1
|
Lin XL, Zhou YM, Meng K, Yang JY, Zhang H, Lin JH, Wu HY, Wang XY, Zhao H, Feng SS, Park KS, Cai DQ, Zheng L, Qi XF. CRISPR/Cas-mediated mRNA knockdown in the embryos of Xenopus tropicalis. Cell Biosci 2025; 15:52. [PMID: 40270035 PMCID: PMC12020200 DOI: 10.1186/s13578-025-01397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The Xenopus tropicalis (Western clawed frog) is an important amphibian model for genetics, developmental and regenerative biology, due to its diploid genetic background and short generation time. CRISPR-Cas13 and CRISPR interference (CRISPRi) systems have recently been employed to suppress mRNA expression in many organisms such as yeast, plants, and mammalian cells. However, no systematic study of these two systems has been carried out in Xenopus tropicalis. Here, we show that CRISPRi rather than CRISPR-Cas13 is an effective and suitable approach to suppress specific mRNA transcription in Xenopus tropicalis embryos. We demonstrated that CRISPRi composed of dCas9 and KRAB-MeCP2 (dCas9-KM) can efficiently target exogenous and endogenous transcripts in Xenopus tropicalis embryos. Moreover, our data suggest that the new KRAB domain from ZIM3 protein (ZIM3-KRAB, ZIM3K) alone has a comparable transcript targeting capacity in Xenopus tropicalis embryos to the traditional fusion repressor KRAB-MeCP2 in which the KRAB domain from KOX1 protein. In conclusion, our results demonstrate that CRISPRi rather than CRISPR-Cas13 is an efficient knockdown platform to explore specific gene function in Xenopus tropicalis embryos.
Collapse
Affiliation(s)
- Xiao-Lin Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Yi-Min Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Ke Meng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Jia-Yi Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Han Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Wu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xiao-Yu Wang
- Division of Histology & Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shan-Shan Feng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, 220-701, Korea
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Sakagami K, Igawa T, Saikawa K, Sakaguchi Y, Hossain N, Kato C, Kinemori K, Suzuki N, Suzuki M, Kawaguchi A, Ochi H, Tajika Y, Ogino H. Development of a heat-stable alkaline phosphatase reporter system for cis-regulatory analysis and its application to 3D digital imaging of Xenopus embryonic tissues. Dev Growth Differ 2024; 66:256-265. [PMID: 38439617 PMCID: PMC11457516 DOI: 10.1111/dgd.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Xenopus is one of the essential model systems for studying vertebrate development. However, one drawback of this system is that, because of the opacity of Xenopus embryos, 3D imaging analysis is limited to surface structures, explant cultures, and post-embryonic tadpoles. To develop a technique for 3D tissue/organ imaging in whole Xenopus embryos, we identified optimal conditions for using placental alkaline phosphatase (PLAP) as a transgenic reporter and applied it to the correlative light microscopy and block-face imaging (CoMBI) method for visualization of PLAP-expressing tissues/organs. In embryos whose endogenous alkaline phosphatase activities were heat-inactivated, PLAP staining visualized various tissue-specific enhancer/promoter activities in a manner consistent with green fluorescent protein (GFP) fluorescence. Furthermore, PLAP staining appeared to be more sensitive than GFP fluorescence as a reporter, and the resulting expression patterns were not mosaic, in striking contrast to the mosaic staining pattern of β-galactosidase expressed from the lacZ gene that was introduced by the same transgenesis method. Owing to efficient penetration of alkaline phosphatase substrates, PLAP activity was detected in deep tissues, such as the developing brain, spinal cord, heart, and somites, by whole-mount staining. The stained embryos were analyzed by the CoMBI method, resulting in the digital reconstruction of 3D images of the PLAP-expressing tissues. These results demonstrate the efficacy of the PLAP reporter system for detecting enhancer/promoter activities driving deep tissue expression and its combination with the CoMBI method as a powerful approach for 3D digital imaging analysis of specific tissue/organ structures in Xenopus embryos.
Collapse
Affiliation(s)
- Kiyo Sakagami
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Takeshi Igawa
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Kaori Saikawa
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Yusuke Sakaguchi
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Nusrat Hossain
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
| | - Chiho Kato
- Department of Animal BioscienceNagahama Institute of Bio‐Science and TechnologyNagahamaJapan
| | - Kazuhito Kinemori
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| | - Akane Kawaguchi
- Department of Genomics and Evolutionary BiologyNational Institute of GeneticsShizuokaJapan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of MedicineYamagata UniversityYamagataJapan
| | - Yuki Tajika
- Department of Radiological TechnologyGunma Prefectural College of Health SciencesMaebashiJapan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
| |
Collapse
|
3
|
Parent SE, Luu O, Bruce AEE, Winklbauer R. Two-phase kinetics and cell cortex elastic behavior in Xenopus gastrula cell-cell adhesion. Dev Cell 2024; 59:141-155.e6. [PMID: 38091998 DOI: 10.1016/j.devcel.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
Morphogenetic movements during animal development involve repeated making and breaking of cell-cell contacts. Recent biophysical models of cell-cell adhesion integrate adhesion molecule interactions and cortical cytoskeletal tension modulation, describing equilibrium states for established contacts. We extend this emerging unified concept of adhesion to contact formation kinetics, showing that aggregating Xenopus embryonic cells rapidly achieve Ca2+-independent low-contact states. Subsequent transitions to cadherin-dependent high-contact states show rapid decreases in contact cortical F-actin levels but slow contact area growth. We developed a biophysical model that predicted contact growth quantitatively from known cellular and cytoskeletal parameters, revealing that elastic resistance to deformation and cytoskeletal network turnover are essential determinants of adhesion kinetics. Characteristic time scales of contact growth to low and high states differ by an order of magnitude, being at a few minutes and tens of minutes, respectively, thus providing insight into the timescales of cell-rearrangement-dependent tissue movements.
Collapse
Affiliation(s)
- Serge E Parent
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Olivia Luu
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
4
|
Truong BT, Shull LC, Lencer E, Bend EG, Field M, Blue EE, Bamshad MJ, Skinner C, Everman D, Schwartz CE, Flanagan-Steet H, Artinger KB. PRDM1 DNA-binding zinc finger domain is required for normal limb development and is disrupted in split hand/foot malformation. Dis Model Mech 2023; 16:dmm049977. [PMID: 37083955 PMCID: PMC10151829 DOI: 10.1242/dmm.049977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/09/2023] [Indexed: 04/22/2023] Open
Abstract
Split hand/foot malformation (SHFM) is a rare limb abnormality with clefting of the fingers and/or toes. For many individuals, the genetic etiology is unknown. Through whole-exome and targeted sequencing, we detected three novel variants in a gene encoding a transcription factor, PRDM1, that arose de novo in families with SHFM or segregated with the phenotype. PRDM1 is required for limb development; however, its role is not well understood and it is unclear how the PRDM1 variants affect protein function. Using transient and stable overexpression rescue experiments in zebrafish, we show that the variants disrupt the proline/serine-rich and DNA-binding zinc finger domains, resulting in a dominant-negative effect. Through gene expression assays, RNA sequencing, and CUT&RUN in isolated pectoral fin cells, we demonstrate that Prdm1a directly binds to and regulates genes required for fin induction, outgrowth and anterior/posterior patterning, such as fgfr1a, dlx5a, dlx6a and smo. Taken together, these results improve our understanding of the role of PRDM1 in the limb gene regulatory network and identified novel PRDM1 variants that link to SHFM in humans.
Collapse
Affiliation(s)
- Brittany T. Truong
- Human Medical Genetics & Genomics Graduate Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lomeli C. Shull
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ezra Lencer
- Biology Department, Lafayette College, Easton, PA 18042, USA
| | - Eric G. Bend
- Greenwood Genetics Center, Greenwood, SC 29646, USA
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, AUS
| | - Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Chen HC, Wang C, Li IJ, Abe G, Ota KG. Pleiotropic functions of chordin gene causing drastic morphological changes in ornamental goldfish. Sci Rep 2022; 12:19961. [PMID: 36402810 PMCID: PMC9675773 DOI: 10.1038/s41598-022-24444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
Breeders and fanciers have established many peculiar morphological phenotypes in ornamental goldfish. Among them, the twin-tail and dorsal-finless phenotypes have particularly intrigued early and recent researchers, as equivalent morphologies are extremely rare in nature. These two mutated phenotypes appeared almost simultaneously within a short time frame and were fixed in several strains. However, little is known about how these two different mutations could have co-occurred during such a short time period. Here, we demonstrate that the chordin gene, a key factor in dorsal-ventral patterning, is responsible not only for the twin-tail phenotype but also for the dorsal-finless phenotype. Our F2 backcrossing and functional analyses revealed that the penetrance/expressivity of the dorsal-finless phenotype can be suppressed by the wild-type allele of chdS. Based on these findings, we propose that chdSwt may have masked the expression of the dorsal-finless phenotype, acting as a capacitor buffering gene to allow accumulation of genetic mutations. Once this gene lost its original function in the twin-tail goldfish lineages, the dorsal-finless phenotype could be highly expressed. Thus, this study experimentally demonstrates that the rapid genetic fixation of morphological mutations during a short domestication time period may be related to the robustness of embryonic developmental mechanisms.
Collapse
Affiliation(s)
- Hsiao-Chian Chen
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Chenyi Wang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Gembu Abe
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Nishi-Cho 86, Yonago, 683-8503, Japan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan.
| |
Collapse
|
6
|
Caviglia S, Unterweger IA, Gasiūnaitė A, Vanoosthuyse AE, Cutrale F, Trinh LA, Fraser SE, Neuhauss SCF, Ober EA. FRaeppli: a multispectral imaging toolbox for cell tracing and dense tissue analysis in zebrafish. Development 2022; 149:276363. [DOI: 10.1242/dev.199615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Visualizing cell shapes and interactions of differentiating cells is instrumental for understanding organ development and repair. Across species, strategies for stochastic multicolour labelling have greatly facilitated in vivo cell tracking and mapping neuronal connectivity. Yet integrating multi-fluorophore information into the context of developing zebrafish tissues is challenging given their cytoplasmic localization and spectral incompatibility with common fluorescent markers. Inspired by Drosophila Raeppli, we developed FRaeppli (Fish-Raeppli) by expressing bright membrane- or nuclear-targeted fluorescent proteins for efficient cell shape analysis and tracking. High spatiotemporal activation flexibility is provided by the Gal4/UAS system together with Cre/lox and/or PhiC31 integrase. The distinct spectra of the FRaeppli fluorescent proteins allow simultaneous imaging with GFP and infrared subcellular reporters or tissue landmarks. We demonstrate the suitability of FRaeppli for live imaging of complex internal organs, such as the liver, and have tailored hyperspectral protocols for time-efficient acquisition. Combining FRaeppli with polarity markers revealed previously unknown canalicular topologies between differentiating hepatocytes, reminiscent of the mammalian liver, suggesting common developmental mechanisms. The multispectral FRaeppli toolbox thus enables the comprehensive analysis of intricate cellular morphologies, topologies and lineages at single-cell resolution in zebrafish.
Collapse
Affiliation(s)
- Sara Caviglia
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Iris A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Akvilė Gasiūnaitė
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Alexandre E. Vanoosthuyse
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Le A. Trinh
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Scott E. Fraser
- Translational Imaging Center, University of Southern California 3 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- Biomedical Engineering, University of Southern California 4 , 1002 West Childs Way, Los Angeles, CA 90089 , USA
- University of Southern California 5 Molecular and Computational Biology , , 1002 West Childs Way, Los Angeles, CA 90089 , USA
| | - Stephan C. F. Neuhauss
- University of Zurich 2 , Department of Molecular and Life Sciences, Winterthurerstrasse 190, 8057 Zürich , Switzerland
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem) 1 , Blegdamsvej 3B, 2200 Copenhagen N , Denmark
| |
Collapse
|
7
|
Cornean A, Gierten J, Welz B, Mateo JL, Thumberger T, Wittbrodt J. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. eLife 2022; 11:e72124. [PMID: 35373735 PMCID: PMC9033269 DOI: 10.7554/elife.72124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide variants (SNVs) are prevalent genetic factors shaping individual trait profiles and disease susceptibility. The recent development and optimizations of base editors, rubber and pencil genome editing tools now promise to enable direct functional assessment of SNVs in model organisms. However, the lack of bioinformatic tools aiding target prediction limits the application of base editing in vivo. Here, we provide a framework for adenine and cytosine base editing in medaka (Oryzias latipes) and zebrafish (Danio rerio), ideal for scalable validation studies. We developed an online base editing tool ACEofBASEs (a careful evaluation of base-edits), to facilitate decision-making by streamlining sgRNA design and performing off-target evaluation. We used state-of-the-art adenine (ABE) and cytosine base editors (CBE) in medaka and zebrafish to edit eye pigmentation genes and transgenic GFP function with high efficiencies. Base editing in the genes encoding troponin T and the potassium channel ERG faithfully recreated known cardiac phenotypes. Deep-sequencing of alleles revealed the abundance of intended edits in comparison to low levels of insertion or deletion (indel) events for ABE8e and evoBE4max. We finally validated missense mutations in novel candidate genes of congenital heart disease (CHD) dapk3, ube2b, usp44, and ptpn11 in F0 and F1 for a subset of these target genes with genotype-phenotype correlation. This base editing framework applies to a wide range of SNV-susceptible traits accessible in fish, facilitating straight-forward candidate validation and prioritization for detailed mechanistic downstream studies.
Collapse
Affiliation(s)
- Alex Cornean
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
| | - Jakob Gierten
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Department of Pediatric Cardiology, University Hospital HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)HeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| | - Juan Luis Mateo
- Deparment of Computer Science, University of OviedoOviedoSpain
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research)HeidelbergGermany
| |
Collapse
|
8
|
Thumberger T, Tavhelidse-Suck T, Gutierrez-Triana JA, Cornean A, Medert R, Welz B, Freichel M, Wittbrodt J. Boosting targeted genome editing using the hei-tag. eLife 2022; 11:70558. [PMID: 35333175 PMCID: PMC9068219 DOI: 10.7554/elife.70558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Precise, targeted genome editing by CRISPR/Cas9 is key for basic research and translational approaches in model and non-model systems. While active in all species tested so far, editing efficiencies still leave room for improvement. The bacterial Cas9 needs to be efficiently shuttled into the nucleus as attempted by fusion with nuclear localization signals (NLSs). Additional peptide tags such as FLAG- or myc-tags are usually added for immediate detection or straightforward purification. Immediate activity is usually granted by administration of preassembled protein/RNA complexes. We present the ‘hei-tag (high efficiency-tag)’ which boosts the activity of CRISPR/Cas genome editing tools already when supplied as mRNA. The addition of the hei-tag, a myc-tag coupled to an optimized NLS via a flexible linker, to Cas9 or a C-to-T (cytosine-to-thymine) base editor dramatically enhances the respective targeting efficiency. This results in an increase in bi-allelic editing, yet reduction of allele variance, indicating an immediate activity even at early developmental stages. The hei-tag boost is active in model systems ranging from fish to mammals, including tissue culture applications. The simple addition of the hei-tag allows to instantly upgrade existing and potentially highly adapted systems as well as to establish novel highly efficient tools immediately applicable at the mRNA level. The genetic code stored within DNA provides cells with the instructions they need to carry out their role in the body. Any changes to these genes, or the DNA sequence around them, has the potential to completely alter how a cell behaves. Scientists have developed various tools that allow them to experimentally modify the genome of cells or even entire living organisms. This includes the popular Cas9 enzyme which cuts DNA at specific sites, and base editors which can precisely change bits of genetic code without cutting DNA. While there are lots of Cas9 enzymes and base editors currently available, these often differ greatly in their activity depending on which cell type or organism they are applied to. Finding a tool that can effectively modify the genome of an organism at the right time during development also poses a challenge. All the cells in an organism arise from a single fertilized cell. If this cell is genetically edited, all its subsequent daughter cells (which make up the entire organism) will contain the genetic modification. However, most genome editing tools only work efficiently later in development, resulting in an undesirable mosaic organism composed of both edited and non-edited cells. Here, Thumberger et al. have developed a new ‘high efficiency-tag’ (also known as hei-tag for short) that can enhance the activity of gene editing tools and overcome this barrier. The tag improves the efficiency of gene editing by immediately shuttling a Cas9 enzyme to the nucleus, the cellular compartment that stores DNA. In all cases, gene editing tools with hei-tag worked better than those without in fish embryos and mouse cells grown in the laboratory. When Cas9 enzymes connected to a hei-tag were injected into the first fertilized cell of a fish embryo, this resulted in an even distribution of edited genes spread throughout the whole organism. To understand how a gene affects an organism, researchers need to be able to edit it as early in development as possible. Attaching the ‘hei-tag’ to already available tools could help boost their activity and make them more efficient. It could also allow advances in medical research aimed at replacing faulty genes with fully functioning ones.
Collapse
Affiliation(s)
- Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | | | - Alex Cornean
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Rebekka Medert
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Bettina Welz
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Mishima Y, Han P, Ishibashi K, Kimura S, Iwasaki S. Ribosome slowdown triggers codon-mediated mRNA decay independently of ribosome quality control. EMBO J 2022; 41:e109256. [PMID: 35040509 PMCID: PMC8886528 DOI: 10.15252/embj.2021109256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The control of mRNA stability plays a central role in regulating gene expression patterns. Recent studies have revealed that codon composition in the open reading frame determines mRNA stability in multiple organisms. Based on genome-wide correlation approaches, this previously unrecognized role for the genetic code is attributable to the kinetics of the codon-decoding process by the ribosome. However, complementary experimental analyses are required to clarify the codon effects on mRNA stability and the related cotranslational mRNA decay pathways, for example, those triggered by aberrant ribosome stalling. In the current study, we performed a set of reporter-based analyses to define codon-mediated mRNA decay and ribosome stall-dependent mRNA decay in zebrafish embryos. Our analysis showed that the effect of codons on mRNA stability stems from the decoding process, independent of the ribosome quality control factor Znf598 and stalling-dependent mRNA decay. We propose that codon-mediated mRNA decay is rather triggered by transiently slowed ribosomes engaging in a productive translation cycle in zebrafish embryos.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Department of Frontier Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan,RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Peixun Han
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan,Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Kota Ishibashi
- Department of Frontier Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - Seisuke Kimura
- Department of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan,Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan,Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoChibaJapan
| |
Collapse
|
10
|
Zhang M, Wilson SS, Casey KM, Thomson PE, Zlatow AL, Langlois VS, Green SL. Degenerative Osteoarthropathy in Laboratory Housed Xenopus (Silurana) tropicalis. Comp Med 2021; 71:512-520. [PMID: 34794532 DOI: 10.30802/aalas-cm-21-000061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this case study, 15 adult laboratory Xenopus (Silurana) tropicalis (7 adult males and 8 adult females) were examined for nodular enlargements of the clawed digits (digits 0, I, II, and III) on the hind feet. Radiographs showed smoothly margined, rounded, peripherally mineralized lesions arising from the distal phalanges of digits 0-III with osteoproductive and osteolytic components in all frogs. Micro computed tomography (microCT) scans further revealed interphalangeal (IP), metacarpophalangeal (MCP), and metatarsophalangeal (MTP) joint osteoarthritis characterized by periarticular new bone formation, rounded mineral foci both peripherally and centrally within the joints, and more rarely, linear mineralization palmar/plantar to the joints in the flexor tendons. In the nonclawed digits, the shape of the distal phalanx was variably distorted and both subluxation and malangulation of IP joints were identified. Histologically, nodules corresponded to a peripheral rim of mature cortical bone surrounding central adipose tissue, scattered hematopoietic elements, and residual bone of the distal phalanx. Occasionally, the peripheral rim of cortical bone extended proximally to encompass the distal aspect of adjacent phalanx. MCP, MTP and IP joint spaces of most digits exhibited widespread osteoarthritis characterized by periarticular cartilaginous or osseous metaplasia, bony remodeling, and less frequently, granulomatous osteomyelitis. Nutritional analyses of the feed did not indicate imbalances nor were the lesions consistent with metabolic bone disease. The exact etiopathogenesis of these lesions is unknown; however, we hypothesize that the osteoarthritic changes are due to a combination of the frogs' mature age, the unique structure of the Xenopus spp. claw, genetics and biomechanical forces on the digits and distal phalanges of the hind feet.
Collapse
Affiliation(s)
- Mingyun Zhang
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Sabrina S Wilson
- Diagnostic Imaging Service, William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, California
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Paisley E Thomson
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Quebec, QC, Canada
| | - Anne L Zlatow
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Quebec, QC, Canada
| | - Sherril L Green
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California;,
| |
Collapse
|
11
|
Yamanaka S, Okada Y, Furuta T, Kinoshita M. Establishment of culture and microinjection methods for false clownfish embryos without parental care. Dev Growth Differ 2021; 63:459-466. [PMID: 34786704 DOI: 10.1111/dgd.12759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022]
Abstract
Anemonefish, including the false clownfish Amphiprion ocellaris, are attractive model organisms because of their unique features, such as sex change and brilliant color patterns in mutants. However, anemonefish are not widely used to study gene function using reverse genetic approaches owing to microinjection difficulties and subsequent rearing and hatching of embryos without parental care. A. ocellaris embryos are spawned on a hard substrate and cared for by their parents until hatching. However, the eggs need to be detached from the substrate and raised without their parents to perform successful microinjection. We established a method to culture and hatch A. ocellaris embryos without spawning substrates or parental care. We found that changing water and generating water flow are critical for culturing the embryos, and that water flow (as physical stimulation) and complete darkness in the dark period are necessary for successful hatching. We further investigated the effectiveness of microinjection into the yolk sac of fertilized eggs rather than into the cytoplasm, which makes microinjection easier. A reporter RNA injected into the yolk sac was transferred to the cytoplasm and translated, indicating that yolk sac microinjection is an efficient alternative as has been used for zebrafish. These findings highlight the potential of A. ocellaris as an experimental model organism for reverse genetics, and our methods could be applied to other anemonefish species.
Collapse
Affiliation(s)
- Sakuto Yamanaka
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yosuke Okada
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi Furuta
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Integrated Analysis of miR-430 on Steroidogenesis-Related Gene Expression of Larval Rice Field Eel Monopterus albus. Int J Mol Sci 2021; 22:ijms22136994. [PMID: 34209701 PMCID: PMC8269179 DOI: 10.3390/ijms22136994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
The present study aims to reveal the mechanism by which miR-430s regulate steroidogenesis in larval rice field eel Monopterus albus. To this end, M. albus embryos were respectively microinjected with miRNA-overexpressing mimics (agomir430a, agomir430b, and agomir430c) or miRNA-knockdown inhibitors (antagomir430a, antagomir430b, and antagomir430c). Transcriptome profiling of the larvae indicated that a total of more than 149 differentially expressed genes (DEGs) were identified among the eight treatments. Specifically, DEGs related to steroidogenesis, the GnRH signaling pathway, the erbB signaling pathway, the Wnt signaling pathway, and other pathways were characterized in the transcriptome. We found that steroidogenesis-related genes (hydroxysteroid 17-beta dehydrogenase 3 (17β-hsdb3), hydroxysteroid 17-beta dehydrogenase 7 (17β-hsdb7), hydroxysteroid 17-beta dehydrogenase 12 (17β-hsdb12), and cytochrome P450 family 19 subfamily a (cyp19a1b)) were significantly downregulated in miR-430 knockdown groups. The differential expressions of miR-430 in three gonads indicated different roles of three miR-430 (a, b, and c) isoforms in regulating steroidogenesis and sex differentiation. Mutation of the miR-430 sites reversed the downregulation of cytochrome P450 family 17 (cyp17), cyp19a1b, and forkhead box L2 (foxl2) reporter activities by miR-430, indicating that miR-430 directly interacted with cyp17, cyp19a1b, and foxl2 genes to inhibit their expressions. Combining these findings, we concluded that miR-430 regulated the steroidogenesis and the biosynthesis of steroid hormones by targeting cyp19a1b in larval M. albus. Our results provide a novel insight into steroidogenesis at the early stage of fish at the molecular level.
Collapse
|
13
|
Gücüm S, Sakson R, Hoffmann M, Grote V, Becker C, Pakari K, Beedgen L, Thiel C, Rapp E, Ruppert T, Thumberger T, Wittbrodt J. A patient-based medaka alg2 mutant as a model for hypo-N-glycosylation. Development 2021; 148:269015. [PMID: 34106226 PMCID: PMC8217707 DOI: 10.1242/dev.199385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Defects in the evolutionarily conserved protein-glycosylation machinery during embryonic development are often fatal. Consequently, congenital disorders of glycosylation (CDG) in human are rare. We modelled a putative hypomorphic mutation described in an alpha-1,3/1,6-mannosyltransferase (ALG2) index patient (ALG2-CDG) to address the developmental consequences in the teleost medaka (Oryzias latipes). We observed specific, multisystemic, late-onset phenotypes, closely resembling the patient's syndrome, prominently in the facial skeleton and in neuronal tissue. Molecularly, we detected reduced levels of N-glycans in medaka and in the patient's fibroblasts. This hypo-N-glycosylation prominently affected protein abundance. Proteins of the basic glycosylation and glycoprotein-processing machinery were over-represented in a compensatory response, highlighting the regulatory topology of the network. Proteins of the retinal phototransduction machinery, conversely, were massively under-represented in the alg2 model. These deficiencies relate to a specific failure to maintain rod photoreceptors, resulting in retinitis pigmentosa characterized by the progressive loss of these photoreceptors. Our work has explored only the tip of the iceberg of N-glycosylation-sensitive proteins, the function of which specifically impacts on cells, tissues and organs. Taking advantage of the well-described human mutation has allowed the complex interplay of N-glycosylated proteins and their contribution to development and disease to be addressed.
Collapse
Affiliation(s)
- Sevinç Gücüm
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.,HBIGS, Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Roman Sakson
- HBIGS, Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany.,Core facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Clara Becker
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kaisa Pakari
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Lars Beedgen
- Center for Child and Adolescent Medicine, Department Pediatrics I, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department Pediatrics I, Heidelberg University, 69120 Heidelberg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.,glyXera GmbH, 39120 Magdeburg, Germany
| | - Thomas Ruppert
- Core facility for Mass Spectrometry and Proteomics, Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Thomas Thumberger
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Joachim Wittbrodt
- COS, Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Willoughby PM, Allen M, Yu J, Korytnikov R, Chen T, Liu Y, So I, Macpherson N, Mitchell JA, Fernandez-Gonzalez R, Bruce AE. The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. eLife 2021; 10:66060. [PMID: 33755014 PMCID: PMC8034978 DOI: 10.7554/elife.66060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
In emerging epithelial tissues, cells undergo dramatic rearrangements to promote tissue shape changes. Dividing cells remain interconnected via transient cytokinetic bridges. Bridges are cleaved during abscission and currently, the consequences of disrupting abscission in developing epithelia are not well understood. We show that the Rab GTPase Rab25 localizes near cytokinetic midbodies and likely coordinates abscission through endomembrane trafficking in the epithelium of the zebrafish gastrula during epiboly. In maternal-zygotic Rab25a and Rab25b mutant embryos, morphogenic activity tears open persistent apical cytokinetic bridges that failed to undergo timely abscission. Cytokinesis defects result in anisotropic cell morphologies that are associated with a reduction of contractile actomyosin networks. This slows cell rearrangements and alters the viscoelastic responses of the tissue, all of which likely contribute to delayed epiboly. We present a model in which Rab25 trafficking coordinates cytokinetic bridge abscission and cortical actin density, impacting local cell shape changes and tissue-scale forces.
Collapse
Affiliation(s)
| | - Molly Allen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jessica Yu
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Roman Korytnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tianhui Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Yupeng Liu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Isis So
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Neil Macpherson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ashley Ee Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Mattar P, Jolicoeur C, Dang T, Shah S, Clark BS, Cayouette M. A Casz1-NuRD complex regulates temporal identity transitions in neural progenitors. Sci Rep 2021; 11:3858. [PMID: 33594190 PMCID: PMC7886867 DOI: 10.1038/s41598-021-83395-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Neural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development. We show that Casz1 is required to control the transition between neurogenesis and gliogenesis. Using BioID proteomics, we reveal that Casz1 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in retinal cells. Finally, we show that both the NuRD and the polycomb repressor complexes are required for Casz1 to promote the rod fate and suppress gliogenesis. As additional temporal identity factors have been found to interact with the NuRD complex in other contexts, we propose that these factors might act through this common biochemical process to regulate neurogenesis.
Collapse
Affiliation(s)
- Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
| | - Christine Jolicoeur
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Thanh Dang
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.,Ottawa Health Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Brian S Clark
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, H2W 1R7, Canada. .,Department of Anatomy and Cell Biology, and Division of Experimental Medicine, McGill University, Montreal, QC, H3A 0G4, Canada. .,Department of Medicine, Université de Montréal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
16
|
LaBelle J, Ramos-Martinez A, Shen K, Motta-Mena LB, Gardner KH, Materna SC, Woo S. TAEL 2.0: An Improved Optogenetic Expression System for Zebrafish. Zebrafish 2021; 18:20-28. [PMID: 33555975 DOI: 10.1089/zeb.2020.1951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inducible gene expression systems are valuable tools for studying biological processes. We previously developed an optogenetic gene expression system called TAEL that is optimized for use in zebrafish. When illuminated with blue light, TAEL transcription factors dimerize and activate gene expression downstream of the TAEL-responsive C120 promoter. By using light as the inducing agent, the TAEL/C120 system overcomes limitations of traditional inducible expression systems by enabling fine spatial and temporal regulation of gene expression. In this study, we describe ongoing efforts to improve the TAEL/C120 system. We made modifications to both the TAEL transcriptional activator and the C120 regulatory element, collectively referred to as TAEL 2.0. We demonstrate that TAEL 2.0 consistently induces higher levels of reporter gene expression and at a faster rate, but with comparable background and toxicity as the original TAEL system. With these improvements, we were able to create functional stable transgenic lines to express the TAEL 2.0 transcription factor either ubiquitously or with a tissue-specific promoter. We demonstrate that the ubiquitous line in particular can be used to induce expression at late embryonic and larval stages, addressing a major deficiency of the original TAEL system. This improved optogenetic expression system will be a broadly useful resource for the zebrafish community.
Collapse
Affiliation(s)
- Jesselynn LaBelle
- Department of Molecular Cell Biology, University of California Merced, Merced, California, USA
| | - Adela Ramos-Martinez
- Department of Molecular Cell Biology, University of California Merced, Merced, California, USA
| | - Kyle Shen
- Department of Molecular Cell Biology, University of California Merced, Merced, California, USA
| | | | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Stefan C Materna
- Department of Molecular Cell Biology, University of California Merced, Merced, California, USA
| | - Stephanie Woo
- Department of Molecular Cell Biology, University of California Merced, Merced, California, USA
| |
Collapse
|
17
|
Martin SA, Page SJ, Piccinni MZ, Guille MJ. Confirming Antibody Specificity in Xenopus. Cold Spring Harb Protoc 2020; 2020:pdb.prot105601. [PMID: 33037077 DOI: 10.1101/pdb.prot105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Verifying that a new antibody recognizes its target can be difficult. In this protocol, expression of a target protein in Xenopus embryos is either knocked down using CRISPR-Cas9 technology (for zygotic proteins) or enhanced by microinjection of a synthetic mRNA (for maternal proteins). Western blotting analysis is then performed. If the antibody recognizes the target protein, the western blot will show a relatively weak band for CRISPR-injected embryos and a relatively strong band for RNA-injected embryos. This represents a straightforward, powerful strategy for confirming antibody specificity in Xenopus.
Collapse
Affiliation(s)
- Sian A Martin
- Molecular Embryology Laboratory, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Suzannah J Page
- Molecular Embryology Laboratory, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Maya Z Piccinni
- European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Matthew J Guille
- Molecular Embryology Laboratory, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom; .,European Xenopus Resource Centre, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| |
Collapse
|
18
|
Rascher M, Wittstein K, Winter B, Rupcic Z, Wolf-Asseburg A, Stadler M, Köster RW. Erinacine C Activates Transcription from a Consensus ETS DNA Binding Site in Astrocytic Cells in Addition to NGF Induction. Biomolecules 2020; 10:E1440. [PMID: 33066380 PMCID: PMC7602259 DOI: 10.3390/biom10101440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Medicinal mushrooms of the genus Hericium are known to produce secondary metabolites with homeostatic properties for the central nervous system. We and others have recently demonstrated that among these metabolites cyathane diterpenoids and in particular erinacine C possess potent neurotrophin inducing properties in astrocytic cells. Yet, the signaling events downstream of erinacine C induced neurotrophin acitivity in neural-like adrenal phaeochromocytoma cells (PC12) cells have remained elusive. Similar, signaling events activated by erinacine C in astrocytic cells are unknown. Using a combination of genetic and pharmacological inhibitors we show that erinacine C induced neurotrophic activity mediates PC12 cell differentiation via the TrkA receptor and likely its associated PLCγ-, PI3K-, and MAPK/ERK pathways. Furthermore, a small library of transcriptional activation reporters revealed that erinacine C induces transcriptional activation mediated by DNA consensus binding sites of selected conserved transcription factor families. Among these, transcription is activated from an ETS consensus in a concentration dependent manner. Interestingly, induced ETS-consensus transcription occurs in parallel and independent of neurotrophin induction. This finding helps to explain the many pleiotropic functions of cyathane diterpenoids. Moreover, our studies provide genetic access to cyathane diterpenoid functions in astrocytic cells and help to mechanistically understand the action of cyathanes in glial cells.
Collapse
Affiliation(s)
- Monique Rascher
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Kathrin Wittstein
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Barbara Winter
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
| | - Zeljka Rupcic
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Alexandra Wolf-Asseburg
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH and Institute of Microbiology, Technische Universität Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany; (K.W.); (Z.R.)
- German Centre for Infection Research (DZIF), Technische Universität Braunschweig, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Reinhard W. Köster
- Division of Cellular and Molecular Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany; (M.R.); (B.W.); (A.W.-A.)
| |
Collapse
|
19
|
Luo T, Gao Y, Zhangyuan G, Xu X, Xue C, Jin L, Zhang W, Zhu C, Sun B, Qin X. lncRNA PCBP1-AS1 Aggravates the Progression of Hepatocellular Carcinoma via Regulating PCBP1/PRL-3/AKT Pathway. Cancer Manag Res 2020; 12:5395-5408. [PMID: 32753957 PMCID: PMC7352448 DOI: 10.2147/cmar.s249657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a very belligerent primary liver tumor with high metastatic potential. Aberrant expression of lncRNAs drives tumorous invasion and metastasis. Whether lncRNAs engage mechanisms of liver cancer metastasis remains largely unexplored. Patients and Methods We collected HCC tissues from the tumors and their adjacent normal samples in the Chinese population and analyzed the levels of lncRNAs by microarray analysis. The gain- and loss-of-function analysis demonstrated that PCBP1-AS1 accelerated tumorous growth and metastasis in vivo and in vitro. Moreover, we used RNA-pulldown assay to show that PCBP1-AS1 physically interacted with polyC-RNA-binding protein 1 (PCBP1); meanwhile, PCBP1-AS1 was indeed detected in RIP with the PCBP1 antibody. Mechanistically, we first explored the relationship between PCBP1‐AS1 and PCBP1 in HCC cell lines. Results Here we show that PCBP1-AS1, identified by microarray analysis on pre- and post-operative HCC plasma specimens, was highly expressed in human HCC, clinically verified as a prometastatic factor and markedly associated with poor prognosis in patients with hepatocellular carcinoma. PCBP1‐AS1 was negatively related with PCBP1 at the messenger RNA and protein expression levels. PCBP1-AS1 triggered PRL-3 and AKT in HCC tumor cells. Additionally, the double knockout of PCBP1 and PCBP1-AS1 abolished the PCBP1-AS1-induced PRL-3-AKT signalling pathway activation. Conclusion The upregulation of PCBP1-AS1 enhances proliferation and metastasis in HCC, thus regulating the PCBP1-PRL-3-AKT signalling pathway.
Collapse
Affiliation(s)
- Tianping Luo
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Yuan Gao
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Guangyan Zhangyuan
- Liver Transplantation Center of the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029, People's Republic of China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Cailin Xue
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Lei Jin
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Chunfu Zhu
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, People's Republic of China
| | - Xihu Qin
- Department of Hepatobiliary Surgery, The Affiliated Changzhou NO. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province 213164, People's Republic of China
| |
Collapse
|
20
|
Wang Q, Huang Y, Ren Z, Zhang X, Ren J, Su J, Zhang C, Tian J, Yu Y, Gao GF, Li L, Kong Z. Transfer cells mediate nitrate uptake to control root nodule symbiosis. NATURE PLANTS 2020; 6:800-808. [PMID: 32514144 DOI: 10.1038/s41477-020-0683-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/29/2020] [Indexed: 05/25/2023]
Abstract
Root nodule symbiosis enables nitrogen fixation in legumes and, therefore, improves crop production for sustainable agriculture1,2. Environmental nitrate levels affect nodulation and nitrogen fixation, but the mechanisms by which legume plants modulate nitrate uptake to regulate nodule symbiosis remain unclear1. Here, we identify a member of the Medicago truncatula nitrate peptide family (NPF), NPF7.6, which is expressed specifically in the nodule vasculature. NPF7.6 localizes to the plasma membrane of nodule transfer cells (NTCs), where it functions as a high-affinity nitrate transporter. Transfer cells show characteristic wall ingrowths that enhance the capacity for membrane transport at the apoplasmic-symplasmic interface between the vasculature and surrounding tissues3. Importantly, knockout of NPF7.6 using CRISPR-Cas9 resulted in developmental defects of the nodule vasculature, with excessive expansion of NTC plasma membranes. npf7.6 nodules showed severely compromised nitrate responsiveness caused by an attenuated ability to transport nitrate. Moreover, npf7.6 nodules exhibited disturbed nitric oxide homeostasis and a notable decrease in nitrogenase activity. Our findings indicate that NPF7.6 has been co-opted into a regulatory role in nodulation, functioning in nitrate uptake through NTCs to fine-tune nodule symbiosis in response to fluctuating environmental nitrate status. These observations will inform efforts to optimize nitrogen fixation in legume crops.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Ren
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Su
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Dev Biol 2020; 462:129-140. [PMID: 32246943 DOI: 10.1016/j.ydbio.2020.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.
Collapse
Affiliation(s)
- Kiel T Tietz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas L Gallagher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Monica C Mannings
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas L Derr
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
22
|
Grzegorski SJ, Hu Z, Liu Y, Yu X, Ferguson AC, Madarati H, Friedmann AP, Reyon D, Kim PY, Kretz CA, Joung JK, Shavit JA. Disruption of the kringle 1 domain of prothrombin leads to late onset mortality in zebrafish. Sci Rep 2020; 10:4049. [PMID: 32132579 PMCID: PMC7055286 DOI: 10.1038/s41598-020-60840-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/22/2020] [Indexed: 02/04/2023] Open
Abstract
The ability to prevent blood loss in response to injury is a conserved function of all vertebrates. Complete deficiency of the central clotting enzyme prothrombin has never been observed in humans and is incompatible with postnatal life in mice, thus limiting the ability to study its role in vivo. Zebrafish are able to tolerate severe hemostatic deficiencies that are lethal in mammals. We have generated a targeted genetic deletion in the kringle 1 domain of zebrafish prothrombin. Homozygous mutant embryos develop normally into the mid-juvenile stage but demonstrate complete mortality by 2 months of age primarily due to internal hemorrhage. Mutants are unable to form occlusive venous and arterial thrombi in response to endothelial injury, a defect that was phenocopied using direct oral anticoagulants. Human prothrombin engineered with the equivalent mutation exhibits a severe reduction in secretion, thrombin generation, and fibrinogen cleavage. Together, these data demonstrate the conserved function of thrombin in zebrafish and provide insight into the role of kringle 1 in prothrombin maturation and activity. Understanding how zebrafish are able to develop normally and survive into early adulthood without thrombin activity will provide important insight into its pleiotropic functions as well as the management of patients with bleeding disorders.
Collapse
Affiliation(s)
| | - Zhilian Hu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Oxford University, Oxford, UK
| | - Yang Liu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Molecular Innovations, Inc., Novi, MI, USA
| | - Xinge Yu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Hasam Madarati
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Alexander P Friedmann
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Deepak Reyon
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Editas Medicine Inc., Cambridge, MA, USA
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - Colin A Kretz
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Thromosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jordan A Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Jurkute N, Leu C, Pogoda HM, Arno G, Robson AG, Nürnberg G, Altmüller J, Thiele H, Motameny S, Toliat MR, Powell K, Höhne W, Michaelides M, Webster AR, Moore AT, Hammerschmidt M, Nürnberg P, Yu-Wai-Man P, Votruba M. SSBP1 mutations in dominant optic atrophy with variable retinal degeneration. Ann Neurol 2019; 86:368-383. [PMID: 31298765 PMCID: PMC8855788 DOI: 10.1002/ana.25550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Costin Leu
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, US
- Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, US
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hans-Martin Pogoda
- Institute for Zoology, Developmental Biology Unit, University of Cologne, D-50674 Cologne, Germany
| | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anthony G. Robson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gudrun Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Mohammad Reza Toliat
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Kate Powell
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | - Wolfgang Höhne
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Anthony T. Moore
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology Unit, University of Cologne, D-50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, D-50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
| | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
- Cardiff Eye Unit, University Hospital Wales, Cardiff, UK
| |
Collapse
|
24
|
Mizutani N, Okochi Y, Okamura Y. Distinct functional properties of two electrogenic isoforms of the SLC34 Na-Pi cotransporter. Physiol Rep 2019; 7:e14156. [PMID: 31342668 PMCID: PMC6656865 DOI: 10.14814/phy2.14156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023] Open
Abstract
Inorganic phosphate (Pi ) is crucial for proper cellular function in all organisms. In mammals, type II Na-Pi cotransporters encoded by members of the Slc34 gene family play major roles in the maintenance of Pi homeostasis. However, the molecular mechanisms regulating Na-Pi cotransporter activity within the plasma membrane are largely unknown. In the present study, we used two approaches to examine the effect of changing plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) levels on the activities of two electrogenic Na-Pi cotransporters, NaPi-IIa and NaPi-IIb. To deplete plasma membrane PI(4,5)P2 in Xenopus oocytes, we utilized Ciona intestinalis voltage-sensing phosphatase (Ci-VSP), which dephosphorylates PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI(4)P). Upon activation of Ci-VSP, NaPi-IIb currents were significantly decreased, whereas NaPi-IIa currents were unaffected. We also used the rapamycin-inducible Pseudojanin (PJ) system to deplete both PI(4,5)P2 and PI(4)P from the plasma membrane of cultured Neuro 2a cells. Depletion of PI(4,5)P2 and PI(4)P using PJ significantly reduced NaPi-IIb activity, but NaPi-IIa activity was unaffected, which excluded the possibility that NaPi-IIa is equally sensitive to PI(4,5)P2 and PI(4)P. These results indicate that NaPi-IIb activity is regulated by PI(4,5)P2 , whereas NaPi-IIa is not sensitive to either PI(4,5)P2 or PI(4)P. In addition, patch clamp recording of NaPi-IIa and NaPi-IIb currents in cultured mammalian cells enabled kinetic analysis with higher temporal resolution, revealing their distinct kinetic properties.
Collapse
Affiliation(s)
- Natsuki Mizutani
- Laboratory of Integrative PhysiologyDepartment of PhysiologyGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Yoshifumi Okochi
- Laboratory of Integrative PhysiologyDepartment of PhysiologyGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Yasushi Okamura
- Laboratory of Integrative PhysiologyDepartment of PhysiologyGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
25
|
Fei Z, Bae K, Parent SE, Wan H, Goodwin K, Theisen U, Tanentzapf G, Bruce AEE. A cargo model of yolk syncytial nuclear migration during zebrafish epiboly. Development 2019; 146:dev.169664. [PMID: 30509968 DOI: 10.1242/dev.169664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023]
Abstract
In teleost fish, the multinucleate yolk syncytial layer functions as an extra-embryonic signaling center to pattern mesendoderm, coordinate morphogenesis and supply nutrients to the embryo. External yolk syncytial nuclei (e-YSN) undergo microtubule-dependent movements that distribute the nuclei over the large yolk mass. How e-YSN migration proceeds, and the role of the yolk microtubules, is not understood, but it is proposed that e-YSN are pulled vegetally as the microtubule network shortens from the vegetal pole. Live imaging revealed that nuclei migrate along microtubules, consistent with a cargo model in which e-YSN are moved down the microtubules by direct association with motor proteins. We found that blocking the plus-end directed microtubule motor kinesin significantly attenuated yolk nuclear movement. Blocking the outer nuclear membrane LINC complex protein Syne2a also slowed e-YSN movement. We propose that e-YSN movement is mediated by the LINC complex, which functions as the adaptor between yolk nuclei and motor proteins. Our work provides new insights into the role of microtubules in morphogenesis of an extra-embryonic tissue and further contributes to the understanding of nuclear migration mechanisms during development.
Collapse
Affiliation(s)
- Zhonghui Fei
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Koeun Bae
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Serge E Parent
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Haoyu Wan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Katharine Goodwin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ulrike Theisen
- Cellular and Molecular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
26
|
Abe G, Li IJ, Lee SH, Ota KG. A novel allele of the goldfish chdB gene: Functional evaluation and evolutionary considerations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:372-383. [PMID: 30387925 PMCID: PMC6587777 DOI: 10.1002/jez.b.22831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/07/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
The twin tail of ornamental goldfish is known to be caused by a nonsense mutation in one chordin paralogue gene. Our previous molecular studies in goldfish revealed that the ancestral
chordin gene was duplicated, creating the
chdA and
chdB genes, and the subsequent introduction of a stop codon allele in the
chdA gene (
chdAE127X) caused the twin‐tail morphology. The
chdAE127X allele was positively selected by breeders, and the allele was genetically fixed in the ornamental twin‐tail goldfish population. However, little is known about the evolutionary history of the
chdB paralogue, begging the question: are there the functionally distinct alleles at the
chdB locus, and if so, how did they evolve? To address these questions, we conducted molecular sequencing of the
chdB gene from five different goldfish strains and discovered two alleles at the
chdB gene locus; the two alleles are designated
chdB1 and
chdB2. The
chdB1 allele is the major allele and was found in all investigated goldfish strains, whereas the
chdB2 allele is minor, having only been found in one twin‐tail strain. Genetic analyses further suggested that these two alleles are functionally different with regard to survivability (
chdB1 >
chdB2). These results led us to presume that in contrast to the
chdA locus, the
chdB locus has tended to be eliminated from the population. We also discuss how the
chdB2 allele was retained in the goldfish population, despite its disadvantageous function. This study provides empirical evidence of the long‐term retention of a disadvantageous allele under domesticated conditions.
Collapse
Affiliation(s)
- Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan.,Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Shu-Hua Lee
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
27
|
Hardwick LJ, Philpott A. The N terminus of Ascl1 underlies differing proneural activity of mouse and Xenopus Ascl1 proteins. Wellcome Open Res 2018; 3:125. [PMID: 30363793 PMCID: PMC6182678 DOI: 10.12688/wellcomeopenres.14842.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 11/20/2022] Open
Abstract
The proneural basic-helix-loop-helix (bHLH) transcription factor Ascl1 is a master regulator of neurogenesis in both central and peripheral nervous systems in vivo, and is a central driver of neuronal reprogramming in vitro. Over the last three decades, assaying primary neuron formation in Xenopus embryos in response to transcription factor overexpression has contributed to our understanding of the roles and regulation of proneural proteins like Ascl1, with homologues from different species usually exhibiting similar functional effects. Here we demonstrate that the mouse Ascl1 protein is twice as active as the Xenopus protein in inducing neural-β-tubulin expression in Xenopus embryos, despite there being little difference in protein accumulation or ability to undergo phosphorylation, two properties known to influence Ascl1 function. This superior activity of the mouse compared to the Xenopus protein is dependent on the presence of the non-conserved N terminal region of the protein, and indicates species-specific regulation that may necessitate care when interpreting results in cross-species experiments.
Collapse
Affiliation(s)
- Laura J.A. Hardwick
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
- Peterhouse, University of Cambridge, Cambridge, CB2 1RD, UK
| | - Anna Philpott
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QR, UK
- Department of Oncology, University of Cambridge, Cambridge, CB2 0XZ, UK
| |
Collapse
|
28
|
Gutierrez-Triana JA, Tavhelidse T, Thumberger T, Thomas I, Wittbrodt B, Kellner T, Anlas K, Tsingos E, Wittbrodt J. Efficient single-copy HDR by 5' modified long dsDNA donors. eLife 2018; 7:39468. [PMID: 30156184 PMCID: PMC6125127 DOI: 10.7554/elife.39468] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/14/2018] [Indexed: 12/03/2022] Open
Abstract
CRISPR/Cas9 efficiently induces targeted mutations via non-homologous-end-joining but for genome editing, precise, homology-directed repair (HDR) of endogenous DNA stretches is a prerequisite. To favor HDR, many approaches interfere with the repair machinery or manipulate Cas9 itself. Using Medaka we show that the modification of 5’ ends of long dsDNA donors strongly enhances HDR, favors efficient single-copy integration by retaining a monomeric donor conformation thus facilitating successful gene replacement or tagging. CRISPR/Cas9 technology has revolutionized the ability of researchers to edit the DNA of any organism whose genome has already been sequenced. In the editing process, a section of RNA acts as a guide to match up to the location of the target DNA. The enzyme Cas9 then makes a cut in both strands of the DNA at this specific location. New segments of DNA can be introduced to the cell, incorporated into DNA ‘templates’. The cell uses the template to help it to heal the double-strand break, and in doing so adds the new DNA segment into the organism’s genome. A drawback of CRISPR/Cas9 is that it often introduces multiple copies of the new DNA segment into the genome because the templates can bind to each other before being pasted into place. In addition, some parts of the new DNA segment can be missed off during the editing process. However, most applications of CRISPR/Cas9 – for example, to replace a defective gene with a working version – require exactly one whole copy of the desired DNA to be inserted into the genome. In order to achieve more accurate CRISPR/Cas9 genome editing, Gutierrez-Triana, Tavhelidse, Thumberger et al. attached additional molecules to the end of the DNA template to shield the DNA from mistakes during editing. The modified template was used to couple a stem cell gene to a reporter that produces a green fluorescent protein into the genome of fish embryos. The fluorescent proteins made it easy to identify when the coupling was successful. Gutierrez-Triana et al. found that the additional molecules prevented multiple templates from joining together end to end, and ensured the full DNA segment was inserted into the genome. Furthermore, the results of the experiments showed that only one copy of the template was inserted into the DNA of the fish. In the future, the new template will allow DNA to be edited in a more controlled way both in basic research and in therapeutic applications.
Collapse
Affiliation(s)
| | | | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Isabelle Thomas
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Beate Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Tanja Kellner
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Kerim Anlas
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Erika Tsingos
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Russo G, Lehne F, Pose Méndez SM, Dübel S, Köster RW, Sassen WA. Culture and Transfection of Zebrafish Primary Cells. J Vis Exp 2018:57872. [PMID: 30175992 PMCID: PMC6128108 DOI: 10.3791/57872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish embryos are transparent and develop rapidly outside the mother, thus allowing for excellent in vivo imaging of dynamic biological processes in an intact and developing vertebrate. However, the detailed imaging of the morphologies of distinct cell types and subcellular structures is limited in whole mounts. Therefore, we established an efficient and easy-to-use protocol to culture live primary cells from zebrafish embryos and adult tissue. In brief, 2 dpf zebrafish embryos are dechorionated, deyolked, sterilized, and dissociated to single cells with collagenase. After a filtration step, primary cells are plated onto glass bottom dishes and cultivated for several days. Fresh cultures, as much as long term differenciated ones, can be used for high resolution confocal imaging studies. The culture contains different cell types, with striated myocytes and neurons being prominent on poly-L-lysine coating. To specifically label subcellular structures by fluorescent marker proteins, we also established an electroporation protocol which allows the transfection of plasmid DNA into different cell types, including neurons. Thus, in the presence of operator defined stimuli, complex cell behavior, and intracellular dynamics of primary zebrafish cells can be assessed with high spatial and temporal resolution. In addition, by using adult zebrafish brain, we demonstrate that the described dissociation technique, as well as the basic culturing conditions, also work for adult zebrafish tissue.
Collapse
Affiliation(s)
- Giulio Russo
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology; Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology
| | - Franziska Lehne
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology
| | - Sol M Pose Méndez
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology
| | - Stefan Dübel
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology
| | - Reinhard W Köster
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology;
| | - Wiebke A Sassen
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Braunschweig University of Technology
| |
Collapse
|
30
|
Survey of Human Chromosome 21 Gene Expression Effects on Early Development in Danio rerio. G3-GENES GENOMES GENETICS 2018; 8:2215-2223. [PMID: 29760202 PMCID: PMC6027891 DOI: 10.1534/g3.118.200144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS), one of the most genetically complex conditions compatible with human survival. Assessment of the physiological consequences of dosage-driven overexpression of individual Hsa21 genes during early embryogenesis and the resulting contributions to DS pathology in mammals are not tractable in a systematic way. A recent study looked at loss-of-function of a subset of Caenorhabditis elegans orthologs of Hsa21 genes and identified ten candidates with behavioral phenotypes, but the equivalent over-expression experiment has not been done. We turned to zebrafish as a developmental model and, using a number of surrogate phenotypes, we screened Hsa21 genes for effects on early embyrogenesis. We prepared a library of 164 cDNAs of conserved protein coding genes, injected mRNA into early embryos and evaluated up to 5 days post-fertilization (dpf). Twenty-four genes produced a gross morphological phenotype, 11 of which could be reproduced reliably. Seven of these gave a phenotype consistent with down regulation of the sonic hedgehog (Shh) pathway; two showed defects indicative of defective neural crest migration; one resulted consistently in pericardial edema; and one was embryonic lethal. Combinatorial injections of multiple Hsa21 genes revealed both additive and compensatory effects, supporting the notion that complex genetic relationships underlie end phenotypes of trisomy that produce DS. Together, our data suggest that this system is useful in the genetic dissection of dosage-sensitive gene effects on early development and can inform the contribution of both individual loci and their combinatorial effects to phenotypes relevant to the etiopathology of DS.
Collapse
|
31
|
Miesfeld JB, Glaser T, Brown NL. The dynamics of native Atoh7 protein expression during mouse retinal histogenesis, revealed with a new antibody. Gene Expr Patterns 2018; 27:114-121. [PMID: 29225067 PMCID: PMC5835195 DOI: 10.1016/j.gep.2017.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022]
Abstract
The Atoh7 transcription factor catalyzes the rate-limiting step in the specification of retinal ganglion cells (RGCs). As a tool to study vertebrate retinal development, we validate an antibody that recognizes human and mouse Atoh7 polypeptide, using informative knockout and transgenic mouse tissues and overexpression experiments. The transient features of Atoh7 protein expression during retinal neurogenesis match the expected pattern at the tissue and cellular level. Further, we compare endogenous Atoh7 to established RGC markers, reporter mouse lines and cell cycle markers, demonstrating the utility of the antibody to investigate molecular mechanisms of retinal histogenesis.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California, Davis School of Medicine, One Shields Avenue, Davis, CA 95616, United States
| | - Tom Glaser
- Department of Cell Biology & Human Anatomy, University of California, Davis School of Medicine, One Shields Avenue, Davis, CA 95616, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California, Davis School of Medicine, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
32
|
Sassen WA, Lehne F, Russo G, Wargenau S, Dübel S, Köster RW. Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Dev Biol 2017; 430:18-31. [DOI: 10.1016/j.ydbio.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
33
|
Yasuhiko Y, Hirabayashi Y, Ono R. LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites. Front Chem 2017; 5:34. [PMID: 28664156 PMCID: PMC5471307 DOI: 10.3389/fchem.2017.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/23/2017] [Indexed: 11/19/2022] Open
Abstract
Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/−) and Tbx6-deficient mice (Tbx6 −/−), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1, and Nfxl1, are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.
Collapse
Affiliation(s)
- Yukuto Yasuhiko
- Division of Cellular and Molecular Toxicology, Biological Safety Research Centre, National Institute of Health SciencesTokyo, Japan
| | - Yoko Hirabayashi
- Division of Cellular and Molecular Toxicology, Biological Safety Research Centre, National Institute of Health SciencesTokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Biological Safety Research Centre, National Institute of Health SciencesTokyo, Japan
| |
Collapse
|
34
|
Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation. Dev Biol 2017. [PMID: 28648842 DOI: 10.1016/j.ydbio.2017.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay.
Collapse
|
35
|
Ishikawa T, Toyama T, Nakamura Y, Tamada K, Shimizu H, Ninagawa S, Okada T, Kamei Y, Ishikawa-Fujiwara T, Todo T, Aoyama E, Takigawa M, Harada A, Mori K. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J Cell Biol 2017; 216:1761-1774. [PMID: 28500182 PMCID: PMC5461018 DOI: 10.1083/jcb.201609100] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/05/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
The unfolded protein response (UPR) handles unfolded/misfolded proteins accumulated in the endoplasmic reticulum (ER). However, it is unclear how vertebrates correctly use the total of ten UPR transducers. We have found that ER stress occurs physiologically during early embryonic development in medaka fish and that the smooth alignment of notochord cells requires ATF6 as a UPR transducer, which induces ER chaperones for folding of type VIII (short-chain) collagen. After secretion of hedgehog for tissue patterning, notochord cells differentiate into sheath cells, which synthesize type II collagen. In this study, we show that this vacuolization step requires both ATF6 and BBF2H7 as UPR transducers and that BBF2H7 regulates a complete set of genes (Sec23/24/13/31, Tango1, Sedlin, and KLHL12) essential for the enlargement of COPII vesicles to accommodate long-chain collagen for export, leading to the formation of the perinotochordal basement membrane. Thus, the most appropriate UPR transducer is activated to cope with the differing physiological ER stresses of different content types depending on developmental stage.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takuya Toyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Nakamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hitomi Shimizu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Tomoko Ishikawa-Fujiwara
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takeshi Todo
- Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
36
|
Sasado T, Kondoh H, Furutani-Seiki M, Naruse K. Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto. PLoS One 2017; 12:e0172467. [PMID: 28253363 PMCID: PMC5333813 DOI: 10.1371/journal.pone.0172467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/06/2017] [Indexed: 02/02/2023] Open
Abstract
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.
Collapse
Affiliation(s)
- Takao Sasado
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, Japan
| |
Collapse
|
37
|
Carvalho JE, Theodosiou M, Chen J, Chevret P, Alvarez S, De Lera AR, Laudet V, Croce JC, Schubert M. Lineage-specific duplication of amphioxus retinoic acid degrading enzymes (CYP26) resulted in sub-functionalization of patterning and homeostatic roles. BMC Evol Biol 2017; 17:24. [PMID: 28103795 PMCID: PMC5247814 DOI: 10.1186/s12862-016-0863-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During embryogenesis, tight regulation of retinoic acid (RA) availability is fundamental for normal development. In parallel to RA synthesis, a negative feedback loop controlled by RA catabolizing enzymes of the cytochrome P450 subfamily 26 (CYP26) is crucial. In vertebrates, the functions of the three CYP26 enzymes (CYP26A1, CYP26B1, and CYP26C1) have been well characterized. By contrast, outside vertebrates, little is known about CYP26 complements and their biological roles. In an effort to characterize the evolutionary diversification of RA catabolism, we studied the CYP26 genes of the cephalochordate amphioxus (Branchiostoma lanceolatum), a basal chordate with a vertebrate-like genome that has not undergone the massive, large-scale duplications of vertebrates. RESULTS In the present study, we found that amphioxus also possess three CYP26 genes (CYP26-1, CYP26-2, and CYP26-3) that are clustered in the genome and originated by lineage-specific duplication. The amphioxus CYP26 cluster thus represents a useful model to assess adaptive evolutionary changes of the RA signaling system following gene duplication. The characterization of amphioxus CYP26 expression, function, and regulation by RA signaling demonstrated that, despite the independent origins of CYP26 duplicates in amphioxus and vertebrates, they convergently assume two main roles during development: RA-dependent patterning and protection against fluctuations of RA levels. Our analysis suggested that in amphioxus RA-dependent patterning is sustained by CYP26-2, while RA homeostasis is mediated by CYP26-1 and CYP26-3. Furthermore, comparisons of the regulatory regions of CYP26 genes of different bilaterian animals indicated that a CYP26-driven negative feedback system was present in the last common ancestor of deuterostomes, but not in that of bilaterians. CONCLUSIONS Altogether, this work reveals the evolutionary origins of the RA-dependent regulation of CYP26 genes and highlights convergent functions for CYP26 enzymes that originated by independent duplication events, hence establishing a novel selective mechanism for the genomic retention of gene duplicates.
Collapse
Affiliation(s)
- João E Carvalho
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Maria Theodosiou
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France
| | - Jie Chen
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.,Present Address: Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, 43 Boulevard du 11 novembre 1918, 69622, Villeurbanne, France
| | - Susana Alvarez
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310, Vigo, Spain
| | - Angel R De Lera
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310, Vigo, Spain
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.,Present Address: Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, 1 avenue du Fontaulé, 66650, Banyuls-sur-Mer, France
| | - Jenifer C Croce
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France.
| |
Collapse
|
38
|
Hardwick LJA, Davies JD, Philpott A. MyoD phosphorylation on multiple C terminal sites regulates myogenic conversion activity. Biochem Biophys Res Commun 2016; 481:97-103. [PMID: 27823936 PMCID: PMC5127879 DOI: 10.1016/j.bbrc.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/11/2023]
Abstract
MyoD is a master regulator of myogenesis with a potent ability to redirect the cell fate of even terminally differentiated cells. Hence, enhancing the activity of MyoD is an important step to maximising its potential utility for in vitro disease modelling and cell replacement therapies. We have previously shown that the reprogramming activity of several neurogenic bHLH proteins can be substantially enhanced by inhibiting their multi-site phosphorylation by proline-directed kinases. Here we have used Xenopus embryos as an in vivo developmental and reprogramming system to investigate the multi-site phospho-regulation of MyoD during muscle differentiation. We show that, in addition to modification of a previously well-characterised site, Serine 200, MyoD is phosphorylated on multiple additional serine/threonine sites during primary myogenesis. Through mutational analysis, we derive an optimally active phospho-mutant form of MyoD that has a dramatically enhanced ability to drive myogenic reprogramming in vivo. Mechanistically, this is achieved through increased protein stability and enhanced chromatin association. Therefore, multi-site phospho-regulation of class II bHLH proteins is conserved across cell lineages and germ layers, and manipulation of phosphorylation of these key regulators may have further potential for enhancing mammalian cell reprogramming.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK; Peterhouse, University of Cambridge, Trumpington Street, Cambridge, CB2 1RD, UK.
| | - John D Davies
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
39
|
Gutierrez-Triana JA, Mateo JL, Ibberson D, Ryu S, Wittbrodt J. iDamIDseq and iDEAR: an improved method and computational pipeline to profile chromatin-binding proteins. Development 2016; 143:4272-4278. [PMID: 27707796 PMCID: PMC5117216 DOI: 10.1242/dev.139261] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023]
Abstract
DNA adenine methyltransferase identification (DamID) has emerged as an alternative method to profile protein-DNA interactions; however, critical issues limit its widespread applicability. Here, we present iDamIDseq, a protocol that improves specificity and sensitivity by inverting the steps DpnI-DpnII and adding steps that involve a phosphatase and exonuclease. To determine genome-wide protein-DNA interactions efficiently, we present the analysis tool iDEAR (iDamIDseq Enrichment Analysis with R). The combination of DamID and iDEAR permits the establishment of consistent profiles for transcription factors, even in transient assays, as we exemplify using the small teleost medaka (Oryzias latipes). We report that the bacterial Dam-coding sequence induces aberrant splicing when it is used with different promoters to drive tissue-specific expression. Here, we present an optimization of the sequence to avoid this problem. This and our other improvements will allow researchers to use DamID effectively in any organism, in a general or targeted manner. Summary: Critical improvements to the DamID protocol improve specificity and sensitivity in determining genome-wide protein-DNA interactions in transient or stable transgenic animal lines.
Collapse
Affiliation(s)
- Jose Arturo Gutierrez-Triana
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg D-69120, Germany
| | - Juan L Mateo
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg D-69120, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, Cell Networks, University of Heidelberg, Im Neuenheimer 267, Heidelberg D-69120, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany.,Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz D-55131, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg D-69120, Germany
| |
Collapse
|
40
|
Larisch N, Kirsch SA, Schambony A, Studtrucker T, Böckmann RA, Dietrich P. The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix. Cell Mol Life Sci 2016; 73:2565-81. [PMID: 26781468 PMCID: PMC4894940 DOI: 10.1007/s00018-016-2131-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Two-pore channels (TPCs) constitute a family of intracellular cation channels with diverse permeation properties and functions in animals and plants. In the model plant Arabidopsis, the vacuolar cation channel TPC1 is involved in propagation of calcium waves and in cation homeostasis. Here, we discovered that the dimerization of a predicted helix within the carboxyl-terminus (CTH) is essential for the activity of TPC1. Bimolecular fluorescence complementation and co-immunoprecipitation demonstrated the interaction of the two C-termini and pointed towards the involvement of the CTH in this process. Synthetic CTH peptides dimerized with a dissociation constant of 3.9 µM. Disruption of this domain in TPC1 either by deletion or point mutations impeded the dimerization and cation transport. The homo-dimerization of the CTH was analyzed in silico using coarse-grained molecular dynamics (MD) simulations for the study of aggregation, followed by atomistic MD simulations. The simulations revealed that the helical region of the wild type, but not a mutated CTH forms a highly stable, antiparallel dimer with characteristics of a coiled-coil. We propose that the voltage- and Ca(2+)-sensitive conformation of TPC1 depends on C-terminal dimerization, adding an additional layer to the complex regulation of two-pore cation channels.
Collapse
Affiliation(s)
- Nina Larisch
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Sonja A Kirsch
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Alexandra Schambony
- Developmental Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Tanja Studtrucker
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany.
| |
Collapse
|
41
|
Sabillo A, Ramirez J, Domingo CR. Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. Semin Cell Dev Biol 2016; 51:80-91. [PMID: 26853935 DOI: 10.1016/j.semcdb.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
Xenopus laevis offers unprecedented access to the intricacies of muscle development. The large, robust embryos make it ideal for manipulations at both the tissue and molecular level. In particular, this model system can be used to fate map early muscle progenitors, visualize cell behaviors associated with somitogenesis, and examine the role of signaling pathways that underlie induction, specification, and differentiation of muscle. Several characteristics that are unique to X. laevis include myogenic waves with distinct gene expression profiles and the late formation of dermomyotome and sclerotome. Furthermore, myogenesis in the metamorphosing frog is biphasic, facilitating regeneration studies. In this review, we describe the morphogenetic movements that shape the somites and discuss signaling and transcriptional regulation during muscle development and regeneration. With recent advances in gene editing tools, X. laevis remains a premier model organism for dissecting the complex mechanisms underlying the specification, cell behaviors, and formation of the musculature system.
Collapse
Affiliation(s)
- Armbien Sabillo
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Julio Ramirez
- Department of Biology, San Francisco State University, CA 94132, USA
| | - Carmen R Domingo
- Department of Biology, San Francisco State University, CA 94132, USA.
| |
Collapse
|
42
|
Schille C, Heller J, Schambony A. Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:1. [PMID: 26780949 PMCID: PMC4717534 DOI: 10.1186/s12861-016-0101-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
Background Bone morphogenetic proteins regulate multiple processes in embryonic development, including early dorso-ventral patterning and neural crest development. BMPs activate heteromeric receptor complexes consisting of type I and type II receptor-serine/threonine kinases. BMP receptors Ia and Ib, also known as ALK3 and ALK6 respectively, are the most common type I receptors that likely mediate most BMP signaling events. Since early expression patterns and functions in Xenopus laevis development have not been described, we have addressed these questions in the present study. Results Here we have analyzed the temporal and spatial expression patterns of ALK3 and ALK6; we have also carried out loss-of-function studies to define the function of these receptors in early Xenopus development. We detected both redundant and non-redundant roles of ALK3 and ALK6 in dorso-ventral patterning. From late gastrula stages onwards, their expression patterns diverged, which correlated with a specific, non-redundant requirement of ALK6 in post-gastrula neural crest cells. ALK6 was essential for induction of neural crest cell fate and further development of the neural crest and its derivatives. Conclusions ALK3 and ALK6 both contribute to the gene regulatory network that regulates dorso-ventral patterning; they play partially overlapping and partially non-redundant roles in this process. ALK3 and ALK6 are independently required for the spatially restricted activation of BMP signaling and msx2 upregulation at the neural plate border, whereas in post-gastrula development ALK6 exerts a highly specific, conserved function in neural crest development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Jens Heller
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
43
|
Montagner M, Martello G, Piccolo S. Monitoring Smad Activity In Vivo Using the Xenopus Model System. Methods Mol Biol 2016; 1344:245-259. [PMID: 26520129 DOI: 10.1007/978-1-4939-2966-5_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The embryo of the African clawed frog Xenopus laevis plays a central role in the field of cell and developmental biology. One of the strengths of Xenopus as model system lies in the high degree of conservation between amphibians and mammals in the molecular mechanisms controlling tissue patterning and differentiation. As such, many signaling cascades were first investigated in frog embryos and then confirmed in mouse and/or human cells. The TGF-β signaling cascade greatly benefited from this model system. Here we review the overall logic and experimental planning for studying Smad activity in vivo in the context of Xenopus embryonic development, and provide a guide for the interpretation of the results.
Collapse
Affiliation(s)
- Marco Montagner
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35131, Padua, Italy
| | - Graziano Martello
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35131, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35131, Padua, Italy.
| |
Collapse
|
44
|
Myc and Omomyc functionally associate with the Protein Arginine Methyltransferase 5 (PRMT5) in glioblastoma cells. Sci Rep 2015; 5:15494. [PMID: 26563484 PMCID: PMC4643314 DOI: 10.1038/srep15494] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022] Open
Abstract
The c-Myc protein is dysregulated in many human cancers and its function has not been fully elucitated yet. The c-Myc inhibitor Omomyc displays potent anticancer properties in animal models. It perturbs the c-Myc protein network, impairs c-Myc binding to the E-boxes, retaining transrepressive properties and inducing histone deacetylation. Here we have employed Omomyc to further analyse c-Myc activity at the epigenetic level. We show that both Myc and Omomyc stimulate histone H4 symmetric dimethylation of arginine (R) 3 (H4R3me2s), in human glioblastoma and HEK293T cells. Consistently, both associated with protein Arginine Methyltransferase 5 (PRMT5)—the catalyst of the reaction—and its co-factor Methylosome Protein 50 (MEP50). Confocal experiments showed that Omomyc co-localized with c-Myc, PRMT5 and H4R3me2s-enriched chromatin domains. Finally, interfering with PRMT5 activity impaired target gene activation by Myc whereas it restrained Omomyc-dependent repression. The identification of a histone-modifying complex associated with Omomyc represents the first demonstration of an active role of this miniprotein in modifying chromatin structure and adds new information regarding its action on c-Myc targets. More importantly, the observation that c-Myc may recruit PRMT5-MEP50, inducing H4R3 symmetric di-methylation, suggests previously unpredictable roles for c-Myc in gene expression regulation and new potential targets for therapy.
Collapse
|
45
|
Grant IM, Balcha D, Hao T, Shen Y, Trivedi P, Patrushev I, Fortriede JD, Karpinka JB, Liu L, Zorn AM, Stukenberg PT, Hill DE, Gilchrist MJ. The Xenopus ORFeome: A resource that enables functional genomics. Dev Biol 2015; 408:345-57. [PMID: 26391338 PMCID: PMC4684507 DOI: 10.1016/j.ydbio.2015.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 08/18/2015] [Accepted: 09/09/2015] [Indexed: 12/18/2022]
Abstract
Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5' and 3' end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling.
Collapse
Affiliation(s)
- Ian M Grant
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yun Shen
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Prasad Trivedi
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Ilya Patrushev
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Joshua D Fortriede
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John B Karpinka
- Xenbase, Department of Biological Science, University of Calgary, Calgary, AB, Canada
| | - Limin Liu
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Aaron M Zorn
- Xenbase, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - P Todd Stukenberg
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Michael J Gilchrist
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
46
|
Vega‐López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ. Functional analysis of
Hairy
genes in
Xenopus
neural crest initial specification and cell migration. Dev Dyn 2015; 244:988-1013. [DOI: 10.1002/dvdy.24295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Marcela Bonano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| | - Juan P. Fernández
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Tristán H. Agüero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Manuel J. Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| |
Collapse
|
47
|
Drosophila Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake. PLoS Genet 2015; 11:e1005356. [PMID: 26121667 PMCID: PMC4486166 DOI: 10.1371/journal.pgen.1005356] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/12/2015] [Indexed: 11/19/2022] Open
Abstract
Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP). We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them.
Collapse
|
48
|
Ishikawa T, Jou CJ, Nogami A, Kowase S, Arrington CB, Barnett SM, Harrell DT, Arimura T, Tsuji Y, Kimura A, Makita N. Novel mutation in the α-myosin heavy chain gene is associated with sick sinus syndrome. Circ Arrhythm Electrophysiol 2015; 8:400-8. [PMID: 25717017 DOI: 10.1161/circep.114.002534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent genome-wide association studies have demonstrated an association between MYH6, the gene encoding α-myosin heavy chain (α-MHC), and sinus node function in the general population. Moreover, a rare MYH6 variant, R721W, predisposing susceptibility to sick sinus syndrome has been identified. However, the existence of disease-causing MYH6 mutations for familial sick sinus syndrome and their underlying mechanisms remain unknown. METHODS AND RESULTS We screened 9 genotype-negative probands with sick sinus syndrome families for mutations in MYH6 and identified an in-frame 3-bp deletion predicted to delete one residue (delE933) at the highly conserved coiled-coil structure within the binding motif to myosin-binding protein C in one patient. Co-immunoprecipitation analysis revealed enhanced binding of delE933 α-MHC to myosin-binding protein C. Irregular fluorescent speckles retained in the cytoplasm with substantially disrupted sarcomere striation were observed in neonatal rat cardiomyocytes transfected with α-MHC mutants carrying delE933 or R721W. In addition to the sarcomere impairments, delE933 α-MHC exhibited electrophysiological abnormalities both in vitro and in vivo. The atrial cardiomyocyte cell line HL-1 stably expressing delE933 α-MHC showed a significantly slower conduction velocity on multielectrode array than those of wild-type α-MHC or control plasmid transfected cells. Furthermore, targeted morpholino knockdown of MYH6 in zebrafish significantly reduced the heart rate, which was rescued by coexpressed wild-type human α-MHC but not by delE933 α-MHC. CONCLUSIONS The novel MYH6 mutation delE933 causes both structural damage of the sarcomere and functional impairments on atrial action propagation. This report reinforces the relevance of MYH6 for sinus node function and identifies a novel pathophysiology underlying familial sick sinus syndrome.
Collapse
Affiliation(s)
- Taisuke Ishikawa
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Chuanchau J Jou
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Akihiko Nogami
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Shinya Kowase
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Cammon B Arrington
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Spencer M Barnett
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Daniel T Harrell
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Takuro Arimura
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Yukiomi Tsuji
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.)
| | - Akinori Kimura
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.).
| | - Naomasa Makita
- From the Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (T.I., D.T.H., Y.T., N.M.); Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan (T.I., T.A., A.K.); Division of Pediatric Cardiology, University of Utah, Salt Lake City (C.J.J., C.B.A., S.M.B.); Cardiovascular Division, University of Tsukuba, Tsukuba (A.N.); Department of Heart Rhythm Management, Yokohama Rosai Hospital, Yokohama (A.N., S.K.); and Department of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (T.A.).
| |
Collapse
|
49
|
Furukawa MT, Sakamoto H, Inoue K. Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells. Genes Cells 2015; 20:257-66. [PMID: 25651939 DOI: 10.1111/gtc.12224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 11/30/2022]
Abstract
HERMES, also called RBPMS, is a conserved RNA binding protein with a single RNA recognition motif (RRM) that is abundantly expressed in retinal ganglion cells (RGCs) and in the heart in vertebrates. Here, we identified NonO and PSF as the interacting proteins of HERMES only when the neuronal differentiation of the retinal cell line RGC-5 was induced. Although NonO and PSF are nuclear paraspeckle components, these proteins formed cytoplasmic granules with HERMES in the neurites. G3BP1, a component of stress granules, was also colocalized to the granules, interacting with NonO and HERMES even in the absence of cellular stress. Consistent with a previous report that KIF5 interacts with neuronal granules, the localization of KIF5A overlapped with the cytoplasmic granules in differentiated RGC-5 cells. Thus, our study strongly suggests that the cytoplasmic granule containing HERMES, NonO, PSF, and G3BP1 is a neuronal RNA-protein granule that is transported in neurites during retinal differentiation.
Collapse
Affiliation(s)
- Mari T Furukawa
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | | | | |
Collapse
|
50
|
Bain PA, Ogino Y, Miyagawa S, Iguchi T, Kumar A. Differential ligand selectivity of androgen receptors α and β from Murray-Darling rainbowfish (Melanotaenia fluviatilis). Gen Comp Endocrinol 2015; 212:84-91. [PMID: 25644213 DOI: 10.1016/j.ygcen.2015.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/20/2015] [Accepted: 01/24/2015] [Indexed: 11/16/2022]
Abstract
Androgen receptors (ARs) mediate the physiological effects of androgens in vertebrates. In fishes, AR-mediated pathways can be modulated by aquatic contaminants, resulting in the masculinisation of female fish or diminished secondary sex characteristics in males. The Murray-Darling rainbowfish (Melanotaenia fluviatilis) is a small-bodied freshwater teleost used in Australia as a test species for environmental toxicology research. We determined concentration-response profiles for selected agonists and antagonists of rainbowfish ARα and ARβ using transient transactivation assays. For both ARα and ARβ, the order of potency of natural agonists was 11-ketotestosterone (11-KT)>5α-dihydrotestosterone>testosterone>androstenedione. Methyltestosterone was a highly potent agonist of both receptors relative to 11-KT. The relative potency of the veterinary growth-promoting androgen, 17β-trenbolone, varied by more than a factor of 5 between ARα and ARβ. The non-steroidal anti-androgen bicalutamide exhibited high inhibitory potency relative to the structurally related model anti-androgen, flutamide. The inhibitory potency of the agricultural fungicide, vinclozolin, was approximately 1.7-fold relative to flutamide for ARα, but over 20-fold in the case of ARβ. Fluorescent protein tagging of ARs showed that the rainbowfish ARα subtype is constitutively localised to the nucleus, while ARβ is cytoplasmic in the absence of ligand, an observation which agrees with the reported subcellular localisation of AR subtypes from other teleost species. Collectively, these data suggest that M. fluviatilis ARα and ARβ respond differently to environmental AR modulators and that in vivo sensitivity to contaminants may depend on the tissue distribution of the AR subtypes at the time of exposure.
Collapse
Affiliation(s)
- Peter A Bain
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia.
| | - Yukiko Ogino
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Shinichi Miyagawa
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Taisen Iguchi
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Anupama Kumar
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|