further generate Fabp4-cre driven adipose-specific Aff4 knockout mice and find that AFF4 deficiency impedes adipocyte development and white fat depot formation. Mechanistically, we discover AFF4 regulates autophagy during adipogenesis. AFF4 directly binds to autophagy-related protein ATG5 and ATG16L1, and promotes their transcription. Depleting ATG5 or ATG16L1 abrogates adipogenesis in AFF4-overepressing cells, while overexpression of ATG5 and ATG16L1 rescues the impaired adipogenesis in Aff4-knockout cells. Collectively, our results unveil the functional importance of AFF4 in regulating autophagy and adipogenic differentiation, which broaden our understanding of the transcriptional regulation of adipogenesis. Obesity is a major health problem jeopardizing millions of individuals worldwide. From a pathological perspective, obesity occurs in the process of white adipose tissue expanding its mass through the enlargement of adipocyte size or advanced differentiation of adipocyte precursors to mature adipocytes. Studies have documented the dysregulated adipocyte metabolism of adipose tissue and associated disorders. However, our understanding of adipocyte development in which mesenchymal stem cells (MSCs) commit their fate and preadipocytes undergo differentiation and maturation is scarce. Here, we identify the super elongation complex (SEC) scaffold protein AFF4 as an essential regulator of adipogenesis. We reveal that AFF4 promotes adipocyte formation by regulating the cellular autophagic process. AFF4 directly regulates the transcription of the autophagy-related protein ATG5 and ATG16L1, which are essential for autophagosome formation. This finding further elucidates the physiological role of SEC during tissue development, besides its recognized role in cancer occurrence.
Collapse
Affiliation(s)
- Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuelan Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chong Chen
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: ;
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail: ;
| |
Collapse
|
34
|
Sehrawat P, Shobhawat R, Kumar A. Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Front Genet 2022; 13:903923. [PMID: 35910215 PMCID: PMC9329655 DOI: 10.3389/fgene.2022.903923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The fundamental packaging unit of chromatin, i.e., nucleosome, consists of ∼147 bp of DNA wrapped around a histone octamer composed of the core histones, H2A, H2B, H3, and H4, in two copies each. DNA packaged in nucleosomes must be accessible to various machineries, including replication, transcription, and DNA damage repair, implicating the dynamic nature of chromatin even in its compact state. As the tails protrude out of the nucleosome, they are easily accessible to various chromatin-modifying machineries and undergo post-translational modifications (PTMs), thus playing a critical role in epigenetic regulation. PTMs can regulate chromatin states via charge modulation on histones, affecting interaction with various chromatin-associated proteins (CAPs) and DNA. With technological advancement, the list of PTMs is ever-growing along with their writers, readers, and erasers, expanding the complexity of an already intricate epigenetic field. In this review, we discuss how some of the specific PTMs on flexible histone tails affect the nucleosomal structure and regulate the accessibility of chromatin from a mechanistic standpoint and provide structural insights into some newly identified PTM–reader interaction.
Collapse
|
35
|
Park SW, Kim J, Oh S, Lee J, Cha J, Lee HS, Kim KI, Park D, Baek SH. PHF20 is crucial for epigenetic control of starvation-induced autophagy through enhancer activation. Nucleic Acids Res 2022; 50:7856-7872. [PMID: 35821310 PMCID: PMC9371932 DOI: 10.1093/nar/gkac584] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a catabolic pathway that maintains cellular homeostasis under various stress conditions, including conditions of nutrient deprivation. To elevate autophagic flux to a sufficient level under stress conditions, transcriptional activation of autophagy genes occurs to replenish autophagy components. Thus, the transcriptional and epigenetic control of the genes regulating autophagy is essential for cellular homeostasis. Here, we applied integrated transcriptomic and epigenomic profiling to reveal the roles of plant homeodomain finger protein 20 (PHF20), which is an epigenetic reader possessing methyl binding activity, in controlling the expression of autophagy genes. Phf20 deficiency led to impaired autophagic flux and autophagy gene expression under glucose starvation. Interestingly, the genome-wide characterization of chromatin states by Assay for Transposase-Accessible Chromatin (ATAC)-sequencing revealed that the PHF20-dependent chromatin remodelling occurs in enhancers that are co-occupied by dimethylated lysine 36 on histone H3 (H3K36me2). Importantly, the recognition of H3K36me2 by PHF20 was found to be highly correlated with increased levels of H3K4me1/2 at the enhancer regions. Collectively, these results indicate that PHF20 regulates autophagy genes through enhancer activation via H3K36me2 recognition as an epigenetic reader. Our findings emphasize the importance of nuclear events in the regulation of autophagy.
Collapse
Affiliation(s)
- Se Won Park
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jaehoon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Sungryong Oh
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jeongyoon Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Joowon Cha
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyun Sik Lee
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, South Korea
| | - Daechan Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea.,Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Department of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
36
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
37
|
IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia. NATURE CANCER 2022; 3:595-613. [PMID: 35534777 PMCID: PMC9404532 DOI: 10.1038/s43018-022-00366-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation. Furthermore, IKAROS displays an unexpected functional cooperativity and extensive chromatin co-occupancy with mixed lineage leukemia (MLL)1-MENIN and the regulator MEIS1 and an extensive hematopoietic transcriptional complex involving homeobox (HOX)A10, MEIS1 and IKAROS. This dependency could be therapeutically exploited by inducing IKAROS protein degradation with immunomodulatory imide drugs (IMiDs). Finally, we demonstrate that combined IKAROS degradation and MENIN inhibition effectively disrupts leukemogenic transcriptional networks, resulting in synergistic killing of leukemia cells and providing a paradigm for improved drug targeting of transcription and an opportunity for rapid clinical translation.
Collapse
|
38
|
Chen Z, Ye Z, Soccio RE, Nakadai T, Hankey W, Zhao Y, Huang F, Yuan F, Wang H, Cui Z, Sunkel B, Wu D, Dzeng RK, Thomas-Ahner JM, Huang THM, Clinton SK, Huang J, Lazar MA, Jin VX, Roeder RG, Wang Q. Phosphorylated MED1 links transcription recycling and cancer growth. Nucleic Acids Res 2022; 50:4450-4463. [PMID: 35394046 PMCID: PMC9071494 DOI: 10.1093/nar/gkac246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Mediator activates RNA polymerase II (Pol II) function during transcription, but it remains unclear whether Mediator is able to travel with Pol II and regulate Pol II transcription beyond the initiation and early elongation steps. By using in vitro and in vivo transcription recycling assays, we find that human Mediator 1 (MED1), when phosphorylated at the mammal-specific threonine 1032 by cyclin-dependent kinase 9 (CDK9), dynamically moves along with Pol II throughout the transcribed genes to drive Pol II recycling after the initial round of transcription. Mechanistically, MED31 mediates the recycling of phosphorylated MED1 and Pol II, enhancing mRNA output during the transcription recycling process. Importantly, MED1 phosphorylation increases during prostate cancer progression to the lethal phase, and pharmacological inhibition of CDK9 decreases prostate tumor growth by decreasing MED1 phosphorylation and Pol II recycling. Our results reveal a novel role of MED1 in Pol II transcription and identify phosphorylated MED1 as a targetable driver of dysregulated Pol II recycling in cancer.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhenqing Ye
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Raymond E Soccio
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yue Zhao
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University, Shenyang 110122, China
| | - Furong Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fuwen Yuan
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongyan Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhifen Cui
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Benjamin Sunkel
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Dayong Wu
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Richard K Dzeng
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer M Thomas-Ahner
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Tim H M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Steven K Clinton
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jiaoti Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
39
|
Yi Y, Ge S. Targeting the histone H3 lysine 79 methyltransferase DOT1L in MLL-rearranged leukemias. J Hematol Oncol 2022; 15:35. [PMID: 35331314 PMCID: PMC8944089 DOI: 10.1186/s13045-022-01251-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 01/28/2023] Open
Abstract
Disrupting the methylation of telomeric silencing 1-like (DOT1L)-mediated histone H3 lysine 79 has been implicated in MLL fusion-mediated leukemogenesis. Recently, DOT1L has become an attractive therapeutic target for MLL-rearranged leukemias. Rigorous studies have been performed, and much progress has been achieved. Moreover, one DOT1L inhibitor, EPZ-5676, has entered clinical trials, but its clinical activity is modest. Here, we review the recent advances and future trends of various therapeutic strategies against DOT1L for MLL-rearranged leukemias, including DOT1L enzymatic activity inhibitors, DOT1L degraders, protein-protein interaction (PPI) inhibitors, and combinatorial interventions. In addition, the limitations, challenges, and prospects of these therapeutic strategies are discussed. In summary, we present a general overview of DOT1L as a target in MLL-rearranged leukemias to provide valuable guidance for DOT1L-associated drug development in the future. Although a variety of DOT1L enzymatic inhibitors have been identified, most of them require further optimization. Recent advances in the development of small molecule degraders, including heterobifunctional degraders and molecular glues, provide valuable insights and references for DOT1L degraders. However, drug R&D strategies and platforms need to be developed and preclinical experiments need to be performed with the purpose of blocking DOT1L-associated PPIs. DOT1L epigenetic-based combination therapy is worth considering and exploring, but the therapy should be based on a thorough understanding of the regulatory mechanism of DOT1L epigenetic modifications.
Collapse
Affiliation(s)
- Yan Yi
- Departments of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Shenglei Ge
- Departments of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Street, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
40
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
41
|
Tran TM, Philipp J, Bassi JS, Nibber N, Draper JM, Lin TL, Palanichamy JK, Jaiswal AK, Silva O, Paing M, King J, Katzman S, Sanford JR, Rao DS. The RNA-binding protein IGF2BP3 is critical for MLL-AF4-mediated leukemogenesis. Leukemia 2022; 36:68-79. [PMID: 34321607 PMCID: PMC8727287 DOI: 10.1038/s41375-021-01346-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Despite recent advances in therapeutic approaches, patients with MLL-rearranged leukemia still have poor outcomes. Here, we find that the RNA-binding protein IGF2BP3, which is overexpressed in MLL-translocated leukemia, strongly amplifies MLL-Af4-mediated leukemogenesis. Deletion of Igf2bp3 significantly increases the survival of mice with MLL-Af4-driven leukemia and greatly attenuates disease, with a minimal impact on baseline hematopoiesis. At the cellular level, MLL-Af4 leukemia-initiating cells require Igf2bp3 for their function in leukemogenesis. At the molecular level, IGF2BP3 regulates a complex posttranscriptional operon governing leukemia cell survival and proliferation. IGF2BP3-targeted mRNA transcripts include important MLL-Af4-induced genes, such as those in the Hoxa locus, and the Ras signaling pathway. Targeting of transcripts by IGF2BP3 regulates both steady-state mRNA levels and, unexpectedly, pre-mRNA splicing. Together, our findings show that IGF2BP3 represents an attractive therapeutic target in this disease, providing important insights into mechanisms of posttranscriptional regulation in leukemia.
Collapse
Affiliation(s)
- Tiffany M Tran
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA
| | - Julia Philipp
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Jaspal Singh Bassi
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Neha Nibber
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jolene M Draper
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Tasha L Lin
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Interdepartmental Doctoral Program, UCLA, Los Angeles, CA, 90095, USA
| | - Jayanth Kumar Palanichamy
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Kumar Jaiswal
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Oscar Silva
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - May Paing
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer King
- Division of Rheumatology, Department of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Sol Katzman
- UCSC Genomics Institute, Santa Cruz, CA, 95064, USA
| | - Jeremy R Sanford
- Department of Molecular, Cellular and Developmental Biology, UCSC, Santa Cruz, CA, 95064, USA
| | - Dinesh S Rao
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Molecular, Cellular, and Integrative Physiology Interdepartmental Ph.D. Program, UCLA, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center (JCCC), UCLA, Los Angeles, CA, 90095, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Koch J, Lang A, Whongsiri P, Schulz WA, Hoffmann MJ, Greife A. KDM6A mutations promote acute cytoplasmic DNA release, DNA damage response and mitosis defects. BMC Mol Cell Biol 2021; 22:54. [PMID: 34702163 PMCID: PMC8549169 DOI: 10.1186/s12860-021-00394-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background KDM6A, encoding a histone demethylase, is one of the top ten mutated epigenetic cancer genes. The effect of mutations on its structure and function are however poorly characterized. Methods Database search identified nonsense and missense mutations in the N-terminal TPR motifs and the C-terminal, catalytic JmjC domain, but also in the intrinsically disordered region connecting both these two well-structured domains. KDM6A variants with cancer-derived mutations were generated using site directed mutagenesis and fused to eGFP serving as an all-in-one affinity and fluorescence tag to study demethylase activity by an ELISA-based assay in vitro, apoptosis by FACS, complex assembly by Co-immunoprecipitation and localization by microscopy in urothelial cells and apoptosis by FACS. Results Independent of the mutation and demethylase activity, all KDM6A variants were detectable in the nucleus. Truncated KDM6A variants displayed changes in complex assemblies affecting (1) known interactions with the COMPASS complex component RBBP5 and (2) KDM6A-DNA associated assemblies with the nuclear protein Nucleophosmin. Some KDM6A variants induced a severe cellular phenotype characterized by multiple acute effects on nuclear integrity, namely, release of nuclear DNA into the cytoplasm, increased level of DNA damage indicators RAD51 and p-γH2A.X, and mitosis defects. These damaging effects were correlated with increased cell death. Conclusion These observations reveal novel effects of pathogenic variants pointing at new specific functions of KDM6A variants. The underlying mechanisms and affected pathways have to be investigated in future research to understand how tumor cells cope with and benefit from KDM6A truncations. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00394-2.
Collapse
Affiliation(s)
- J Koch
- Department of Molecular Physical Chemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - A Lang
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - P Whongsiri
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.,Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkog, Bangkok, Thailand
| | - W A Schulz
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - M J Hoffmann
- Department of Urology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - A Greife
- Department of Molecular Physical Chemistry, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany.
| |
Collapse
|
43
|
Shang JY, Lu YJ, Cai XW, Su YN, Feng C, Li L, Chen S, He XJ. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. THE PLANT CELL 2021; 33:3250-3271. [PMID: 34270751 PMCID: PMC8505878 DOI: 10.1093/plcell/koab187] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 07/11/2021] [Indexed: 05/26/2023]
Abstract
In the INO80 chromatin remodeling complex, all of the accessory subunits are assembled on the following three domains of INO80: N-terminal domain (NTD), HSA domain, and ATPase domain. Although the ATPase and HSA domains and their interacting accessory subunits are known to be responsible for chromatin remodeling, it is largely unknown how the accessory subunits that interact with the INO80 NTD regulate chromatin status. Here, we identify both conserved and nonconserved accessory subunits that interact with the three domains in the INO80 complex in Arabidopsis thaliana. While the accessory subunits that interact with all the three INO80 domains can mediate transcriptional repression, the INO80 NTD and the accessory subunits interact with it can contribute to transcriptional activation even when the ATPase domain is absent, suggesting that INO80 has an ATPase-independent role. A subclass of the COMPASS histone H3K4 methyltransferase complexes interact with the INO80 NTD in the INO80 complex and function together with the other accessory subunits that interact with the INO80 NTD, thereby facilitating H3K4 trimethylation and transcriptional activation. This study suggests that the opposite effects of the INO80 complex on transcription are required for the balance between vegetative growth and flowering under diverse environmental conditions.
Collapse
Affiliation(s)
| | | | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Feng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | | |
Collapse
|
44
|
Wheat JC, Steidl U. Gene expression at a single-molecule level: implications for myelodysplastic syndromes and acute myeloid leukemia. Blood 2021; 138:625-636. [PMID: 34436525 PMCID: PMC8394909 DOI: 10.1182/blood.2019004261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nongenetic heterogeneity, or gene expression stochasticity, is an important source of variability in biological systems. With the advent and improvement of single molecule resolution technologies, it has been shown that transcription dynamics and resultant transcript number fluctuations generate significant cell-to-cell variability that has important biological effects and may contribute substantially to both tissue homeostasis and disease. In this respect, the pathophysiology of stem cell-derived malignancies such as acute myeloid leukemia and myelodysplastic syndromes, which has historically been studied at the ensemble level, may require reevaluation. To that end, it is our aim in this review to highlight the results of recent single-molecule, biophysical, and systems studies of gene expression dynamics, with the explicit purpose of demonstrating how the insights from these basic science studies may help inform and progress the field of leukemia biology and, ultimately, research into novel therapies.
Collapse
Affiliation(s)
- Justin C Wheat
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| | - Ulrich Steidl
- Albert Einstein College of Medicine - Montefiore Health System, Bronx, NY
| |
Collapse
|
45
|
DOT1L complex regulates transcriptional initiation in human erythroleukemic cells. Proc Natl Acad Sci U S A 2021; 118:2106148118. [PMID: 34187895 DOI: 10.1073/pnas.2106148118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes. More importantly, DOT1L and ENL depletions concomitantly reduce TBP and Pol II occupancies on a significant fraction of direct (DOT1L-bound) target genes, indicating a role for the DOT1L complex in transcription initiation. Mechanistically, proteomic and biochemical studies suggest that the DOT1L complex may regulate transcriptional initiation by facilitating the recruitment or stabilization of transcription factor IID, likely in a monoubiquitinated H2B (H2Bub1)-enhanced manner. Additional studies show that DOT1L enhances H2Bub1 levels by limiting recruitment of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. These results advance our understanding of roles of the DOT1L complex in transcriptional regulation and have important implications for MLLr leukemias.
Collapse
|
46
|
Yang L, Jin M, Jeong KW. Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. BIOLOGY 2021; 10:581. [PMID: 34201935 PMCID: PMC8301125 DOI: 10.3390/biology10070581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The KMT2 (MLL) family of proteins, including the major histone H3K4 methyltransferase found in mammals, exists as large complexes with common subunit proteins and exhibits enzymatic activity. SMYD, another H3K4 methyltransferase, and SET7/9 proteins catalyze the methylation of several non-histone targets, in addition to histone H3K4 residues. Despite these structural and functional commonalities, H3K4 methyltransferase proteins have specificity for their target genes and play a role in the development of various cancers as well as in drug resistance. In this review, we examine the overall role of histone H3K4 methyltransferase in the development of various cancers and in the progression of drug resistance. Compounds that inhibit protein-protein interactions between KMT2 family proteins and their common subunits or the activity of SMYD and SET7/9 are continuously being developed for the treatment of acute leukemia, triple-negative breast cancer, and castration-resistant prostate cancer. These H3K4 methyltransferase inhibitors, either alone or in combination with other drugs, are expected to play a role in overcoming drug resistance in leukemia and various solid cancers.
Collapse
Affiliation(s)
- Liu Yang
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Mingli Jin
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea;
| |
Collapse
|
47
|
Epigenetic dysregulation in myeloid malignancies. Blood 2021; 138:613-624. [PMID: 34157099 DOI: 10.1182/blood.2019004262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic deregulation is now a well-recognized -though not yet fully understood- mechanism that contributes to the development and progression of myeloid malignancies. In the past 15 years, next generation sequencing studies have revealed patterns of aberrant DNA methylation, altered chromatin states, and mutations in chromatin modifiers across the spectrum of myeloid malignancies. Studies into the mechanisms that drive these diseases through mouse modeling have helped identify new avenues for therapeutic interventions, from initial treatment to resistant, relapsed disease. This is particularly significant when chemotherapy with cytotoxic agents remains the general standard of care. In this review, we will discuss some of the recent findings of epigenetic mechanisms and how these are informing the development of more targeted strategies for therapeutic intervention in myeloid malignancies.
Collapse
|
48
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
49
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
50
|
The H3K4 methyltransferase SETD1A is required for proliferation of non-small cell lung cancer cells by promoting S-phase progression. Biochem Biophys Res Commun 2021; 561:120-127. [PMID: 34023776 DOI: 10.1016/j.bbrc.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 11/23/2022]
Abstract
Epigenetic dysregulation has been strongly implicated in carcinogenesis and is one of the mechanisms that contribute to the development of lung cancer. Using genome-wide CRISPR/Cas9 library screening, we showed SET domain-containing protein 1A (SETD1A) is an essential epigenetic modifier of the proliferation of NSCLC H1299 cells. Depletion of SETD1A strikingly inhibited the proliferation of NSCLC cells. IHC staining and bioinformatics showed that SETD1A is upregulated in lung cancer. Kaplan-Meier survival analysis indicated that high expression of SETD1A is associated with poor prognosis of patients with NSCLC. We revealed that loss of SETD1A inhibits DNA replication and induces replication stress accompanied by impaired fork progression. In addition, transcription of CDC7 and TOP1, which are involved in replication origin activation and fork progression, respectively, was significantly reduced by knockdown of SETD1A. Taken together, these findings demonstrated SETD1A is a critical epigenetic modifier of NSCLC cell proliferation by promoting the transcription of a subset of DNA replication-associated genes.
Collapse
|