1
|
Tan LY, Setyawati MI, Ng KW. Effects of metal oxide nanoparticles on healthy and psoriasis-like human epidermal keratinocytes in vitro. Arch Toxicol 2024; 98:3689-3711. [PMID: 39186148 DOI: 10.1007/s00204-024-03848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The use of metal oxide nanoparticles (NPs) in skincare products has significantly increased human skin exposure, raising safety concerns. Whilst NP's ability to penetrate healthy skin is minimal, studies have demonstrated that metal oxide NPs can induce toxicity in keratinocytes through direct contact. Moreover, NP's effect on common skin disorders like psoriasis, where barrier impairments and underlying inflammation could potentially increase NP penetration and worsen nanotoxicity is largely unstudied. In this paper, we investigated whether psoriasis-like human keratinocytes (Pso HKs) would exhibit heightened toxic responses to titanium dioxide (TiO2), zinc oxide (ZnO), and/or silica (SiO2) NPs compared to healthy HKs. Cells were exposed to each NP at concentrations ranging between 0.5 and 500 µg/ml for 6, 24, and 48 h. Amongst the metal oxide NPs, ZnO NPs produced the most pronounced toxic effects in both cell types, affecting cell viability, inducing oxidative stress, and activating the inflammasome pathway. Notably, only in ZnO NPs-treated Pso HKs, trappin-2/pre-elafin was cleaved intracellularly through a non-canonical process. In addition, tissue remodelling-related cytokines were upregulated in ZnO NP-treated Pso HKs. The full impact of the observed outcomes on psoriatic symptoms will need further evaluation. Nonetheless, our findings indicate the importance of understanding the sub-lethal impacts of NP exposures on keratinocytes, even though direct exposure may be low, particularly in the context of skin disorders where repeated and long-term exposures are anticipated.
Collapse
Affiliation(s)
- Li Yi Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore.
- Nanyang Environment and Water Research Institute, Cleantech Loop 1, Singapore, 637141, Singapore.
| |
Collapse
|
2
|
Reeder TL, Zarlenga DS, Dyer RM. Molecular evidence sterile tissue damage during pathogenesis of pododermatitis aseptica hemorrhagica circumscripta is associated with disturbed epidermal-dermal homeostasis. J Dairy Sci 2024:S0022-0302(24)00842-7. [PMID: 38825113 DOI: 10.3168/jds.2023-24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Podermatitis aseptica hemorrhagica circumscripta is associated with metalloproteinase 2 weakening of distal phalangeal suspensory structures and sinkage of the distal phalanx in the claw capsule. Pressure from the tuberculum flexorium on the sole epidermis and dermis produces hemorrhagic tissue injury and defective horn production appearing as yellow-red, softened claw horn in region 4 of the sole. A model of the MAPK/ERK signal cascade orchestrating epidermal-dermal homeostasis was employed to determine if sterile inflammatory responses are linked to disturbed signal transduction for epidermal homeostasis in sole epidermis and dermis. The objective was to assess shifts in target genes of inflammation, up- and downstream MAPK/ERK signal elements, and targeted genes supporting epidermal proliferation and differentiation. Sole epidermis and dermis was removed from lateral claws bearing lesions of podermatitis aseptica hemorrhagica circumscripta, medial claws from the same limb and lateral claws from completely normal limbs of multiparous, lactating Holstein cows. The abundance levels of targeted transcripts were evaluated by real-time QPCR. Lesion effects were assessed by ANOVA, and mean comparisons were performed with t-tests to assess variations between mean expression in ulcer-bearing or medial claw dermis and epidermis and completely normal lateral claw dermis and epidermis or between ulcer-bearing dermis and epidermis and medial claw dermis and epidermis. The lesions were sterile and showed losses across multiple growth factors, their receptors, several downstream AP1 transcription components, CMYC, multiple cell cycle and terminal differentiation elements conducted by MAPK/ERK signals and β 4, α 6 and collagen 17A hemidesmosome components. These losses coincided with increased cytokeratin 6, β 1 integrin, proinflammatory metalloproteinases 2 and 9, IL1B and physiologic inhibitors of IL1B, the decoy receptor and receptor antagonist. Medial claw epidermis and dermis from limbs with lateral claws bearing podermatitis aseptica hemorrhagica circumscripta showed reductions in upstream MAPK/ERK signal elements and downstream targets that paralleled those in hemorrhagic lesions. Inhibitors of IL1B increased in the absence of real increases in inflammatory targets in the medial claw dermis and epidermis. Losses across multiple signal path elements and downstream targets were associated with negative effects on targeted transcripts supporting claw horn production and wound repair across lesion-bearing lateral claws and lesion-free medial claw dermis and epidermis. It was unclear if the sterile inflammation was causative or a consequence of these perturbations.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303.
| |
Collapse
|
3
|
Yuan S, Almagro J, Fuchs E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat Rev Cancer 2024; 24:274-286. [PMID: 38347101 PMCID: PMC11077468 DOI: 10.1038/s41568-023-00660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/17/2024]
Abstract
Cancer has long been viewed as a genetic disease of cumulative mutations. This notion is fuelled by studies showing that ageing tissues are often riddled with clones of complex oncogenic backgrounds coexisting in seeming harmony with their normal tissue counterparts. Equally puzzling, however, is how cancer cells harbouring high mutational burden contribute to normal, tumour-free mice when allowed to develop within the confines of healthy embryos. Conversely, recent evidence suggests that adult tissue cells expressing only one or a few oncogenes can, in some contexts, generate tumours exhibiting many of the features of a malignant, invasive cancer. These disparate observations are difficult to reconcile without invoking environmental cues triggering epigenetic changes that can either dampen or drive malignant transformation. In this Review, we focus on how certain oncogenes can launch a two-way dialogue of miscommunication between a stem cell and its environment that can rewire downstream events non-genetically and skew the morphogenetic course of the tissue. We review the cells and molecules of and the physical forces acting in the resulting tumour microenvironments that can profoundly affect the behaviours of transformed cells. Finally, we discuss possible explanations for the remarkable diversity in the relative importance of mutational burden versus tumour microenvironment and its clinical relevance.
Collapse
Affiliation(s)
- Shaopeng Yuan
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
4
|
Gaba S, Jain U. Advanced biosensors for nanomaterial-based detection of transforming growth factor alpha and beta, a class of major polypeptide regulators. Int J Biol Macromol 2024; 257:128622. [PMID: 38065462 DOI: 10.1016/j.ijbiomac.2023.128622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factors (TGFs) regulate several cellular processes including, differentiation, growth, migration, extracellular matrix production, and apoptosis. TGF alpha (TGF-α) is a heterogeneous molecule containing 160 amino acid residues. It is a potent angiogenesis promoter that is activated by JAK-STAT signaling. Whereas TGF beta (TGF-β) consists of 390-412 amino acids. Smad and non-Smad signaling both occur in TGF beta. It is linked to immune cell activation, differentiation, and proliferation. It also triggers pre-apoptotic responses and inhibits cell proliferation. Both growth factors have a promising role in the development and homeostasis of tissues. Defects such as autoimmune diseases and cancer develop mechanisms to modulate checkpoints of the immune system resulting in altered growth factors profile. An accurate amount of these growth factors is essential for normal functioning, but an exceed or fall behind the normal level is alarming as it is linked to several disorders. This demands techniques for TGF-α and TGF-β profiling to effectively diagnose diseases, monitor their progression, and assess the efficacy of immunotherapeutic drugs. Quantitative detection techniques including the emergence of biosensing technology seem to accomplish the purpose. Until the present time, few biosensors have been designed in the context of TGF-α and TGF-β for disease detection, analyzing receptor binding, and interaction with carriers. In this paper, we have reviewed the physiology of transforming growth factor alpha and beta, including the types, structure, function, latent/active forms, signaling, and defects caused. It involves the description of biosensors on TGF-α and TGF-β, advances in technology, and future perspectives.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
5
|
Parab S, Doshi G. The Experimental Animal Models in Psoriasis Research: A Comprehensive Review. Int Immunopharmacol 2023; 117:109897. [PMID: 36822099 DOI: 10.1016/j.intimp.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
Psoriasis is an autoimmune, chronic, inflammatory skin condition mediated by T cells. It differs from other inflammatory conditions by causing significant alterations in epidermal cell proliferation and differentiation that are both complicated and prominent. The lack of an appropriate animal model has significantly hindered studies into the pathogenic mechanisms of psoriasis since animals other than humans typically do not exhibit the complex phenotypic features of human psoriasis. A variety of methods, including spontaneous mutations, drug-induced mutations, genetically engineered animals, xenotransplantation models, and immunological reconstitution approaches, have all been employed to study specific characteristics in the pathogenesis of psoriasis. Although some of these approaches have been used for more than 50 years and far more models have been introduced recently, they have surprisingly not yet undergone detailed validation. Despite their limitations, these models have shown a connection between keratinocyte hyperplasia, vascular hyperplasia, and a cell-mediated immune response in the skin. The xenotransplantation of diseased or unaffected human skin onto immune-compromised recipients has also significantly aided psoriasis research. This technique has been used in a variety of ways to investigate the function of T lymphocytes and other cells, including preclinical therapeutic studies. The design of pertinent in vivo and in vitro psoriasis models is currently of utmost concern and a crucial step toward its cure. This article outlines the general approach in the development of psoriasis-related animal models, aspects of some specific models, along with their strengths and limitations.
Collapse
Affiliation(s)
- Siddhi Parab
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
6
|
Fuchs E. A tribute to Terri Grodzicker from an admirer. Genes Dev 2023; 37:22-24. [PMID: 37061968 PMCID: PMC10046424 DOI: 10.1101/gad.350449.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
7
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
8
|
Deal KK, Rosebrock JC, Eeds AM, DeKeyser JML, Musser MA, Ireland SJ, May-Zhang AA, Buehler DP, Southard-Smith EM. Sox10-cre BAC transgenes reveal temporal restriction of mesenchymal cranial neural crest and identify glandular Sox10 expression. Dev Biol 2020; 471:119-137. [PMID: 33316258 DOI: 10.1016/j.ydbio.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer C Rosebrock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela M Eeds
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jean-Marc L DeKeyser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Northwestern University, Dept. of Pharmacology, USA
| | - Melissa A Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aaron A May-Zhang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
9
|
Guerrero-Aspizua S, Carretero M, Conti CJ, Del Río M. The importance of immunity in the development of reliable animal models for psoriasis and atopic dermatitis. Immunol Cell Biol 2020; 98:626-638. [PMID: 32479655 DOI: 10.1111/imcb.12365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/17/2023]
Abstract
Psoriasis (PS) and atopic dermatitis (AD) are common inflammatory skin diseases characterized by an imbalance in specific T-cell subsets, resulting in a specific cytokine profile in patients. Obtaining models closely resembling both pathologies along with a relevant clinical impact is crucial for the development of new therapies because of the high prevalence of these diseases. Single-gene mouse models developed until now do not fully reflect the complexity of these disorders, in part not only because of inherent differences between mice and humans but also because of the multifactorial nature of these pathologies. The skin-humanized mouse model developed by our group, based on a tissue engineering approach, has been used to test therapeutic strategies, although this methodology is still technically challenging and not widely available. The skin-humanized mouse models for PS and AD reproduce human skin phenotypes, providing valuable tools for drug development and testing in the preclinical setting. The tissue engineering approach allows the development of personalized medicine, covering the broad genotypic spectrum of these pathologies. This review highlights the main differences between available murine models focusing on the tissue-specific immunity of PS and AD. We discuss their contribution to unravel the complex pathophysiology of these diseases and to translate this knowledge into more accurate therapies.
Collapse
Affiliation(s)
- Sara Guerrero-Aspizua
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, 28911, Spain.,Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, 28040, Spain.,Epithelial Biomedicine Division, CIEMAT, Madrid, 28040, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, U714, Spain
| | - Marta Carretero
- Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, 28040, Spain.,Epithelial Biomedicine Division, CIEMAT, Madrid, 28040, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, U714, Spain
| | - Claudio J Conti
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, 28911, Spain.,Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, 28040, Spain
| | - Marcela Del Río
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, 28911, Spain.,Hospital Fundación Jiménez Díaz e Instituto de Investigación FJD, Madrid, 28040, Spain.,Epithelial Biomedicine Division, CIEMAT, Madrid, 28040, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, U714, Spain
| |
Collapse
|
10
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:jem.20190297. [PMID: 31727782 PMCID: PMC7037244 DOI: 10.1084/jem.20190297] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
11
|
Schön MP, Manzke V, Erpenbeck L. Animal models of psoriasis-highlights and drawbacks. J Allergy Clin Immunol 2020; 147:439-455. [PMID: 32560971 DOI: 10.1016/j.jaci.2020.04.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Research into the pathophysiology of psoriasis remains challenging, because this disease does not occur naturally in laboratory animals. However, specific aspects of its complex immune-pathology can be illuminated through transgenic, knockout, xenotransplantation, immunological reconstitution, drug-induced, or spontaneous mutation models in rodents. Although some of these approaches have already been pursued for more than 5 decades and even more models have been described in recent times, they have surprisingly not yet been systematically validated. As a consequence, researchers regularly examine specific aspects that only partially reflect the complex overall picture of the human disease. Nonetheless, animal models are of great utility to investigate inflammatory mediators, the communication between cells of the innate and the adaptive immune systems, the role of resident cells as well as new therapies. Of note, various manipulations in experimental animals resulted in rather similar phenotypes. These were called "psoriasiform", "psoriasis-like" or even "psoriasis" usually on the basis of some similarities with the human disorder. Xenotransplantation of human skin onto immunocompromised animals can overcome this limitation only in part. In this review, we elucidate approaches for the generation of animal models of psoriasis and assess their strengths and limitations with a certain focus on more recently developed models.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany.
| | - Veit Manzke
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Zhao J, Chen X, Herjan T, Li X. The role of interleukin-17 in tumor development and progression. J Exp Med 2020; 217:e20190297. [PMID: 31727782 DOI: 10.1084/jem_20190297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/21/2019] [Accepted: 10/08/2019] [Indexed: 01/03/2025] Open
Abstract
IL-17, a potent proinflammatory cytokine, has been shown to intimately contribute to the formation, growth, and metastasis of a wide range of malignancies. Recent studies implicate IL-17 as a link among inflammation, wound healing, and cancer. While IL-17-mediated production of inflammatory mediators mobilizes immune-suppressive and angiogenic myeloid cells, emerging studies reveal that IL-17 can directly act on tissue stem cells to promote tissue repair and tumorigenesis. Here, we review the pleotropic impacts of IL-17 on cancer biology, focusing how IL-17-mediated inflammatory response and mitogenic signaling are exploited to equip its cancer-promoting function and discussing the implications in therapies.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xing Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tomasz Herjan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
13
|
de Oliveira BGRB, de Oliveira FP, Teixeira LA, de Paula GR, de Oliveira BC, Pires BMFB. Epidermal growth factor vs platelet-rich plasma: Activity against chronic wound microbiota. Int Wound J 2019; 16:1408-1415. [PMID: 31571388 PMCID: PMC7949375 DOI: 10.1111/iwj.13205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 01/09/2023] Open
Abstract
The objective was to evaluate Staphylococcus aureus and Pseudomonas aeruginosa colonisation of wounds treated with recombinant epidermal growth factor (EGF) and platelet-rich plasma (PRP); to analyse the susceptibility profiles of S. aureus and P. aeruginosa isolates from wounds treated with EGF and PRP; and to describe the presence of infection in EGF-treated and PRP-treated wounds. Experimental study was performed using clinical specimens collected with swabs. Patients were treated with PRP and EGF in the outpatient clinic of a university hospital. Forty-three isolates were obtained from 31 patients, 41.9% (13/31) of whom had been treated with EGF and 58.0% (18/31) with PRP. Ten of the 43 isolates were identified as S. aureus, 60.0% (6/10) of which were isolated from PRP-treated wounds. Among the 33 P. aeruginosa isolates, 66.6% (22/33) were isolated from PRP-treated wounds. Regarding antimicrobial susceptibility, only one strain isolated from an EGF-treated wound was identified as methicillin-resistant S. aureus (MRSA). Among the P. aeruginosa isolates, one obtained from a patient treated with EGF was multidrug-resistant. Patients treated with EGF had no infections during the follow-up period, and there was a significant difference between the 1st and 12th week in wound infection improvement in patients treated with PRP (P = .0078).
Collapse
|
14
|
Anastasi S, Alemà S, Segatto O. Making sense of Cbp/p300 loss of function mutations in skin tumorigenesis. J Pathol 2019; 250:3-6. [PMID: 31397888 DOI: 10.1002/path.5336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
Abstract
CBP and p300 are highly homologous lysine acetyltransferases involved in cell cycle regulation, DNA synthesis and DNA repair. Loss of function mutations of CBP and p300 are found in about one-third of cutaneous squamous cell carcinoma (cSCC) and often co-occur, yet their role in cSCC pathogenesis is unclear. Writing in The Journal of Pathology, Ichise and colleagues modeled combined heterozygous loss of Cbp/p300 in mouse keratinocytes expressing a transgenic HrasS35 allele that allows selective coupling of Hras to the Erk pathway. Epidermal thickening caused by expression of HrasS35 was exacerbated by reduced dosage of Cbp/p300 and eventually resulted in development of skin papillomas. This phenotype was associated with reduced expression of Mig6, an Egfr feedback inhibitor, and attendant enhancement of Egfr signaling to the Ras-Erk pathway. This model provides a mechanistic framework for understanding how Cbp/p300 loss of function mutations impact on skin tumorigenesis and suggests potential therapeutic options in CBP/p300 mutated human cSCC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sergio Anastasi
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Alemà
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Italy
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
15
|
Wang X. Stem cells in tissues, organoids, and cancers. Cell Mol Life Sci 2019; 76:4043-4070. [PMID: 31317205 PMCID: PMC6785598 DOI: 10.1007/s00018-019-03199-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
Stem cells give rise to all cells and build the tissue structures in our body, and heterogeneity and plasticity are the hallmarks of stem cells. Epigenetic modification, which is associated with niche signals, determines stem cell differentiation and somatic cell reprogramming. Stem cells play a critical role in the development of tumors and are capable of generating 3D organoids. Understanding the properties of stem cells will improve our capacity to maintain tissue homeostasis. Dissecting epigenetic regulation could be helpful for achieving efficient cell reprograming and for developing new drugs for cancer treatment. Stem cell-derived organoids open up new avenues for modeling human diseases and for regenerative medicine. Nevertheless, in addition to the achievements in stem cell research, many challenges still need to be overcome for stem cells to have versatile application in clinics.
Collapse
Affiliation(s)
- Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Sola-Carvajal A, Revêchon G, Helgadottir HT, Whisenant D, Hagblom R, Döhla J, Katajisto P, Brodin D, Fagerström-Billai F, Viceconte N, Eriksson M. Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. J Invest Dermatol 2019; 139:2272-2280.e12. [PMID: 31128203 DOI: 10.1016/j.jid.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin. Stratification and differentiation of the epidermis is regulated by asymmetric stem cell division. Here, we show that expression of progerin impairs the ability of stem cells to maintain tissue homeostasis as a result of altered cell division. Quantification of basal skin cells showed an increase in symmetric cell division that correlated with progerin accumulation in HGPS mice. Investigation of the mechanisms underlying this phenomenon revealed a putative role of Wnt/β-catenin signaling. Further analysis suggested an alteration in the nuclear translocation of β-catenin involving the inner and outer nuclear membrane proteins, emerin and nesprin-2. Taken together, our results suggest a direct involvement of progerin in the transmission of Wnt signaling and normal stem cell division. These insights into the molecular mechanisms of progerin may help develop new treatment strategies for HGPS.
Collapse
Affiliation(s)
- Agustín Sola-Carvajal
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Whisenant
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Robin Hagblom
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Döhla
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Brodin
- Bioinformatics and Expression Core Facility, Karolinska Institutet, Huddinge, Sweden
| | | | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
17
|
Ichise T, Yoshida N, Ichise H. CBP/p300 antagonises EGFR‐Ras‐Erk signalling and suppresses increased Ras‐Erk signalling‐induced tumour formation in mice. J Pathol 2019; 249:39-51. [DOI: 10.1002/path.5279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Taeko Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
| | - Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science The University of Tokyo Tokyo Japan
- Institute for Animal Research, Faculty of Medicine University of the Ryukyus Okinawa Japan
| |
Collapse
|
18
|
Abstract
A multilayered epithelium to fulfil its function must be replaced throughout the lifespan. This is possible due to the presence of multipotent, self-renewing epidermal stem cells that give rise to differentiated cell lineages: keratinocytes, hairs, as well as sebocytes. Till now the molecular mechanisms responsible for stem cell quiescent, proliferation, and differentiation have not been fully established. It is suggested that epidermal stem cells might change their fate, both due to intrinsic events and as a result of niche-dependent extrinsic signals; however other yet unknown factors may also be involved in this process. Given the increasing excitement evoked by self-renewing epidermal stem cells, as one of the sources of adult stem cells, it seems important to reveal the mechanisms that govern their fate. In this chapter, we describe recent advances in the characterisation of the epidermal stem cells and their compartments. Furthermore, we focus on the interplay between epidermal stem cells and extrinsic signals and their role in quiescence, proliferation, and differentiation of appropriate epidermal stem cell lineages.
Collapse
|
19
|
Chen X, Cai G, Liu C, Zhao J, Gu C, Wu L, Hamilton TA, Zhang CJ, Ko J, Zhu L, Qin J, Vidimos A, Koyfman S, Gastman BR, Jensen KB, Li X. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1 + stem cells. J Exp Med 2018; 216:195-214. [PMID: 30578323 PMCID: PMC6314525 DOI: 10.1084/jem.20171849] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/10/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
This study provides mechanistic insight into how IL-17 receptor adopts EGFR to activate ERK5 axis in Lrig1+ stem cells for their proliferation and migration during wounding healing and tumorigenesis. Lrig1 marks a distinct population of stem cells restricted to the upper pilosebaceous unit in normal epidermis. Here we report that IL-17A–mediated activation of EGFR plays a critical role in the expansion and migration of Lrig1+ stem cells and their progenies in response to wounding, thereby promoting wound healing and skin tumorigenesis. Lrig1-specific deletion of the IL-17R adaptor Act1 or EGFR in mice impairs wound healing and reduces tumor formation. Mechanistically, IL-17R recruits EGFR for IL-17A–mediated signaling in Lrig1+ stem cells. While TRAF4, enriched in Lrig1+ stem cells, tethers IL-17RA and EGFR, Act1 recruits c-Src for IL-17A–induced EGFR transactivation and downstream activation of ERK5, which promotes the expansion and migration of Lrig1+ stem cells. This study demonstrates that IL-17A activates the IL-17R–EGFR axis in Lrig1+ stem cells linking wound healing to tumorigenesis.
Collapse
Affiliation(s)
- Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Gang Cai
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Chunfang Gu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Ling Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Thomas A Hamilton
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Cun-Jin Zhang
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Jennifer Ko
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH
| | - Liang Zhu
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
| | - Jun Qin
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
| | | | - Shlomo Koyfman
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH
| | - Brian R Gastman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Dermatology, Cleveland Clinic, Cleveland, OH.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
20
|
Choi BBR, Choi JH, Ji J, Song KW, Lee HJ, Kim GC. Increment of growth factors in mouse skin treated with non-thermal plasma. Int J Med Sci 2018; 15:1203-1209. [PMID: 30123058 PMCID: PMC6097260 DOI: 10.7150/ijms.26342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/30/2018] [Indexed: 11/05/2022] Open
Abstract
Non-thermal plasma (NTP) has several beneficial effects, and can be applied as a novel instrument for skin treatment. Recently, many types of NTP have been developed for potential medical or clinical applications, but their direct effects on skin activation remain unclear. In this study, the effect of NTP on the alteration of mouse skin tissue was analyzed. After NTP treatment, there were no signs of tissue damage in mouse skin, whereas significant increases in epidermal thickness and dermal collagen density were detected. Furthermore, treatment with NTP increased the expression of various growth factors, including TGF-α, TGF-β, VEGF, GM-CSF, and EGF, in skin tissue. Therefore, NTP treatment on skin induces the expression of growth factors without causing damage, a phenomenon that might be directly linked to epidermal expansion and dermal tissue remodeling.
Collapse
Affiliation(s)
- Byul Bo Ra Choi
- Feagle Co., Ltd., Yangsan 50614, Republic of Korea.,Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Hae Choi
- Feagle Co., Ltd., Yangsan 50614, Republic of Korea.,Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jeong Ji
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ki Won Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hae June Lee
- Department of Electrical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyoo Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
21
|
Homozygous Expression of Mutant ELOVL4 Leads to Seizures and Death in a Novel Animal Model of Very Long-Chain Fatty Acid Deficiency. Mol Neurobiol 2017; 55:1795-1813. [PMID: 29168048 PMCID: PMC5820379 DOI: 10.1007/s12035-017-0824-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 10/24/2022]
Abstract
Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular mechanisms by which VLC-SFA regulate synaptic function may provide new targets for improved seizure therapies.
Collapse
|
22
|
Role of EGF receptor signaling on morphogenesis of eyelid and meibomian glands. Exp Eye Res 2017; 163:58-63. [PMID: 28950938 DOI: 10.1016/j.exer.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) signaling has a pivotal role in the regulation of morphogenesis during development and maintenance of homeostasis in adult eyelid and its adnexa. Studies have demonstrated that during eyelid morphogenesis the EGFR signaling pathway is responsible for keratinocyte and mesenchymal cell proliferation and migration at the eyelid tip. For meibomian gland morphogenesis, EGFR signaling activation stimulates meibomian gland epithelial cell proliferation. EGFR signaling pathway functions through multiple downstream signals such as ERK, Rho/ROCK and integrin and is regulated by a variety of upstream signals including Adam17, GPR48 and FGFR signaling. Herein we review the literature that describe the role of EGFR and its related signaling pathways in eyelid and meibomian gland morphogenesis.
Collapse
|
23
|
Extensive phenotypic characterization of a new transgenic mouse reveals pleiotropic perturbations in physiology due to mesenchymal hGH minigene expression. Sci Rep 2017; 7:2397. [PMID: 28546545 PMCID: PMC5445072 DOI: 10.1038/s41598-017-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
The human growth hormone (hGH) minigene used for transgene stabilization in mice has been recently identified to be locally expressed in the tissues where transgenes are active and associated with phenotypic alterations. Here we extend these findings by analyzing the effect of the hGH minigene in TgC6hp55 transgenic mice which express the human TNFR1 under the control of the mesenchymal cell-specific CollagenVI promoter. These mice displayed a fully penetrant phenotype characterized by growth enhancement accompanied by perturbations in metabolic, skeletal, histological and other physiological parameters. Notably, this phenotype was independent of TNF-TNFR1 signaling since the genetic ablation of either Tnf or Tradd did not rescue the phenotype. Further analyses showed that the hGH minigene was expressed in several tissues, also leading to increased hGH protein levels in the serum. Pharmacological blockade of GH signaling prevented the development of the phenotype. Our results indicate that the unplanned expression of the hGH minigene in CollagenVI expressing mesenchymal cells can lead through local and/or systemic mechanisms to enhanced somatic growth followed by a plethora of primary and/or secondary effects such as hyperphagia, hypermetabolism, disturbed glucose homeostasis, altered hematological parameters, increased bone formation and lipid accumulation in metabolically critical tissues.
Collapse
|
24
|
Ge Y, Gomez NC, Adam RC, Nikolova M, Yang H, Verma A, Lu CPJ, Polak L, Yuan S, Elemento O, Fuchs E. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell 2017; 169:636-650.e14. [PMID: 28434617 PMCID: PMC5510746 DOI: 10.1016/j.cell.2017.03.042] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Rene C Adam
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Maria Nikolova
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hanseul Yang
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine Pei-Ju Lu
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Lisa Polak
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Shaopeng Yuan
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Kersh AE, Sasaki M, Cooper LA, Kissick HT, Pollack BP. Understanding the Impact of ErbB Activating Events and Signal Transduction on Antigen Processing and Presentation: MHC Expression as a Model. Front Pharmacol 2016; 7:327. [PMID: 27729860 PMCID: PMC5052536 DOI: 10.3389/fphar.2016.00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/27/2022] Open
Abstract
Advances in molecular pathology have changed the landscape of oncology. The ability to interrogate tissue samples for oncogene amplification, driver mutations, and other molecular alterations provides clinicians with an enormous level of detail about their patient's cancer. In some cases, this information informs treatment decisions, especially those related to targeted anti-cancer therapies. However, in terms of immune-based therapies, it is less clear how to use such information. Likewise, despite studies demonstrating the pivotal role of neoantigens in predicting responsiveness to immune checkpoint blockade, it is not known if the expression of neoantigens impacts the response to targeted therapies despite a growing recognition of their diverse effects on immunity. To realize the promise of 'personalized medicine', it will be important to develop a more integrated understanding of the relationships between oncogenic events and processes governing anti-tumor immunity. One area of investigation to explore such relationships centers on defining how ErbB/HER activation and signal transduction influences antigen processing and presentation.
Collapse
Affiliation(s)
- Anna E Kersh
- Medical Scientist Training Program, Emory University School of Medicine Atlanta, GA, USA
| | | | - Lee A Cooper
- Department of Biomedical Informatics, Emory University School of MedicineAtlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of TechnologyAtlanta, GA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine Atlanta, GA, USA
| | - Brian P Pollack
- Atlanta VA Medical CenterDecatur, GA, USA; Department of Dermatology, Emory University School of MedicineAtlanta, GA, USA
| |
Collapse
|
26
|
Sarate RM, Chovatiya GL, Ravi V, Khade B, Gupta S, Waghmare SK. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation. Stem Cells 2016; 34:2407-17. [PMID: 27299855 DOI: 10.1002/stem.2418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/13/2016] [Accepted: 04/24/2016] [Indexed: 12/29/2022]
Abstract
Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.
Collapse
Affiliation(s)
| | | | | | - Bharat Khade
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | | |
Collapse
|
27
|
Campion CM, Leon Carrion S, Mamidanna G, Sutter CH, Sutter TR, Cole JA. Role of EGF receptor ligands in TCDD-induced EGFR down-regulation and cellular proliferation. Chem Biol Interact 2016; 253:38-47. [PMID: 27117977 DOI: 10.1016/j.cbi.2016.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/30/2016] [Accepted: 04/22/2016] [Indexed: 11/19/2022]
Abstract
In cultures of normal human epidermal keratinocytes (NHEKs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces the expression of the epidermal growth factor receptor ligands transforming growth factor-α (TGF-α) and epiregulin (EREG). TCDD also down-regulates EGF receptors (EGFR), suggesting that decreases in signaling contribute to the effects of TCDD. In this study, we treated post-confluent NHEKs with 10 nM TCDD and assessed its effects on EGFR binding, EGFR ligand secretion, basal ERK activity, and proliferation. TCDD caused time-dependent deceases in [(125)I]-EGF binding to levels 78% of basal cell values at 72 h. Amphiregulin (AREG) levels increased with time in culture in basal and TCDD-treated cells, while TGF-α and epiregulin (EREG) secretion were stimulated by TCDD. Inhibiting EGFR ligand release with the metalloproteinase inhibitor batimastat prevented EGFR down-regulation and neutralizing antibodies for AREG and EREG relieved receptor down-regulation. In contrast, neutralizing TGF-α intensified EGFR down-regulation. Treating NHEKs with AREG or TGF-α caused rapid internalization of receptors with TGF-α promoting recycling within 90 min. EREG had limited effects on rapid internalization or recycling. TCDD treatment increased ERK activity, a response reduced by batimastat and the neutralization of all three ligands indicating that the EGFR and its ligands maintain ERK activity. All three EGFR ligands were required for the maintenance of total cell number in basal and TCDD-treated cultures. The EGFR inhibitor PD1530305 blocked basal and TCDD-induced increases in the number of cells labeled by 5-ethynyl-2'-deoxyuridine, identifying an EGFR-dependent pool of proliferating cells that is larger in TCDD-treated cultures. Overall, these data indicate that TCDD-induced EGFR down-regulation in NHEKs is caused by AREG, TGF-α, and EREG, while TGF-α enhances receptor recycling to maintain a pool of EGFR at the cell surface. These receptors are required for ERK activity, maintenance of total cell number, and stimulating the proliferation of a small subset cells.
Collapse
Affiliation(s)
- Christina M Campion
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Sandra Leon Carrion
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Gayatri Mamidanna
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Carrie Hayes Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Thomas R Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Judith A Cole
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
28
|
Rubinstein TJ, Weber AC, Traboulsi EI. Molecular biology and genetics of embryonic eyelid development. Ophthalmic Genet 2016; 37:252-9. [PMID: 26863902 DOI: 10.3109/13816810.2015.1071409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The embryology of the eyelid is a complex process that includes interactions between the surface ectoderm and mesenchymal tissues. In the mouse and human, the eyelids form and fuse before birth; they open prenatally in the human and postnatally in the mouse. In the mouse, cell migration is stimulated by different growth factors such as FGF10, TGF-α, Activin B, and HB-EGF. These growth factors modulate downstream BMP4 signaling, the ERK cascade, and JNK/c-JUN. Several mechanisms, such as the Wnt/β-catenin signaling pathway, may inhibit and regulate eyelid fusion. Eyelid opening, on the other hand, is driven by the BMP/Smad signaling system. Several human genetic disorders result from dysregulation of the above molecular pathways.
Collapse
Affiliation(s)
| | - Adam C Weber
- a Cleveland Clinic Cole Eye Institute , Cleveland , Ohio , USA
| | | |
Collapse
|
29
|
Dong F, Liu CY, Yuan Y, Zhang Y, Li W, Call M, Zhang L, Chen Y, Liu Z, Kao WWY. Perturbed meibomian gland and tarsal plate morphogenesis by excess TGFα in eyelid stroma. Dev Biol 2015; 406:147-57. [PMID: 26363126 DOI: 10.1016/j.ydbio.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 01/04/2023]
Abstract
Transforming growth factor alpha (TGFα) belongs to the epidermal growth factor (EGF) family and is known to play an important role during eyelid morphogenesis. In this study, we showed that ectopic expression of TGFα in the stroma of Kera-rtTA/tet-O-TGFα bitransgenic mice results in precocious eye opening, abnormal morphogenesis of the meibomian gland, tendon and tarsal plate malformation and epithelium hyperplasia. TGFα did not change proliferation and differentiation of meibocytes, but promoted proliferation and inhibited differentiation of the tarsal plate tenocytes. These results suggest that proper formation of the tendon and tarsal plate in the mouse eyelid is required for normal morphogenesis of the meibomian gland.
Collapse
Affiliation(s)
- Fei Dong
- Department of Ophthalmology, University of Cincinnati, OH 45267, United States; Eye Institute of Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Chia-Yang Liu
- Department of Ophthalmology, University of Cincinnati, OH 45267, United States
| | - Yong Yuan
- Department of Ophthalmology, University of Cincinnati, OH 45267, United States
| | - Yujin Zhang
- Department of Ophthalmology, University of Cincinnati, OH 45267, United States
| | - Wei Li
- Eye Institute of Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Mindy Call
- Department of Ophthalmology, University of Cincinnati, OH 45267, United States
| | - Liyun Zhang
- Department of Ophthalmology, University of Cincinnati, OH 45267, United States
| | - Yongxiong Chen
- Eye Institute of Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen, Fujian 361102, People's Republic of China.
| | - Winston W Y Kao
- Department of Ophthalmology, University of Cincinnati, OH 45267, United States.
| |
Collapse
|
30
|
Baan M, Kibbe CR, Bushkofsky JR, Harris TW, Sherman DS, Davis DB. Transgenic expression of the human growth hormone minigene promotes pancreatic β-cell proliferation. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26202070 DOI: 10.1152/ajpregu.00244.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transgenic mouse models are designed to study the role of specific proteins. To increase transgene expression the human growth hormone (hGH) minigene, including introns, has been included in many transgenic constructs. Until recently, it was thought that the hGH gene was not spliced, transcribed, and translated to produce functional hGH protein. We generated a transgenic mouse with the transcription factor Forkhead box M1 (FoxM1) followed by the hGH minigene, under control of the mouse insulin promoter (MIP) to target expression specifically in the pancreatic β-cell. Expression of FoxM1 in isolated pancreatic islets in vitro stimulates β-cell proliferation. We aimed to investigate the effect of FoxM1 on β-cell mass in a mouse model for diabetes mellitus. However, we found inadvertent coexpression of hGH protein from a spliced, bicistronic mRNA. MIP-FoxM1-hGH mice had lower blood glucose and higher pancreatic insulin content, due to increased β-cell proliferation. hGH signals through the murine prolactin receptor, and expression of its downstream targets tryptophan hydroxylase-1 (Tph1), tryptophan hydroxylase-2 (Tph2), and cytokine-inducible SH2 containing protein (Cish) was increased. Conversely, transcriptional targets of FoxM1 were not upregulated. Our data suggest that the phenotype of MIP-FoxM1-hGH mice is due primarily to hGH activity and that the FoxM1 protein remains largely inactive. Over the past decades, multiple transgenic mouse strains were generated that make use of the hGH minigene to increase transgene expression. Our work suggests that each will need to be carefully screened for inadvertent hGH production and critically evaluated for the use of proper controls.
Collapse
Affiliation(s)
- Mieke Baan
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Carly R Kibbe
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Justin R Bushkofsky
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Ted W Harris
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn S Sherman
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin; and William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
31
|
Sato K, Takaishi M, Tokuoka S, Sano S. Involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model. PLoS One 2014; 9:e112408. [PMID: 25384035 PMCID: PMC4226544 DOI: 10.1371/journal.pone.0112408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/07/2014] [Indexed: 01/10/2023] Open
Abstract
TNF-α plays a crucial role in psoriasis; therefore, TNF inhibition has become a gold standard for the treatment of psoriasis. TNF-α is processed from a membrane-bound form by TNF-α converting enzyme (TACE) to soluble form, which exerts a number of biological activities. EGF receptor (EGFR) ligands, including heparin-binding EGF-like growth factor (HB-EGF), amphiregulin and transforming growth factor (TGF)-α are also TACE substrates and are psoriasis-associated growth factors. Vascular endothelial growth factor (VEGF), one of the downstream molecules of EGFR and TNF signaling, plays a key role in angiogenesis for developing psoriasis. In the present study, to assess the possible role of TACE in the pathogenesis of psoriasis, we investigated the involvement of TACE in TPA-induced psoriasis-like lesions in K5.Stat3C mice, which represent a mouse model of psoriasis. In this mouse model, TNF-α, amphiregulin, HB-EGF and TGF-α were significantly up-regulated in the skin lesions, similar to human psoriasis. Treatment of K5.Stat3C mice with TNF-α or EGFR inhibitors attenuated the skin lesions, suggesting the roles of TACE substrates in psoriasis. Furthermore, the skin lesions of K5.Stat3C mice showed down-regulation of tissue inhibitor of metalloproteinase-3, an endogenous inhibitor of TACE, and an increase in soluble TNF-α. A TACE inhibitor abrogated EGFR ligand-dependent keratinocyte proliferation and VEGF production in vitro, suggesting that TACE was involved in both epidermal hyperplasia and angiogenesis during psoriasis development. These results strongly suggest that TACE contributes to the development of psoriatic lesions through releasing two kinds of psoriasis mediators, TNF-α and EGFR ligands. Therefore, TACE could be a potential therapeutic target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kenji Sato
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Mikiro Takaishi
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Shota Tokuoka
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., Kyoto, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
- * E-mail:
| |
Collapse
|
32
|
Fate and plasticity of the epidermis in response to congenital activation of BRAF. J Invest Dermatol 2014; 135:481-9. [PMID: 25202828 PMCID: PMC4289449 DOI: 10.1038/jid.2014.388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/07/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023]
Abstract
Determining the developmental consequences of activated RAS and its downstream effectors is critical to understanding several congenital conditions caused by either germline or somatic mutations of the RAS pathway. Here we demonstrate that embryonic activation of BRAF in mouse ectoderm triggers both craniofacial and skin defects, including hyperproliferation, loss of spinous and granular keratinocyte differentiation, and cleft palate. RNA-sequencing reveals that despite an apparent block in spinous and granular differentiation, the epidermis continues to mature, expressing >80% of EDC genes and forming a hydrophobic barrier, both characteristic of later stages in epidermal development. Spinous and granular differentiation can be restored by pharmacologic inhibition of MEK or BRAF; however, in tissue recombination studies, phenotypic reversion was found to be non-cell autonomous and required dermal tissue to be present. These studies indicate that early activation of the RAF signaling pathway in the ectoderm has specific effects on progressive differentiation of the epidermis, which may be amendable to treatment using existing pharmacologic inhibitors.
Collapse
|
33
|
Soboleva AG, Mesentsev AV, Bruskin SA. Genetically modified animals as models of the pathological processes in psoriasis. Mol Biol 2014. [DOI: 10.1134/s0026893314040153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Hsu YC, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nat Med 2014; 20:847-56. [PMID: 25100530 PMCID: PMC4358898 DOI: 10.1038/nm.3643] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/26/2014] [Indexed: 12/15/2022]
Abstract
The skin protects mammals from insults, infection and dehydration and enables thermoregulation and sensory perception. Various skin-resident cells carry out these diverse functions. Constant turnover of cells and healing upon injury necessitate multiple reservoirs of stem cells. Thus, the skin provides a model for studying interactions between stem cells and their microenvironments, or niches. Advances in genetic and imaging tools have brought new findings about the lineage relationships between skin stem cells and their progeny and about the mutual influences between skin stem cells and their niches. Such knowledge may offer novel avenues for therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Ya-Chieh Hsu
- 1] Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, New York, USA. [2]
| | - Lishi Li
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, New York, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, Rockefeller University, New York, New York, USA
| |
Collapse
|
35
|
Ji J, Liu J, Liu H, Wang Y. Comparison of serum and tissue levels of trace elements in different models of cervical cancer. Biol Trace Elem Res 2014; 159:346-50. [PMID: 24763712 DOI: 10.1007/s12011-014-9981-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Cervical cancer is a leading cause of death by cancer among women worldwide. It is necessary to develop and refine cervical cancer models to more accurately reflect human tumor type. The relevance of cervical cancer to trace element was studied in this paper. By means of quantitative trace element analysis in models and patients with cervical cancer, the tissue and serum levels of trace elements in papillomaviruses-induced cancer models were more similar to that of patients than the levels in models induced by HeLa cell and methylcholanthrene. The results reflect papillomaviruses model most accurately mimic in vivo carcinogenesis of patients with cervical cancer. It will have a superior predictive value over HeLa cell and methylcholanthrene models in pre-clinical trials. The papillomaviruses-induced cervical cancer can provide more reliable models for testing the efficacy of drugs in treating human cancers.
Collapse
Affiliation(s)
- Jing Ji
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, 710061, China
| | | | | | | |
Collapse
|
36
|
Beidler CB, Petrovan RJ, Conner EM, Boyles JS, Yang DD, Harlan SM, Chu S, Ellis B, Datta-Mannan A, Johnson RL, Stauber A, Witcher DR, Breyer MD, Heuer JG. Generation and activity of a humanized monoclonal antibody that selectively neutralizes the epidermal growth factor receptor ligands transforming growth factor-α and epiregulin. J Pharmacol Exp Ther 2014; 349:330-43. [PMID: 24518034 DOI: 10.1124/jpet.113.210765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
At least seven distinct epidermal growth factor (EGF) ligands bind to and activate the EGF receptor (EGFR). This activation plays an important role in the embryo and in the maintenance of adult tissues. Importantly, pharmacologic EGFR inhibition also plays a critical role in the pathophysiology of diverse disease states, especially cancer. The roles of specific EGFR ligands are poorly defined in these disease states. Accumulating evidence suggests a role for transforming growth factor α (TGFα) in skin, lung, and kidney disease. To explore the role of Tgfa, we generated a monoclonal antibody (mAb41) that binds to and neutralizes human Tgfa with high affinity (KD = 36.5 pM). The antibody also binds human epiregulin (Ereg) (KD = 346.6 pM) and inhibits ligand induced myofibroblast cell proliferation (IC50 values of 0.52 and 1.12 nM for human Tgfa and Ereg, respectively). In vivo, a single administration of the antibody to pregnant mice (30 mg/kg s.c. at day 14 after plug) or weekly administration to neonate mice (20 mg/kg s.c. for 4 weeks) phenocopy Tgfa knockout mice with curly whiskers, stunted growth, and expansion of the hypertrophic zone of growth plate cartilage. Humanization of this monoclonal antibody to a human IgG4 antibody (LY3016859) enables clinical development. Importantly, administration of the humanized antibody to cynomolgus monkeys is absent of the skin toxicity observed with current EGFR inhibitors used clinically and no other pathologies were noted, indicating that neutralization of Tgfa could provide a relatively safe profile as it advances in clinical development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Cell Line
- Cell Proliferation/drug effects
- Epidermal Growth Factor/metabolism
- Epiregulin
- ErbB Receptors/metabolism
- Humans
- Immunoglobulin G/immunology
- Macaca fascicularis
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Myofibroblasts/cytology
- Myofibroblasts/drug effects
- Myofibroblasts/metabolism
- Protein Binding
- Transforming Growth Factor alpha/genetics
- Transforming Growth Factor alpha/metabolism
Collapse
|
37
|
Singh B, Coffey RJ. From wavy hair to naked proteins: the role of transforming growth factor alpha in health and disease. Semin Cell Dev Biol 2014; 28:12-21. [PMID: 24631356 DOI: 10.1016/j.semcdb.2014.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Abstract
Since its discovery in 1978 and cloning in 1984, transforming growth factor-alpha (TGF-α, TGFA) has been one of the most extensively studied EGF receptor (EGFR) ligands. In this review, we provide a historical perspective on TGFA-related studies, highlighting what we consider important advances related to its function in normal and disease states.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Robert J Coffey
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veteran Affairs Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Zhang Z, Xiao C, Gibson AM, Bass SA, Khurana Hershey GK. EGFR signaling blunts allergen-induced IL-6 production and Th17 responses in the skin and attenuates development and relapse of atopic dermatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:859-66. [PMID: 24337738 PMCID: PMC3946981 DOI: 10.4049/jimmunol.1301062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the important role for epidermal growth factor (EGF) in epithelial homeostasis and wound healing, it has not been investigated in atopic dermatitis (AD). We used AD animal models to explore the role of EGF in AD. In an acute AD model, skin transepidermal water loss was significantly attenuated in EGF-treated mice. Blockade of EGFR signaling genetically or pharmacologically confirms a protective role for EGFR signaling in AD. In a chronic/relapsing AD model, EGF treatment of mice with established AD resulted in an attenuation of AD exacerbation (skin epithelial thickness, cutaneous inflammation, and total and allergen specific IgE) following cutaneous allergen rechallenge. EGF treatment did not alter expression of skin barrier junction proteins or antimicrobial peptides in the AD model. However, EGF treatment attenuated allergen-induced expression of IL-17A, CXCL1, and CXCL2 and neutrophil accumulation in AD skin following cutaneous allergen exposure. IL-17A production was decreased in the in vitro restimulated skin-draining lymph node cells from the EGF-treated mice. Similarly, IL-17A was increased in waved-2 mice skin following allergen exposure. Whereas IL-6 and IL-1β expression was attenuated in the skin of EGF-treated mice, EGF treatment also suppressed allergen-induced IL-6 production by keratinocytes. Given the central role of IL-6 in priming Th17 differentiation in the skin, this effect of EGF on keratinocytes may contribute to the protective roles for EGFR in AD pathogenesis. In conclusion, our study provides evidence for a previously unrecognized protective role for EGF in AD and a new role for EGF in modulating IL-17 responses in the skin.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Chang Xiao
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Aaron M. Gibson
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Stacey A. Bass
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Gurjit K. Khurana Hershey
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
39
|
Ceresa BP, Peterson JL. Cell and molecular biology of epidermal growth factor receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:145-78. [PMID: 25376492 DOI: 10.1016/b978-0-12-800177-6.00005-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.
Collapse
Affiliation(s)
- Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Joanne L Peterson
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
40
|
HER. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
41
|
EGFR-ras-raf signaling in epidermal stem cells: roles in hair follicle development, regeneration, tissue remodeling and epidermal cancers. Int J Mol Sci 2013; 14:19361-84. [PMID: 24071938 PMCID: PMC3821561 DOI: 10.3390/ijms141019361] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review, we briefly discuss the properties of the epidermal stem cells and review the role of EGFR-Ras-Raf signaling in keratinocyte stem cells during homeostatic and pathological conditions.
Collapse
|
42
|
Vanden Berg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:28-39. [PMID: 23678952 DOI: 10.1089/ten.teb.2013.0100] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.
Collapse
|
43
|
Soluble E-cadherin: a critical oncogene modulating receptor tyrosine kinases, MAPK and PI3K/Akt/mTOR signaling. Oncogene 2013; 33:225-35. [PMID: 23318419 DOI: 10.1038/onc.2012.563] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 11/08/2022]
Abstract
E-cadherin, a cell-cell adhesion glycoprotein, is frequently downregulated with tumorigenic progression. The extracellular domain of E-cadherin is cleaved by proteases to generate a soluble ectodomain fragment, termed sEcad, which is elevated in the urine or serum of cancer patients. In this study, we explored the functional role of sEcad in the progression of skin squamous cell carcinomas (SCCs). We found that full-length E-cadherin expression was decreased and sEcad increased in human clinical tumor samples as well as in ultraviolet (UV)-induced SCCs in mice. Interestingly, sEcad associated with members of the human epidermal growth factor receptor (HER) and insulin-like growth factor-1 (IGF-1R) family of receptors in human and UV-induced mouse tumors. Moreover, in both E-cadherin-positive (E-cadherin(+)) and -negative (E-cadherin(-)) cells in vitro, sEcad activated downstream mitogen-activated protein (MAP) kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling and enhanced tumor growth, motility and invasion, the latter via activation of matrix metalloproteinase-2 (MMP-2) and MMP-9. To this end, HER, PI3K or MEK inhibitors suppressed sEcad's tumorigenic effects, including proliferation, migration and invasion. Taken together, our data suggest that sEcad contributes to skin carcinogenesis via association with the HER/IGF-1R-family of receptors and subsequent activation of the MAPK and PI3K/Akt/mTOR pathways, thereby implicating sEcad as a putative therapeutic target in cutaneous SCCs.
Collapse
|
44
|
Avci P, Sadasivam M, Gupta A, De Melo WC, Huang YY, Yin R, Chandran R, Kumar R, Otufowora A, Nyame T, Hamblin MR. Animal models of skin disease for drug discovery. Expert Opin Drug Discov 2013; 8:331-55. [PMID: 23293893 DOI: 10.1517/17460441.2013.761202] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Discovery of novel drugs, treatments, and testing of consumer products in the field of dermatology is a multi-billion dollar business. Due to the distressing nature of many dermatological diseases, and the enormous consumer demand for products to reverse the effects of skin photodamage, aging, and hair loss, this is a very active field. AREAS COVERED In this paper, we will cover the use of animal models that have been reported to recapitulate to a greater or lesser extent the features of human dermatological disease. There has been a remarkable increase in the number and variety of transgenic mouse models in recent years, and the basic strategy for constructing them is outlined. EXPERT OPINION Inflammatory and autoimmune skin diseases are all represented by a range of mouse models both transgenic and normal. Skin cancer is mainly studied in mice and fish. Wound healing is studied in a wider range of animal species, and skin infections such as acne and leprosy also have been studied in animal models. Moving to the more consumer-oriented area of dermatology, there are models for studying the harmful effect of sunlight on the skin, and testing of sunscreens, and several different animal models of hair loss or alopecia.
Collapse
Affiliation(s)
- Pinar Avci
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Department of Dermatology, Boston MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hirotsu C, Rydlewski M, Araújo MS, Tufik S, Andersen ML. Sleep loss and cytokines levels in an experimental model of psoriasis. PLoS One 2012; 7:e51183. [PMID: 23226485 PMCID: PMC3511390 DOI: 10.1371/journal.pone.0051183] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 12/20/2022] Open
Abstract
Up to 80% of people develop a cutaneous condition closely connected to their exposure to stressful life events. Psoriasis is a chronic recurrent inflammatory skin disorder with multifactorial etiology, including genetic background, environmental factors, and immune system disturbances with a strong cytokine component. Moreover, psoriasis is variably associated with sleep disturbance and sleep deprivation. This study evaluated the influence of sleep loss in the context of an animal model of psoriasis by measuring cytokine and stress-related hormone levels. Male adult Balb/C mice with or without psoriasis were subjected to 48 h of selective paradoxical sleep deprivation (PSD). Sleep deprivation potentiated the activities of kallikrein-5 and kallikrein-7 in the skin of psoriatic groups. Also, mice with psoriasis had significant increases in specific pro-inflammatory cytokines (IL-1β, IL-6 and IL-12) and decreases in the anti-inflammatory cytokine (IL-10) after PSD, which were normalized after 48 h of sleep rebound. Linear regression showed that IL-2, IL-6 and IL-12 levels predicted 66% of corticosterone levels, which were selectively increased in psoriasis mice subject to PSD. Kallikrein-5 was also correlated with pro-inflammatory cytokines, explaining 58% of IL-6 and IL-12 variability. These data suggest that sleep deprivation plays an important role in the exacerbation of psoriasis through modulation of the immune system in the epidermal barrier. Thus, sleep loss should be considered a risk factor for the development of psoriasis.
Collapse
Affiliation(s)
- Camila Hirotsu
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Mariana Rydlewski
- Departamento de Bioquímica, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Mariana Silva Araújo
- Departamento de Bioquímica, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| |
Collapse
|
46
|
Schneider MR. Genetic mouse models for skin research: strategies and resources. Genesis 2012; 50:652-64. [PMID: 22467532 DOI: 10.1002/dvg.22029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022]
Abstract
A number of features contributed to establishing the mouse as the favorite model organism for skin research: the genetic and pathophysiological similarities to humans, the small size and relatively short reproductive period, meaning low maintenance costs, and the availability of sophisticated tools for manipulating the genome, gametes, and embryos. While initial studies depended on strains displaying skin abnormalities due to spontaneous genetic mutations, the availability of the transgenic and knockout technologies and their astonishing perfection during the last decades allowed the development of mouse lines permitting any imaginable genetic modification including gene inactivation, substitution, modification, or overexpression. While these technologies have already contributed to the functional analysis of several genes and processes related to skin research, continued progress requires understanding, awareness, and access to these mouse resources. This review will identify the strategies currently employed for the genetic manipulation of mice in skin research, and outline current resources and their limitations.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| |
Collapse
|
47
|
Negative feedback mechanisms surpass the effect of intrinsic EGFR activation during skin chemical carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1378-85. [PMID: 22306420 DOI: 10.1016/j.ajpath.2011.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 01/27/2023]
Abstract
The negative feedback regulation of epidermal growth factor receptor (EGFR) and other tyrosine kinase receptors, including receptor dephosphorylation and endocytosis followed by degradation, is becoming recognized as a major determinant of receptor function. To evaluate the significance of the negative regulation of EGFR during carcinogenesis in vivo, we subjected the mutant mouse line Dsk5, in which the intrinsic activation of the receptor due to a point mutation is normally counterbalanced by increased posttranslational receptor down-regulation, to skin chemical carcinogenesis. Dsk5 mice showed reduced tumor numbers and tumor burden compared with control littermates, and Dsk5-derived tumors showed a reduction in the activation and total levels of EGFR. Furthermore, the transcript levels of several molecules known to act as negative regulators of EGFR were significantly increased in Dsk5-derived tumors. Another intriguing observation was the appearance of tumors with sebaceous differentiation in the ears of Dsk5 mice after chemical carcinogenesis. Further studies are necessary to reveal whether these tumors represent a cell type-specific evasion from EGFR negative feedback machinery. In conclusion, this study reveals that several negative feedback regulators contribute to suppression of the intrinsic activation of mutant EGFR during skin carcinogenesis, stressing the potential exploitation of negative regulators as either therapeutic targets or diagnostic tools in cancer and other diseases.
Collapse
|
48
|
Dai R, Shen SJ, Wan PC, Shi GQ, Meng QY, Liu SR. [shRNAs driven by K14 promoter induce tissue-specific RNA interference]. YI CHUAN = HEREDITAS 2011; 33:757-62. [PMID: 22049690 DOI: 10.3724/sp.j.1005.2011.00757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA interference is an efficient method for exploring gene function. Accumulating evidence suggests that RNA Pol II promoters can direct cell- or tissue-specific gene silencing. A eGFP-shRNA fusion construct transcribed from an RNA Pol II promoter (K14 promoter) was used to induce gene-specific shRNA silencing ofBMP4 gene expression. Recombinant vectors (pEGFP-C1-shRNA, psiCHECK-BMP4, and pEGFP-K14-shRNA) were constructed. Vectors pEGFP-C1-shRNA and psiCHECK-BMP4 were cotransfected into Hela cells (in vitro) and shRNA-induced inhibition efficiency was tested by a luciferase assay. The results showed that all the six interference sequences inhibited the expression of BMP4 with high efficiency (>60%), and the interference sequence 5# showed the highest efficiency. For in vivo screening of JB6-C41 cells transfected with vector pEGFP-K14-shRNA, the inhibition efficiency was assayed by quantitative RT-PCR and Western blotting analyses. The results showed that the mRNA and protein products of the exogenous BMP4 gene were efficiently and specifically inhibited. The efficiency of gene silencing was greater than 60%, except for sequence 3#. The declines in mRNA and protein expression levels were significantly correlated during gene silence by the shRNA. This system may be adapted for in vivo shRNA expression and gene silencing. This method may provide a novel approach for the application of RNAi technology in suppressing gene expression in the analysis of the mechanisms of hair follicle development in sheep.
Collapse
Affiliation(s)
- Rong Dai
- College of Animal Science, Shihezi University, Shihezi 832000, China.
| | | | | | | | | | | |
Collapse
|
49
|
Dahlhoff M, Rose C, Wolf E, Schneider MR. Decreased incidence of papillomas in mice with impaired EGFR function during multi-stage skin carcinogenesis. Exp Dermatol 2011; 20:290-3. [PMID: 21323750 DOI: 10.1111/j.1600-0625.2010.01192.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genetically modified mouse lines revealed that the epidermal growth factor receptor (EGFR) is essential for the development and homoeostasis of the epidermis and hair follicles. However, more detailed studies have been precluded by the shortened lifespan of Egfr knockout mice. We employed the mouse line Wa5 (carrying a point mutation resulting in the expression of a dominant negative receptor) to analyse the impact of significantly reduced EGFR signalling during multi-stage chemical skin carcinogenesis. Seven-week-old Wa5 females and control littermates received a single application of 7,12-dimethylbenz(a)anthracene followed by multiple applications of 12-O-tetradecanoylphorbol-13-acetate for 26 weeks. Wa5 mice remained free of papillomas for a longer time and developed significantly fewer tumors than control littermates. In contrast, the mean tumor size was not different between groups. The present data indicate that EGFR signalling contributes to tumor growth during multi-stage chemical carcinogenesis of the skin in mice possibly by acting as a survival factor for skin tumor cells.
Collapse
|
50
|
Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taïeb A, Mazurier F. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol 2011; 131:1793-805. [PMID: 21633368 DOI: 10.1038/jid.2011.141] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Besides lung, postnatal human epidermis is the only epithelium in direct contact with atmospheric oxygen. Skin epidermal oxygenation occurs mostly through atmospheric oxygen rather than tissue vasculature, resulting in a mildly hypoxic microenvironment that favors increased expression of hypoxia-inducible factor-1α (HIF-1α). Considering the wide spectrum of biological processes, such as angiogenesis, inflammation, bioenergetics, proliferation, motility, and apoptosis, that are regulated by this transcription factor, its high expression level in the epidermis might be important to HIF-1α in skin physiology and pathophysiology. Here, we review the role of HIF-1α in cutaneous angiogenesis, skin tumorigenesis, and several skin disorders.
Collapse
|