1
|
Panthi A, Ferretti MB, Howard O, Pokharel SM, McCracken R, Quesnel-Vallieres M, Li Q, Cherry S, Lynch KW. Alternate isoforms of IRF7 Differentially Regulate Interferon Expression to Tune Response to Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642367. [PMID: 40161609 PMCID: PMC11952429 DOI: 10.1101/2025.03.10.642367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Interferon Regulatory Factor 7 (IRF7), and its homologue IRF3, are master transcriptional regulators of the innate immune response. IRF7 binds to promoters of interferon β (IFNβ) and several IFNαs as a homodimer or as a heterodimer with IRF3 to drive expression of these type I IFNs, which in turn activate downstream signaling pathways to promote expression of antiviral genes. Here we demonstrate that alternative splicing of the first intron within the coding region of IRF7 is highly regulated across immune tissues and in response to immunologic signals including viral infection. Retention of this intron generates an alternative translation start site, resulting in a N-terminally extended form of the protein (exIRF7) with distinct function from the canonical version of IRF7 (cIRF7). We find that exIRF7 uniquely activates a gene expression program, including IFNβ, in response to innate immune triggers. Mechanistically, this enhanced activity of exIRF7 relative to cIRF7 is through increased homodimerization and association with IRF3 on DNA. Furthermore, the enhanced transcriptional activity of exIRF7 controls viral infection to a greater extent than cIRF7, demonstrating that alternative splicing of IRF7 is a previously unrecognized mechanism used by cells to tune the interferon response to control viral infections and other immune challenges. Highlights Intron retention in the human IRF7 gene generates a distinct protein isoform that differs in the N-terminus.IRF7 intron retention is regulated in a stimuli- and cell-type specific manner.The extended version of IRF7, produced by intron retention, exhibits enhanced transcriptional activation of type I interferon genes.Cells expressing the extended version of IRF7 are more resistant to viral infection.
Collapse
|
2
|
Lacorazza HD. Pharmacological inhibition of the MAP2K7 kinase in human disease. Front Oncol 2024; 14:1486756. [PMID: 39717752 PMCID: PMC11663940 DOI: 10.3389/fonc.2024.1486756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The MAP2K7 signaling pathway activates the c-Jun NH2-terminal protein kinase (JNK) in response to stress signals, such as inflammatory cytokines, osmotic stress, or genomic damage. While there has been interest in inhibiting JNK due to its involvement in inflammatory processes and cancer, there is increasing focus on developing MAP2K7 inhibitors to enhance specificity when MAP2K7 activation is associated with disease progression. Despite some progress, further research is needed to fully comprehend the role of MAP2K7 in cancer and assess the potential use of kinase inhibitors in cancer therapy. This review examines the role of MAP2K7 in cancer and the development of small-molecule inhibitors.
Collapse
Affiliation(s)
- H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Liu X, Devadiga SA, Stanley RF, Morrow RM, Janssen KA, Quesnel-Vallières M, Pomp O, Moverley AA, Li C, Skuli N, Carroll M, Huang J, Wallace DC, Lynch KW, Abdel-Wahab O, Klein PS. A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies. J Clin Invest 2024; 134:e175619. [PMID: 38713535 PMCID: PMC11178535 DOI: 10.1172/jci175619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/25/2024] [Indexed: 05/09/2024] Open
Abstract
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sudhish A. Devadiga
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert F. Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryan M. Morrow
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin A. Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam A. Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chenchen Li
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolas Skuli
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin Carroll
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, New Jersey, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter S. Klein
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Liu X, Devadiga SA, Stanley RF, Morrow R, Janssen K, Quesnel-Vallières M, Pomp O, Moverley AA, Li C, Skuli N, Carroll MP, Huang J, Wallace DC, Lynch KW, Abdel-Wahab O, Klein PS. A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.25.546449. [PMID: 38712254 PMCID: PMC11071312 DOI: 10.1101/2023.06.25.546449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Sudhish A. Devadiga
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Robert F. Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Ryan Morrow
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Kevin Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Mathieu Quesnel-Vallières
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Adam A. Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Chenchen Li
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Nicolas Skuli
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Martin P. Carroll
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Jian Huang
- Coriell Institute for Medical Research; Camden, NJ, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Peter S. Klein
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
5
|
Zhu WS, Wheeler BD, Ansel KM. RNA circuits and RNA-binding proteins in T cells. Trends Immunol 2023; 44:792-806. [PMID: 37599172 PMCID: PMC10890840 DOI: 10.1016/j.it.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
RNA is integral to the regulatory circuits that control cell identity and behavior. Cis-regulatory elements in mRNAs interact with RNA-binding proteins (RBPs) that can alter RNA sequence, stability, and translation into protein. Similarly, long noncoding RNAs (lncRNAs) scaffold ribonucleoprotein complexes that mediate transcriptional and post-transcriptional regulation of gene expression. Indeed, cell programming is fundamental to multicellular life and, in this era of cellular therapies, it is of particular interest in T cells. Here, we review key concepts and recent advances in our understanding of the RNA circuits and RBPs that govern mammalian T cell differentiation and immune function.
Collapse
Affiliation(s)
- Wandi S Zhu
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Benjamin D Wheeler
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Agosto LM, Mallory MJ, Ferretti MB, Blake D, Krick KS, Gazzara MR, Garcia BA, Lynch KW. Alternative splicing of HDAC7 regulates its interaction with 14-3-3 proteins to alter histone marks and target gene expression. Cell Rep 2023; 42:112273. [PMID: 36933216 PMCID: PMC10113009 DOI: 10.1016/j.celrep.2023.112273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/28/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Chromatin regulation and alternative splicing are both critical mechanisms guiding gene expression. Studies have demonstrated that histone modifications can influence alternative splicing decisions, but less is known about how alternative splicing may impact chromatin. Here, we demonstrate that several genes encoding histone-modifying enzymes are alternatively spliced downstream of T cell signaling pathways, including HDAC7, a gene previously implicated in controlling gene expression and differentiation in T cells. Using CRISPR-Cas9 gene editing and cDNA expression, we show that differential inclusion of HDAC7 exon 9 controls the interaction of HDAC7 with protein chaperones, resulting in changes to histone modifications and gene expression. Notably, the long isoform, which is induced by the RNA-binding protein CELF2, promotes expression of several critical T cell surface proteins including CD3, CD28, and CD69. Thus, we demonstrate that alternative splicing of HDAC7 has a global impact on histone modification and gene expression that contributes to T cell development.
Collapse
Affiliation(s)
- Laura M Agosto
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Davia Blake
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keegan S Krick
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Genomic and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Miao X, Luo Q, Zhao H, Qin X. Comparison of alternative splicing (AS) events in adipose tissue of polled dorset versus small tail han sheep. Heliyon 2023; 9:e14938. [PMID: 37095997 PMCID: PMC10121611 DOI: 10.1016/j.heliyon.2023.e14938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Background During the alternative splicing (AS), the exons of primary transcripts are spliced in various arrangements, resulting in structurally and functionally distinct mRNAs and proteins. This study aimed to examine genes with AS events from Small Tail Han sheep and Dorset sheep to explore the mechanism of adipose developments. Methods This study identified the genes with AS events in adipose tissues of two different sheep with next-generation sequencing. In this paper, genes with significantly different AS events were performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Results 364 genes with 411 A S events showed significant differences in adipose tissues between the two breeds; 108 genes with 120 A S events were extremely significant differences between the two breeds. We identified several novel genes that are related with adipose growth and development. The results of KEGG and GO analysis indicated that oocyte meiosis, mitogen-activated protein kinase (Wnt), mitogen-activated protein kinase (MAPK) signaling pathway, etc. Were closely related to the adipose tissue developments. Conclusions This paper revealed that the genes with AS events are important for adipose tissues in sheep, exploring the mechanisms of AS events associated with adipose tissue developments in sheep of different breeds.
Collapse
|
8
|
Choi JO, Ham JH, Hwang SS. RNA Metabolism in T Lymphocytes. Immune Netw 2022; 22:e39. [PMID: 36381959 PMCID: PMC9634142 DOI: 10.4110/in.2022.22.e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.
Collapse
Affiliation(s)
- Jin Ouk Choi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Hyeon Ham
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.,Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
9
|
Wang F, Tan P, Zhang P, Ren Y, Zhou J, Li Y, Hou S, Li S, Zhang L, Ma Y, Wang C, Tang W, Wang X, Huo Y, Hu Y, Cui T, Niu C, Wang D, Liu B, Lan Y, Yu J. Single-cell architecture and functional requirement of alternative splicing during hematopoietic stem cell formation. SCIENCE ADVANCES 2022; 8:eabg5369. [PMID: 34995116 PMCID: PMC8741192 DOI: 10.1126/sciadv.abg5369] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Single-cell transcriptional profiling has rapidly advanced our understanding of the embryonic hematopoiesis; however, whether and what role RNA alternative splicing (AS) plays remains an enigma. This is important for understanding the mechanisms underlying splicing-associated hematopoietic diseases and for the derivation of therapeutic stem cells. Here, we used single-cell full-length transcriptome data to construct an isoform-based transcriptional atlas of the murine endothelial-to-hematopoietic stem cell (HSC) transition, which enables the identification of hemogenic signature isoforms and stage-specific AS events. We showed that the inclusion of these hemogenic-specific AS events was essential for hemogenic function in vitro. Expression data and knockout mouse studies highlighted the critical role of Srsf2: Early Srsf2 deficiency from endothelial cells affected the splicing pattern of several master hematopoietic regulators and significantly impaired HSC generation. These results redefine our understanding of the dynamic HSC developmental transcriptome and demonstrate that elaborately controlled RNA splicing governs cell fate in HSC formation.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Puwen Tan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yunqiao Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Shuaili Li
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Linlin Zhang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wanbo Tang
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yongfei Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tianyu Cui
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Corresponding author. (D.W.); (B.L.); (Y.Lan); (J.Y.)
| |
Collapse
|
10
|
Blake D, Radens CM, Ferretti MB, Gazzara MR, Lynch KW. Alternative splicing of apoptosis genes promotes human T cell survival. eLife 2022; 11:80953. [PMID: 36264057 PMCID: PMC9625086 DOI: 10.7554/elife.80953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing occurs in the vast majority of human genes, giving rise to distinct mRNA and protein isoforms. We, and others, have previously identified hundreds of genes that change their isoform expression upon T cell activation via alternative splicing; however, how these changes link activation input with functional output remains largely unknown. Here, we investigate how costimulation of T cells through the CD28 receptor impacts alternative splicing in T cells activated through the T cell receptor (TCR, CD3) and find that while CD28 signaling alone has minimal impact on splicing, it enhances the extent of change for up to 20% of TCR-induced alternative splicing events. Interestingly, a set of CD28-enhanced splicing events occur within genes encoding key components of the apoptotic signaling pathway; namely caspase-9, Bax, and Bim. Using both CRISPR-edited cells and antisense oligos to force expression of specific isoforms, we show for all three of these genes that the isoform induced by CD3/CD28 costimulation promotes resistance to apoptosis, and that changes in all three genes together function combinatorially to further promote cell viability. Finally, we show that the JNK signaling pathway, induced downstream of CD3/CD28 costimulation, is required for each of these splicing events, further highlighting their co-regulation. Together, these findings demonstrate that alternative splicing is a key mechanism by which costimulation of CD28 promotes viability of activated T cells.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States,Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Caleb M Radens
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States,Department of Genetics, University of PennsylvaniaPhildelphiaUnited States
| | - Kristen W Lynch
- Immunology Graduate Group, University of PennsylvaniaPhiladelphiaUnited States,Department of Biochemistry and Biophysics, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
11
|
Maik-Rachline G, Wortzel I, Seger R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells 2021; 10:cells10123466. [PMID: 34943973 PMCID: PMC8699841 DOI: 10.3390/cells10123466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades transmit signals from extracellular stimuli to a variety of distinct cellular processes. The MAPKKs in each cascade specifically phosphorylate and activate their cognate MAPKs, indicating that this step funnels various signals into a seemingly linear pathway. Still, the effects of these cascades vary significantly, depending on the identity of the extracellular signals, which gives rise to proper outcomes. Therefore, it is clear that the specificity of the signals transmitted through the cascades is tightly regulated in order to secure the desired cell fate. Indeed, many regulatory components or processes that extend the specificity of the cascades have been identified. Here, we focus on a less discussed mechanism, that is, the role of distinct components in each tier of the cascade in extending the signaling specificity. We cover the role of distinct genes, and the alternatively spliced isoforms of MAPKKs and MAPKs, in the signaling specificity. The alternatively spliced MEK1b and ERK1c, which form an independent signaling route, are used as the main example. Unlike MEK1/2 and ERK1/2, this route’s functions are limited, including mainly the regulation of mitotic Golgi fragmentation. The unique roles of the alternatively spliced isoforms indicate that these components play an essential role in determining the proper cell fate in response to distinct stimulations.
Collapse
|
12
|
Nicolet BP, Zandhuis ND, Lattanzio VM, Wolkers MC. Sequence determinants as key regulators in gene expression of T cells. Immunol Rev 2021; 304:10-29. [PMID: 34486113 PMCID: PMC9292449 DOI: 10.1111/imr.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
T cell homeostasis, T cell differentiation, and T cell effector function rely on the constant fine-tuning of gene expression. To alter the T cell state, substantial remodeling of the proteome is required. This remodeling depends on the intricate interplay of regulatory mechanisms, including post-transcriptional gene regulation. In this review, we discuss how the sequence of a transcript influences these post-transcriptional events. In particular, we review how sequence determinants such as sequence conservation, GC content, and chemical modifications define the levels of the mRNA and the protein in a T cell. We describe the effect of different forms of alternative splicing on mRNA expression and protein production, and their effect on subcellular localization. In addition, we discuss the role of sequences and structures as binding hubs for miRNAs and RNA-binding proteins in T cells. The review thus highlights how the intimate interplay of post-transcriptional mechanisms dictate cellular fate decisions in T cells.
Collapse
Affiliation(s)
- Benoit P. Nicolet
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Nordin D. Zandhuis
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - V. Maria Lattanzio
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
13
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
14
|
Blake D, Lynch KW. The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunol Rev 2021; 304:30-50. [PMID: 34368964 DOI: 10.1111/imr.13018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The latest advances in next-generation sequencing studies and transcriptomic profiling over the past decade have highlighted a surprising frequency of genes regulated by RNA processing mechanisms in the immune system. In particular, two control steps in mRNA maturation, namely alternative splicing and alternative polyadenylation, are now recognized to occur in the vast majority of human genes. Both have the potential to alter the identity of the encoded protein, as well as control protein abundance or even protein localization or association with other factors. In this review, we will provide a summary of the general mechanisms by which alternative splicing (AS) and alternative polyadenylation (APA) occur, their regulation within cells of the immune system, and their impact on immunobiology. In particular, we will focus on how control of apoptosis by AS and APA is used to tune cell fate during an immune response.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W Lynch
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Wang L, Liu Z, Liu L, Guo C, Jiao D, Li L, Zhao J, Han X, Sun Y. CELF2 is a candidate prognostic and immunotherapy biomarker in triple-negative breast cancer and lung squamous cell carcinoma: A pan-cancer analysis. J Cell Mol Med 2021; 25:7559-7574. [PMID: 34288370 PMCID: PMC8335674 DOI: 10.1111/jcmm.16791] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
CUGBP Elav-like family member 2(CELF2) plays crucial roles in the development and activation of T cell. However, the impacts of CELF2 on tumour-infiltrating immune cells (TIICs) and clinical outcomes of tumours remain unclear. In this study, we found that elevated CELF2 expression was markedly correlated with prolonged survival in multiple tumours, particularly in breast and lung cancers. Notably, CELF2 only impacted the prognosis of triple-negative breast cancer (TNBC) with lymph node metastasis. Further investigation showed CELF2 expression was positively correlated with the infiltration abundance of dendritic cells (DCs), CD8+ T cells and neutrophils in breast invasive carcinoma (BRCA) and DCs in lung squamous cell carcinoma (LUSC). CELF2 also had strong correlations with markers of diverse TIICs such as T cells, tumour-associated macrophages and DCs in BRCA and LUSC. Importantly, CELF2 was significantly associated with plenty of immune checkpoint molecules (ICMs) and outperformed five prevalent biomarkers including PD-1, PD-L1, CTLA-4, CD8 and tumour mutation burden in predicting immunotherapeutic responses. Immunohistochemistry also revealed lower protein levels of CELF2 in TNBC and LUSC compared to normal tissues, and patients with high expression showed significantly prolonged prognosis. In conclusion, we demonstrated that increased CELF2 expression was closely related to better prognosis and superior TIIC infiltration and ICM expression, particularly in BRCA and LUSC. CELF2 also performed well in evaluating the immunotherapeutic efficacy, suggesting CELF2 might be a promising biomarker.
Collapse
Affiliation(s)
- Libo Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Long Liu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunguang Guo
- Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dechao Jiao
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering LaboratoryZhengzhouChina
- Cancer CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering LaboratoryZhengzhouChina
- Department of PharmacyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Institute of Hepatobiliary and Pancreatic DiseasesZhengzhou UniversityZhengzhouChina
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
16
|
Wang D, Wang X, Huang H, Wang H. Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125414. [PMID: 33621777 DOI: 10.1016/j.jhazmat.2021.125414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Herein, we demonstrated that triclosan (TCS) induced neurotoxicity mediated by pre-mRNA alternative splicing (AS). TCS exposure resulted in a series of phenotypic malformations, abnormal locomotor behavior, circadian rhythm disorder and inhibited AChE activity. High throughput mRNA sequencing revealed that TCS regulated the AS events of nerve-related genes. Meanwhile, abnormal expression was observed in marker genes related to nerve cell migration, axon guidance and myelination. The expression of mitochondrial apoptosis activator bcl2l11 was significantly increased under TCS exposure. Interestingly, CELF2 as one of the important RNA-binding proteins was closely related to the AS events, and its mRNA and protein expression levels were significantly increased in zebrafish brain under acute or chronic TCS exposure. Functional knock-down and over-expression of celf2 confirmed that TCS led to nervous system injury and developmental defects through the CELF2-mediated AS events of genes (mbpa, mef2d, u2af2b and matn3b). Histopathological injury, phenotypic malformation, abnormal locomotor behavior and changes in neuromarkers all confirmed the biological functions of CELF2 in zebrafish brain. These findings demonstrate that TCS might regulate some of the AS events of nerve-related genes through upregulating the expression of CELF2. Thus, CELF2 may serve as a target for the prevention, diagnosis and treatment of contaminant-induced neurological diseases.
Collapse
Affiliation(s)
- Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
17
|
Alternative splicing redefines landscape of commonly mutated genes in acute myeloid leukemia. Proc Natl Acad Sci U S A 2021; 118:2014967118. [PMID: 33876749 PMCID: PMC8054020 DOI: 10.1073/pnas.2014967118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most genes associated with acute myeloid leukemia (AML) are mutated in less than 10% of patients, suggesting that alternative mechanisms of gene disruption contribute to this disease. Here, we find a set of splicing events that alter the expression of a subset of AML-associated genes independent of known somatic mutations. In particular, aberrant splicing triples the number of patients with reduced functional EZH2 compared with that predicted by somatic mutation alone. In addition, we unexpectedly find that the nonsense-mediated decay factor DHX34 exhibits widespread alternative splicing in sporadic AML, resulting in a premature stop codon that phenocopies the loss-of-function germline mutations observed in familial AML. Together, these results demonstrate that classical mutation analysis underestimates the burden of functional gene disruption in AML and highlight the importance of assessing the contribution of alternative splicing to gene dysregulation in human disease.
Collapse
|
18
|
Ni Y, Alu A, Lei H, Wang Y, Wu M, Wei X. Immunological perspectives on the pathogenesis, diagnosis, prevention and treatment of COVID-19. MOLECULAR BIOMEDICINE 2021; 2:1. [PMID: 34766001 PMCID: PMC7815329 DOI: 10.1186/s43556-020-00015-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). COVID-19 can spread to the entire body and cause multiple organ failure. It is a daunting challenge to control the fast growing worldwide pandemic because effective prevention and treatment strategies are unavailable currently. Generally, the immune response of the human body triggered by viral infection is essential for the elimination of the virus. However, severe COVID-19 patients may manifest dysregulated immune responses, such as lymphopenia, lymphocyte exhaustion, exacerbated antibody response, cytokine release syndrome (CRS), etc. Understanding of these immunological characteristics may help identify better approaches for diagnosis, prognosis and treatment of COVID-19 patients. As specific anti-viral agents are notoriously difficult to develop, strategies for modulating the immune responses by either developing novel vaccines or using immunotherapy hold great promise to improve the management of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yanghong Ni
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041 P. R. China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
19
|
Li Y, Ritchie EM, Steinke CL, Qi C, Chen L, Zheng B, Jin Y. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. eLife 2021; 10:63509. [PMID: 33475086 PMCID: PMC7870138 DOI: 10.7554/elife.63509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
The conserved MAP3K Dual-Leucine-Zipper Kinase (DLK) and Leucine-Zipper-bearing Kinase (LZK) can activate JNK via MKK4 or MKK7. These two MAP3Ks share similar biochemical activities and undergo auto-activation upon increased expression. Depending on cell-type and nature of insults DLK and LZK can induce pro-regenerative, pro-apoptotic or pro-degenerative responses, although the mechanistic basis of their action is not well understood. Here, we investigated these two MAP3Ks in cerebellar Purkinje cells using loss- and gain-of function mouse models. While loss of each or both kinases does not cause discernible defects in Purkinje cells, activating DLK causes rapid death and activating LZK leads to slow degeneration. Each kinase induces JNK activation and caspase-mediated apoptosis independent of each other. Significantly, deleting CELF2, which regulates alternative splicing of Map2k7, strongly attenuates Purkinje cell degeneration induced by LZK, but not DLK. Thus, controlling the activity levels of DLK and LZK is critical for neuronal survival and health.
Collapse
Affiliation(s)
- Yunbo Li
- Neurobiology Section, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Erin M Ritchie
- Neurobiology Section, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Christopher L Steinke
- Neurobiology Section, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Cai Qi
- Neurobiology Section, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Lizhen Chen
- Neurobiology Section, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States,VA San Diego Healthcare SystemSan DiegoUnited States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California San DiegoLa JollaUnited States,Department of Neurosciences, School of Medicine, University of California San DiegoLa JollaUnited States,Kavli Institute of Brain and Mind, University of California San DiegoLa JollaUnited States
| |
Collapse
|
20
|
Thompson MG, Dittmar M, Mallory MJ, Bhat P, Ferretti MB, Fontoura BM, Cherry S, Lynch KW. Viral-induced alternative splicing of host genes promotes influenza replication. eLife 2020; 9:55500. [PMID: 33269701 PMCID: PMC7735754 DOI: 10.7554/elife.55500] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Viral infection induces the expression of numerous host genes that impact the outcome of infection. Here, we show that infection of human lung epithelial cells with influenza A virus (IAV) also induces a broad program of alternative splicing of host genes. Although these splicing-regulated genes are not enriched for canonical regulators of viral infection, we find that many of these genes do impact replication of IAV. Moreover, in several cases, specific inhibition of the IAV-induced splicing pattern also attenuates viral infection. We further show that approximately a quarter of the IAV-induced splicing events are regulated by hnRNP K, a host protein required for efficient splicing of the IAV M transcript in nuclear speckles. Finally, we find an increase in hnRNP K in nuclear speckles upon IAV infection, which may alter accessibility of hnRNP K for host transcripts thereby leading to a program of host splicing changes that promote IAV replication.
Collapse
Affiliation(s)
- Matthew G Thompson
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Mark Dittmar
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Beatriz Ma Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Sara Cherry
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Kristen W Lynch
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
21
|
Ouyang Y, Yin J, Wang W, Shi H, Shi Y, Xu B, Qiao L, Feng Y, Pang L, Wei F, Guo X, Jin R, Chen D. Downregulated Gene Expression Spectrum and Immune Responses Changed During the Disease Progression in Patients With COVID-19. Clin Infect Dis 2020; 71:2052-2060. [PMID: 32307550 PMCID: PMC7188184 DOI: 10.1093/cid/ciaa462] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/18/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The World Health Organization characterizes novel coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a pandemic. Here, we investigated the clinical, cytokine levels; T-cell proportion; and related gene expression occurring in patients with COVID-19 on admission and after initial treatment. METHODS Eleven patients diagnosed with COVID-19 with similar initial treatment regimens were enrolled in the hospital. Plasma cytokine, peripheral T cell proportions, and microfluidic quantitative polymerase chain reaction analyses for gene expression were conducted. RESULTS Five patients with mild and 6 with severe disease were included. Cough and fever were the primary symptoms in the 11 COVID-19 cases. Older age, higher neutrophil count, and higher C-reactive protein levels were found in severe cases. IL-10 level significantly varied with disease progression and treatment. Decreased T-cell proportions were observed in patients with COVID-19, especially in severe cases, and all were returned to normal in patients with mild disease after initial treatment, but only CD4+ T cells returned to normal in severe cases. The number of differentially expressed genes (DEGs) increased with the disease progression, and decreased after initial treatment. All downregulated DEGs in severe cases mainly involved Th17-cell differentiation, cytokine-mediated signaling pathways, and T-cell activation. After initial treatment in severe cases, MAP2K7 and SOS1 were upregulated relative to that on admission. CONCLUSIONS Our findings show that a decreased T-cell proportion with downregulated gene expression related to T-cell activation and differentiation occurred in patients with severe COVID-19, which may help to provide effective treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yabo Ouyang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Jiming Yin
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Wenjing Wang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Hongbo Shi
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Ying Shi
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Bin Xu
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
| | - Luxin Qiao
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Yingmei Feng
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
| | - Lijun Pang
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Feili Wei
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Xianghua Guo
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Ronghua Jin
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| | - Dexi Chen
- Beijing YouAn Hospital, Capital Medical University, Beijing Institute of Hepatology, Beijing, China
- Beijing Precision Medicine and Transformation Engineering Technology Research Center of Hepatitis and Liver Cancer, Beijing, China
| |
Collapse
|
22
|
Radens CM, Blake D, Jewell P, Barash Y, Lynch KW. Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing. RNA (NEW YORK, N.Y.) 2020; 26:1320-1333. [PMID: 32554554 PMCID: PMC7491319 DOI: 10.1261/rna.075929.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Human CD4+ T cells are often subdivided into distinct subtypes, including Th1, Th2, Th17, and Treg cells, that are thought to carry out distinct functions in the body. Typically, these T-cell subpopulations are defined by the expression of distinct gene repertoires; however, there is variability between studies regarding the methods used for isolation and the markers used to define each T-cell subtype. Therefore, how reliably studies can be compared to one another remains an open question. Moreover, previous analysis of gene expression in CD4+ T-cell subsets has largely focused on gene expression rather than alternative splicing. Here we take a meta-analysis approach, comparing eleven independent RNA-seq studies of human Th1, Th2, Th17, and/or Treg cells to determine the consistency in gene expression and splicing within each subtype across studies. We find that known master-regulators are consistently enriched in the appropriate subtype; however, cytokines and other genes often used as markers are more variable. Importantly, we also identify previously unknown transcriptomic markers that appear to consistently differentiate between subsets, including a few Treg-specific splicing patterns. Together this work highlights the heterogeneity in gene expression between samples designated as the same subtype, but also suggests additional markers that can be used to define functional groupings.
Collapse
Affiliation(s)
- Caleb M Radens
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Davia Blake
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Paul Jewell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yoseph Barash
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Computer Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Chatrikhi R, Mallory MJ, Gazzara MR, Agosto LM, Zhu WS, Litterman AJ, Ansel KM, Lynch KW. RNA Binding Protein CELF2 Regulates Signal-Induced Alternative Polyadenylation by Competing with Enhancers of the Polyadenylation Machinery. Cell Rep 2020; 28:2795-2806.e3. [PMID: 31509743 PMCID: PMC6752737 DOI: 10.1016/j.celrep.2019.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/28/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
The 3′ UTR (UTR) of human mRNAs plays a critical role in controlling protein expression and function. Importantly, 3′ UTRs of human messages are not invariant for each gene but rather are shaped by alternative polyadenylation (APA) in a cell state-dependent manner, including in response to T cell activation. However, the proteins and mechanisms driving APA regulation remain poorly understood. Here we show that the RNA-binding protein CELF2 controls APA of its own message in a signal-dependent manner by competing with core enhancers of the polyadenylation machinery for binding to RNA. We further show that CELF2 binding overlaps with APA enhancers transcriptome-wide, and almost half of 3′ UTRs that undergo T cell signaling-induced APA are regulated in a CELF2-dependent manner. These studies thus reveal CELF2 to be a critical regulator of 3′ UTR identity in T cells and demonstrate an additional mechanism for CELF2 in regulating polyadenylation site choice. Alternative polyadenylation (APA) is broadly regulated during cellular activation. Chatrikhi et al. demonstrate that the RNA-binding protein CELF2 competes with CFIm25 and CstF64 for binding around polyadenylation sites. Increased expression of CELF2 upon cellular activation alters this competition and is a key driver of activation-induced APA.
Collapse
Affiliation(s)
- Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura M Agosto
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wandi S Zhu
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - Adam J Litterman
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Ray D, Epstein DM. Tumorigenic de-differentiation: the alternative splicing way. Mol Cell Oncol 2020; 7:1809959. [PMID: 33235913 PMCID: PMC7671003 DOI: 10.1080/23723556.2020.1809959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanism of acquisition of tumorigenic properties by somatic cells at the onset of cancer and later during relapse is a question of paramount importance in cancer biology. We have recently discovered a Muscleblind like-1 (MBNL1)-driven alternative-splicing mediated mechanism of tumorigenic de-differentiation that is associated with poor prognosis, relapse and metastasis in common cancer types.
Collapse
Affiliation(s)
- Debleena Ray
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - David M Epstein
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
25
|
Nieto Moreno N, Villafañez F, Giono LE, Cuenca C, Soria G, Muñoz MJ, Kornblihtt AR. GSK-3 is an RNA polymerase II phospho-CTD kinase. Nucleic Acids Res 2020; 48:6068-6080. [PMID: 32374842 PMCID: PMC7293024 DOI: 10.1093/nar/gkaa322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022] Open
Abstract
We have previously found that UV-induced DNA damage causes hyperphosphorylation of the carboxy terminal domain (CTD) of RNA polymerase II (RNAPII), inhibition of transcriptional elongation and changes in alternative splicing (AS) due to kinetic coupling between transcription and splicing. In an unbiased search for protein kinases involved in the AS response to DNA damage, we have identified glycogen synthase kinase 3 (GSK-3) as an unforeseen participant. Unlike Cdk9 inhibition, GSK-3 inhibition only prevents CTD hyperphosphorylation triggered by UV but not basal phosphorylation. This effect is not due to differential degradation of the phospho-CTD isoforms and can be reproduced, at the AS level, by overexpression of a kinase-dead GSK-3 dominant negative mutant. GSK-3 inhibition abrogates both the reduction in RNAPII elongation and changes in AS elicited by UV. We show that GSK-3 phosphorylates the CTD in vitro, but preferentially when the substrate is previously phosphorylated, consistently with the requirement of a priming phosphorylation reported for GSK-3 efficacy. In line with a role for GSK-3 in the response to DNA damage, GSK-3 inhibition prevents UV-induced apoptosis. In summary, we uncover a novel role for a widely studied kinase in key steps of eukaryotic transcription and pre-mRNA processing.
Collapse
Affiliation(s)
- Nicolás Nieto Moreno
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA) and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE (C1428EHA), Buenos Aires, Argentina
| | - Florencia Villafañez
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luciana E Giono
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA) and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE (C1428EHA), Buenos Aires, Argentina
| | - Carmen Cuenca
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA) and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE (C1428EHA), Buenos Aires, Argentina
| | - Gastón Soria
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Manuel J Muñoz
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA) and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE (C1428EHA), Buenos Aires, Argentina.,Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Via Adamello 16, 20139 Milan, Italy.,Departamento de Biodiversidad y Biología Experimental, FCEN, UBA
| | - Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA) and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Pabellón IFIBYNE (C1428EHA), Buenos Aires, Argentina
| |
Collapse
|
26
|
Mallory MJ, McClory SP, Chatrikhi R, Gazzara MR, Ontiveros RJ, Lynch KW. Reciprocal regulation of hnRNP C and CELF2 through translation and transcription tunes splicing activity in T cells. Nucleic Acids Res 2020; 48:5710-5719. [PMID: 32338744 PMCID: PMC7261192 DOI: 10.1093/nar/gkaa295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
RNA binding proteins (RBPs) frequently regulate the expression of other RBPs in mammalian cells. Such cross-regulation has been proposed to be important to control networks of coordinated gene expression; however, much remains to be understood about how such networks of cross-regulation are established and what the functional consequence is of coordinated or reciprocal expression of RBPs. Here we demonstrate that the RBPs CELF2 and hnRNP C regulate the expression of each other, such that depletion of one results in reduced expression of the other. Specifically, we show that loss of hnRNP C reduces the transcription of CELF2 mRNA, while loss of CELF2 results in decreased efficiency of hnRNP C translation. We further demonstrate that this reciprocal regulation serves to fine tune the splicing patterns of many downstream target genes. Together, this work reveals new activities of hnRNP C and CELF2, provides insight into a previously unrecognized gene regulatory network, and demonstrates how cross-regulation of RBPs functions to shape the cellular transcriptome.
Collapse
Affiliation(s)
- Michael J Mallory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean P McClory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Ontiveros
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Cherry S, Lynch KW. Alternative splicing and cancer: insights, opportunities, and challenges from an expanding view of the transcriptome. Genes Dev 2020; 34:1005-1016. [PMID: 32747477 PMCID: PMC7397854 DOI: 10.1101/gad.338962.120] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past decade there has been increased awareness of the potential role of alternative splicing in the etiology of cancer. In particular, advances in RNA-Sequencing technology and analysis has led to a wave of discoveries in the last few years regarding the causes and functional relevance of alternative splicing in cancer. Here we discuss the current understanding of the connections between splicing and cancer, with a focus on the most recent findings. We also discuss remaining questions and challenges that must be addressed in order to use our knowledge of splicing to guide the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Sara Cherry
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
28
|
Ray D, Yun YC, Idris M, Cheng S, Boot A, Iain TBH, Rozen SG, Tan P, Epstein DM. A tumor-associated splice-isoform of MAP2K7 drives dedifferentiation in MBNL1-low cancers via JNK activation. Proc Natl Acad Sci U S A 2020; 117:16391-16400. [PMID: 32601196 PMCID: PMC7368273 DOI: 10.1073/pnas.2002499117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Master splicing regulator MBNL1 shapes large transcriptomic changes that drive cellular differentiation during development. Here we demonstrate that MBNL1 is a suppressor of tumor dedifferentiation. We surveyed MBNL1 expression in matched tumor/normal pairs across The Cancer Genome Atlas and found that MBNL1 was down-regulated in several common cancers. Down-regulation of MBNL1 predicted poor overall survival in breast, lung, and stomach adenocarcinomas and increased relapse and distant metastasis in triple-negative breast cancer. Down-regulation of MBNL1 led to increased tumorigenic and stem/progenitor-like properties in vitro and in vivo. A discrete set of alternative splicing events (ASEs) are shared between MBNL1-low cancers and embryonic stem cells including a MAP2K7∆exon2 splice variant that leads to increased stem/progenitor-like properties via JNK activation. Accordingly, JNK inhibition is capable of reversing MAP2K7∆exon2-driven tumor dedifferentiation in MBNL1-low cancer cells. Our work elucidates an alternative-splicing mechanism that drives tumor dedifferentiation and identifies biomarkers that predict enhanced susceptibility to JNK inhibition.
Collapse
Affiliation(s)
- Debleena Ray
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore;
| | - Yu Chye Yun
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Muhammad Idris
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Shanshan Cheng
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Arnoud Boot
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Tan Bee Huat Iain
- Division of Medical Oncology, National Cancer Centre, 169610 Singapore, Singapore
| | - Steven G Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - David M Epstein
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore;
| |
Collapse
|
29
|
Yue L, Wan R, Luan S, Zeng W, Cheung TH. Dek Modulates Global Intron Retention during Muscle Stem Cells Quiescence Exit. Dev Cell 2020; 53:661-676.e6. [DOI: 10.1016/j.devcel.2020.05.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/06/2020] [Accepted: 05/09/2020] [Indexed: 12/21/2022]
|
30
|
Agosto LM, Gazzara MR, Radens CM, Sidoli S, Baeza J, Garcia BA, Lynch KW. Deep profiling and custom databases improve detection of proteoforms generated by alternative splicing. Genome Res 2019; 29:2046-2055. [PMID: 31727681 PMCID: PMC6886501 DOI: 10.1101/gr.248435.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/16/2019] [Indexed: 02/05/2023]
Abstract
Alternative pre-mRNA splicing has long been proposed to contribute greatly to proteome complexity. However, the extent to which mature mRNA isoforms are successfully translated into protein remains controversial. Here, we used high-throughput RNA sequencing and mass spectrometry (MS)–based proteomics to better evaluate the translation of alternatively spliced mRNAs. To increase proteome coverage and improve protein quantitation, we optimized cell fractionation and sample processing steps at both the protein and peptide level. Furthermore, we generated a custom peptide database trained on analysis of RNA-seq data with MAJIQ, an algorithm optimized to detect and quantify differential and unannotated splice junction usage. We matched tandem mass spectra acquired by data-dependent acquisition (DDA) against our custom RNA-seq based database, as well as SWISS-PROT and RefSeq databases to improve identification of splicing-derived proteoforms by 28% compared with use of the SWISS-PROT database alone. Altogether, we identified peptide evidence for 554 alternate proteoforms corresponding to 274 genes. Our increased depth and detection of proteins also allowed us to track changes in the transcriptome and proteome induced by T-cell stimulation, as well as fluctuations in protein subcellular localization. In sum, our data here confirm that use of generic databases in proteomic studies underestimates the number of spliced mRNA isoforms that are translated into protein and provides a workflow that improves isoform detection in large-scale proteomic experiments.
Collapse
Affiliation(s)
- Laura M Agosto
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caleb M Radens
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Genetics and Epigenetics, Cell & Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Josue Baeza
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
31
|
Gava SG, Tavares NC, Falcone FH, Oliveira G, Mourão MM. Profiling Transcriptional Regulation and Functional Roles of Schistosoma mansoni c-Jun N-Terminal Kinase. Front Genet 2019; 10:1036. [PMID: 31681440 PMCID: PMC6813216 DOI: 10.3389/fgene.2019.01036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play a regulatory role and influence various biological activities, such as cell proliferation, differentiation, and survival. Our group has demonstrated through functional studies that Schistosoma mansoni c-Jun N-terminal kinase (SmJNK) MAPK is involved in the parasite's development, reproduction, and survival. SmJNK can, therefore, be considered a potential target for the development of new drugs. Considering the importance of SmJNK in S. mansoni maturation, we aimed at understanding of SmJNK regulated signaling pathways in the parasite, correlating expression data with S. mansoni development. To better understand the role of SmJNK in S. mansoni intravertebrate host life stages, RNA interference knockdown was performed in adult worms and in schistosomula larval stage. SmJNK knocked-down in adult worms showed a decrease in oviposition and no significant alteration in their movement. RNASeq libraries of SmJNK knockdown schistosomula were sequenced. A total of 495 differentially expressed genes were observed in the SmJNK knockdown parasites, of which 373 were down-regulated and 122 up-regulated. Among the down-regulated genes, we found transcripts related to protein folding, purine nucleotide metabolism, the structural composition of ribosomes and cytoskeleton. Genes coding for proteins that bind to nucleic acids and proteins involved in the phagosome and spliceosome pathways were enriched. Additionally, we found that SmJNK and Smp38 MAPK signaling pathways converge regulating the expression of a large set of genes. C. elegans orthologous genes were enriched for genes related to sterility and oocyte maturation, corroborating the observed phenotype alteration. This work allowed an in-depth analysis of the SmJNK signaling pathway, elucidating gene targets of regulation and functional roles of this critical kinase for parasite maturation.
Collapse
Affiliation(s)
- Sandra Grossi Gava
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Naiara Clemente Tavares
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franco Harald Falcone
- Allergy and Infectious Diseases Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
| | | | - Marina Moraes Mourão
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
32
|
More than a messenger: Alternative splicing as a therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194395. [PMID: 31271898 DOI: 10.1016/j.bbagrm.2019.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Alternative splicing of pre-mRNA is an essential post- and co-transcriptional mechanism of gene expression regulation that produces multiple mature mRNA transcripts from a single gene. Genetic mutations that affect splicing underlie numerous devastating diseases. The complexity of splicing regulation allows for multiple therapeutic approaches to correct disease-associated mis-splicing events. In this review, we first highlight recent findings from therapeutic strategies that have used splice switching antisense oligonucleotides and small molecules that bind directly to RNA. Second, we summarize different genetic and chemical approaches to target components of the spliceosome to correct splicing defects in pathological conditions. Finally, we present an overview of compounds that target kinases and accessory pathways that intersect with the splicing machinery. Advancements in the understanding of disease-specific defects caused by mis-regulation of alternative splicing will certainly increase the development of therapeutic options for the clinic. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
|
33
|
New J, Subramaniam D, Ramalingam S, Enders J, Sayed AAA, Ponnurangam S, Standing D, Ramamoorthy P, O'Neil M, Dixon DA, Saha S, Umar S, Gunewardena S, Jensen RA, Thomas SM, Anant S. Pleotropic role of RNA binding protein CELF2 in autophagy induction. Mol Carcinog 2019; 58:1400-1409. [PMID: 31020708 DOI: 10.1002/mc.23023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
We previously reported that ionizing radiation (IR) mediates cell death through the induction of CUGBP elav-like family member 2 (CELF2), a tumor suppressor. CELF2 is an RNA binding protein that modulates mRNA stability and translation. Since IR induces autophagy, we hypothesized that CELF2 regulates autophagy-mediated colorectal cancer (CRC) cell death. For clinical relevance, we determined CELF2 levels in The Cancer Genome Atlas (TCGA). Role of CELF2 in radiation response was carried out in CRC cell lines by immunoblotting, immunofluorescence, autophagic vacuole analyses, RNA stability assay, quantitative polymerase chain reaction and electron microscopy. In vivo studies were performed in a xenograft tumor model. TCGA analyses demonstrated that compared to normal tissue, CELF2 is expressed at significantly lower levels in CRC, and is associated with better overall 5-year survival in patients receiving radiation. Mechanistically, CELF2 increased levels of critical components of the autophagy cascade including Beclin-1, ATG5, and ATG12 by modulating mRNA stability. CELF2 also increased autophagic flux in CRC. IR significantly induced autophagy in CRC which correlates with increased levels of CELF2 and autophagy associated proteins. Silencing CELF2 with siRNA, mitigated IR induced autophagy. Moreover, knockdown of CELF2 in vivo conferred tumor resistance to IR. These studies elucidate an unrecognized role for CELF2 in inducing autophagy and potentiating the effects of radiotherapy in CRC.
Collapse
Affiliation(s)
- Jacob New
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas, Kansas.,Department of Otolaryngology, University of Kansas Medical Center, Kansas, Kansas
| | | | - Satish Ramalingam
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, Kansas
| | - Jonathan Enders
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas, Kansas
| | | | | | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, Kansas
| | - Prabhu Ramamoorthy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, Kansas
| | - Maura O'Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas, Kansas
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, Kansas
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas, Kansas
| | - Sumedha Gunewardena
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas, Kansas
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas, Kansas
| | - Sufi Mary Thomas
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas, Kansas.,Department of Otolaryngology, University of Kansas Medical Center, Kansas, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas, Kansas
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, Kansas
| |
Collapse
|
34
|
Carbonell C, Ulsamer A, Vivori C, Papasaikas P, Böttcher R, Joaquin M, Miñana B, Tejedor JR, de Nadal E, Valcárcel J, Posas F. Functional Network Analysis Reveals the Relevance of SKIIP in the Regulation of Alternative Splicing by p38 SAPK. Cell Rep 2019; 27:847-859.e6. [PMID: 30995481 PMCID: PMC6484779 DOI: 10.1016/j.celrep.2019.03.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Alternative splicing is a prevalent mechanism of gene regulation that is modulated in response to a wide range of extracellular stimuli. Stress-activated protein kinases (SAPKs) play a key role in controlling several steps of mRNA biogenesis. Here, we show that osmostress has an impact on the regulation of alternative splicing (AS), which is partly mediated through the action of p38 SAPK. Splicing network analysis revealed a functional connection between p38 and the spliceosome component SKIIP, whose depletion abolished a significant fraction of p38-mediated AS changes. Importantly, p38 interacted with and directly phosphorylated SKIIP, thereby altering its activity. SKIIP phosphorylation regulated AS of GADD45α, the upstream activator of the p38 pathway, uncovering a negative feedback loop involving AS regulation. Our data reveal mechanisms and targets of SAPK function in stress adaptation through the regulation of AS.
Collapse
Affiliation(s)
- Caterina Carbonell
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Arnau Ulsamer
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Claudia Vivori
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Panagiotis Papasaikas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - René Böttcher
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Manel Joaquin
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Belén Miñana
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Ramón Tejedor
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Juan Valcárcel
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
35
|
Openshaw RL, Kwon J, McColl A, Penninger JM, Cavanagh J, Pratt JA, Morris BJ. JNK signalling mediates aspects of maternal immune activation: importance of maternal genotype in relation to schizophrenia risk. J Neuroinflammation 2019; 16:18. [PMID: 30691477 PMCID: PMC6350402 DOI: 10.1186/s12974-019-1408-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Important insight into the mechanisms through which gene-environmental interactions cause schizophrenia can be achieved through preclinical studies combining prenatal immune stimuli with disease-related genetic risk modifications. Accumulating evidence associates JNK signalling molecules, including MKK7/MAP2K7, with genetic risk. We tested the hypothesis that Map2k7 gene haploinsufficiency in mice would alter the prenatal immune response to the viral mimetic polyriboinosinic-polyribocytidylic acid (polyI:C), specifically investigating the impact of maternal versus foetal genetic variants. Methods PolyI:C was administered to dams (E12.5), and cytokine/chemokine levels were measured 6 h later, in maternal plasma, placenta and embryonic brain. Results PolyI:C dramatically elevated maternal plasma levels of most cytokines/chemokines. Induction of IL-1β, IL-2, IL-10, IL-12, TNF-α and CXCL3 was enhanced, while CCL5 was suppressed, in Map2k7 hemizygous (Hz) dams relative to controls. Maternal polyI:C administration also increased embryonic brain chemokines, influenced by both maternal and embryonic genotype: CCL5 and CXCL10 levels were higher in embryonic brains from Map2k7 dams versus control dams; for CCL5, this was more pronounced in Map2k7 Hz embryos. Placental CXCL10 and CXCL12 levels were also elevated by polyI:C, the former enhanced and the latter suppressed, in placentae from maternal Map2k7 Hzs relative to control dams receiving polyI:C. Conclusions The results demonstrate JNK signalling as a mediator of MIA effects on the foetus. Since both elevated CXCL10 and supressed CXCL12 compromise developing GABAergic interneurons, the results support maternal immune challenge contributing to schizophrenia-associated neurodevelopmental abnormalities. The influence of Map2k7 on cytokine/chemokine induction converges the genetic and environmental aspects of schizophrenia, and the overt influence of maternal genotype offers an intriguing new insight into modulation of embryonic neurodevelopment by genetic risk. Electronic supplementary material The online version of this article (10.1186/s12974-019-1408-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jaedeok Kwon
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alison McColl
- Institute of Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Josef M Penninger
- IMBA, Institute for Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Jonathan Cavanagh
- Institute of Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Institute of Neuroscience and Psychology, West Medical Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
36
|
Thompson MG, Lynch KW. Functional and Mechanistic Interplay of Host and Viral Alternative Splicing Regulation during Influenza Infection. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 84:123-131. [PMID: 32703803 DOI: 10.1101/sqb.2019.84.039040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alternative splicing is a pervasive gene regulatory mechanism utilized by both mammalian cells and viruses to expand their genomic coding capacity. The process of splicing and the RNA sequences that guide this process are the same in mammalian and viral transcripts; however, viruses lack the splicing machinery and therefore must usurp both the host spliceosome and many of the associated regulatory proteins in order to correctly process their genes. Here, we use the example of the influenza A virus to both describe how viruses utilize host splicing factors to regulate their own splicing and provide examples of how viral infection can, in turn, alter host splicing. Importantly, we show that at least some of the viral-induced changes in host splicing occur in genes that alter the efficiency of influenza replication. We emphasize the importance of increased understanding of the mechanistic interplay between host and viral splicing, and its functional consequences, in uncovering potential antiviral vulnerabilities.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Pai AA, Luca F. Environmental influences on RNA processing: Biochemical, molecular and genetic regulators of cellular response. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1503. [PMID: 30216698 PMCID: PMC6294667 DOI: 10.1002/wrna.1503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
RNA processing has emerged as a key mechanistic step in the regulation of the cellular response to environmental perturbation. Recent work has uncovered extensive remodeling of transcriptome composition upon environmental perturbation and linked the impacts of this molecular plasticity to health and disease outcomes. These isoform changes and their underlying mechanisms are varied-involving alternative sites of transcription initiation, alternative splicing, and alternative cleavage at the 3' end of the mRNA. The mechanisms and consequences of differential RNA processing have been characterized across a range of common environmental insults, including chemical stimuli, immune stimuli, heat stress, and cancer pathogenesis. In each case, there are perturbation-specific contributions of local (cis) regulatory elements or global (trans) factors and downstream consequences. Overall, it is clear that choices in isoform usage involve a balance between the usage of specific genetic elements (i.e., splice sites, polyadenylation sites) and the timing at which certain decisions are made (i.e., transcription elongation rate). Fine-tuned cellular responses to environmental perturbation are often dependent on the genetic makeup of the cell. Genetic analyses of interindividual variation in splicing have identified genetic effects on splicing that contribute to variation in complex traits. Finally, the increase in the number of tissue types and environmental conditions analyzed for RNA processing is paralleled by the need to develop appropriate analytical tools. The combination of large datasets, novel methods and conditions explored promises to provide a much greater understanding of the role of RNA processing response in human phenotypic variation. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Athma A Pai
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, and Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
38
|
Yoon BH, Kim M, Kim MH, Kim HJ, Kim JH, Kim JH, Kim J, Kim YS, Lee D, Kang SJ, Kim SY. Dynamic Transcriptome, DNA Methylome, and DNA Hydroxymethylome Networks During T-Cell Lineage Commitment. Mol Cells 2018; 41:953-963. [PMID: 30396239 PMCID: PMC6277565 DOI: 10.14348/molcells.2018.0213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
The stepwise development of T cells from a multipotent precursor is guided by diverse mechanisms, including interactions among lineage-specific transcription factors (TFs) and epigenetic changes, such as DNA methylation and hydroxymethylation, which play crucial roles in mammalian development and lineage commitment. To elucidate the transcriptional networks and epigenetic mechanisms underlying T-cell lineage commitment, we investigated genome-wide changes in gene expression, DNA methylation and hydroxymethylation among populations representing five successive stages of T-cell development (DN3, DN4, DP, CD4+, and CD8+) by performing RNA-seq, MBD-seq and hMeDIP-seq, respectively. The most significant changes in the transcriptomes and epigenomes occurred during the DN4 to DP transition. During the DP stage, many genes involved in chromatin modification were up-regulated and exhibited dramatic changes in DNA hydroxymethylation. We also observed 436 alternative splicing events, and approximately 57% (252) of these events occurred during the DP stage. Many stage-specific, differentially methylated regions were observed near the stage-specific, differentially expressed genes. The dynamic changes in DNA methylation and hydroxymethylation were associated with the recruitment of stage-specific TFs. We elucidated interactive networks comprising TFs, chromatin modifiers, and DNA methylation and hope that this study provides a framework for the understanding of the molecular networks underlying T-cell lineage commitment.
Collapse
Affiliation(s)
- Byoung-Ha Yoon
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Mirang Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Min-Hyeok Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Jeong-Hwan Kim
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Jong Hwan Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Jina Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Yong Sung Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon,
Korea
| | - Seon-Young Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon,
Korea
- Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,
Korea
| |
Collapse
|
39
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Thompson MG, Muñoz-Moreno R, Bhat P, Roytenberg R, Lindberg J, Gazzara MR, Mallory MJ, Zhang K, García-Sastre A, Fontoura BMA, Lynch KW. Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nat Commun 2018; 9:2407. [PMID: 29921878 PMCID: PMC6008300 DOI: 10.1038/s41467-018-04779-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Three of the eight RNA segments encoded by the influenza A virus (IAV) undergo alternative splicing to generate distinct proteins. Previously, we found that host proteins hnRNP K and NS1-BP regulate IAV M segment splicing, but the mechanistic details were unknown. Here we show NS1-BP and hnRNP K bind M mRNA downstream of the M2 5′ splice site (5′ss). NS1-BP binds most proximal to the 5′ss, partially overlapping the U1 snRNP binding site, while hnRNP K binds further downstream and promotes U1 snRNP recruitment. Mutation of either or both the hnRNP K and NS1-BP-binding sites results in M segment mis-splicing and attenuated IAV replication. Additionally, we show that hnRNP K and NS1-BP regulate host splicing events and that viral infection causes mis-splicing of some of these transcripts. Therefore, our proposed mechanism of hnRNP K/NS1-BP mediated IAV M splicing provides potential targets of antiviral intervention and reveals novel host functions for these proteins. Alternative splicing of influenza A virus (IAV) M transcript is regulated by hnRNP K and NS1-BP, but mechanistic details are unknown. Here, Thompson et al. show how hnRNP K and NS1-BP bind M mRNA and that these proteins regulate splicing of host transcripts in both the absence and presence of IAV infection.
Collapse
Affiliation(s)
- Matthew G Thompson
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Renat Roytenberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - John Lindberg
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Matthew R Gazzara
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Michael J Mallory
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Ke Zhang
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA.,Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Ave., Box 1124, New York, NY, 10029, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kristen W Lynch
- Departments of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Juan-Mateu J, Alvelos MI, Turatsinze JV, Villate O, Lizarraga-Mollinedo E, Grieco FA, Marroquí L, Bugliani M, Marchetti P, Eizirik DL. SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival. Diabetes 2018; 67:423-436. [PMID: 29246973 PMCID: PMC5828453 DOI: 10.2337/db17-0736] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Progressive failure of insulin-producing β-cells is the central event leading to diabetes, but the signaling networks controlling β-cell fate remain poorly understood. Here we show that SRp55, a splicing factor regulated by the diabetes susceptibility gene GLIS3, has a major role in maintaining the function and survival of human β-cells. RNA sequencing analysis revealed that SRp55 regulates the splicing of genes involved in cell survival and death, insulin secretion, and c-Jun N-terminal kinase (JNK) signaling. In particular, SRp55-mediated splicing changes modulate the function of the proapoptotic proteins BIM and BAX, JNK signaling, and endoplasmic reticulum stress, explaining why SRp55 depletion triggers β-cell apoptosis. Furthermore, SRp55 depletion inhibits β-cell mitochondrial function, explaining the observed decrease in insulin release. These data unveil a novel layer of regulation of human β-cell function and survival, namely alternative splicing modulated by key splicing regulators such as SRp55, that may cross talk with candidate genes for diabetes.
Collapse
Affiliation(s)
- Jonàs Juan-Mateu
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Inês Alvelos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Valéry Turatsinze
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Fabio Arturo Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Laura Marroquí
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Décio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- WELBIO, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
42
|
RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol 2018; 19:120-129. [PMID: 29348497 DOI: 10.1038/s41590-017-0028-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
RNA-binding proteins (RBPs) are essential for the development and function of the immune system. They interact dynamically with RNA to control its biogenesis and turnover by transcription-dependent and transcription-independent mechanisms. In this Review, we discuss the molecular mechanisms by which RBPs allow gene expression changes to occur at different speeds and to varying degrees, and which RBPs regulate the diversity of the transcriptome and proteome. These proteins are nodes for integration of transcriptional and signaling networks and are intimately linked to intermediary metabolism. They are essential components of regulatory feedback mechanisms that maintain immune tolerance and limit inflammation. The role of RBPs in malignancy and autoimmunity has led to their emergence as targets for the development of new therapeutic modalities.
Collapse
|
43
|
Khoa LTP, Dou Y. Phosphoproteomics links glycogen synthase kinase-3 to RNA splicing. J Biol Chem 2017; 292:18256-18257. [PMID: 29101250 DOI: 10.1074/jbc.h117.813527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinases play essential biological roles by phosphorylating a diverse range of signaling molecules, but deciphering their direct physiological targets remains a challenge. A new study by Shinde et al. uses phosphoproteomics to identify glycogen synthase kinase-3 (GSK-3) substrates in mouse embryonic stem cells (mESCs), providing a broad profile of GSK-3 activity and defining a new role for this central kinase in regulating RNA splicing.
Collapse
Affiliation(s)
- Le Tran Phuc Khoa
- From the Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yali Dou
- From the Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
44
|
Shinde MY, Sidoli S, Kulej K, Mallory MJ, Radens CM, Reicherter AL, Myers RL, Barash Y, Lynch KW, Garcia BA, Klein PS. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing. J Biol Chem 2017; 292:18240-18255. [PMID: 28916722 DOI: 10.1074/jbc.m117.813527] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3-dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3-dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3-dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3-dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing.
Collapse
Affiliation(s)
| | - Simone Sidoli
- the Penn Epigenetics Institute.,the Department of Biochemistry and Biophysics
| | - Katarzyna Kulej
- the Penn Epigenetics Institute.,the Department of Biochemistry and Biophysics
| | | | | | | | | | - Yoseph Barash
- the Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Benjamin A Garcia
- the Penn Epigenetics Institute.,the Department of Biochemistry and Biophysics
| | - Peter S Klein
- From the Pharmacology Graduate Group, .,the Cell and Molecular Biology Graduate Group.,the Department of Medicine (Hematology-Oncology), and
| |
Collapse
|
45
|
Gazzara MR, Mallory MJ, Roytenberg R, Lindberg JP, Jha A, Lynch KW, Barash Y. Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes. Genome Res 2017; 27:1360-1370. [PMID: 28512194 PMCID: PMC5538552 DOI: 10.1101/gr.220517.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
Abstract
Over 95% of human multi-exon genes undergo alternative splicing, a process important in normal development and often dysregulated in disease. We sought to analyze the global splicing regulatory network of CELF2 in human T cells, a well-studied splicing regulator critical to T cell development and function. By integrating high-throughput sequencing data for binding and splicing quantification with sequence features and probabilistic splicing code models, we find evidence of splicing antagonism between CELF2 and the RBFOX family of splicing factors. We validate this functional antagonism through knockdown and overexpression experiments in human cells and find CELF2 represses RBFOX2 mRNA and protein levels. Because both families of proteins have been implicated in the development and maintenance of neuronal, muscle, and heart tissues, we analyzed publicly available data in these systems. Our analysis suggests global, antagonistic coregulation of splicing by the CELF and RBFOX proteins in mouse muscle and heart in several physiologically relevant targets, including proteins involved in calcium signaling and members of the MEF2 family of transcription factors. Importantly, a number of these coregulated events are aberrantly spliced in mouse models and human patients with diseases that affect these tissues, including heart failure, diabetes, or myotonic dystrophy. Finally, analysis of exons regulated by ancient CELF family homologs in chicken, Drosophila, and Caenorhabditis elegans suggests this antagonism is conserved throughout evolution.
Collapse
Affiliation(s)
- Matthew R Gazzara
- Department of Genetics.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Renat Roytenberg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John P Lindberg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anupama Jha
- Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Genetics.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yoseph Barash
- Department of Genetics.,Department of Computer and Information Science, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 868] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
47
|
Visualizing the life of mRNA in T cells. Biochem Soc Trans 2017; 45:563-570. [PMID: 28408496 DOI: 10.1042/bst20170003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022]
Abstract
T cells release ample amounts of cytokines during infection. This property is critical to prevent pathogen spreading and persistence. Nevertheless, whereas rapid and ample cytokine production supports the clearance of pathogens, the production must be restricted in time and location to prevent detrimental effects of chronic inflammation and immunopathology. Transcriptional and post-transcriptional processes determine the levels of cytokine production. How these regulatory mechanisms are interconnected, and how they regulate the magnitude of protein production in primary T cells is to date not well studied. Here, we highlight recent advances in the field that boost our understanding of the regulatory processes of cytokine production of T cells, with a focus on transcription, mRNA stability, localization and translation.
Collapse
|
48
|
Activation-Dependent TRAF3 Exon 8 Alternative Splicing Is Controlled by CELF2 and hnRNP C Binding to an Upstream Intronic Element. Mol Cell Biol 2017; 37:MCB.00488-16. [PMID: 28031331 DOI: 10.1128/mcb.00488-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022] Open
Abstract
Cell-type-specific and inducible alternative splicing has a fundamental impact on regulating gene expression and cellular function in a variety of settings, including activation and differentiation. We have recently shown that activation-induced skipping of TRAF3 exon 8 activates noncanonical NF-κB signaling upon T cell stimulation, but the regulatory basis for this splicing event remains unknown. Here we identify cis- and trans-regulatory elements rendering this splicing switch activation dependent and cell type specific. The cis-acting element is located 340 to 440 nucleotides upstream of the regulated exon and acts in a distance-dependent manner, since altering the location reduces its activity. A small interfering RNA screen, followed by cross-link immunoprecipitation and mutational analyses, identified CELF2 and hnRNP C as trans-acting factors that directly bind the regulatory sequence and together mediate increased exon skipping in activated T cells. CELF2 expression levels correlate with TRAF3 exon skipping in several model systems, suggesting that CELF2 is the decisive factor, with hnRNP C being necessary but not sufficient. These data suggest an interplay between CELF2 and hnRNP C as the mechanistic basis for activation-dependent alternative splicing of TRAF3 exon 8 and additional exons and uncover an intronic splicing silencer whose full activity depends on the precise location more than 300 nucleotides upstream of the regulated exon.
Collapse
|
49
|
SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res 2017; 27:540-558. [PMID: 28084329 DOI: 10.1038/cr.2017.7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022] Open
Abstract
Extracellular signals have been shown to impact on alternative pre-mRNA splicing; however, the molecular mechanisms and biological significance of signal-induced splicing regulation remain largely unknown. Here, we report that epidermal growth factor (EGF) induces splicing changes through ubiquitylation of a well-known splicing regulator, hnRNP A1. EGF signaling upregulates an E3 ubiquitin (Ub) ligase adaptor, SPRY domain-containing SOCS box protein 1 (SPSB1), which recruits Elongin B/C-Cullin complexes to conjugate lysine 29-linked polyUb chains onto hnRNP A1. Importantly, SPSB1 and ubiquitylation of hnRNP A1 have a critical role in EGF-driven cell migration. Mechanistically, EGF-induced ubiquitylation of hnRNP A1 together with the activation of SR protein kinases (SRPKs) results in the upregulation of a Rac1 splicing isoform, Rac1b, to promote cell motility. These findings unravel a novel crosstalk between protein ubiquitylation and alternative splicing in EGF/EGF receptor signaling, and identify a new EGF/SPSB1/hnRNP A1/Rac1 axis in modulating cell migration, which may have important implications for cancer treatment.
Collapse
|
50
|
Vernia S, Edwards YJK, Han MS, Cavanagh-Kyros J, Barrett T, Kim JK, Davis RJ. An alternative splicing program promotes adipose tissue thermogenesis. eLife 2016; 5:e17672. [PMID: 27635635 PMCID: PMC5026472 DOI: 10.7554/elife.17672] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/14/2016] [Indexed: 01/11/2023] Open
Abstract
Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia.
Collapse
Affiliation(s)
- Santiago Vernia
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Yvonne JK Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Myoung Sook Han
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, Worcester, United States
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, Worcester, United States
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, Worcester, United States
| |
Collapse
|