1
|
Li Y, Du M, Jin Z. Generation of ID1/3 knockout human embryonic stem cell lines (WAe009-A-2A and WAe009-A-2B) derived from H9 using CRISPR/Cas9. Stem Cell Res 2024; 81:103569. [PMID: 39342788 DOI: 10.1016/j.scr.2024.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
ID1 and ID3 are the members of the Inhibitor of DNA Binding (ID) protein family, which negatively regulates the basic helix-loop-helix (bHLH) transcription factors by forming heterodimers, are involved in neurodevelopment, cardiovascular development, and tumor metastasis. We created twoID1/3knockout cell lines from a human embryonic stem cell (hESC) line (H9) by CRISPR/Cas9-mediated gene targeting. These cell lines maintain stem cell morphology, a normal karyotype, and the expression of pluripotent marker genes. Additionally, they retain their in vivo differentiation potential. Thecell lines are valuable tools for studying the roles of ID1/3 in neurodevelopment and cardiovascular diseases.
Collapse
Affiliation(s)
- Yihui Li
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Mingxia Du
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| | - Zibing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
| |
Collapse
|
2
|
Okamoto N, Yagi K, Imawaka S, Takaoka M, Aizawa F, Niimura T, Goda M, Miyata K, Kawada K, Izawa‐Ishizawa Y, Sakaguchi S, Ishizawa K. Asciminib, a novel allosteric inhibitor of BCR-ABL1, shows synergistic effects when used in combination with imatinib with or without drug resistance. Pharmacol Res Perspect 2024; 12:e1214. [PMID: 39031848 PMCID: PMC11191601 DOI: 10.1002/prp2.1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 07/22/2024] Open
Abstract
In the treatment of chronic myeloid leukemia (CML), resistance to BCR-ABL inhibitors makes it difficult to continue treatment and is directly related to life expectancy. Therefore, asciminib was introduced to the market as a useful drug for overcoming drug resistance. While combining molecular targeted drugs is useful to avoid drug resistance, the new BCR-ABL inhibitor asciminib and conventional BCR-ABL inhibitors should be used as monotherapy in principle. Therefore, we investigated the synergistic effect and mechanism of the combination of asciminib and imatinib. We generated imatinib-resistant cells using the human CML cell line K562, examined the effects of imatinib and asciminib exposure on cell survival using the WST-8 assay, and comprehensively analyzed genetic variation related to drug resistance using RNA-seq and real-time PCR. A synergistic effect was observed when imatinib and asciminib were combined with or without imatinib resistance. Three genes, GRRP1, ESPN, and NOXA1, were extracted as the sites of action of asciminib. Asciminib in combination with BCR-ABL inhibitors may improve the therapeutic efficacy of conventional BCR-ABL inhibitors and prevent the development of resistance. Its dosage may be effective even at minimal doses that do not cause side effects. Further verification of this mechanism of action is needed. Additionally, cross-resistance between BCR-ABL inhibitors and asciminib may occur, which needs to be clarified through further validation as soon as possible.
Collapse
MESH Headings
- Imatinib Mesylate/pharmacology
- Humans
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Drug Synergism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Protein Kinase Inhibitors/pharmacology
- Cell Survival/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Agents/pharmacology
- Niacinamide/analogs & derivatives
- Pyrazoles
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Kenta Yagi
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Sayaka Imawaka
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Mayu Takaoka
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Fuka Aizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Takahiro Niimura
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| | - Mitsuhiro Goda
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
| | - Koji Miyata
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Kei Kawada
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of Clinical Pharmacy Practice PedagogyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yuki Izawa‐Ishizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of General MedicineTaoka HospitalTokushimaJapan
| | - Satoshi Sakaguchi
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
- Department of Respiratory Medicine and RheumatologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacology and TherapeuticsTokushima University Graduate School of Biomedical SciencesTokushimaJapan
- Department of PharmacyTokushima University HospitalTokushimaJapan
- Clinical Research Center for Developmental TherapeuticsTokushima University HospitalTokushimaJapan
| |
Collapse
|
3
|
He J, Huo X, Pei G, Jia Z, Yan Y, Yu J, Qu H, Xie Y, Yuan J, Zheng Y, Hu Y, Shi M, You K, Li T, Ma T, Zhang MQ, Ding S, Li P, Li Y. Dual-role transcription factors stabilize intermediate expression levels. Cell 2024; 187:2746-2766.e25. [PMID: 38631355 DOI: 10.1016/j.cell.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
Collapse
Affiliation(s)
- Jinnan He
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiangru Huo
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Zeran Jia
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiming Yan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiawei Yu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haozhi Qu
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunxin Xie
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Junsong Yuan
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuan Zheng
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Minglei Shi
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Kaiqiang You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Michael Q Zhang
- Bioinformatics Division, National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, The University of Texas, Dallas, TX 75080-3021, USA
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| | - Yinqing Li
- The IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Bioinformatics, State Key Lab of Molecular Oncology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Rafii P, Cruz PR, Ettich J, Seibel C, Padrini G, Wittich C, Lang A, Petzsch P, Köhrer K, Moll JM, Floss DM, Scheller J. Engineered interleukin-6-derived cytokines recruit artificial receptor complexes and disclose CNTF signaling via the OSMR. J Biol Chem 2024; 300:107251. [PMID: 38569939 PMCID: PMC11039321 DOI: 10.1016/j.jbc.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling β-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Rodrigues Cruz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Giacomo Padrini
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Su Y, Yu Z, Yang Y, Wong K, Li X. Distribution-Agnostic Deep Learning Enables Accurate Single-Cell Data Recovery and Transcriptional Regulation Interpretation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307280. [PMID: 38380499 PMCID: PMC11040354 DOI: 10.1002/advs.202307280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a robust method for studying gene expression at the single-cell level, but accurately quantifying genetic material is often hindered by limited mRNA capture, resulting in many missing expression values. Existing imputation methods rely on strict data assumptions, limiting their broader application, and lack reliable supervision, leading to biased signal recovery. To address these challenges, authors developed Bis, a distribution-agnostic deep learning model for accurately recovering missing sing-cell gene expression from multiple platforms. Bis is an optimal transport-based autoencoder model that can capture the intricate distribution of scRNA-seq data while addressing the characteristic sparsity by regularizing the cellular embedding space. Additionally, they propose a module using bulk RNA-seq data to guide reconstruction and ensure expression consistency. Experimental results show Bis outperforms other models across simulated and real datasets, showcasing superiority in various downstream analyses including batch effect removal, clustering, differential expression analysis, and trajectory inference. Moreover, Bis successfully restores gene expression levels in rare cell subsets in a tumor-matched peripheral blood dataset, revealing developmental characteristics of cytokine-induced natural killer cells within a head and neck squamous cell carcinoma microenvironment.
Collapse
Affiliation(s)
- Yanchi Su
- School of Artificial IntelligenceJilin UniversityChangchun130012China
| | - Zhuohan Yu
- School of Artificial IntelligenceJilin UniversityChangchun130012China
| | - Yuning Yang
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoONM5S 3E1Canada
| | - Ka‐Chun Wong
- Department of Computer ScienceCity University of Hong KongHong Kong SAR999077China
| | - Xiangtao Li
- School of Artificial IntelligenceJilin UniversityChangchun130012China
| |
Collapse
|
6
|
Riege D, Herschel S, Heintze L, Fenkl T, Wesseler F, Sievers S, Peifer C, Schade D. Identification of Maleimide-Fused Carbazoles as Novel Noncanonical Bone Morphogenetic Protein Synergizers. ACS Pharmacol Transl Sci 2023; 6:1207-1220. [PMID: 37588754 PMCID: PMC10426274 DOI: 10.1021/acsptsci.3c00103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 08/18/2023]
Abstract
Morphogenic signaling pathways govern embryonic development and tissue homeostasis on the cellular level. Precise control of such signaling events paves the way for innovative therapeutic approaches in the field of regenerative medicine. In line with these notions, bone morphogenic protein (BMP) is a major osteogenic driver and pharmacological stimulation of BMP signaling holds supreme potential for diseases and defects of the skeleton. Efforts to identify small-molecule modalities that activate or potentiate the BMP pathway have primarily been focused on the canonical signaling cascade. Here, we describe the phenotypic identification and development of specific carbazolomaleimides 2 as novel noncanonical BMP synergizers with submicromolar osteogenic cellular potency. The devised chemical tools are characterized to specifically regulate Id gene expression in a SMAD-independent, yet highly BMP-dependent fashion. Mechanistic studies revealed that GSK3 inhibition and increased β-catenin levels are partly responsible for this activity. The utility of the new BMP synergizer profile was further exemplified by showing how the synergistic action of canonical and noncanonical BMP enhancers additively amplifies BMP-dependent osteogenic outputs. Carbazolomaleimide 2b serves as a new and unique pharmacological tool for the modulation and study of the BMP pathway.
Collapse
Affiliation(s)
- Daniel Riege
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Sven Herschel
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Linda Heintze
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Teresa Fenkl
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Fabian Wesseler
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Sonja Sievers
- Compound Management and
Screening Center, Otto-Hahn-Strasse 11, 44227
Dortmund, Germany
| | - Christian Peifer
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
| | - Dennis Schade
- Department of Pharmaceutical &
Medicinal Chemistry, Christian-Albrechts-University of
Kiel, Gutenbergstrasse 76, 24118 Kiel,
Germany
- Partner Site Kiel, DZHK,
German Center for Cardiovascular Research, 24105
Kiel, Germany
| |
Collapse
|
7
|
Kervadec A, Kezos J, Ni H, Yu M, Marchant J, Spiering S, Kannan S, Kwon C, Andersen P, Bodmer R, Grandi E, Ocorr K, Colas AR. Multiplatform modeling of atrial fibrillation identifies phospholamban as a central regulator of cardiac rhythm. Dis Model Mech 2023; 16:dmm049962. [PMID: 37293707 PMCID: PMC10387351 DOI: 10.1242/dmm.049962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Atrial fibrillation (AF) is a common and genetically inheritable form of cardiac arrhythmia; however, it is currently not known how these genetic predispositions contribute to the initiation and/or maintenance of AF-associated phenotypes. One major barrier to progress is the lack of experimental systems to investigate the effects of gene function on rhythm parameters in models with human atrial and whole-organ relevance. Here, we assembled a multi-model platform enabling high-throughput characterization of the effects of gene function on action potential duration and rhythm parameters using human induced pluripotent stem cell-derived atrial-like cardiomyocytes and a Drosophila heart model, and validation of the findings using computational models of human adult atrial myocytes and tissue. As proof of concept, we screened 20 AF-associated genes and identified phospholamban loss of function as a top conserved hit that shortens action potential duration and increases the incidence of arrhythmia phenotypes upon stress. Mechanistically, our study reveals that phospholamban regulates rhythm homeostasis by functionally interacting with L-type Ca2+ channels and NCX. In summary, our study illustrates how a multi-model system approach paves the way for the discovery and molecular delineation of gene regulatory networks controlling atrial rhythm with application to AF.
Collapse
Affiliation(s)
- Anaïs Kervadec
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Haibo Ni
- Department of Pharmacology, UC Davis, Davis, CA 95616, USA
| | - Michael Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - James Marchant
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sean Spiering
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Suraj Kannan
- Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chulan Kwon
- Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Rolf Bodmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre R. Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Aries A, Zanetti C, Hénon P, Drénou B, Lahlil R. Deciphering the Cardiovascular Potential of Human CD34 + Stem Cells. Int J Mol Sci 2023; 24:ijms24119551. [PMID: 37298503 DOI: 10.3390/ijms24119551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Ex vivo monitored human CD34+ stem cells (SCs) injected into myocardium scar tissue have shown real benefits for the recovery of patients with myocardial infarctions. They have been used previously in clinical trials with hopeful results and are expected to be promising for cardiac regenerative medicine following severe acute myocardial infarctions. However, some debates on their potential efficacy in cardiac regenerative therapies remain to be clarified. To elucidate the levels of CD34+ SC implication and contribution in cardiac regeneration, better identification of the main regulators, pathways, and genes involved in their potential cardiovascular differentiation and paracrine secretion needs to be determined. We first developed a protocol thought to commit human CD34+ SCs purified from cord blood toward an early cardiovascular lineage. Then, by using a microarray-based approach, we followed their gene expression during differentiation. We compared the transcriptome of undifferentiated CD34+ cells to those induced at two stages of differentiation (i.e., day three and day fourteen), with human cardiomyocyte progenitor cells (CMPCs), as well as cardiomyocytes as controls. Interestingly, in the treated cells, we observed an increase in the expressions of the main regulators usually present in cardiovascular cells. We identified cell surface markers of the cardiac mesoderm, such as kinase insert domain receptor (KDR) and the cardiogenic surface receptor Frizzled 4 (FZD4), induced in the differentiated cells in comparison to undifferentiated CD34+ cells. The Wnt and TGF-β pathways appeared to be involved in this activation. This study underlined the real capacity of effectively stimulated CD34+ SCs to express cardiac markers and, once induced, allowed the identification of markers that are known to be involved in vascular and early cardiogenesis, demonstrating their potential priming towards cardiovascular cells. These findings could complement their paracrine positive effects known in cell therapy for heart disease and may help improve the efficacy and safety of using ex vivo expanded CD34+ SCs.
Collapse
Affiliation(s)
- Anne Aries
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| | | | - Bernard Drénou
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
- Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Hôpital E. Muller, 20 Avenue de Dr Laennec, 68100 Mulhouse, France
| | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d'Altkirch, 68100 Mulhouse, France
| |
Collapse
|
9
|
Xu Y, Ma Q, Ren J, Chen L, Guo W, Feng K, Zeng Z, Huang T, Cai Y. Using Machine Learning Methods in Identifying Genes Associated with COVID-19 in Cardiomyocytes and Cardiac Vascular Endothelial Cells. Life (Basel) 2023; 13:life13041011. [PMID: 37109540 PMCID: PMC10146712 DOI: 10.3390/life13041011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) not only causes respiratory system damage, but also imposes strain on the cardiovascular system. Vascular endothelial cells and cardiomyocytes play an important role in cardiac function. The aberrant expression of genes in vascular endothelial cells and cardiomyocytes can lead to cardiovascular diseases. In this study, we sought to explain the influence of respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the gene expression levels of vascular endothelial cells and cardiomyocytes. We designed an advanced machine learning-based workflow to analyze the gene expression profile data of vascular endothelial cells and cardiomyocytes from patients with COVID-19 and healthy controls. An incremental feature selection method with a decision tree was used in building efficient classifiers and summarizing quantitative classification genes and rules. Some key genes, such as MALAT1, MT-CO1, and CD36, were extracted, which exert important effects on cardiac function, from the gene expression matrix of 104,182 cardiomyocytes, including 12,007 cells from patients with COVID-19 and 92,175 cells from healthy controls, and 22,438 vascular endothelial cells, including 10,812 cells from patients with COVID-19 and 11,626 cells from healthy controls. The findings reported in this study may provide insights into the effect of COVID-19 on cardiac cells and further explain the pathogenesis of COVID-19, and they may facilitate the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Yaochen Xu
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Qinglan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China
| | - Zhenbing Zeng
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Protocatechuic Aldehyde Alleviates d -Galactose-Induced Cardiomyocyte Senescence by Regulating the TCF3/ATG5 Axis. J Cardiovasc Pharmacol 2023; 81:221-231. [PMID: 36651950 DOI: 10.1097/fjc.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/03/2022] [Indexed: 01/19/2023]
Abstract
ABSTRACT Cardiomyocyte senescence is an independent risk factor for cardiovascular diseases. Protocatechuic aldehyde (PCA) is a natural chemical in the Chinese medicinal herb Salvia miltiorrhiza . PCA could protect against oxidative stress and inflammation in the cardiovascular system. In present study, we treated H9C2 cells with d -galactose to establish an in vitro model of cardiomyocyte senescence and investigated the role and underlying mechanisms of PCA in myocardial cell senescence. It was found that d -galactose induced transcription factor 3 (TCF3) expression and decreased autophagy-related genes 5 (ATG5) expression. Meanwhile, inflammation and senescence were exacerbated by d -galactose. TCF3 transcriptionally inhibited ATG5 expression. TCF3 knockdown abolished the effects of d -galactose on H9C2 by activating ATG5-mediated autophagy. PCA hindered TCF3 and inflammation to alleviate the d -galactose-induced senescence of H9C2 cells in a dose-dependent manner. Whereas, the anti-inflammation and anti-senescence effects of PCA were reversed by TCF3 knockdown. Furthermore, absence of ATG5 partially eliminated the impacts of PCA on H9C2 cells treated with d -galactose. Conclusively, PCA alleviated d -galactose-induced senescence by downregulating TCF3, promoting ATG5-mediated autophagy, and inhibiting inflammation in H9C2 cells. These results elucidated the potential mechanism by which PCA alleviated cardiomyocyte senescence and enabled its application in treating cardiomyocyte senescence.
Collapse
|
11
|
Sheikh Beig Goharrizi MA, Ghodsi S, Memarjafari MR. Implications of CRISPR-Cas9 Genome Editing Methods in Atherosclerotic Cardiovascular Diseases. Curr Probl Cardiol 2023; 48:101603. [PMID: 36682390 DOI: 10.1016/j.cpcardiol.2023.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Today, new methods have been developed to treat or modify the natural course of cardiovascular diseases (CVDs), including atherosclerosis, by the clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) system. Genome-editing tools are CRISPR-related palindromic short iteration systems such as CRISPR-Cas9, a valuable technology for achieving somatic and germinal genomic manipulation in model cells and organisms for various applications, including the creation of deletion alleles. Mutations in genomic deoxyribonucleic acid and new genes' placement have emerged. Based on World Health Organization fact sheets, 17.9 million people die from CVDs each year, an estimated 32% of all deaths worldwide. 85% of all CVD deaths are due to acute coronary events and strokes. This review discusses the applications of CRISPR-Cas9 technology throughout atherosclerotic disease research and the prospects for future in vivo genome editing therapies. We also describe several limitations that must be considered to achieve the full scientific and therapeutic potential of cardiovascular genome editing in the treatment of atherosclerosis.
Collapse
Affiliation(s)
| | - Saeed Ghodsi
- Department of Cardiology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
12
|
Saha S, Spinelli L, Castro Mondragon JA, Kervadec A, Lynott M, Kremmer L, Roder L, Krifa S, Torres M, Brun C, Vogler G, Bodmer R, Colas AR, Ocorr K, Perrin L. Genetic architecture of natural variation of cardiac performance from flies to humans. eLife 2022; 11:82459. [DOI: 10.7554/elife.82459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Deciphering the genetic architecture of human cardiac disorders is of fundamental importance but their underlying complexity is a major hurdle. We investigated the natural variation of cardiac performance in the sequenced inbred lines of the Drosophila Genetic Reference Panel (DGRP). Genome-wide associations studies (GWAS) identified genetic networks associated with natural variation of cardiac traits which were used to gain insights as to the molecular and cellular processes affected. Non-coding variants that we identified were used to map potential regulatory non-coding regions, which in turn were employed to predict transcription factors (TFs) binding sites. Cognate TFs, many of which themselves bear polymorphisms associated with variations of cardiac performance, were also validated by heart-specific knockdown. Additionally, we showed that the natural variations associated with variability in cardiac performance affect a set of genes overlapping those associated with average traits but through different variants in the same genes. Furthermore, we showed that phenotypic variability was also associated with natural variation of gene regulatory networks. More importantly, we documented correlations between genes associated with cardiac phenotypes in both flies and humans, which supports a conserved genetic architecture regulating adult cardiac function from arthropods to mammals. Specifically, roles for PAX9 and EGR2 in the regulation of the cardiac rhythm were established in both models, illustrating that the characteristics of natural variations in cardiac function identified in Drosophila can accelerate discovery in humans.
Collapse
Affiliation(s)
- Saswati Saha
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Lionel Spinelli
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | | | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Kremmer
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Laurence Roder
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Sallouha Krifa
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Magali Torres
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Christine Brun
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Perrin
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| |
Collapse
|
13
|
Wesseler F, Lohmann S, Riege D, Halver J, Roth A, Pichlo C, Weber S, Takamiya M, Müller E, Ketzel J, Flegel J, Gihring A, Rastegar S, Bertrand J, Baumann U, Knippschild U, Peifer C, Sievers S, Waldmann H, Schade D. Phenotypic Discovery of Triazolo[1,5- c]quinazolines as a First-In-Class Bone Morphogenetic Protein Amplifier Chemotype. J Med Chem 2022; 65:15263-15281. [DOI: 10.1021/acs.jmedchem.2c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabian Wesseler
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Compound Management and Screening Center COMAS, Max Planck Institute of Molecular Physiology (MPI), 44227 Dortmund, Germany
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Stefan Lohmann
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Daniel Riege
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Jonas Halver
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Aileen Roth
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christian Pichlo
- Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sabrina Weber
- Institute of Biological and Chemical Systems - Biological Information Processing at Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems - Biological Information Processing at Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Eva Müller
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Jana Ketzel
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Jana Flegel
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems - Biological Information Processing at Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Jessica Bertrand
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Ulrich Baumann
- Department of Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Christian Peifer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Sonja Sievers
- Compound Management and Screening Center COMAS, Max Planck Institute of Molecular Physiology (MPI), 44227 Dortmund, Germany
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227Dortmund, Germany
| | - Herbert Waldmann
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227Dortmund, Germany
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
14
|
Schroeder AM, Nielsen T, Lynott M, Vogler G, Colas AR, Bodmer R. Nascent polypeptide-Associated Complex and Signal Recognition Particle have cardiac-specific roles in heart development and remodeling. PLoS Genet 2022; 18:e1010448. [PMID: 36240221 PMCID: PMC9604979 DOI: 10.1371/journal.pgen.1010448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Establishing a catalog of Congenital Heart Disease (CHD) genes and identifying functional networks would improve our understanding of its oligogenic underpinnings. Our studies identified protein biogenesis cofactors Nascent polypeptide-Associated Complex (NAC) and Signal-Recognition-Particle (SRP) as disease candidates and novel regulators of cardiac differentiation and morphogenesis. Knockdown (KD) of the alpha- (Nacα) or beta-subunit (bicaudal, bic) of NAC in the developing Drosophila heart disrupted cardiac developmental remodeling resulting in a fly with no heart. Heart loss was rescued by combined KD of Nacα with the posterior patterning Hox gene Abd-B. Consistent with a central role for this interaction in cardiogenesis, KD of Nacα in cardiac progenitors derived from human iPSCs impaired cardiac differentiation while co-KD with human HOXC12 and HOXD12 rescued this phenotype. Our data suggest that Nacα KD preprograms cardioblasts in the embryo for abortive remodeling later during metamorphosis, as Nacα KD during translation-intensive larval growth or pupal remodeling only causes moderate heart defects. KD of SRP subunits in the developing fly heart produced phenotypes that targeted specific segments and cell types, again suggesting cardiac-specific and spatially regulated activities. Together, we demonstrated directed function for NAC and SRP in heart development, and that regulation of NAC function depends on Hox genes.
Collapse
Affiliation(s)
- Analyne M. Schroeder
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Georg Vogler
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Alexandre R. Colas
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| |
Collapse
|
15
|
Gong S, Hu G, Guo R, Zhang J, Yang Y, Ji B, Li G, Yao H. CTCF acetylation at lysine 20 is required for the early cardiac mesoderm differentiation of embryonic stem cells. CELL REGENERATION 2022; 11:34. [PMID: 36117192 PMCID: PMC9482892 DOI: 10.1186/s13619-022-00131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
Abstract
The CCCTC-binding factor (CTCF) protein and its modified forms regulate gene expression and genome organization. However, information on CTCF acetylation and its biological function is still lacking. Here, we show that CTCF can be acetylated at lysine 20 (CTCF-K20) by CREB-binding protein (CBP) and deacetylated by histone deacetylase 6 (HDAC6). CTCF-K20 is required for the CTCF interaction with CBP. A CTCF point mutation at lysine 20 had no effect on self-renewal but blocked the mesoderm differentiation of mouse embryonic stem cells (mESCs). The CTCF-K20 mutation reduced CTCF binding to the promoters and enhancers of genes associated with early cardiac mesoderm differentiation, resulting in diminished chromatin accessibility and decreased enhancer-promoter interactions, impairing gene expression. In summary, this study reveals the important roles of CTCF-K20 in regulating CTCF genomic functions and mESC differentiation into mesoderm.
Collapse
|
16
|
Jiang H, Du M, Li Y, Zhou T, Lei J, Liang H, Zhong Z, Al-Lamki RS, Jiang M, Yang J. ID proteins promote the survival and primed-to-naive transition of human embryonic stem cells through TCF3-mediated transcription. Cell Death Dis 2022; 13:549. [PMID: 35701409 PMCID: PMC9198052 DOI: 10.1038/s41419-022-04958-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023]
Abstract
Inhibition of DNA binding proteins 1 and 3 (ID1 and ID3) are important downstream targets of BMP signalling that are necessary for embryonic development. However, their specific roles in regulating the pluripotency of human embryonic stem cells (hESCs) remain unclear. Here, we examined the roles of ID1 and ID3 in primed and naive-like hESCs and showed that ID1 and ID3 knockout lines (IDs KO) exhibited decreased survival in both primed and naive-like state. IDs KO lines in the primed state also tended to undergo pluripotent dissolution and ectodermal differentiation. IDs KO impeded the primed-to-naive transition (PNT) of hESCs, and overexpression of ID1 in primed hESCs promoted PNT. Furthermore, single-cell RNA sequencing demonstrated that ID1 and ID3 regulated the survival and pluripotency of hESCs through the AKT signalling pathway. Finally, we showed that TCF3 mediated transcriptional inhibition of MCL1 promotes AKT phosphorylation, which was confirmed by TCF3 knockdown in KO lines. Our study suggests that IDs/TCF3 acts through AKT signalling to promote survival and maintain pluripotency of both primed and naive-like hESCs.
Collapse
Affiliation(s)
- Haibin Jiang
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China ,grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mingxia Du
- grid.506261.60000 0001 0706 7839Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yaning Li
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tengfei Zhou
- grid.414906.e0000 0004 1808 0918Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Jia Lei
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongqing Liang
- grid.13402.340000 0004 1759 700XDivision of Human Reproduction and Developmental Genetics, Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Zhen Zhong
- grid.13402.340000 0004 1759 700XDepartment of human anatomy and histoembryology, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Rafia S. Al-Lamki
- grid.5335.00000000121885934Department of Medicine, National Institute of Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Ming Jiang
- grid.13402.340000 0004 1759 700XDepartment of Gastroenterology of The Children’s Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jun Yang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Pitsava G, Feldkamp ML, Pankratz N, Lane J, Kay DM, Conway KM, Hobbs C, Shaw GM, Reefhuis J, Jenkins MM, Almli LM, Moore C, Werler M, Browne ML, Cunniff C, Olshan AF, Pangilinan F, Brody LC, Sicko RJ, Finnell RH, Bamshad MJ, McGoldrick D, Nickerson DA, Mullikin JC, Romitti PA, Mills JL, UW Center for Mendelian Genomics, NISC Comparative Sequencing Program and the National Birth Defects Prevention Study.. Exome sequencing identifies variants in infants with sacral agenesis. Birth Defects Res 2022; 114:215-227. [PMID: 35274497 PMCID: PMC9338687 DOI: 10.1002/bdr2.1987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Sacral agenesis (SA) consists of partial or complete absence of the caudal end of the spine and often presents with additional birth defects. Several studies have examined gene variants for syndromic forms of SA, but only one has examined exomes of children with non-syndromic SA. METHODS Using buccal cell specimens from families of children with non-syndromic SA, exomes of 28 child-parent trios (eight with and 20 without a maternal diagnosis of pregestational diabetes) and two child-father duos (neither with diagnosis of maternal pregestational diabetes) were exome sequenced. RESULTS Three children had heterozygous missense variants in ID1 (Inhibitor of DNA Binding 1), with CADD scores >20 (top 1% of deleterious variants in the genome); two children inherited the variant from their fathers and one from the child's mother. Rare missense variants were also detected in PDZD2 (PDZ Domain Containing 2; N = 1) and SPTBN5 (Spectrin Beta, Non-erythrocytic 5; N = 2), two genes previously suggested to be associated with SA etiology. Examination of variants with autosomal recessive and X-linked recessive inheritance identified five and two missense variants, respectively. Compound heterozygous variants were identified in several genes. In addition, 12 de novo variants were identified, all in different genes in different children. CONCLUSIONS To our knowledge, this is the first study reporting a possible association between ID1 and non-syndromic SA. Although maternal pregestational diabetes has been strongly associated with SA, the missense variants in ID1 identified in two of three children were paternally inherited. These findings add to the knowledge of gene variants associated with non-syndromic SA and provide data for future studies.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcia L. Feldkamp
- Division of Medical Genetics, Department of Pediatrics, 295 Chipeta Way, Suite 2S010, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Kristin M. Conway
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Charlotte Hobbs
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cynthia Moore
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martha Werler
- Slone Epidemiology Center at Boston University, Boston, MA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA
| | - Marilyn L. Browne
- New York State Department of Health, Birth Defects Registry, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Chris Cunniff
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Faith Pangilinan
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Lawrence C. Brody
- Gene and Environment Interaction Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Robert J. Sicko
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Richard H. Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Daniel McGoldrick
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - James C. Mullikin
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
18
|
Wesseler F, Riege D, Puthanveedu M, Halver J, Müller E, Bertrand J, Antonchick AP, Sievers S, Waldmann H, Schade D. Probing Embryonic Development Enables the Discovery of Unique Small-Molecule Bone Morphogenetic Protein Potentiators. J Med Chem 2022; 65:3978-3990. [PMID: 35108017 DOI: 10.1021/acs.jmedchem.1c01800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the feasibility to harness embryonic development in vitro for the identification of small-molecule cytokine mimetics and signaling activators. Here, a phenotypic, target-agnostic, high-throughput assay is presented that probes bone morphogenetic protein (BMP) signaling during mesodermal patterning of embryonic stem cells. The temporal discrimination of BMP- and transforming growth factor-β (TGFβ)-driven stages of cardiomyogenesis underpins a selective, authentic orchestration of BMP cues that can be recapitulated for the discovery of BMP activator chemotypes. Proof of concept is shown from a chemical screen of 7000 compounds, provides a robust hit validation workflow, and afforded 2,3-disubstituted 4H-chromen-4-ones as potent BMP potentiators with osteogenic efficacy. Mechanistic studies suggest that Chromenone 1 enhances canonical BMP outputs at the expense of TGFβ-Smads in an unprecedented manner. Pharmacophoric features were defined, providing a set of novel chemical probes for various applications in (stem) cell biology, regenerative medicine, and basic research on the BMP pathway.
Collapse
Affiliation(s)
- Fabian Wesseler
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Compound Management and Screening Center, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Daniel Riege
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Mahesh Puthanveedu
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Jonas Halver
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Eva Müller
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopedic Surgery, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andrey P Antonchick
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Department of Chemistry and Forensics, College of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| | - Sonja Sievers
- Compound Management and Screening Center, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany.,Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.,Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
19
|
Du M, Jiang H, Liu H, Zhao X, Zhou Y, Zhou F, Piao C, Xu G, Ma F, Wang J, Perros F, Morrell NW, Gu H, Yang J. Single-cell RNA sequencing reveals that BMPR2 mutation regulates right ventricular function via ID genes. Eur Respir J 2021; 60:13993003.00327-2021. [PMID: 34857612 PMCID: PMC9260124 DOI: 10.1183/13993003.00327-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/10/2021] [Indexed: 11/05/2022]
Abstract
Mutations in bone morphogenetic protein type II receptor (BMPR2) have been found in patients with congenital heart disease-associated pulmonary arterial hypertension (CHD-PAH). Our study aimed to clarify whether deficient BMPR2 signalling acts through downstream effectors, inhibitors of DNA-binding proteins (IDs), during heart development to contribute to the progress of PAH in CHD patients. To confirm that IDs are downstream effectors of BMPR2 signalling in cardiac mesoderm progenitors (CMPs) and contribute to PAH, we generated Cardiomyocytes (CMs)-specific Id 1/3 knockout mice (Ids cDKO), and 12/25 developed mild PAH with altered haemodynamic indices and pulmonary vascular remodelling. Moreover, we generated ID1 and ID3 double-knockout (IDs KO) human embryonic stem cells that recapitulated the BMPR2 signalling deficiency of CHD-PAH iPSCs. CMs differentiated from induced pluripotent stem cells (iPSCs) derived from CHD-PAH patients with BMPR mutations exhibited dysfunctional cardiac differentiation and reduced Ca2+ transients, as evidenced by confocal microscopy experiments. Smad1/5 phosphorylation and ID1 and ID3 expression were reduced in CHD-PAH iPSCs and in Bmpr2 +/- rat right ventricles. Moreover, Ultrasound revealed that 33% of Ids cDKO mice had detectable defects in their ventricular septum and pulmonary regurgitation. CMs isolated from the mouse right ventricles also showed reduced Ca2+ transients and shortened sarcomeres. Single-cell RNA(scRNA)-seq analysis revealed impaired differentiation of CMPs and downregulated USP9X expression in IDs KO cells compared with wild-type (WT) cells. We found that BMPR2 signals through IDs and USP9X to regulate cardiac differentiation, and the loss of ID1 and ID3 expression contributes to CM dysfunction in CHD-PAH patients with BMPR2 mutations.
Collapse
Affiliation(s)
- Mingxia Du
- Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Haibin Jiang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongxian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhou
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Zhou
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunmei Piao
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jianan Wang
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Frederic Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Level 5, Addenbrooke's Hospital, Cambridge, UK
| | - Hong Gu
- Department of Pediatric Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jun Yang
- Department of Physiology, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Meng Y, Zhong K, Chen S, Huang Y, Wei Y, Wu J, Liu J, Xu Z, Guo J, Liu F, Lu H. Cardiac toxicity assessment of pendimethalin in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112514. [PMID: 34280841 DOI: 10.1016/j.ecoenv.2021.112514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Pendimethalin (PND) is one of the best sellers of selective herbicide in the world and has been frequently detected in the water. However, little is known about its effects on cardiac development. In this study, we used zebrafish to investigate the developmental and cardiac toxicity of PND. We exposed the zebrafish embryos with a serial of concentrations at 3, 4, and 5 mg/L at 5.5-72 h post-fertilization (hpf). We found that PND exposure can reduce the heart rate, survival rate, and body length of zebrafish embryos. Furthermore, we identified many malformations including pericardial and yolk sac edema, spinal deformity, and cardiac looping abnormality. In addition, PND increased the expression of reactive oxygen species and malondialdehyde and reduced the activity of superoxide dismutase (Antioxidant enzymes); We examined the expression of cardiac development-related genes and the apoptosis markers, and found changes of the following marker: vmhc, nppa, tbx5a, nkx2.5, gata4, tbx2b and FoxO1, bax, bcl-2, p53, casp-9, casp-3. Our data showed that activation of Wnt pathway can rescue the cardiac abnormalities caused by PND. Our results provided new evidence for the toxicity of PND and suggested that the PND residual should be treated as a hazard in the environment.
Collapse
Affiliation(s)
- Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Suping Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Juan Wu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Juan Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Zhaopeng Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Jing Guo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of life sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China.
| |
Collapse
|
21
|
Yokura-Yamada Y, Araki M, Maeda M. Ectopic expression of Id1 or Id3 inhibits transcription of the GATA-4 gene in P19CL6 cells under differentiation condition. Drug Discov Ther 2021; 15:189-196. [PMID: 34421098 DOI: 10.5582/ddt.2021.01069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Inhibitor of DNA binding (Id) is a dominant negative form of the E-box binding basic-helix-loop-helix (bHLH) transcription factor since it is devoid of the basic region required for DNA binding and forms an inactive hetero dimer with bHLH proteins. The E-box sequence located in the promoter region of the GATA-binding protein 4 (GATA-4) gene is essential for transcriptional activation in P19CL6 cells. These cells differentiate into cardiomyocytes and start to express GATA-4, which further triggers cardiac-specific gene expression. In this study, expression plasmids for Ids tagged with human influenza hemagglutinin (HA)-FLAG were constructed and introduced into P19CL6 cells. The stable clones expressing the recombinant Id proteins (Id1 or Id3) were isolated. The GATA-4 gene expression in these clones under differentiation condition in the presence of 1% dimethyl sulfoxide (DMSO) was repressed, with concomitant abolishment of the transcription of α-myosin heavy chain (α-MHC), which is a component of cardiac myofibrils. Thus, the increased expression of Id protein could affect GATA-4 gene expression and negatively regulate the differentiation of P19CL6 cells.
Collapse
Affiliation(s)
- Yumei Yokura-Yamada
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | - Masatomo Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
22
|
Li X, Gao F, Wang X, Liang Q, Bai A, Liu Z, Chen X, Li E, Chen S, Lu C, Qian R, Sun N, Liang P, Xu C. E2A ablation enhances proportion of nodal-like cardiomyocytes in cardiac-specific differentiation of human embryonic stem cells. EBioMedicine 2021; 71:103575. [PMID: 34488017 PMCID: PMC8426208 DOI: 10.1016/j.ebiom.2021.103575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human sinoatrial cardiomyocytes are essential building blocks for cell therapies of conduction system disorders. However, current differentiation protocols for deriving nodal cardiomyocytes from human pluripotent stem cells (hPSCs) are very inefficient. METHODS By employing the hPSCs to cardiomyocyte (CM) in vitro differentiation system and generating E2A-knockout hESCs using CRISPR/Cas9 gene editing technology, we analyze the functions of E2A in CM differentiation. FINDINGS We found that knockout of the transcription factor E2A substantially increased the proportion of nodal-like cells in hESC-derived CMs. The E2A ablated CMs displayed smaller cell size, increased beating rates, weaker contractile force, and other functional characteristics similar to sinoatrial node (SAN) cells. Transcriptomic analyses indicated that ion channel-encoding genes were up-regulated in E2A ablated CMs. E2A directly bounded to the promoters of genes key to SAN development via conserved E-box motif, and promoted their expression. Unexpect enhanced activity of NOTCH pathway after E2A ablation could also facilate to induct ventricle workingtype CMs reprogramming into SAN-like cells. INTERPRETATION Our study revealed a new role for E2A during directed cardiac differentiation of hESCs and may provide new clues for enhancing induction efficiency of SAN-like cardiomyocytes from hPSCs in the future. FUNDING This work was supported by the NSFC (No.82070391, N.S.; No.81870175 and 81922006, P.L.), the National Key R&D Program of China (2018YFC2000202, N.S.; 2017YFA0103700, P.L.), the Haiju program of National Children's Medical Center EK1125180102, and Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005).
Collapse
Affiliation(s)
- Xiuya Li
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, School of Life Sciences and Technology, Tongji University,Shanghai 200092, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaochen Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Aobing Bai
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhuo Liu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyun Chen
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ermin Li
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Fudan University, Shanghai 200032, China.
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China.
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Gomez‐Galeno J, Okolotowicz K, Johnson M, McKeithan WL, Mercola M, Cashman JR. Human-induced pluripotent stem cell-derived cardiomyocytes: Cardiovascular properties and metabolism and pharmacokinetics of deuterated mexiletine analogs. Pharmacol Res Perspect 2021; 9:e00828. [PMID: 34327875 PMCID: PMC8322572 DOI: 10.1002/prp2.828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
Prolongation of the cardiac action potential (AP) and early after depolarizations (EADs) are electrical anomalies of cardiomyocytes that can lead to lethal arrhythmias and are potential liabilities for existing drugs and drug candidates in development. For example, long QT syndrome-3 (LQTS3) is caused by mutations in the Nav 1.5 sodium channel that debilitate channel inactivation and cause arrhythmias. We tested the hypothesis that a useful drug (i.e., mexiletine) with potential liabilities (i.e., potassium channel inhibition and adverse reactions) could be re-engineered by dynamic medicinal chemistry to afford a new drug candidate with greater efficacy and less toxicity. Human cardiomyocytes were generated from LQTS3 patient-derived induced pluripotent stem cells (hIPSCs) and normal hIPSCs to determine beneficial (on-target) and detrimental effects (off-target) of mexiletine and synthetic analogs, respectively. The approach combined "drug discovery" and "hit to lead" refinement and showed that iterations of medicinal chemistry and physiological testing afforded optimized compound 22. Compared to mexiletine, compound 22 showed a 1.85-fold greater AUC and no detectable CNS toxicity at 100 mg/kg. In vitro hepatic metabolism studies showed that 22 was metabolized via cytochrome P-450, as previously shown, and by the flavin-containing monooxygenase (FMO). Deuterated-22 showed decreased metabolism and showed acceptable cardiovascular and physicochemical properties.
Collapse
Affiliation(s)
| | - Karl Okolotowicz
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Mark Johnson
- Human BioMolecular Research InstituteSan DiegoCAUSA
| | - Wesley L. McKeithan
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | - Mark Mercola
- Department of MedicineCardiovascular InstituteStanford UniversityStanfordCAUSA
| | | |
Collapse
|
24
|
Oluwafemi OO, Musfee FI, Mitchell LE, Goldmuntz E, Xie HM, Hakonarson H, Morrow BE, Guo T, Taylor DM, McDonald-McGinn DM, Emanuel BS, Agopian AJ. Genome-Wide Association Studies of Conotruncal Heart Defects with Normally Related Great Vessels in the United States. Genes (Basel) 2021; 12:1030. [PMID: 34356046 PMCID: PMC8306129 DOI: 10.3390/genes12071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022] Open
Abstract
Conotruncal defects with normally related great vessels (CTD-NRGVs) occur in both patients with and without 22q11.2 deletion syndrome (22q11.2DS), but it is unclear to what extent the genetically complex etiologies of these heart defects may overlap across these two groups, potentially involving variation within and/or outside of the 22q11.2 region. To explore this potential overlap, we conducted genome-wide SNP-level, gene-level, and gene set analyses using common variants, separately in each of five cohorts, including two with 22q11.2DS (N = 1472 total cases) and three without 22q11.2DS (N = 935 total cases). Results from the SNP-level analyses were combined in meta-analyses, and summary statistics from these analyses were also used in gene and gene set analyses. Across all these analyses, no association was significant after correction for multiple comparisons. However, several SNPs, genes, and gene sets with suggestive evidence of association were identified. For common inherited variants, we did not identify strong evidence for shared genomic mechanisms for CTD-NRGVs across individuals with and without 22q11.2 deletions. Nevertheless, several of our top gene-level and gene set results have been linked to cardiogenesis and may represent candidates for future work.
Collapse
Affiliation(s)
- Omobola O. Oluwafemi
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX 77030, USA; (O.O.O.); (F.I.M.); (L.E.M.)
| | - Fadi I. Musfee
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX 77030, USA; (O.O.O.); (F.I.M.); (L.E.M.)
| | - Laura E. Mitchell
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX 77030, USA; (O.O.O.); (F.I.M.); (L.E.M.)
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; (H.H.); (D.M.T.); (B.S.E.)
| | - Hongbo M. Xie
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Hakon Hakonarson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; (H.H.); (D.M.T.); (B.S.E.)
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.E.M.); (T.G.); (D.M.M.-M.)
| | - Tingwei Guo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.E.M.); (T.G.); (D.M.M.-M.)
| | - Deanne M. Taylor
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; (H.H.); (D.M.T.); (B.S.E.)
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Donna M. McDonald-McGinn
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.E.M.); (T.G.); (D.M.M.-M.)
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Beverly S. Emanuel
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; (H.H.); (D.M.T.); (B.S.E.)
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - A. J. Agopian
- Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health, Houston, TX 77030, USA; (O.O.O.); (F.I.M.); (L.E.M.)
| |
Collapse
|
25
|
Cai JL, Zhu GQ, Du JX, Wang B, Wan JL, Xiao K, Dai Z. Identification and validation of a new gene signature predicting prognosis of hepatocellular carcinoma patients by network analysis of stemness indices. Expert Rev Gastroenterol Hepatol 2021; 15:699-709. [PMID: 33131341 DOI: 10.1080/17474124.2021.1845142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Stem cells play an important role in hepatocellular carcinoma (HCC). However, their precise effect on HCC tumorigenesis and progression remains unclear. The present study aimed to characterize stem cell-related gene expression in HCC.Methods: The mRNA expression-based stemness index (mRNAsi) was used to analyze the clinical characteristics and prognosis of HCC patients. The weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network of 374 HCC patients. Finally, six genes were used to construct the prognosis signature.Results: HCC patients had a higher mRNAsi score than healthy people, suggesting poor prognosis. Two gene modules highly related to mRNAsi were identified. Multivariate Cox analysis was carried out to establish a Cox proportional risk regression model. The risk score for each patient was the sum of the product of each gene expression and its coefficient. Survival analysis suggested that the low-risk group had a significantly better prognosis.Conclusions: The established six-gene signature was able to predict patient prognosis accurately. This new signature should be verified in prospective studies in order to determine patient prognosis in clinical decision-making.
Collapse
Affiliation(s)
- Jia-Liang Cai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Gui-Qi Zhu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Biao Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jing-Lei Wan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Kun Xiao
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi Dai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| |
Collapse
|
26
|
Johnson M, Gomez-Galeno J, Ryan D, Okolotowicz K, McKeithan WL, Sampson KJ, Kass RS, Mercola M, Cashman JR. Human iPSC-derived cardiomyocytes and pyridyl-phenyl mexiletine analogs. Bioorg Med Chem Lett 2021; 46:128162. [PMID: 34062251 DOI: 10.1016/j.bmcl.2021.128162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022]
Abstract
In the United States, approximately one million individuals are hospitalized every year for arrhythmias, making arrhythmias one of the top causes of healthcare expenditures. Mexiletine is currently used as an antiarrhythmic drug but has limitations. The purpose of this work was to use normal and Long QT syndrome Type 3 (LQTS3) patient-derived human induced pluripotent stem cell (iPSC)-derived cardiomyocytes to identify an analog of mexiletine with superior drug-like properties. Compared to racemic mexiletine, medicinal chemistry optimization of substituted racemic pyridyl phenyl mexiletine analogs resulted in a more potent sodium channel inhibitor with greater selectivity for the sodium over the potassium channel and for late over peak sodium current.
Collapse
Affiliation(s)
- Mark Johnson
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Daniel Ryan
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - John R Cashman
- Human BioMolecular Research Institute, 6351 Nancy Ridge Dr. Suite B, San Diego, CA 92121, USA.
| |
Collapse
|
27
|
Cashman JR, Ryan D, McKeithan WL, Okolotowicz K, Gomez-Galeno J, Johnson M, Sampson KJ, Kass RS, Pezhouman A, Karagueuzian HS, Mercola M. Antiarrhythmic Hit to Lead Refinement in a Dish Using Patient-Derived iPSC Cardiomyocytes. J Med Chem 2021; 64:5384-5403. [PMID: 33942619 DOI: 10.1021/acs.jmedchem.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ventricular cardiac arrhythmia (VA) arises in acquired or congenital heart disease. Long QT syndrome type-3 (LQT3) is a congenital form of VA caused by cardiac sodium channel (INaL) SCN5A mutations that prolongs cardiac action potential (AP) and enhances INaL current. Mexiletine inhibits INaL and shortens the QT interval in LQT3 patients. Above therapeutic doses, mexiletine prolongs the cardiac AP. We explored structure-activity relationships (SAR) for AP shortening and prolongation using dynamic medicinal chemistry and AP kinetics in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using patient-derived LQT3 and healthy hiPSC-CMs, we resolved distinct SAR for AP shortening and prolongation effects in mexiletine analogues and synthesized new analogues with enhanced potency and selectivity for INaL. This resulted in compounds with decreased AP prolongation effects, increased metabolic stability, increased INaL selectivity, and decreased avidity for the potassium channel. This study highlights using hiPSC-CMs to guide medicinal chemistry and "drug development in a dish".
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Daniel Ryan
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Wesley L McKeithan
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California 94305, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, California 92037, United States
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Mark Johnson
- Human BioMolecular Research Institute, San Diego, California 92121, United States
| | - Kevin J Sampson
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Robert S Kass
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, United States
| | - Arash Pezhouman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hrayr S Karagueuzian
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Mark Mercola
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California 94305, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, San Diego, California 92037, United States
| |
Collapse
|
28
|
Ivanovitch K, Soro-Barrio P, Chakravarty P, Jones RA, Bell DM, Mousavy Gharavy SN, Stamataki D, Delile J, Smith JC, Briscoe J. Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biol 2021; 19:e3001200. [PMID: 33999917 PMCID: PMC8158918 DOI: 10.1371/journal.pbio.3001200] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 05/27/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
The heart develops from 2 sources of mesoderm progenitors, the first and second heart field (FHF and SHF). Using a single-cell transcriptomic assay combined with genetic lineage tracing and live imaging, we find the FHF and SHF are subdivided into distinct pools of progenitors in gastrulating mouse embryos at earlier stages than previously thought. Each subpopulation has a distinct origin in the primitive streak. The first progenitors to leave the primitive streak contribute to the left ventricle, shortly after right ventricle progenitor emigrate, followed by the outflow tract and atrial progenitors. Moreover, a subset of atrial progenitors are gradually incorporated in posterior locations of the FHF. Although cells allocated to the outflow tract and atrium leave the primitive streak at a similar stage, they arise from different regions. Outflow tract cells originate from distal locations in the primitive streak while atrial progenitors are positioned more proximally. Moreover, single-cell RNA sequencing demonstrates that the primitive streak cells contributing to the ventricles have a distinct molecular signature from those forming the outflow tract and atrium. We conclude that cardiac progenitors are prepatterned within the primitive streak and this prefigures their allocation to distinct anatomical structures of the heart. Together, our data provide a new molecular and spatial map of mammalian cardiac progenitors that will support future studies of heart development, function, and disease.
Collapse
|
29
|
Murphy SA, Miyamoto M, Kervadec A, Kannan S, Tampakakis E, Kambhampati S, Lin BL, Paek S, Andersen P, Lee DI, Zhu R, An SS, Kass DA, Uosaki H, Colas AR, Kwon C. PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nat Commun 2021; 12:1648. [PMID: 33712605 PMCID: PMC7955035 DOI: 10.1038/s41467-021-21957-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes undergo significant structural and functional changes after birth, and these fundamental processes are essential for the heart to pump blood to the growing body. However, due to the challenges of isolating single postnatal/adult myocytes, how individual newborn cardiomyocytes acquire multiple aspects of the mature phenotype remains poorly understood. Here we implement large-particle sorting and analyze single myocytes from neonatal to adult hearts. Early myocytes exhibit wide-ranging transcriptomic and size heterogeneity that is maintained until adulthood with a continuous transcriptomic shift. Gene regulatory network analysis followed by mosaic gene deletion reveals that peroxisome proliferator-activated receptor coactivator-1 signaling, which is active in vivo but inactive in pluripotent stem cell-derived cardiomyocytes, mediates the shift. This signaling simultaneously regulates key aspects of cardiomyocyte maturation through previously unrecognized proteins, including YAP1 and SF3B2. Our study provides a single-cell roadmap of heterogeneous transitions coupled to cellular features and identifies a multifaceted regulator controlling cardiomyocyte maturation.
Collapse
Affiliation(s)
- Sean A Murphy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Miyamoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anaïs Kervadec
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Suraj Kannan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanouil Tampakakis
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandeep Kambhampati
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Leei Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sam Paek
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Peter Andersen
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dong-Ik Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Renjun Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideki Uosaki
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Alexandre R Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Chulan Kwon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Reichenbach M, Mendez P, da Silva Madaleno C, Ugorets V, Rikeit P, Boerno S, Jatzlau J, Knaus P. Differential Impact of Fluid Shear Stress and YAP/TAZ on BMP/TGF‐β Induced Osteogenic Target Genes. Adv Biol (Weinh) 2021; 5:e2000051. [DOI: 10.1002/adbi.202000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/08/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Reichenbach
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul‐Lennard Mendez
- International Max Planck Research School for Biology and Computation Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Carolina da Silva Madaleno
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Vladimir Ugorets
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul Rikeit
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Jerome Jatzlau
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Petra Knaus
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| |
Collapse
|
31
|
Papadopoulos A, Chalmantzi V, Mikhaylichenko O, Hyvönen M, Stellas D, Kanhere A, Heath J, Cunningham DL, Fotsis T, Murphy C. Combined transcriptomic and phosphoproteomic analysis of BMP4 signaling in human embryonic stem cells. Stem Cell Res 2020; 50:102133. [PMID: 33383406 DOI: 10.1016/j.scr.2020.102133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Human embryonic stem cells (hESCs) are an invaluable tool in the fields of embryology and regenerative medicine. Activin A and BMP4 are well-characterised growth factors implicated in pluripotency and differentiation. In the current study, hESCs are cultured in a modified version of mTeSR1, where low concentrations of ActivinA substitute for TGFβ. This culture system is further used to investigate the changes induced by BMP4 on hESCs by employing a combination of transcriptomic and phosphoproteomic approaches. Results indicate that in a pluripotent state, hESCs maintain WNT signaling under negative regulation by expressing pathway inhibitors. Initial stages of differentiation are characterized by upregulation of WNT pathway ligands, TGFβ pathway inhibitors which have been shown in Xenopus to expand the BMP signaling range essential for embryonic patterning, and mesendodermal transcripts. Moreover, BMP4 enhances the phosphorylation of proteins associated with migration and transcriptional regulation. Results further indicate the vital regulatory role of Activin A and BMP4 in crucial fate decisions in hESCs.
Collapse
Affiliation(s)
- Angelos Papadopoulos
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Varvara Chalmantzi
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Olga Mikhaylichenko
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Aditi Kanhere
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - John Heath
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Debbie L Cunningham
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Theodore Fotsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece; Laboratory of Biology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Carol Murphy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, University Campus of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
32
|
Ren H, Bakas NA, Vamos M, Chaikuad A, Limpert AS, Wimer CD, Brun SN, Lambert LJ, Tautz L, Celeridad M, Sheffler DJ, Knapp S, Shaw RJ, Cosford NDP. Design, Synthesis, and Characterization of an Orally Active Dual-Specific ULK1/2 Autophagy Inhibitor that Synergizes with the PARP Inhibitor Olaparib for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2020; 63:14609-14625. [PMID: 33200929 DOI: 10.1021/acs.jmedchem.0c00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhibition of autophagy, the major cellular recycling pathway in mammalian cells, is a promising strategy for the treatment of triple-negative breast cancer (TNBC). We previously reported SBI-0206965, a small molecule inhibitor of unc-51-like autophagy activating kinase 1 (ULK1), which is a key regulator of autophagy initiation. Herein, we describe the design, synthesis, and characterization of new dual inhibitors of ULK1 and ULK2 (ULK1/2). One inhibitor, SBP-7455 (compound 26), displayed improved binding affinity for ULK1/2 compared with SBI-0206965, potently inhibited ULK1/2 enzymatic activity in vitro and in cells, reduced the viability of TNBC cells and had oral bioavailability in mice. SBP-7455 inhibited starvation-induced autophagic flux in TNBC cells that were dependent on autophagy for survival and displayed synergistic cytotoxicity with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib against TNBC cells. These data suggest that combining ULK1/2 and PARP inhibition may have clinical utility for the treatment of TNBC.
Collapse
Affiliation(s)
- Huiyu Ren
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Nicole A Bakas
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Mitchell Vamos
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Frankfurt 60438, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt 60438, Germany
| | - Allison S Limpert
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Carina D Wimer
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Sonja N Brun
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Lester J Lambert
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lutz Tautz
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Maria Celeridad
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Douglas J Sheffler
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Frankfurt 60438, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt 60438, Germany
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Nicholas D P Cosford
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
33
|
Ashok P, Parikh A, Du C, Tzanakakis ES. Xenogeneic-Free System for Biomanufacturing of Cardiomyocyte Progeny From Human Pluripotent Stem Cells. Front Bioeng Biotechnol 2020; 8:571425. [PMID: 33195131 PMCID: PMC7644809 DOI: 10.3389/fbioe.2020.571425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023] Open
Abstract
Functional heart cells and tissues sourced from human pluripotent stem cells (hPSCs) have great potential for substantially advancing treatments of cardiovascular maladies. Realization of this potential will require the development of cost-effective and tunable bioprocesses for manufacturing hPSC-based cell therapeutics. Here, we report the development of a xeno-free platform for guiding the cardiogenic commitment of hPSCs. The system is based on a fully defined, open-source formulation without complex supplements, which have varied and often undetermined effects on stem cell physiology. The formulation was used to systematically investigate factors inducing the efficient commitment to cardiac mesoderm of three hPSC lines. Contractile clusters of cells appeared within a week of differentiation in planar cultures and by day 13 over 80% of the cells expressed cardiac progeny markers such as TNNT2. In conjunction with expansion, this differentiation strategy was employed in stirred-suspension cultures of hPSCs. Scalable differentiation resulted in 0.4-2 million CMs/ml or ∼5-20 TNNT2-positive cells per seeded hPSC without further enrichment. Our findings will contribute to the engineering of bioprocesses advancing the manufacturing of stem cell-based therapeutics for heart diseases.
Collapse
Affiliation(s)
- Preeti Ashok
- Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | | | - Chuang Du
- Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Emmanuel S. Tzanakakis
- Chemical and Biological Engineering, Tufts University, Medford, MA, United States
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
- Developmental Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
34
|
Nasser MI, Qi X, Zhu S, He Y, Zhao M, Guo H, Zhu P. Current situation and future of stem cells in cardiovascular medicine. Biomed Pharmacother 2020; 132:110813. [PMID: 33068940 DOI: 10.1016/j.biopha.2020.110813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Currently, many methods have been proposed by researchers for the prevention and treatment of CVD; among them, stem cell-based therapies are the most promising. As the cells of origin for various mature cells, stem cells have the ability to self-renew and differentiate. Stem cells have a powerful ability to regenerate biologically, self-repair, and enhance damaged functional tissues or organs. Allogeneic stem cells and somatic stem cells are two types of cells that can be used for cardiac repair. Theoretically, dilated cardiomyopathy and acute myocardial infarction can be treated with such cells. In addition, stem cell transplantation procedures, including intravenous, epicardial, cardiac, and endocardial injections, have been reported to provide significant benefits in clinical practice; however, there are still a number of issues that need further study and consideration, such as the form and quantity of transplanted cells and post-transplantation health. The goal of this analysis was to summarize the recent advances in stem cell-based therapies and their efficacy in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Xiao Qi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Yin He
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China. Address: 106 Zhongshan Er Road, Guangzhou, 510080, PR China.
| |
Collapse
|
35
|
Theis JL, Vogler G, Missinato MA, Li X, Nielsen T, Zeng XXI, Martinez-Fernandez A, Walls SM, Kervadec A, Kezos JN, Birker K, Evans JM, O'Byrne MM, Fogarty ZC, Terzic A, Grossfeld P, Ocorr K, Nelson TJ, Olson TM, Colas AR, Bodmer R. Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome. eLife 2020; 9:e59554. [PMID: 33006316 PMCID: PMC7581429 DOI: 10.7554/elife.59554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multidisciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole-genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates. siRNA/RNAi-mediated knockdown in healthy human iPSC-derived cardiomyocytes (hiPSC-CM) and in developing Drosophila and zebrafish hearts revealed that LDL receptor-related protein LRP2 is required for cardiomyocyte proliferation and differentiation. Consistent with hypoplastic heart defects, compared to patents the proband's iPSC-CMs exhibited reduced proliferation. Interestingly, rare, predicted-damaging LRP2 variants were enriched in a HLHS cohort; however, understanding their contribution to HLHS requires further investigation. Collectively, we have established a multi-species high-throughput platform to rapidly evaluate candidate genes and their interactions during heart development, which are crucial first steps toward deciphering oligogenic underpinnings of CHDs, including hypoplastic left hearts.
Collapse
Affiliation(s)
- Jeanne L Theis
- Cardiovascular Genetics Research LaboratoryRochesterUnited States
| | - Georg Vogler
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Maria A Missinato
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Tanja Nielsen
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
- Doctoral Degrees and Habilitations, Department of Biology, Chemistry, and Pharmacy, Freie Universität BerlinBerlinGermany
| | - Xin-Xin I Zeng
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | | | - Stanley M Walls
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Anaïs Kervadec
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - James N Kezos
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Katja Birker
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Mayo ClinicRochesterUnited States
| | - André Terzic
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Paul Grossfeld
- University of California San Diego, Rady’s HospitalSan DiegoUnited States
- Division of General Internal Medicine, Mayo ClinicRochesterUnited States
| | - Karen Ocorr
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Timothy J Nelson
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Center for Regenerative Medicine, Mayo ClinicRochesterUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Molecular and Pharmacology and Experimental Therapeutics, Mayo ClinicLa JollaUnited States
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo ClinicRochesterUnited States
| | - Alexandre R Colas
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| | - Rolf Bodmer
- Development, Aging and Regeneration, Sanford Burnham Prebys Medical Discovery InstituteLa JollaUnited States
| |
Collapse
|
36
|
Elmén L, Volpato CB, Kervadec A, Pineda S, Kalvakuri S, Alayari NN, Foco L, Pramstaller PP, Ocorr K, Rossini A, Cammarato A, Colas AR, Hicks AA, Bodmer R. Silencing of CCR4-NOT complex subunits affects heart structure and function. Dis Model Mech 2020; 13:dmm044727. [PMID: 32471864 PMCID: PMC7390626 DOI: 10.1242/dmm.044727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarization). Three of the strongest associating variants (single-nucleotide polymorphisms) are located in the putative promotor region of CNOT1, a gene encoding the central CNOT1 subunit of CCR4-NOT: a multifunctional, conserved complex regulating gene expression and mRNA stability and turnover. We isolated the minimum fragment of the CNOT1 promoter containing all three variants from individuals homozygous for the QT risk alleles and demonstrated that the haplotype associating with longer QT interval caused reduced reporter expression in a cardiac cell line, suggesting that reduced CNOT1 expression might contribute to abnormal QT intervals. Systematic siRNA-mediated knockdown of CCR4-NOT components in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) revealed that silencing CNOT1 and other CCR4-NOT genes reduced their proliferative capacity. Silencing CNOT7 also shortened action potential duration. Furthermore, the cardiac-specific knockdown of Drosophila orthologs of CCR4-NOT genes in vivo (CNOT1/Not1 and CNOT7/8/Pop2) was either lethal or resulted in dilated cardiomyopathy, reduced contractility or a propensity for arrhythmia. Silencing CNOT2/Not2, CNOT4/Not4 and CNOT6/6L/twin also affected cardiac chamber size and contractility. Developmental studies suggested that CNOT1/Not1 and CNOT7/8/Pop2 are required during cardiac remodeling from larval to adult stages. To summarize, we have demonstrated how disease-associated genes identified by GWAS can be investigated by combining human cardiomyocyte cell-based and whole-organism in vivo heart models. Our results also suggest a potential link of CNOT1 and CNOT7/8 to QT alterations and further establish a crucial role of the CCR4-NOT complex in heart development and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lisa Elmén
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Claudia B Volpato
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Anaïs Kervadec
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Santiago Pineda
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sreehari Kalvakuri
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Nakissa N Alayari
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Karen Ocorr
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Anthony Cammarato
- Johns Hopkins University, Division of Cardiology, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Alexandre R Colas
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Rolf Bodmer
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
37
|
Schroeder AM, Allahyari M, Vogler G, Missinato MA, Nielsen T, Yu MS, Theis JL, Larsen LA, Goyal P, Rosenfeld JA, Nelson TJ, Olson TM, Colas AR, Grossfeld P, Bodmer R. Model system identification of novel congenital heart disease gene candidates: focus on RPL13. Hum Mol Genet 2020; 28:3954-3969. [PMID: 31625562 DOI: 10.1093/hmg/ddz213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Genetics is a significant factor contributing to congenital heart disease (CHD), but our understanding of the genetic players and networks involved in CHD pathogenesis is limited. Here, we searched for de novo copy number variations (CNVs) in a cohort of 167 CHD patients to identify DNA segments containing potential pathogenic genes. Our search focused on new candidate disease genes within 19 deleted de novo CNVs, which did not cover known CHD genes. For this study, we developed an integrated high-throughput phenotypical platform to probe for defects in cardiogenesis and cardiac output in human induced pluripotent stem cell (iPSC)-derived multipotent cardiac progenitor (MCPs) cells and, in parallel, in the Drosophila in vivo heart model. Notably, knockdown (KD) in MCPs of RPL13, a ribosomal gene and SON, an RNA splicing cofactor, reduced proliferation and differentiation of cardiomyocytes, while increasing fibroblasts. In the fly, heart-specific RpL13 KD, predominantly at embryonic stages, resulted in a striking 'no heart' phenotype. KD of Son and Pdss2, among others, caused structural and functional defects, including reduced or abolished contractility, respectively. In summary, using a combination of human genetics and cardiac model systems, we identified new genes as candidates for causing human CHD, with particular emphasis on ribosomal genes, such as RPL13. This powerful, novel approach of combining cardiac phenotyping in human MCPs and in the in vivo Drosophila heart at high throughput will allow for testing large numbers of CHD candidates, based on patient genomic data, and for building upon existing genetic networks involved in heart development and disease.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Massoud Allahyari
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, USA
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maria A Missinato
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael S Yu
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jeanne L Theis
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Preeya Goyal
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Timothy J Nelson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy M Olson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paul Grossfeld
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
38
|
Sakamoto S, Tateya T, Omori K, Kageyama R. Idgenes are required for morphogenesis and cellular patterning in the developing mammalian cochlea. Dev Biol 2020; 460:164-175. [PMID: 31843520 DOI: 10.1016/j.ydbio.2019.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Inhibitor of differentiation and DNA-binding (Id) proteins, Id1 to Id4, function in the regulation of cellular proliferation and differentiation. Id proteins have been shown to interact with bHLH proteins and other proteins involved in regulating cellular proliferation and differentiation, suggesting a widespread regulatory function. Id1-3 are known to be expressed in the prosensory domain of developing cochlea. However, the roles of Id genes in cochlear development are not fully elucidated. The deficiency of any of the Id1-3 genes individually has little effect on the cochlear development, and therefore the functional redundancy among these genes have been presumed to explain the absence of phenotype. Here, we show that conditional knockout of Id1/2/3 genes (Id TKO) causes major defects in morphogenesis and cellular patterning in the development of mammalian cochlea. Id TKO cochlea was 82% shorter than control, and both decreased proliferation and increased cell death caused the hypomorph. Sox2-positive prosensory domain was formed in Id TKO cochlea, but the formation of the medial-lateral (central-peripheral) axis was disturbed; the boundary between the medial and lateral compartments in the prosensory domain was partially doubled; the number of inner hair cells per unit length increased, and the number of outer hair cells decreased. Furthermore, the lateral non-sensory compartment expressing Bmp4 and Lmo3 was missing. Thus, the patterning of the lateral epithelium was more affected than the medial epithelium. These results suggested that Id genes are crucial for morphogenesis of the cochlea duct and patterning of the lateral epithelium in the developing cochlea. Further analyses by quantitative RT-PCR and immunostaining using cochlear explants with a Bmp pathway inhibitor revealed that the Bmp-Id pathway originates from the lateral non-sensory compartment and promotes outer hair cell differentiation.
Collapse
Affiliation(s)
- Susumu Sakamoto
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Kyoto University of Advanced Science, Kyoto, 615-8577, Japan
| | - Tomoko Tateya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan; Kyoto University of Advanced Science, Kyoto, 615-8577, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Koichi Omori
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
39
|
Lu S, Liao Z, Lu X, Katschinski DM, Mercola M, Chen J, Heller Brown J, Molkentin JD, Bossuyt J, Bers DM. Hyperglycemia Acutely Increases Cytosolic Reactive Oxygen Species via O-linked GlcNAcylation and CaMKII Activation in Mouse Ventricular Myocytes. Circ Res 2020; 126:e80-e96. [PMID: 32134364 DOI: 10.1161/circresaha.119.316288] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.
Collapse
Affiliation(s)
- Shan Lu
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Zhandi Liao
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Xiyuan Lu
- Department of Cardiology, Renji Hospital School of Medicine, Jiaotong University, Shanghai, China (X.L.)
| | - Dörthe M Katschinski
- Institute of Cardiovascular Physiology, University Medical Centre Göttingen, Germany (D.M.K.)
- German Center for Cardiovascular Research, Partner Site, Göttingen (D.M.K.)
| | - Mark Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, CA (M.M.)
| | - Ju Chen
- Department of Medicine (J.C.), University of California San Diego, La Jolla
| | - Joan Heller Brown
- Department of Pharmacology (J.H.B.), University of California San Diego, La Jolla
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, OH (J.D.M.)
| | - Julie Bossuyt
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| | - Donald M Bers
- From the Department of Pharmacology, University of California, Davis School of Medicine (S.L., Z.L., J.B., D.M.B.)
| |
Collapse
|
40
|
Su D, Ju Y, Han W, Yang Y, Wang F, Wang T, Tang J. Tcf3-activated lncRNA Gas5 regulates newborn mouse cardiomyocyte apoptosis in diabetic cardiomyopathy. J Cell Biochem 2020; 121:4337-4346. [PMID: 32003049 DOI: 10.1002/jcb.29630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022]
Abstract
Diabetic cardiomyopathy can cause cardiac dysfunction and eventually lead to heart failure and sudden death. Long noncoding RNA (lncRNA) Gas5 has been reported to play a function in cardiomyocyte. Here we studied the function of Gas5 on newborn mouse cardiomyocyte (NMC) apoptosis to detect its molecular mechanism. High-glucose treatment was implemented to induce the apoptosis of NMC in this study. And terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, JC-1 assay, and flow cytometry analysis were conducted to know about the apoptosis of NMC when Gas5 and Tcf3 were silenced. Meanwhile, RNA pull-down assay and luciferase reporter assay were conducted to verify the binding of RNAs. Finally, rescue assay was implemented to evaluate the influence on apoptosis situation affected by competing endogenous RNA pathways. Tcf3 was found to bind to the Gas5 promoter to activate the expression of Gas5. Meanwhile, Gas5 and Tcf3 were both found to promote the apoptosis of NMC. Also, mmu-miR-320-3p could bind to Gas5 and Tcf3. Moreover, the Gas5/miR-320-3p/Tcf3 pathway was found to modulate the apoptosis of NMC. In conclusion, Tcf3-activated lncRNA Gas5 regulates NMC apoptosis in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Dongsheng Su
- Department of Cardiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yansong Ju
- Department of Cardiology, Rongcheng People's Hospital, Rongcheng, Shandong, China
| | - Wei Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanhua Yang
- Department of Cardiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyun Wang
- Department of Internal Medicine-Cardiovascular, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tong Wang
- Department of Internal Medicine-Cardiovascular, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianmin Tang
- Department of Cardiology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
41
|
Abstract
Membrane potential is a fundamental biophysical property maintained by every cell on earth. In specialized cells like neurons, rapid changes in membrane potential drive the release of chemical neurotransmitters. Coordinated, rapid changes in neuronal membrane potential across large numbers of interconnected neurons form the basis for all of human cognition, sensory perception, and memory. Despite the importance of this highly orchestrated and distributed activity, the traditional method for recording membrane potential is through the use of highly invasive single-cell electrodes that offer only a small glimpse of the total activity within a system. Fluorescent dyes that change their optical properties in response to changes in biological voltage have the potential to provide a powerful complement to traditional electrode-based methods of inquiry. Voltage-sensitive fluorescent indicators would allow the direct observation of membrane potential changes, significantly expanding our ability to monitor membrane potential dynamics in living systems. Toward this end, we have initiated a program to design, synthesize, and apply voltage-sensitive fluorophores that report on membrane potential dynamics with high sensitivity and speed. The basis for this optical voltage sensing is membrane potential-dependent photoinduced electron transfer (PeT). Voltage-sensitive fluorophores, or VoltageFluors, possess a fluorophore, a conjugated molecular wire, and an aniline donor. At resting potentials, in which the cell has a hyperpolarized or negative potential relative to the outside of the cell, PeT from the aniline donor is enhanced and fluorescence is diminished. At depolarized potentials, the membrane potential decreases the rate of PeT, allowing an increase in fluorescence. We show that a number of different fluorophores, molecular wires, and aniline donors can be employed to generate fast and sensitive VoltageFluor dyes. Multiple lines of evidence point to a PeT-based mechanism for voltage sensing, delivering fast response kinetics (∼25 ns), good sensitivity (>60% ΔF/F), compatibility with two-photon illumination, excellent signal-to-noise, and the ability to detect neuronal and cardiac action potentials in single trials. In this Account, we provide an overview of the challenges facing the design of fluorescent voltage indicators. We trace the development of molecular wire-based fluorescent voltage indicators within our group, beginning from fluorescein-based VoltageFluor to long-wavelength indicators that use modern fluorophores like silicon rhodamine and carbofluorescein. We examine design principles for PeT-based voltage indicators, showcase the use of our recent indicators for two-photon voltage imaging in intact brains, and explore the development of hybrid indicators that can localize to genetically defined cells. Finally, we highlight outstanding challenges to and opportunities for voltage imaging.
Collapse
Affiliation(s)
- Pei Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Bruyneel AAN, Colas AR, Karakikes I, Mercola M. AlleleProfileR: A versatile tool to identify and profile sequence variants in edited genomes. PLoS One 2019; 14:e0226694. [PMID: 31877162 PMCID: PMC6932767 DOI: 10.1371/journal.pone.0226694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Gene editing strategies, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9), are revolutionizing biology. However, quantitative and sensitive detection of targeted mutations are required to evaluate and quantify the genome editing outcomes. Here we present AlleleProfileR, a new analysis tool, written in a combination of R and C++, with the ability to batch process the sequence analysis of large and complex genome editing experiments, including the recently developed base editing technologies.
Collapse
Affiliation(s)
- Arne A. N. Bruyneel
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, United States of America
- * E-mail:
| | - Alexandre R. Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States of America
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA United States of America
- Department of Cardiothoracic Surgery, Stanford School of Medicine, Stanford, CA, United States of America
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
43
|
Yin L, Liu MX, Li W, Wang FY, Tang YH, Huang CX. Over-Expression of Inhibitor of Differentiation 2 Attenuates Post-Infarct Cardiac Fibrosis Through Inhibition of TGF-β1/Smad3/HIF-1α/IL-11 Signaling Pathway. Front Pharmacol 2019; 10:1349. [PMID: 31803053 PMCID: PMC6876274 DOI: 10.3389/fphar.2019.01349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Cardiac fibrosis after myocardial infarction mainly causes cardiac diastolic and systolic dysfunction, which results in fatal arrhythmias or even sudden death. Id2, a transcriptional repressor, has been shown to play an important role in the development of fibrosis in various organs, but its effects on cardiac fibrosis remain unclear. This study aimed to explore the effects of Id2 on cardiac fibrosis after myocardial infarction and its possible mechanisms. Methods: This study was performed in four experimental groups: control group, treatment group (including TGF-β1, hypoxia or MI), treatment+GFP group and treatment+Id2 group. In vitro anoxic and fibrotic models were established by subjecting CFs or NRVMs to a three-gas incubator or TGF-β1, respectively. An animal myocardial infarction model was established by ligating of the left anterior descending coronary artery followed by directly injecting of Id2 adenovirus into the myocardial infarct’s marginal zone. Results: The results showed that Id2 significantly improved cardiac EF and attenuated cardiac hypertrophy. The mRNA and protein levels of α-SMA, Collagen I, Collagen III, MMP2 and TIMP1 were higher in treatment+Id2 group than those in treatment group as well as in treatment+GFP group both in vivo and in vitro. Immunofluorescence revealed that both α-SMA and vimentin were co-expressed in the treatment group and GFP group, but the co-expression were not detected in the control group and Id2 group. Additionally, our findings illustrated that Id2 had protective effects demonstrated by its ability to inhibit the TGF-β1/Smad3/HIF-1α/IL-11 signaling pathways. Besides, over-expression of Id2 reduced cardiomyocytes apoptosis. Conclusion: In conclusion, this study demonstrated that over-expression of Id2 preserved cardiac function and ameliorated adverse cardiac remodeling, which might be a promising treatment target for cardiac fibrosis and apoptosis.
Collapse
Affiliation(s)
- Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ming-Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Feng-Yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
44
|
Yamazaki T, Liu L, Manley JL. TCF3 mutually exclusive alternative splicing is controlled by long-range cooperative actions between hnRNPH1 and PTBP1. RNA (NEW YORK, N.Y.) 2019; 25:1497-1508. [PMID: 31391218 PMCID: PMC6795145 DOI: 10.1261/rna.072298.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/31/2019] [Indexed: 05/22/2023]
Abstract
TCF3, also known as E2A, is a well-studied transcription factor that plays an important role in stem cell maintenance and hematopoietic development. The TCF3 gene encodes two related proteins, E12 and E47, which arise from mutually exclusive alternative splicing (MEAS). Since these two proteins have different DNA binding and dimerization domains, this AS event must be strictly regulated to ensure proper isoform ratios. Previously, we found that heterogeneous nuclear ribonucleoprotein (hnRNP) H1/F regulates TCF3 AS by binding to exonic splicing silencers (ESSs) in exon 18b. Here, we identify conserved intronic splicing silencers (ISSs) located between, and far from, the two mutually exclusive exons, and show that they are essential for MEAS. Further, we demonstrate that the hnRNP PTBP1 binds the ISS and is a regulator of TCF3 AS. We also demonstrate that hnRNP H1 and PTBP1 regulate TCF3 AS reciprocally, and that position-dependent interactions between these factors are essential for proper TCF3 MEAS. Our study provides a new model in which MEAS is regulated by cooperative actions of distinct hnRNPs bound to ISSs and ESSs.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
45
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
46
|
Shelton SB, Shah NM, Abell NS, Devanathan SK, Mercado M, Xhemalçe B. Crosstalk between the RNA Methylation and Histone-Binding Activities of MePCE Regulates P-TEFb Activation on Chromatin. Cell Rep 2019; 22:1374-1383. [PMID: 29425494 DOI: 10.1016/j.celrep.2018.01.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/14/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022] Open
Abstract
RNAP II switching from the paused to the productive transcription elongation state is a pivotal regulatory step that requires specific phosphorylations catalyzed by the P-TEFb kinase. Nucleosolic P-TEFb activity is inhibited by its interaction with the ribonuclear protein complex built around the 7SK small nuclear RNA (7SK snRNP). MePCE is the RNA methyltransferase that methylates and stabilizes 7SK in the nucleosol. Here, we report that MePCE also binds chromatin through the histone H4 tail to serve as a P-TEFb activator at specific genes important for cellular identity. Notably, this histone binding abolishes MePCE's RNA methyltransferase activity toward 7SK, which explains why MePCE-bound P-TEFb on chromatin may not be associated with the full 7SK snRNP and is competent for RNAP II activation. Overall, our results suggest that crosstalk between the histone-binding and RNA methylation activities of MePCE regulates P-TEFb activation on chromatin in a 7SK- and Brd4-independent manner.
Collapse
Affiliation(s)
- Samantha B Shelton
- Department of Molecular Biosciences, 2500 Speedway, Austin, TX 78712, USA
| | - Nakul M Shah
- Department of Molecular Biosciences, 2500 Speedway, Austin, TX 78712, USA
| | - Nathan S Abell
- Department of Molecular Biosciences, 2500 Speedway, Austin, TX 78712, USA; Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | | | - Marvin Mercado
- Department of Molecular Biosciences, 2500 Speedway, Austin, TX 78712, USA
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, 2500 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
47
|
Rajderkar S, Mann JM, Panaretos C, Yumoto K, Li HD, Mishina Y, Ralston B, Kaartinen V. Trim33 is required for appropriate development of pre-cardiogenic mesoderm. Dev Biol 2019; 450:101-114. [PMID: 30940539 DOI: 10.1016/j.ydbio.2019.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
Congenital cardiac malformations are among the most common birth defects in humans. Here we show that Trim33, a member of the Tif1 subfamily of tripartite domain containing transcriptional cofactors, is required for appropriate differentiation of the pre-cardiogenic mesoderm during a narrow time window in late gastrulation. While mesoderm-specific Trim33 mutants did not display noticeable phenotypes, epiblast-specific Trim33 mutant embryos developed ventricular septal defects, showed sparse trabeculation and abnormally thin compact myocardium, and died as a result of cardiac failure during late gestation. Differentiating embryoid bodies deficient in Trim33 showed an enrichment of gene sets associated with cardiac differentiation and contractility, while the total number of cardiac precursor cells was reduced. Concordantly, cardiac progenitor cell proliferation was reduced in Trim33-deficient embryos. ChIP-Seq performed using antibodies against Trim33 in differentiating embryoid bodies revealed more than 4000 peaks, which were significantly enriched close to genes implicated in stem cell maintenance and mesoderm development. Nearly half of the Trim33 peaks overlapped with binding sites of the Ctcf insulator protein. Our results suggest that Trim33 is required for appropriate differentiation of precardiogenic mesoderm during late gastrulation and that it will likely mediate some of its functions via multi-protein complexes, many of which include the chromatin architectural and insulator protein Ctcf.
Collapse
Affiliation(s)
- Sudha Rajderkar
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey M Mann
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher Panaretos
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hong-Dong Li
- Center for Bioinformatics, School of Information Science and Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Benjamin Ralston
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
48
|
Yamazaki T, Liu L, Lazarev D, Al-Zain A, Fomin V, Yeung PL, Chambers SM, Lu CW, Studer L, Manley JL. TCF3 alternative splicing controlled by hnRNP H/F regulates E-cadherin expression and hESC pluripotency. Genes Dev 2018; 32:1161-1174. [PMID: 30115631 PMCID: PMC6120717 DOI: 10.1101/gad.316984.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022]
Abstract
Yamazaki et al. show that alternative splicing creates two TCF3 isoforms (E12 and E47) and identified two related splicing factors, hnRNPs H1 and F (hnRNP H/F), that regulate TCF3 splicing. Expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12. Alternative splicing (AS) plays important roles in embryonic stem cell (ESC) differentiation. In this study, we first identified transcripts that display specific AS patterns in pluripotent human ESCs (hESCs) relative to differentiated cells. One of these encodes T-cell factor 3 (TCF3), a transcription factor that plays important roles in ESC differentiation. AS creates two TCF3 isoforms, E12 and E47, and we identified two related splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNPs) H1 and F (hnRNP H/F), that regulate TCF3 splicing. We found that hnRNP H/F levels are high in hESCs, leading to high E12 expression, but decrease during differentiation, switching splicing to produce elevated E47 levels. Importantly, hnRNP H/F knockdown not only recapitulated the switch in TCF3 AS but also destabilized hESC colonies and induced differentiation. Providing an explanation for this, we show that expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denis Lazarev
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Amr Al-Zain
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Vitalay Fomin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Percy Luk Yeung
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Stuart M Chambers
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Chi-Wei Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Child Health Institute of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute, New York, New York 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
49
|
Precardiac organoids form two heart fields via Bmp/Wnt signaling. Nat Commun 2018; 9:3140. [PMID: 30087351 PMCID: PMC6081372 DOI: 10.1038/s41467-018-05604-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/17/2018] [Indexed: 12/24/2022] Open
Abstract
The discovery of the first heart field (FHF) and the second heart field (SHF) led us to understand how cardiac lineages and structures arise during development. However, it remains unknown how they are specified. Here, we generate precardiac spheroids with pluripotent stem cells (PSCs) harboring GFP/RFP reporters under the control of FHF/SHF markers, respectively. GFP+ cells and RFP+ cells appear from two distinct areas and develop in a complementary fashion. Transcriptome analysis shows a high degree of similarities with embryonic FHF/SHF cells. Bmp and Wnt are among the most differentially regulated pathways, and gain- and loss-of-function studies reveal that Bmp specifies GFP+ cells and RFP+ cells via the Bmp/Smad pathway and Wnt signaling, respectively. FHF/SHF cells can be isolated without reporters by the surface protein Cxcr4. This study provides novel insights into understanding the specification of two cardiac origins, which can be leveraged for PSC-based modeling of heart field/chamber-specific disease. The heart arises from distinct progenitor cells of both the first and second heart fields (FHF and SHF). Here, the authors generated precardiac organoids from mouse and human pluripotent cells and show that FHF and SHF cells form similarly to their in vivo counterparts in response to BMP and Wnt signalling, respectively.
Collapse
|
50
|
Row RH, Pegg A, Kinney BA, Farr GH, Maves L, Lowell S, Wilson V, Martin BL. BMP and FGF signaling interact to pattern mesoderm by controlling basic helix-loop-helix transcription factor activity. eLife 2018; 7:31018. [PMID: 29877796 PMCID: PMC6013256 DOI: 10.7554/elife.31018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
The mesodermal germ layer is patterned into mediolateral subtypes by signaling factors including BMP and FGF. How these pathways are integrated to induce specific mediolateral cell fates is not well understood. We used mesoderm derived from post-gastrulation neuromesodermal progenitors (NMPs), which undergo a binary mediolateral patterning decision, as a simplified model to understand how FGF acts together with BMP to impart mediolateral fate. Using zebrafish and mouse NMPs, we identify an evolutionarily conserved mechanism of BMP and FGF-mediated mediolateral mesodermal patterning that occurs through modulation of basic helix-loop-helix (bHLH) transcription factor activity. BMP imparts lateral fate through induction of Id helix loop helix (HLH) proteins, which antagonize bHLH transcription factors, induced by FGF signaling, that specify medial fate. We extend our analysis of zebrafish development to show that bHLH activity is responsible for the mediolateral patterning of the entire mesodermal germ layer.
Collapse
Affiliation(s)
- Richard H Row
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Amy Pegg
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian A Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Gist H Farr
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States
| | - Lisa Maves
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, United States.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, United States
| | - Sally Lowell
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Valerie Wilson
- MRC Center for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Martin
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| |
Collapse
|