1
|
Silva CJ, Erickson Beltran ML, Requena JR. Comparing the Extent of Methionine Oxidation in the Prion and Native Conformations of PrP. ACS OMEGA 2025; 10:1320-1330. [PMID: 39829545 PMCID: PMC11740255 DOI: 10.1021/acsomega.4c08892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Scrapie is a prion disease of sheep and goats. Prions (PrPSc) replicate by inducing a natively expressed protein (PrPC) to refold into the prion conformation. PrPC and PrPSc contain a disproportionately large number of methionines. Surface exposed methionines are more prone to chemical oxidation. Chemical oxidation is a means of measuring the surface exposure of the methionines in a prion, as these covalent changes are retained after an oxidized prion is denatured prior to analysis. Scrapie prions and recombinant sheep prion protein were oxidized in 0, 10, 20, or 50 mM solutions of hydrogen peroxide. The samples were digested with trypsin or trypsin followed by chymotrypsin to yield a set of peptides (TNMK, MLGSAMSR, ENMYR, IMER, VVEQMCITQYQR) containing the methionines present in sheep PrP. The mass spectrometry based multiple reaction monitoring (MRM) method was used to analyze these peptides. Analysis of the rPrP samples showed that surface exposed methionines (132, 137, and 157) were more oxidized than those less surface exposed (209 and 216). The extent of methionine oxidation in sheep scrapie PrPSc is 216 > 137 > 132 > 157 > 209 > 112. These results demonstrate that this approach can be used to map the surface exposure of the methionines in order to distinguish among PrP conformations and effect a kind of conformational sequence.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce
Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural
Research Service, 800
Buchanan Street, Albany, California 94710, United States
| | - Melissa L. Erickson Beltran
- Produce
Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural
Research Service, 800
Buchanan Street, Albany, California 94710, United States
| | - Jesús R. Requena
- CIMUS
Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela 15782, Spain
| |
Collapse
|
2
|
Reis PM, Holec SA, Ezeiruaku C, Frost MP, Brown CK, Liu SL, Olson SH, Woerman AL. Structurally targeted mutagenesis identifies key residues supporting α-synuclein misfolding in multiple system atrophy. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1543-1558. [PMID: 39957201 PMCID: PMC11924605 DOI: 10.3233/jpd-240296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
BACKGROUND Multiple system atrophy (MSA) and Parkinson's disease (PD) are caused by misfolded α-synuclein spreading throughout the central nervous system. While familial PD is linked to several α-synuclein mutations, no mutations are associated with MSA. We previously showed that the familial PD mutation E46K inhibits replication of MSA prions both in vitro and in vivo, providing key evidence to support the hypothesis that α-synuclein adopts unique strains in patients. OBJECTIVE Here we sought to further interrogate α-synuclein misfolding to identify the structural determinants that contribute to MSA strain biology. METHODS We engineered a panel of cell lines harbouring both PD-linked and novel mutations designed to identify key residues that facilitate α-synuclein misfolding in MSA. We also used Maestro in silico analyses to predict the effect of each mutation on α-synuclein misfolding into one of the reported MSA cryo-electron microscopy conformations. RESULTS In many cases, our modelling accurately identified mutations that facilitated or inhibited MSA replication. However, Maestro was occasionally unable to predict the effect of a mutation, demonstrating the challenge of using computational tools to investigate intrinsically disordered proteins. Finally, we used our cellular models to determine the mechanism underlying the E46K-driven inhibition of MSA replication, finding that the E46/K80 salt bridge is necessary to support α-synuclein misfolding. CONCLUSIONS Our studies used a structure-based approach to investigate α-synuclein misfolding, resulting in the creation of a powerful panel of cell lines that can be used to interrogate MSA strain biology.
Collapse
Affiliation(s)
- Patricia M Reis
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sara Am Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Chimere Ezeiruaku
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Department of Surgery, Division of Abdominal Transplant Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew P Frost
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Neuroscience Department, UConn Health, Farmington, CT, USA
| | - Christine K Brown
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L Liu
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Current affiliation: Department of Biochemistry and Cell Biology, Dartmouth College, Hanover, NH, USA
| | - Steven H Olson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Amanda L Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Gentile JE, Corridon TL, Mortberg MA, D'Souza EN, Whiffin N, Minikel EV, Vallabh SM. Modulation of prion protein expression through cryptic splice site manipulation. J Biol Chem 2024; 300:107560. [PMID: 39002681 PMCID: PMC11342779 DOI: 10.1016/j.jbc.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region. This exon is homologous to exon 2 in nonprimate species but contains a start codon that would yield an upstream open reading frame with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.
Collapse
Affiliation(s)
- Juliana E Gentile
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Taylor L Corridon
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Meredith A Mortberg
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elston Neil D'Souza
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicola Whiffin
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford, UK; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Eric Vallabh Minikel
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sonia M Vallabh
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| |
Collapse
|
4
|
Reis PM, Holec SAM, Ezeiruaku C, Frost MP, Brown CK, Liu SL, Olson SH, Woerman AL. Structurally targeted mutagenesis identifies key residues supporting α -synuclein misfolding in multiple system atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602104. [PMID: 39026799 PMCID: PMC11257492 DOI: 10.1101/2024.07.04.602104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multiple system atrophy (MSA) and Parkinson's disease (PD) are caused by misfolded α -synuclein spreading throughout the central nervous system. While familial PD is linked to several point mutations in α -synuclein, there are no known mutations associated with MSA. Our previous work investigating differences in α -synuclein misfolding between the two disorders showed that the familial PD mutation E46K inhibits replication of MSA prions both in vitro and in vivo, providing key evidence to support the hypothesis that α -synuclein adopts unique strains in patients. Here, to further interrogate α -synuclein misfolding, we engineered a panel of cell lines harboring both PD-linked and novel mutations designed to identify key residues that facilitate α -synuclein misfolding in MSA. These data were paired with in silico analyses using Maestro software to predict the effect of each mutation on the ability of α -synuclein to misfold into one of the reported MSA cryo-electron microscopy conformations. In many cases, our modeling accurately identified mutations that facilitated or inhibited MSA replication. However, Maestro was occasionally unable to predict the effect of a mutation on MSA propagation in vitro, demonstrating the challenge of using computational tools to investigate intrinsically disordered proteins. Finally, we used our cellular models to determine the mechanism underlying the E46K-driven inhibition of MSA replication, finding that the E46/K80 salt bridge is necessary to support α -synuclein misfolding. Overall, our studies use a structure-based approach to investigate α -synuclein misfolding, resulting in the creation of a powerful panel of cell lines that can be used to interrogate MSA strain biology.
Collapse
Affiliation(s)
- Patricia M. Reis
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Sara A. M. Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| | - Chimere Ezeiruaku
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Matthew P. Frost
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christine K. Brown
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Samantha L. Liu
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Steven H. Olson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Amanda L. Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, USA
- Department of Microbiology, Immunology, and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Gentile JE, Corridon TL, Mortberg MA, D'Souza EN, Whiffin N, Minikel EV, Vallabh SM. Modulation of prion protein expression through cryptic splice site manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572439. [PMID: 38187635 PMCID: PMC10769280 DOI: 10.1101/2023.12.19.572439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion disease, but additional modalities are urgently needed. In other diseases, small molecules have proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic exons that reduce gene expression. Here, we characterize a cryptic exon located in human PRNP's sole intron and evaluate its potential to reduce PrP expression through incorporation into the 5' untranslated region (5'UTR). This exon is homologous to exon 2 in non-primate species, but contains a start codon that would yield an upstream open reading frame (uORF) with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating PrP expression through translational repression or nonsense-mediated decay. We establish a minigene transfection system and test a panel of splice site alterations, identifying mutants that reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for lowering PrP.
Collapse
Affiliation(s)
- Juliana E Gentile
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Taylor L Corridon
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Meredith A Mortberg
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Elston Neil D'Souza
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford OX3 7LF, UK
| | - Nicola Whiffin
- Big Data Institute and Centre for Human Genetics, University of Oxford, Oxford OX3 7LF, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Eric Vallabh Minikel
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Sonia M Vallabh
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
6
|
Silva CJ, Cassmann ED, Greenlee JJ, Erickson-Beltran ML, Requena JR. A Mass Spectrometry-Based Method of Quantifying the Contribution of the Lysine Polymorphism at Position 171 in Sheep PrP. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:245-254. [PMID: 36622794 PMCID: PMC9897214 DOI: 10.1021/jasms.2c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In sheep, the transmissibility and progression of scrapie, a sheep prion (PrPSc) disease, is strongly dependent upon specific amino acid polymorphisms in the natively expressed prion protein (PrPC). Sheep expressing PrPC with lysine (K) polymorphism at position 171 (K171) are partially resistant to oronasal dosing of classical sheep scrapie. In addition, scrapie infected sheep expressing the K171 polymorphism show a longer incubation period compared to sheep homozygous (glutamine (Q)) at position 171. Quantitating the amount of the K171 polymorphism in a sheep scrapie sample can provide important information on the composition of PrPSc. A tryptic peptide, 159R.YPNQVYYRPVDK.Y172, derived from the digestion of 171K recombinant PrP, was identified as an analyte peptide suitable for a multiple reaction monitoring-based analysis. This method, using 15N-labeled analogs and another internal peptide from the proteinase K-resistant core, permits the simultaneous quantitation of the total amount of PrP and the proportion of K171 polymorphism in the sample. Background molecules with similar retention times and transitions were present in samples from scrapie-infected sheep. Proteinase K digestion followed by ultracentrifugation-based isolation or phosphotungstic acid-based isolation were employed to minimize the contribution of those background molecules, making this approach suitable for quantitating the amount of the K171 polymorphism in heterozygous scrapie infected sheep.
Collapse
Affiliation(s)
- Christopher J. Silva
- Produce
Safety and Microbiology Research Unit, Western Regional Research Center,
United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, United States of America
| | - Eric D. Cassmann
- Virus
and Prion Research Unit, National Animal Disease Center, Agricultural
Research Service, United States Department
of Agriculture, Ames, Iowa 50010, United
States of America
| | - Justin J. Greenlee
- Virus
and Prion Research Unit, National Animal Disease Center, Agricultural
Research Service, United States Department
of Agriculture, Ames, Iowa 50010, United
States of America
| | - Melissa L. Erickson-Beltran
- Produce
Safety and Microbiology Research Unit, Western Regional Research Center,
United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, United States of America
| | - Jésus R. Requena
- CIMUS
Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela−IDIS, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
7
|
Becker GM, Woods JL, Schauer CS, Stewart WC, Murdoch BM. Genetic association of wool quality characteristics in United States Rambouillet sheep. Front Genet 2023; 13:1081175. [PMID: 36755873 PMCID: PMC9901206 DOI: 10.3389/fgene.2022.1081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction: Fine wool production is an important source of revenue, accounting for up to 13% of total revenue in extensively managed wool sheep production systems of the United States. The Rambouillet are a predominant breed that excels in wool quality characteristics. Understanding the genetic basis of wool quality characteristics would aid in the development of genomic breeding strategies to facilitate genetic improvement. Methods: Wool characteristics and DNA were collected for rams enrolled in the North Dakota State University and University of Wyoming annual central performance ram tests over a three-year period (2019-2021, N = 313). The relationships of wool quality characteristics including grease fleece weight adjusted 365 days (wt. 365 adj.), clean fleece wt. 365 adj., staple length 365 adj., average fiber diameter, face wool cover, amount of skin wrinkles and belly wool were evaluated through genome-wide association studies (GWAS), Pearson correlation and ANOVA. Results: The GWAS identified four genome-wide significant genetic markers (p-value <1.19e-06) and five chromosome-wide significant markers (p-value <1.13e-05) on chromosomes 1, 2, 4, 15, and 19. Significant markers were associated with genes notable for relevant wool biological functions, including the gene ABCC8 which codes for SUR1, an ATP-sensitive potassium channel known to affect hair growth and 60S ribosomal protein L17-like, previously found to be expressed during follicle formation. The strongest Pearson correlation coefficients were identified between clean fleece wt. 365 adj. and grease fleece wt. 365 adj. (r = 0.83) and between clean fleece wt. 365 adj. and staple length 365 adj. (r = 0.53). Additionally, clean fleece wt. 365 adj. was correlated with final body weight (r = 0.35) and scrotal circumference (r = 0.16). Staple length 365 adj. (p-value = 5e-04), average fiber diameter (p-value = .0053) and clean fleece wt. 365 adj. (p-value = .014) were significantly associated with belly wool score. Discussion: The results of this study provide important insight into the relationships between wool quality characteristics and report specific markers that Rambouillet sheep producers may use to help inform selection and breeding decisions for improved wool quality.
Collapse
Affiliation(s)
- Gabrielle M. Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, United States
| | - Julia L. Woods
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, United States
| | - Christopher S. Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, United States
| | - Whit C. Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, United States
| |
Collapse
|
8
|
Holec SAM, Lee J, Oehler A, Batia L, Wiggins-Gamble A, Lau J, Ooi FK, Merz GE, Wang M, Mordes DA, Olson SH, Woerman AL. The E46K mutation modulates α-synuclein prion replication in transgenic mice. PLoS Pathog 2022; 18:e1010956. [PMID: 36454879 PMCID: PMC9714912 DOI: 10.1371/journal.ppat.1010956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
In multiple system atrophy (MSA), the α-synuclein protein misfolds into a self-templating prion conformation that spreads throughout the brain, leading to progressive neurodegeneration. While the E46K mutation in α-synuclein causes familial Parkinson's disease (PD), we previously discovered that this mutation blocks in vitro propagation of MSA prions. Recent studies by others indicate that α-synuclein adopts a misfolded conformation in MSA in which a Greek key motif is stabilized by an intramolecular salt bridge between residues E46 and K80. Hypothesizing that the E46K mutation impedes salt bridge formation and, therefore, exerts a selective pressure that can modulate α-synuclein strain propagation, we asked whether three distinct α-synuclein prion strains could propagate in TgM47+/- mice, which express human α-synuclein with the E46K mutation. Following intracranial injection of these strains, TgM47+/- mice were resistant to MSA prion transmission, whereas recombinant E46K preformed fibrils (PFFs) transmitted neurological disease to mice and induced the formation of phosphorylated α-synuclein neuropathology. In contrast, heterotypic seeding following wild-type (WT) PFF-inoculation resulted in preclinical α-synuclein prion propagation. Moreover, when we inoculated TgM20+/- mice, which express WT human α-synuclein, with E46K PFFs, we observed delayed transmission kinetics with an incomplete attack rate. These findings suggest that the E46K mutation constrains the number of α-synuclein prion conformations that can propagate in TgM47+/- mice, expanding our understanding of the selective pressures that impact α-synuclein prion replication.
Collapse
Affiliation(s)
- Sara A. M. Holec
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
| | - Jisoo Lee
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Lyn Batia
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Aryanna Wiggins-Gamble
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
| | - Jeffrey Lau
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Felicia K. Ooi
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Gregory E. Merz
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| | - Man Wang
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
| | - Daniel A. Mordes
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco; San Francisco, California, United States of America
| | - Steven H. Olson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| | - Amanda L. Woerman
- Department of Biology and Institute for Applied Life Sciences, University of Massachusetts Amherst; Amherst, Massachusetts, United States of America
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
9
|
Otero A, Velásquez CD, Aiken J, McKenzie D. Chronic wasting disease: a cervid prion infection looming to spillover. Vet Res 2021; 52:115. [PMID: 34488900 PMCID: PMC8420063 DOI: 10.1186/s13567-021-00986-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The spread of chronic wasting disease (CWD) during the last six decades has resulted in cervid populations of North America where CWD has become enzootic. This insidious disease has also been reported in wild and captive cervids from other continents, threatening ecosystems, livestock and public health. These CWD "hot zones" are particularly complex given the interplay between cervid PRNP genetics, the infection biology, the strain diversity of infectious prions and the long-term environmental persistence of infectivity, which hinder eradication efforts. Here, we review different aspects of CWD including transmission mechanisms, pathogenesis, epidemiology and assessment of interspecies infection. Further understanding of these aspects could help identify "control points" that could help reduce exposure for humans and livestock and decrease CWD spread between cervids.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Thorne JW, Murdoch BM, Freking BA, Redden RR, Murphy TW, Taylor JB, Blackburn HD. Evolution of the sheep industry and genetic research in the United States: opportunities for convergence in the twenty-first century. Anim Genet 2021; 52:395-408. [PMID: 33955573 PMCID: PMC8360125 DOI: 10.1111/age.13067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
The continuous development and application of technology for genetic improvement is a key element for advancing sheep production in the United States. The US sheep industry has contracted over time but appears to be at a juncture where a greater utilization of technology can facilitate industry expansion to new markets and address inefficiencies in traditional production practices. Significant transformations include the increased value of lamb in relation to wool, and a downtrend in large-scale operations but a simultaneous rise in small flocks. Additionally, popularity of hair breeds not requiring shearing has surged, particularly in semi-arid and subtropical US environments. A variety of domestically developed composite breeds and newly established technological approaches are now widely available for the sheep industry to use as it navigates these ongoing transformations. These genetic resources can also address long-targeted areas of improvement such as growth, reproduction and parasite resistance. Moderate progress in production efficiency has been achieved by producers who have employed estimated breeding values, but widespread adoption of this technology has been limited. Genomic marker panels have recently shown promise for reducing disease susceptibility, identifying parentage and providing a foundation for marker-assisted selection. As the ovine genome is further explored and genomic assemblies are improved, the sheep research community in the USA can capitalize on new-found information to develop and apply genetic technologies to improve the production efficiency and profitability of the sheep industry.
Collapse
Affiliation(s)
- J. W. Thorne
- Texas A&M AgriLife ExtensionTexas A&M UniversitySan AngeloTX76901USA
- Department of Animal, Veterinary and Food ScienceUniversity of IdahoMoscowID83844USA
| | - B. M. Murdoch
- Department of Animal, Veterinary and Food ScienceUniversity of IdahoMoscowID83844USA
| | - B. A. Freking
- United States Meat Animal Research CenterUnited States Department of Agriculture, Agricultural Research ServiceClay CenterNE68933‐0166USA
| | - R. R. Redden
- Texas A&M AgriLife ExtensionTexas A&M UniversitySan AngeloTX76901USA
| | - T. W. Murphy
- United States Meat Animal Research CenterUnited States Department of Agriculture, Agricultural Research ServiceClay CenterNE68933‐0166USA
| | - J. B. Taylor
- United States Sheep Experiment StationUnited States Department of Agriculture, Agricultural Research ServiceDuboisID83423USA
| | - H. D. Blackburn
- National Animal Germplasm ProgramUnited States Department of Agriculture, Agricultural Research ServiceFort CollinsCO80521USA
| |
Collapse
|
11
|
Cassmann ED, Frese RD, Greenlee JJ. Second passage of chronic wasting disease of mule deer to sheep by intracranial inoculation compared to classical scrapie. J Vet Diagn Invest 2021; 33:711-720. [PMID: 34047228 DOI: 10.1177/10406387211017615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The origin of chronic wasting disease (CWD) in cervids is unclear. One hypothesis suggests that CWD originated from scrapie in sheep. We compared the disease phenotype of sheep-adapted CWD to classical scrapie in sheep. We inoculated sheep intracranially with brain homogenate from first-passage mule deer CWD in sheep (sCWDmd). The attack rate in second-passage sheep was 100% (12 of 12). Sheep had prominent lymphoid accumulations of PrPSc reminiscent of classical scrapie. The pattern and distribution of PrPSc in the brains of sheep with CWDmd was similar to scrapie strain 13-7 but different from scrapie strain x124. The western blot glycoprofiles of sCWDmd were indistinguishable from scrapie strain 13-7; however, independent of sheep genotype, glycoprofiles of sCWDmd were different than x124. When sheep genotypes were evaluated individually, there was considerable overlap in the glycoprofiles that precluded significant discrimination between sheep CWD and scrapie strains. Our data suggest that the phenotype of CWD in sheep is indistinguishable from some strains of scrapie in sheep. Given our results, current detection techniques would be unlikely to distinguish CWD in sheep from scrapie in sheep if cross-species transmission occurred naturally. It is unknown if sheep are naturally vulnerable to CWD; however, the susceptibility of sheep after intracranial inoculation and lymphoid accumulation indicates that the species barrier is not absolute.
Collapse
Affiliation(s)
- Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Rylie D Frese
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
12
|
Otero A, Duque Velásquez C, Aiken J, McKenzie D. White-tailed deer S96 prion protein does not support stable in vitro propagation of most common CWD strains. Sci Rep 2021; 11:11193. [PMID: 34045540 PMCID: PMC8160261 DOI: 10.1038/s41598-021-90606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
PrPC variation at residue 96 (G/S) plays an important role in the epidemiology of chronic wasting disease (CWD) in exposed white-tailed deer populations. In vivo studies have demonstrated the protective effect of serine at codon 96, which hinders the propagation of common CWD strains when expressed in homozygosis and increases the survival period of S96/wt heterozygous deer after challenge with CWD. Previous in vitro studies of the transmission barrier suggested that following a single amplification step, wt and S96 PrPC were equally susceptible to misfolding when seeded with various CWD prions. When we performed serial prion amplification in vitro using S96-PrPC, we observed a reduction in the efficiency of propagation with the Wisc-1 or CWD2 strains, suggesting these strains cannot stably template their conformations on this PrPC once the primary sequence has changed after the first round of replication. Our data shows the S96-PrPC polymorphism is detrimental to prion conversion of some CWD strains. These data suggests that deer homozygous for S96-PrPC may not sustain prion transmission as compared to a deer expressing G96-PrPC.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
13
|
Neuropathology of Animal Prion Diseases. Biomolecules 2021; 11:biom11030466. [PMID: 33801117 PMCID: PMC8004141 DOI: 10.3390/biom11030466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are a fatal group of infectious, inherited and spontaneous neurodegenerative diseases affecting human and animals. They are caused by the conversion of cellular prion protein (PrPC) into a misfolded pathological isoform (PrPSc or prion- proteinaceous infectious particle) that self-propagates by conformational conversion of PrPC. Yet by an unknown mechanism, PrPC can fold into different PrPSc conformers that may result in different prion strains that display specific disease phenotype (incubation time, clinical signs and lesion profile). Although the pathways for neurodegeneration as well as the involvement of brain inflammation in these diseases are not well understood, the spongiform changes, neuronal loss, gliosis and accumulation of PrPSc are the characteristic neuropathological lesions. Scrapie affecting small ruminants was the first identified TSE and has been considered the archetype of prion diseases, though atypical and new animal prion diseases continue to emerge highlighting the importance to investigate the lesion profile in naturally affected animals. In this report, we review the neuropathology and the neuroinflammation of animal prion diseases in natural hosts from scrapie, going through the zoonotic bovine spongiform encephalopathy (BSE), the chronic wasting disease (CWD) to the newly identified camel prion disease (CPD).
Collapse
|
14
|
Abstract
In sheep, scrapie is a fatal neurologic disease that is caused by a misfolded protein called a prion (designated PrPSc). The normal cellular prion protein (PrPC) is encoded by an endogenous gene, PRNP, that is present in high concentrations within the CNS. Although a broad range of functions has been described for PrPC, its entire range of functions has yet to be fully elucidated. Accumulation of PrPSc results in neurodegeneration. The PRNP gene has several naturally occurring polymorphisms, and there is a strong correlation between scrapie susceptibility and PRNP genotype. The cornerstone of scrapie eradication programs is the selection of scrapie-resistant genotypes to eliminate classical scrapie. Transmission of classical scrapie in sheep occurs during the prenatal and periparturient periods when lambs are highly susceptible. Initially, the scrapie agent is disseminated throughout the lymphoid system and into the CNS. Shedding of the scrapie agent occurs before the onset of clinical signs. In contrast to classical scrapie, atypical scrapie is believed to be a spontaneous disease that occurs in isolated instances in older animals within a flock. The agent that causes atypical scrapie is not considered to be naturally transmissible. Transmission of the scrapie agent to species other than sheep, including deer, has been experimentally demonstrated as has the transmission of nonscrapie prion agents to sheep. The purpose of this review is to outline the current methods for diagnosing scrapie in sheep and the techniques used for studying the pathogenesis and host range of the scrapie agent. Also discussed is the US scrapie eradication program including recent updates.
Collapse
|
15
|
A Single Amino Acid Substitution, Found in Mammals with Low Susceptibility to Prion Diseases, Delays Propagation of Two Prion Strains in Highly Susceptible Transgenic Mouse Models. Mol Neurobiol 2019; 56:6501-6511. [PMID: 30847740 DOI: 10.1007/s12035-019-1535-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023]
Abstract
Specific variations in the amino acid sequence of prion protein (PrP) are key determinants of susceptibility to prion diseases. We previously showed that an amino acid substitution specific to canids confers resistance to prion diseases when expressed in mice and demonstrated its dominant-negative protective effect against a variety of infectious prion strains of different origins and characteristics. Here, we show that expression of this single amino acid change significantly increases survival time in transgenic mice expressing bank vole cellular prion protein (PrPC), which is inherently prone to misfolding, following inoculation with two distinct prion strains (the CWD-vole strain and an atypical strain of spontaneous origin). This amino acid substitution hinders the propagation of both prion strains, even when expressed in the context of a PrPC uniquely susceptible to a wide range of prion isolates. Non-inoculated mice expressing this substitution experience spontaneous prion formation, but showing an increase in survival time comparable to that observed in mutant mice inoculated with the atypical strain. Our results underscore the importance of this PrP variant in the search for molecules with therapeutic potential against prion diseases.
Collapse
|
16
|
Otero A, Duque Velásquez C, Johnson C, Herbst A, Bolea R, Badiola JJ, Aiken J, McKenzie D. Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP CWD deposition in orally infected white-tailed deer. BMC Vet Res 2019; 15:50. [PMID: 30717795 PMCID: PMC6360794 DOI: 10.1186/s12917-019-1794-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Background Chronic wasting disease (CWD) is a prion disease affecting members of the Cervidae family. PrPC primary structures play a key role in CWD susceptibility resulting in extended incubation periods and regulating the propagation of CWD strains. We analyzed the distribution of abnormal prion protein (PrPCWD) aggregates in brain and peripheral organs from orally inoculated white-tailed deer expressing four different PRNP genotypes: Q95G96/Q95G96 (wt/wt), S96/wt, H95/wt and H95/S96 to determine if there are substantial differences in the deposition pattern of PrPCWD between different PRNP genotypes. Results Although we detected differences in certain brain areas, globally, the different genotypes showed similar PrPCWD deposition patterns in the brain. However, we found that clinically affected deer expressing H95 PrPC, despite having the longest survival periods, presented less PrPCWD immunoreactivity in particular peripheral organs. In addition, no PrPCWD was detected in skeletal muscle of any of the deer. Conclusions Our data suggest that expression of H95-PrPC limits peripheral accumulation of PrPCWD as detected by immunohistochemistry. Conversely, infected S96/wt and wt/wt deer presented with similar PrPCWD peripheral distribution at terminal stage of disease, suggesting that the S96-PrPC allele, although delaying CWD progression, does not completely limit the peripheral accumulation of the infectious agent.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Chad Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Judd Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Cassmann ED, Moore SJ, Smith JD, Greenlee JJ. Sheep With the Homozygous Lysine-171 Prion Protein Genotype Are Resistant to Classical Scrapie After Experimental Oronasal Inoculation. Vet Pathol 2018; 56:409-417. [PMID: 30558513 DOI: 10.1177/0300985818817066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Scrapie is a fatal neurodegenerative disease of sheep resulting from the accumulation of a misfolded form of the prion protein (PrPSc). Polymorphisms in the host prion protein gene ( PRNP) can affect susceptibility to the scrapie agent. Lysine (K) at codon 171 of PRNP is an inadequately characterized, naturally occurring polymorphism in sheep. We inoculated Barbado sheep with PRNP genotypes QQ171, QK171, or KK171 by either the intracranial (IC, n = 2-7 per genotype) or oronasal (ON, n = 5 per genotype) routes with a scrapie isolate to investigate the effect of lysine at codon 171 on susceptibility. When neurologic signs were observed or at the end of the experiment (70 months postinoculation [MPI]), sheep were necropsied and tissue collected for histopathologic, immunohistochemical, enzyme immunoassay and Western blot examination for PrPSc. All genotypes of sheep developed scrapie after IC inoculation. After ON inoculation, sheep with the QK171 genotype had prolonged incubation periods compared to the QQ genotype. During the experiment, 2 of 5 of the ON-inoculated QK genotype sheep developed neurologic signs and had PrPSc in the brain. The other 3 of 5 sheep were asymptomatic at 70 MPI but had detectable PrPSc in peripheral tissues. None of the ON-inoculated sheep of the KK171 genotype developed signs or had detectable PrPSc. Our experiments demonstrate that sheep with the KK171 genotype are resistant to scrapie via oronasal exposure and that sheep with the QK171 genotype have prolonged incubation relative to QQ171 sheep. The K171 prion protein allele may be useful to enhance scrapie resistance in certain breeds of sheep.
Collapse
Affiliation(s)
- Eric D Cassmann
- 1 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| | - Sarah Jo Moore
- 2 United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA, USA
| | - Jodi D Smith
- 1 Department of Veterinary Pathology, Iowa State University, Ames, IA, USA
| | - Justin J Greenlee
- 2 United States Department of Agriculture, Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA, USA
| |
Collapse
|
18
|
Fernández-Borges N, Eraña H, Castilla J. Behind the potential evolution towards prion resistant species. Prion 2018; 12:83-87. [PMID: 29388474 DOI: 10.1080/19336896.2018.1435935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Historically, the observation of naturally occurring cases of prion disease led to the classification of different susceptibility grades and to the designation of prion resistant species. However, the development of highly efficient in vitro prion propagation systems and the generation of ad hoc transgenic models allowed determining that leporidae and equidae families have been erroneously considered resistant to prion infection. On the contrary, similar approaches revealed an unexpected high level of resistance of the canidae family. In PLoS Pathogens [ 1 ], we describe experiments directed toward elucidating which are the determinants of the alleged prion resistance of this family. Studies based on the sequence of the canine prion protein coupled with structural in silico analysis identified a key residue probably implicated in this resistance. Cell and brain-based PMCA highlighted that the presence of aspartic or glutamic acid at codon 163 of the canid PrP, strongly inhibits prion replication in vitro. Transgenic animals carrying this substitution in mouse PrP were resistant to prion infection after intracerebral challenge with different mouse prion strains. The confirmation of the importance of this substitution and its exclusivity in this family, suggests it could have been evolutionarily favored, due to their diet based on carrion and small ruminants.
Collapse
Affiliation(s)
| | - Hasier Eraña
- a CIC bioGUNE, Parque Tecnológico de Bizkaia , Derio , Spain
| | - Joaquín Castilla
- a CIC bioGUNE, Parque Tecnológico de Bizkaia , Derio , Spain.,b IKERBASQUE, Basque Foundation for Science , Bilbao , Spain
| |
Collapse
|
19
|
Otero A, Bolea R, Hedman C, Fernández-Borges N, Marín B, López-Pérez Ó, Barrio T, Eraña H, Sánchez-Martín MA, Monzón M, Badiola JJ, Castilla J. An Amino Acid Substitution Found in Animals with Low Susceptibility to Prion Diseases Confers a Protective Dominant-Negative Effect in Prion-Infected Transgenic Mice. Mol Neurobiol 2017; 55:6182-6192. [PMID: 29264770 DOI: 10.1007/s12035-017-0832-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/08/2017] [Indexed: 12/01/2022]
Abstract
While prion diseases have been described in numerous species, some, including those of the Canidae family, appear to show resistance or reduced susceptibility. A better understanding of the factors underlying prion susceptibility is crucial for the development of effective treatment and control measures. We recently demonstrated resistance to prion infection in mice overexpressing a mutated prion protein (PrP) carrying a specific amino acid substitution characteristic of canids. Here, we show that coexpression of this mutated PrP and wild-type mouse PrP in transgenic mice inoculated with different mouse-adapted prion strains (22 L, ME7, RML, and 301C) significantly increases survival times (by 45 to 113%). These data indicate that this amino acid substitution confers a dominant-negative effect on PrP, attenuating the conversion of PrPC to PrPSc and delaying disease onset without altering the neuropathological properties of the prion strains. Taken together, these findings have important implications for the development of new treatment approaches for prion diseases based on dominant-negative proteins.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Hedman
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Belén Marín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Óscar López-Pérez
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Tomás Barrio
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Manuel A Sánchez-Martín
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Marta Monzón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
20
|
In Vitro Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding. J Virol 2017; 91:JVI.01543-17. [PMID: 28978705 DOI: 10.1128/jvi.01543-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 01/10/2023] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP.IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.
Collapse
|
21
|
Pei F, DiSalvo S, Sindi SS, Serio TR. A dominant-negative mutant inhibits multiple prion variants through a common mechanism. PLoS Genet 2017; 13:e1007085. [PMID: 29084237 PMCID: PMC5679637 DOI: 10.1371/journal.pgen.1007085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/09/2017] [Accepted: 10/20/2017] [Indexed: 11/18/2022] Open
Abstract
Prions adopt alternative, self-replicating protein conformations and thereby determine novel phenotypes that are often irreversible. Nevertheless, dominant-negative prion mutants can revert phenotypes associated with some conformations. These observations suggest that, while intervention is possible, distinct inhibitors must be developed to overcome the conformational plasticity of prions. To understand the basis of this specificity, we determined the impact of the G58D mutant of the Sup35 prion on three of its conformational variants, which form amyloids in S. cerevisiae. G58D had been previously proposed to have unique effects on these variants, but our studies suggest a common mechanism. All variants, including those reported to be resistant, are inhibited by G58D but at distinct doses. G58D lowers the kinetic stability of the associated amyloid, enhancing its fragmentation by molecular chaperones, promoting Sup35 resolubilization, and leading to amyloid clearance particularly in daughter cells. Reducing the availability or activity of the chaperone Hsp104, even transiently, reverses curing. Thus, the specificity of inhibition is determined by the sensitivity of variants to the mutant dosage rather than mode of action, challenging the view that a unique inhibitor must be developed to combat each variant.
Collapse
Affiliation(s)
- Fen Pei
- The University of Arizona, Department of Molecular and Cellular Biology, Tucson, Arizona, United States of America
| | - Susanne DiSalvo
- Brown University, Department of Molecular and Cell Biology, Providence, Rhode Island, United States of America
| | - Suzanne S. Sindi
- University of California, Merced, Applied Mathematics, School of Natural Sciences, Merced, California, United States of America
- * E-mail: (SS); (TRS)
| | - Tricia R. Serio
- The University of Arizona, Department of Molecular and Cellular Biology, Tucson, Arizona, United States of America
- * E-mail: (SS); (TRS)
| |
Collapse
|
22
|
Silva CJ, Erickson-Beltran ML, Hui C, Badiola JJ, Nicholson EM, Requena JR, Bolea R. Quantitating PrP Polymorphisms Present in Prions from Heterozygous Scrapie-Infected Sheep. Anal Chem 2016; 89:854-861. [PMID: 27936597 DOI: 10.1021/acs.analchem.6b03822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scrapie is a prion (PrPSc) disease of sheep. The incubation period of sheep scrapie is strongly influenced by polymorphisms at positions 136, 154, and 171 of a sheep's normal cellular prion protein (PrPC). Chymotrypsin was used to digest sheep recombinant PrP to identify a set of characteristic peptides [M132LGSXMSRPL141 (X = A or V), Y153XENMY158 (X,= H or R), and Y166RPVDXY172 (X = H, K, Q, or R)] that could be used to detect and quantitate polymorphisms at positions 136, 154, and 171 of sheep PrPC or PrPSc. These peptides were used to develop a multiple reaction monitoring method (MRM) to detect the amounts of a particular polymorphism in a sample of PrPSc isolated from sheep heterozygous for their PrPC proteins. The limit of detection for these peptides was less than 50 attomole. Spinal cord tissue from heterozygous (ARQ/VRQ or ARH/ARQ) scrapie-infected Rasa Aragonesa sheep was analyzed using this MRM method. Both sets of heterozygotes show the presence of both polymorphisms in PrPSc. This was true for samples containing both proteinase K (PK)-sensitive and PK-resistant PrPSc and samples containing only the PK-resistant PrPSc. These results show that heterozygous animals contain PrPSc that is composed of significant amounts of both PrP polymorphisms.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States
| | - Melissa L Erickson-Beltran
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States
| | - Colleen Hui
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States
| | - Juan José Badiola
- Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza , 50013, Zaragoza Spain
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service , Ames, Iowa 50010, United States
| | - Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS , Santiago de Compostela, 15782 Spain
| | - Rosa Bolea
- Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza , 50013, Zaragoza Spain
| |
Collapse
|
23
|
Muñoz-Gutiérrez JF, Aguilar Pierlé S, Schneider DA, Baszler TV, Stanton JB. Transcriptomic Determinants of Scrapie Prion Propagation in Cultured Ovine Microglia. PLoS One 2016; 11:e0147727. [PMID: 26807844 PMCID: PMC4726464 DOI: 10.1371/journal.pone.0147727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022] Open
Abstract
Susceptibility to infection by prions is highly dependent on the amino acid sequence and host expression of the cellular prion protein (PrPC); however, cellular expression of a genetically susceptible PrPC is insufficient. As an example, it has been shown in cultured cells that permissive and resistant sublines derived from the same parental population often have similar expression levels of PrPC. Thus, additional cellular factors must influence susceptibility to prion infection. The aim of this study was to elucidate the factors associated with relative permissiveness and resistance to scrapie prions in cultured cells derived from a naturally affected species. Two closely related ovine microglia clones with different prion susceptibility, but no detectable differences in PrPC expression levels, were inoculated with either scrapie-positive or scrapie-negative sheep brainstem homogenates. Five passages post-inoculation, the transcriptional profiles of mock and infected clones were sequenced using Illumina technology. Comparative transcriptional analyses identified twenty-two differentially transcribed genes, most of which were upregulated in poorly permissive microglia. This included genes encoding for selenoprotein P, endolysosomal proteases, and proteins involved in extracellular matrix remodeling. Furthermore, in highly permissive microglia, transforming growth factor β–induced, retinoic acid receptor response 1, and phosphoserine aminotranspherase 1 gene transcripts were upregulated. Gene Set Enrichment Analysis identified proteolysis, translation, and mitosis as the most affected pathways and supported the upregulation trend of several genes encoding for intracellular proteases and ribosomal proteins in poorly permissive microglia. This study identifies new genes potentially involved in scrapie prion propagation, corroborates results from other studies, and extends those results into another cell culture model.
Collapse
Affiliation(s)
- Juan F. Muñoz-Gutiérrez
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail: (JFMG); (JBS)
| | - Sebastián Aguilar Pierlé
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - David A. Schneider
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- United States Department of Agriculture, Agricultural Research Service, Pullman, Washington, United States of America
| | - Timothy V. Baszler
- Department of Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - James B. Stanton
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (JFMG); (JBS)
| |
Collapse
|
24
|
Prion Type-Dependent Deposition of PRNP Allelic Products in Heterozygous Sheep. J Virol 2015; 90:805-12. [PMID: 26512080 PMCID: PMC4702698 DOI: 10.1128/jvi.02316-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Susceptibility or resistance to prion infection in humans and animals depends on single prion protein (PrP) amino acid substitutions in the host, but the agent's modulating role has not been well investigated. Compared to disease incubation times in wild-type homozygous ARQ/ARQ (where each triplet represents the amino acids at codons 136, 154, and 171, respectively) sheep, scrapie susceptibility is reduced to near resistance in ARR/ARR animals while it is strongly enhanced in VRQ/VRQ carriers. Heterozygous ARR/VRQ animals exhibit delayed incubation periods. In bovine spongiform encephalopathy (BSE) infection, the polymorphism effect is quite different although the ARR allotype remains the least susceptible. In this study, PrP allotype composition in protease-resistant prion protein (PrP(res)) from brain of heterozygous ARR/VRQ scrapie-infected sheep was compared with that of BSE-infected sheep with a similar genotype. A triplex Western blotting technique was used to estimate the two allotype PrP fractions in PrP(res) material from BSE-infected ARR/VRQ sheep. PrP(res) in BSE contained equimolar amounts of VRQ- and ARR-PrP, which contrasts with the excess (>95%) VRQ-PrP fraction found in PrP in scrapie. This is evidence that transmissible spongiform encephalopathy (TSE) agent properties alone, perhaps structural aspects of prions (such as PrP amino acid sequence variants and PrP conformational state), determine the polymorphic dependence of the PrP(res) accumulation process in prion formation as well as the disease-associated phenotypic expressions in the host. IMPORTANCE Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative and transmissible diseases caused by prions. Amino acid sequence variants of the prion protein (PrP) determine transmissibility in the hosts, as has been shown for classical scrapie in sheep. Each individual produces a separate PrP molecule from its two PrP gene copies. Heterozygous scrapie-infected sheep that produce two PrP variants associated with opposite scrapie susceptibilities (136V-PrP variant, high; 171R-PrP variant, very low) contain in their prion material over 95% of the 136V PrP variant. However, when these sheep are infected with prions from cattle (bovine spongiform encephalopathy [BSE]), both PrP variants occur in equal ratios. This shows that the infecting prion type determines the accumulating PrP variant ratio in the heterozygous host. While the host's PrP is considered a determining factor, these results emphasize that prion structure plays a role during host infection and that PrP variant involvement in prions of heterozygous carriers is a critical field for understanding prion formation.
Collapse
|
25
|
PrP genotype frequencies and risk evaluation for scrapie in dairy sheep breeds from southern Italy. Prev Vet Med 2015; 122:318-24. [DOI: 10.1016/j.prevetmed.2015.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/30/2015] [Accepted: 10/28/2015] [Indexed: 11/23/2022]
|
26
|
Comparative Susceptibility of Sheep of Different Origins, Breeds and PRNP Genotypes to Challenge with Bovine Spongiform Encephalopathy and Scrapie. PLoS One 2015; 10:e0143251. [PMID: 26587837 PMCID: PMC4654545 DOI: 10.1371/journal.pone.0143251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023] Open
Abstract
Sheep are natural hosts of the prion disease, scrapie. They are also susceptible to experimental challenge with various scrapie strains and with bovine spongiform encephalopathy (BSE), which affects cattle and has been accidentally transmitted to a range of other species, including man. Incidence and incubation period of clinical disease in sheep following inoculation is controlled by the PRNP gene, which has different alleles defined on the basis of polymorphisms, particularly at codons 136, 154 and 171, although other codons are associated with survival time, and the exact responses of the sheep may be influenced by other breed-related differences. Here we report the results of a long term single study of experimental scrapie and BSE susceptibility of sheep of Cheviot, Poll Dorset and Suffolk breeds, originating from New Zealand and of a wide range of susceptible and resistant PRNP genotypes. Responses were compared with those of sheep from a closed Cheviot flock of UK origin (Roslin Cheviot flock). The unusually long observation period (6-8 years for most, but up to 12 years for others) allows us to draw robust conclusions about rates of survival of animals previously regarded as resistant to infection, particularly PRNP heterozygotes, and is the most comprehensive such study reported to date. BSE inoculation by an intracerebral route produced disease in all genotype groups with differing incubation periods, although M112T and L141F polymorphisms seemed to give some protection. Scrapie isolate SSBP/1, which has the shortest incubation period in sheep with at least one VRQ PRNP allele, also produced disease following sub-cutaneous inoculation in ARQ/ARQ animals of New Zealand origin, but ARQ/ARQ sheep from the Roslin flock survived the challenge. Our results demonstrate that the links between PRNP genotype and clinical prion disease in sheep are much less secure than previously thought, and may break down when, for example, a different breed of sheep is moved into a new flock.
Collapse
|
27
|
Qing LL, Zhao H, Liu LL. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:436-45. [PMID: 25297084 DOI: 10.13918/j.issn.2095-8137.2014.5.436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The "protein-only" hypothesis of TSE suggests that prions are transmissible particles devoid of nucleic acid and the primary pathogenic event is thought to be the conversion of cellular prion protein (PrP(C)) into the disease-associated isoform (PrP(Sc)). According to susceptibility to TSEs, animals can be classified into susceptible species and low susceptibility species. In this review we focus on several species with low susceptibility to TSEs: dogs, rabbits, horses and buffaloes. We summarize recent studies into the characteristics of low susceptibility regarding protein structure, and biochemical and genetic properties.
Collapse
Affiliation(s)
- Li-Li Qing
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | - Hui Zhao
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China.
| | - Lin-Lin Liu
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
28
|
Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ. Therapeutic interventions ameliorating prion disease. Expert Rev Anti Infect Ther 2014; 7:83-105. [DOI: 10.1586/14787210.7.1.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Zhang Z, Wang R, Xu L, Yuan F, Zhou X, Yang L, Yin X, Xu B, Zhao D. Molecular cloning and sequence analysis of prion protein gene in Xiji donkey in China. Gene 2013; 529:345-50. [PMID: 23954254 DOI: 10.1016/j.gene.2013.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/22/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
Prion diseases are a group of human and animal neurodegenerative disorders caused by the deposition of an abnormal isoform prion protein (PrP(Sc)) encoded by a single copy prion protein gene (PRNP). Prion disease has been reported in many herbivores but not in Equus and the species barrier might be playing a role in resistance of these species to the disease. Therefore, analysis of genotype of prion protein (PrP) in these species may help understand the transmission of the disease. Xiji donkey is a rare species of Equus not widely reared in Ningxia, China, for service, food and medicine, but its PRNP has not been studied. Based on the reported PrP sequence in GenBank we designed primers and amplified, cloned and sequenced the PRNP of Xiji donkey. The sequence analysis showed that the Xiji donkey PRNP was consisted of an open reading frame of 768 nucleotides encoding 256 amino acids. Amino acid residues unique to donkey as compared with some Equus animals, mink, cow, sheep, human, dog, sika deer, rabbit and hamster were identified. The results showed that the amino acid sequence of Xiji donkey PrP starts with the consensus sequence MVKSH, with almost identical amino acid sequence to the PrP of other Equus species in this study. Amino acid sequence analysis showed high identity within species and close relation to the PRNP of sika deer, sheep, dog, camel, cow, mink, rabbit and hamster with 83.1-99.7% identity. The results provided the PRNP data for an additional Equus species, which should be useful to the study of the prion disease pathogenesis, resistance and cross species transmission.
Collapse
Affiliation(s)
- Zhuming Zhang
- State Key Laboratories for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; College of Agriculture, Ningxia University, Yinchuan 750021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tian C, Dong X. The structure of prion: is it enough for interpreting the diverse phenotypes of prion diseases? Acta Biochim Biophys Sin (Shanghai) 2013; 45:429-34. [PMID: 23459557 DOI: 10.1093/abbs/gmt021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are neurodegenerative diseases, which affect human and many species of animals with 100% fatality rate. The most accepted etiology for prion disease is 'prion', which arises from the conversion from cellular PrP(C) to the pathological PrP(Sc). This review discussed the characteristic structure of PrP, including PRNP gene, PrP(C), PrP(Sc), PrP amyloid, and prion strains.
Collapse
Affiliation(s)
- Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | | |
Collapse
|
31
|
Cortez LM, Kumar J, Renault L, Young HS, Sim VL. Mouse prion protein polymorphism Phe-108/Val-189 affects the kinetics of fibril formation and the response to seeding: evidence for a two-step nucleation polymerization mechanism. J Biol Chem 2013; 288:4772-81. [PMID: 23283973 DOI: 10.1074/jbc.m112.414581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders associated with the polymerization of the cellular form of prion protein (PrP(C)) into an amyloidogenic β-sheet infectious form (PrP(Sc)). The sequence of host PrP is the major determinant of host prion disease susceptibility. In mice, the presence of allele a (Prnp(a), encoding the polymorphism Leu-108/Thr-189) or b (Prnp(b), Phe-108/Val-189) is associated with short or long incubation times, respectively, following infection with PrP(Sc). The molecular bases linking PrP sequence, infection susceptibility, and convertibility of PrP(C) into PrP(Sc) remain unclear. Here we show that recombinant PrP(a) and PrP(b) aggregate and respond to seeding differently in vitro. Our kinetic studies reveal differences during the nucleation phase of the aggregation process, where PrP(b) exhibits a longer lag phase that cannot be completely eliminated by seeding the reaction with preformed fibrils. Additionally, PrP(b) is more prone to propagate features of the seeds, as demonstrated by conformational stability and electron microscopy studies of the formed fibrils. We propose a model of polymerization to explain how the polymorphisms at positions 108 and 189 produce the phenotypes seen in vivo. This model also provides insight into phenomena such as species barrier and prion strain generation, two phenomena also influenced by the primary structure of PrP.
Collapse
Affiliation(s)
- Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | | | | | | | | |
Collapse
|
32
|
Cong X, Bongarzone S, Giachin G, Rossetti G, Carloni P, Legname G. Dominant-negative effects in prion diseases: insights from molecular dynamics simulations on mouse prion protein chimeras. J Biomol Struct Dyn 2012; 31:829-40. [PMID: 22934595 DOI: 10.1080/07391102.2012.712477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in the prion protein (PrP) can cause spontaneous prion diseases in humans (Hu) and animals. In transgenic mice, mutations can determine the susceptibility to the infection of different prion strains. Some of these mutations also show a dominant-negative effect, thus halting the replication process by which wild type mouse (Mo) PrP is converted into Mo scrapie. Using all-atom molecular dynamics (MD) simulations, here we studied the structure of HuPrP, MoPrP, 10 Hu/MoPrP chimeras, and 1 Mo/sheepPrP chimera in explicit solvent. Overall, ∼2 μs of MD were collected. Our findings suggest that the interactions between α1 helix and N-terminal of α3 helix are critical in prion propagation, whereas the β2-α2 loop conformation plays a role in the dominant-negative effect. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:4 .
Collapse
Affiliation(s)
- Xiaojing Cong
- Department of Physics, Scuola Internazionale Superiore di Studi Avanzati-SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Hautaniemi M, Tapiovaara H, Korpenfelt SL, Sihvonen L. Genotyping and surveillance for scrapie in Finnish sheep. BMC Vet Res 2012; 8:122. [PMID: 22831168 PMCID: PMC3414783 DOI: 10.1186/1746-6148-8-122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/25/2012] [Indexed: 11/12/2022] Open
Abstract
Background The progression of scrapie is known to be influenced by the amino acid polymorphisms of the host prion protein (PrP) gene. There is no breeding programme for TSE resistance in sheep in Finland, but a scrapie control programme has been in place since 1995. In this study we have analysed PrP genotypes of total of 928 purebred and crossbred sheep together with the data of scrapie survey carried out in Finland during 2002–2008 in order to gain knowledge of the genotype distribution and scrapie prevalence in Finnish sheep. Results The ARQ/ARQ genotype was the most common genotype in all breeds studied. ARR allele frequency was less than 12% in purebred Finnish sheep and in most genotypes heterozygous for ARR, the second allele was ARQ. The VRQ allele was not detected in the Grey race sheep of Kainuu or in the Aland sheep, and it was present in less than 6% of the Finnish Landrace sheep. Leucine was the most prominent amino acid found in codon 141. In addition, one novel prion dimorphisms of Q220L was detected. During the scrapie survey of over 15 000 sheep in 2002–2008, no classical scrapie cases and only five atypical scrapie cases were detected. Conclusions The results indicate that the Finnish sheep populations have genetically little resistance to classical scrapie, but no classical scrapie was detected during an extensive survey in 2002–2008. However, five atypical scrapie cases emerged; thus, the disease is present in the Finnish sheep population at a low level.
Collapse
Affiliation(s)
- Maria Hautaniemi
- Research Department/Veterinary Virology, Finnish Food Safety Authority Evira, Mustialankatu 3, FI-00790, Helsinki, Finland.
| | | | | | | |
Collapse
|
34
|
Msalya G, Shimogiri T, Okamoto S, Kawabe K, Maeda Y. Short Communication: The double deletion diplotype showed low levels of prion protein at two indel loci of PRNP in the medulla oblongata of Japanese Brown cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2012. [DOI: 10.4141/cjas2011-116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Msalya, G., Shimogiri, T., Okamoto, S., Kawabe, K. and Maeda, Y. 2012. Short Communication: The double deletion diplotype showed low levels of prion protein at two indel loci of PRNP in the medulla oblongata of Japanese Brown cattle. Can. J. Anim. Sci. 92: 153–157. Transmissible spongiform encephalopathies (TSEs) are a class of fatal neurodegenerative diseases caused by abnormally folded prion proteins (PrP). The PrP is necessary for the transmission and propagation of TSE diseases. In this study, PrP was quantified in the medulla oblongata of 39 Japanese Brown (JBr) animals that were genotyped for two indels in the PRNP gene – a 23 bp deletion in the promoter region and a 12 bp deletion in the first intron. The mean level of PrP was greater in the ++/++ diplotype than in −−/−− and +−/+− diplotypes, although the differences were not significant. These results suggest that the amount of PrP in the medulla oblongata of animals is related to these indels. However, given that there have been no reported cases of BSE in Japanese Brown animals, the relationship of the indels and PrP levels with the incidence of BSE is unclear.
Collapse
Affiliation(s)
- George Msalya
- United Graduate School of Agriculture, Kagoshima University, 1-21-24 Korimoto Kagoshima 890-0065, Japan
- Present address: Department of Animal Science and Production, Sokoine University of Agriculture, P.O. Box 3004, SUA, Morogoro, Tanzania
| | - Takeshi Shimogiri
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto Kagoshima 890-0065, Japan
| | - Shin Okamoto
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto Kagoshima 890-0065, Japan
| | - Kotaro Kawabe
- Frontier Science Research Centre, Kagoshima University, 1-21-24 Korimoto Kagoshima 890-0065, Japan
| | - Yoshizane Maeda
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto Kagoshima 890-0065, Japan
| |
Collapse
|
35
|
White SN, Reynolds JO, Waldron DF, Schneider DA, O'Rourke KI. Extended scrapie incubation time in goats singly heterozygous for PRNP S146 or K222. Gene 2012; 501:49-51. [PMID: 22516690 DOI: 10.1016/j.gene.2012.03.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022]
Abstract
Scrapie is the transmissible spongiform encephalopathy (TSE) of sheep and goats, and scrapie eradication in sheep is based in part on strong genetic resistance to classical scrapie. Goats may serve as a scrapie reservoir, and to date there has been no experimental inoculation confirming strong genetic resistance in goats. Two prion protein variants (amino acid substitutions S146 and K222) in goats have been significantly underrepresented in scrapie cases though present in scrapie-exposed flocks, and have demonstrated low cell-free protein conversion efficiency to the disease form (PrP(D)). To test degree of genetic resistance conferred in live animals with consistent exposure, we performed the first oral scrapie challenge of goats singly heterozygous for either PRNP S146 or K222. All N146-Q222 homozygotes became clinically scrapie positive by an average of 24months, but all S146 and K222 heterozygotes remain scrapie negative by both rectal biopsy and clinical signs at significantly longer incubation times (P<0.0001 for both comparisons). Recent reports indicate small numbers of S146 and K222 heterozygous goats have become naturally infected with scrapie, suggesting these alleles do not confer complete resistance in the heterozygous state but rather extend incubation. The oral challenge results presented here confirm extended incubation observed in a recent intracerebral challenge of K222 heterozygotes, and to our knowledge provide the first demonstration of extended incubation in S146 heterozygotes. These results suggest longer relevant trace-back histories in scrapie-eradication programs for animals bearing these alleles and strengthen the case for additional challenge experiments in both homozygotes to assess potential scrapie resistance.
Collapse
Affiliation(s)
- Stephen N White
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, PO Box 646630, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
36
|
Sanghera N, Correia BEFS, Correia JRS, Ludwig C, Agarwal S, Nakamura HK, Kuwata K, Samain E, Gill AC, Bonev BB, Pinheiro TJT. Deciphering the molecular details for the binding of the prion protein to main ganglioside GM1 of neuronal membranes. ACTA ACUST UNITED AC 2012; 18:1422-31. [PMID: 22118676 DOI: 10.1016/j.chembiol.2011.08.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/15/2022]
Abstract
The prion protein (PrP) resides in lipid rafts in vivo, and lipids modulate misfolding of the protein to infectious isoforms. Here we demonstrate that binding of recombinant PrP to model raft membranes requires the presence of ganglioside GM1. A combination of liquid- and solid-state NMR revealed the binding sites of PrP to the saccharide head group of GM1. The binding epitope for GM1 was mapped to the folded C-terminal domain of PrP, and docking simulations identified key residues in the C-terminal region of helix C and the loop between strand S2 and helix B. Crucially, this region of PrP is linked to prion resistance in vivo, and structural changes caused by lipid binding in this region may explain the requirement for lipids in the generation of infectious prions in vitro.
Collapse
Affiliation(s)
- Narinder Sanghera
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rubenstein R, Bulgin MS, Chang B, Sorensen-Melson S, Petersen RB, LaFauci G. PrP(Sc) detection and infectivity in semen from scrapie-infected sheep. J Gen Virol 2012; 93:1375-1383. [PMID: 22323531 DOI: 10.1099/vir.0.038802-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A scrapie-positive ewe was found in a flock that had been scrapie-free for 13 years, but housed adjacent to scrapie-positive animals, separated by a wire fence. Live animal testing of the entire flock of 24 animals revealed seven more subclinical scrapie-positive ewes. We hypothesized that they may have contracted the disease from scrapie-positive rams used for breeding 4 months prior, possibly through the semen. The genotypes of the ewe flock were highly scrapie-susceptible and the rams were infected with the 'Caine' scrapie strain having a short incubation time of 4.3-14.6 months in sheep with 136/171 VQ/VQ and AQ/VQ genotypes. PrP(Sc) accumulates in a variety of tissues in addition to the central nervous system. Although transmission of prion diseases, or transmissible spongiform encephalopathies, has been achieved via peripheral organ or tissue homogenates as well as by blood transfusion, neither infectivity nor PrP(Sc) have been found in semen from scrapie-infected animals. Using serial protein misfolding cyclic amplification followed by a surround optical fibre immunoassay, we demonstrate that semen from rams infected with a short-incubation-time scrapie strain contains prion disease-associated-seeding activity that generated PrP(Sc) in sPMCA (serial protein misfolding cyclic amplification). Injection of the ovinized transgenic mouse line TgSShpPrP with semen from scrapie-infected sheep resulted in PrP(Sc)-seeding activity in clinical and, probably as a result of the low titre, non-clinical mouse brain. These results suggest that the transmissible agent, or at least the seeding activity, for sheep scrapie is present in semen. This may be a strain-specific phenomenon.
Collapse
Affiliation(s)
- Richard Rubenstein
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Marie S Bulgin
- University of Idaho, Caine Veterinary Teaching and Research Center, 1020 E. Homedale Road, Caldwell, ID 83607, USA
| | - Binggong Chang
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Sharon Sorensen-Melson
- University of Idaho, Caine Veterinary Teaching and Research Center, 1020 E. Homedale Road, Caldwell, ID 83607, USA
| | - Robert B Petersen
- Departments of Pathology Neuroscience, and Neurology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44120, USA
| | - Giuseppe LaFauci
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| |
Collapse
|
38
|
González L, Dagleish MP, Martin S, Finlayson J, Sisó S, Eaton SL, Goldmann W, Witz J, Hamilton S, Stewart P, Pang Y, Steele P, Reid HW, Chianini F, Jeffrey M. Factors influencing temporal variation of scrapie incidence within a closed Suffolk sheep flock. J Gen Virol 2011; 93:203-211. [PMID: 21918004 DOI: 10.1099/vir.0.034652-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several studies have shown that transmission of natural scrapie can occur vertically and horizontally, and that variations in scrapie incidence between and within infected flocks are mostly due to differences in the proportion of sheep with susceptible and resistant PRNP genotypes. This report presents the results of a 12-year period of scrapie monitoring in a closed flock of Suffolk sheep, in which only animals of the ARQ/ARQ genotype developed disease. Among a total of 120 of these, scrapie attack rates varied between birth cohorts from 62.5 % (5/8) to 100 % (9/9), and the incidence of clinical disease among infected sheep from 88.9 % (8/9) to 100 % (in five birth cohorts). Susceptible sheep born to scrapie-infected ewes showed a slightly higher risk of becoming infected (97.2 %), produced earlier biopsy-positive results (mean 354 days) and developed disease at a younger age (median 736 days) than those born to non-infected dams (80.3 %, 451 and 782 days, respectively). Taken together, this was interpreted as evidence of maternal transmission. However, it was also observed that, for the birth cohorts with the highest incidence of scrapie (90-100 %), sheep born to infected and non-infected dams had a similar risk of developing scrapie (97.1 and 95.3 %, respectively). Compared with moderate-attack-rate cohorts (62.5-66.7 %), high-incidence cohorts had greater numbers of susceptible lambs born to infected ewes, suggesting that increased rates of horizontal transmission in these cohorts could have been due to high levels of environmental contamination caused by infected placentas.
Collapse
Affiliation(s)
- Lorenzo González
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Stuart Martin
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Jeanie Finlayson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Sílvia Sisó
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Samantha L Eaton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Wilfred Goldmann
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Janey Witz
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Paula Stewart
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Yvonne Pang
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Hugh W Reid
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| |
Collapse
|
39
|
Salami S, Zadeh RA, Omrani MD, Ramezani F, Amniattalab A. Allelic frequency and genotypes of prion protein at codon 136 and 171 in Iranian Ghezel sheep breeds. Prion 2011; 5:228-231. [PMID: 21778818 PMCID: PMC3226050 DOI: 10.4161/pri.5.3.16098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/08/2011] [Indexed: 02/08/2023] Open
Abstract
PrP genotypes at codons 136 and 171 in one hundred twenty Iranian Ghezel sheep breeds were studied using allele-specific PCR amplification and compared with the well-known sheep breeds in North America, the United States, and Europe. The frequency of V allele and VV genotype at codon 136 of Ghezel sheep breed was significantly lower than AA and AV. At codon 171, the frequency of allele H was significantly lower than Q and R. Despite the similarities of PrP genotypes at codons 136 and 171 between Iranian Ghezel sheep breeds and some of the studied breeds, significant differences were found with others. Planning of effective breeding control and successful eradication of susceptible genotypes in Iranian Ghezel sheep breeds will not be possible unless the susceptibility of various genotypes in Ghezel sheep breeds to natural or experimental scrapie has been elucidated.
Collapse
Affiliation(s)
- Siamak Salami
- Department of Biochemistry and Nutrition, Faculty of Medicinem Urmia University of Medical Sciences, Urmia, Iran.
| | | | | | | | | |
Collapse
|
40
|
Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat Struct Mol Biol 2011; 18:486-92. [PMID: 21423195 PMCID: PMC3082495 DOI: 10.1038/nsmb.2031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 12/16/2010] [Indexed: 12/15/2022]
Abstract
Protein misfolding underlies many neurodegenerative diseases, including the transmissible spongiform encephalopathies (prion diseases). Although cells typically recognize and process misfolded proteins, prion proteins evade protective measures by forming stable, self-replicating aggregates. However, coexpression of dominant-negative prion mutants can overcome aggregate accumulation and disease progression through currently unknown pathways. Here we determine the mechanisms by which two mutants of the Saccharomyces cerevisiae Sup35 protein cure the [PSI(+)] prion. We show that both mutants incorporate into wild-type aggregates and alter their physical properties in different ways, diminishing either their assembly rate or their thermodynamic stability. Whereas wild-type aggregates are recalcitrant to cellular intervention, mixed aggregates are disassembled by the molecular chaperone Hsp104. Thus, rather than simply blocking misfolding, dominant-negative prion mutants target multiple events in aggregate biogenesis to enhance their susceptibility to endogenous quality-control pathways.
Collapse
|
41
|
Prcina M, Kontsekova E. Has prion protein important physiological function? Med Hypotheses 2011; 76:567-9. [PMID: 21277689 DOI: 10.1016/j.mehy.2011.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/25/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
Abstract
Despite the great effort aimed at uncovering the physiological function of cellular prion protein, its role remains unclear. The highly conserved amino acid sequence of PrP indicates its important function, but normally developing PrP knockout mice and cattle were prepared. Here we propose hypothesis that prion protein has no function or a redundant one and more importantly, that the conserved amino acid sequence of mammalian PrPs is not the result of their important function, but rather due to cytotoxicity of most mutations occurring in the PrP molecule. It is possible that the majority of mutations in PrP dramatically destabilizes the PrP(C) structure and causes a pathological change in conformation, so that natural selection favours individuals with non-mutated PrP.
Collapse
Affiliation(s)
- Michal Prcina
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovak Republic.
| | | |
Collapse
|
42
|
Abstract
Here we review the known strain profiles of various prion diseases of animals and humans, and how transgenic mouse models are being used to elucidate basic molecular mechanisms of prion propagation and strain variation and for assessing the zoonotic potential of various animal prion strains.
Collapse
Affiliation(s)
- Glenn C Telling
- Sanders Brown Center on Aging, University of Kentucky Medical Center, Lexington, KY 40506, USA.
| |
Collapse
|
43
|
|
44
|
The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat Rev Mol Cell Biol 2010; 11:823-33. [PMID: 21081963 DOI: 10.1038/nrm3007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prions are unusual proteinaceous infectious agents that are typically associated with a class of fatal degenerative diseases of the mammalian brain. However, the discovery of fungal prions, which are not associated with disease, suggests that we must now consider the effect of these factors on basic cellular physiology in a different light. Fungal prions are epigenetic determinants that can alter a range of cellular processes, including metabolism and gene expression pathways, and these changes can lead to a range of prion-associated phenotypes. The mechanistic similarities between prion propagation in mammals and fungi suggest that prions are not a biological anomaly but instead could be a newly appreciated and perhaps ubiquitous regulatory mechanism.
Collapse
|
45
|
Yokoyama T, Masujin K, Schmerr MJ, Shu Y, Okada H, Iwamaru Y, Imamura M, Matsuura Y, Murayama Y, Mohri S. Intraspecies prion transmission results in selection of sheep scrapie strains. PLoS One 2010; 5:e15450. [PMID: 21103326 PMCID: PMC2982847 DOI: 10.1371/journal.pone.0015450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/30/2010] [Indexed: 12/03/2022] Open
Abstract
Background Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined. Methodology/Principal Findings In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain. Conclusions/Significance Our results indicate that prion strain selection occurs after both inter- and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.
Collapse
Affiliation(s)
- Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wen Y, Li J, Xiong M, Peng Y, Yao W, Hong J, Lin D. Solution structure and dynamics of the I214V mutant of the rabbit prion protein. PLoS One 2010; 5:e13273. [PMID: 20949107 PMCID: PMC2951349 DOI: 10.1371/journal.pone.0013273] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The conformational conversion of the host-derived cellular prion protein (PrP(C)) into the disease-associated scrapie isoform (PrP(Sc)) is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs). Various single-point mutations in PrP(C)s could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrP(C) (RaPrP(C)) and various mutants would be of great help to understand the ability of RaPrP(C) to be resistant to TSE agents. METHODOLOGY/PRINCIPAL FINDINGS We determined the solution structure of the I214V mutant of RaPrP(C)(91-228) and detected the backbone dynamics of its structured C-terminal domain (121-228). The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. CONCLUSIONS/SIGNIFICANCE Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints for understanding the inability of the conformational conversion for RaPrP(C).
Collapse
Affiliation(s)
- Yi Wen
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jun Li
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Minqian Xiong
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Peng
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenming Yao
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Hong
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Donghai Lin
- NMR Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- The Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
47
|
Beck KE, Sallis RE, Lockey R, Simmons MM, Spiropoulos J. Ovine PrP genotype is linked with lesion profile and immunohistochemistry patterns after primary transmission of classical scrapie to wild-type mice. J Neuropathol Exp Neurol 2010; 69:483-97. [PMID: 20418778 DOI: 10.1097/nen.0b013e3181db2497] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is currently believed that primary transmission of classical scrapie to wild-type mice is inefficient and characterized by low attack rates and variable incubation periods and lesion profiles. Consequently, strain characterization of classical scrapie in these mice relies on subpassage. The aim of this study was to perform a retrospective analysis of lesion profiles and immunohistochemistry patterns after transmission of a large number of classical scrapie sources to wild-type mice and to investigate trends that might be used to characterize the agent without subpassaging. Scrapie field cases (n = 31) collected from individual farms between 1996 and 1999 were inoculated into RIII, C57BL, and VM mice and profiled using standard methodology and analyzed by immunohistochemistry. Using cluster analysis to resultant lesion profiles produced groups of similar lesion profiles in RIII and C57BL mice. We observed correlations between lesion profile clusters and the ovine prion protein (PrP) genotype. Immunohistochemistry indicated donor-mediated trends in the PrP pattern. These results indicate that ovine PrP genotype is a factor that is linked to both the lesion profile and the pattern of PrP deposition on primary transmission of classical scrapie to wild-type mice.
Collapse
Affiliation(s)
- Katy E Beck
- Neuropathology Unit, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Bessen RA, Shearin H, Martinka S, Boharski R, Lowe D, Wilham JM, Caughey B, Wiley JA. Prion shedding from olfactory neurons into nasal secretions. PLoS Pathog 2010; 6:e1000837. [PMID: 20419120 PMCID: PMC2855443 DOI: 10.1371/journal.ppat.1000837] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
This study investigated the role of prion infection of the olfactory mucosa in the shedding of prion infectivity into nasal secretions. Prion infection with the HY strain of the transmissible mink encephalopathy (TME) agent resulted in a prominent infection of the olfactory bulb and the olfactory sensory epithelium including the olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs), whose axons comprise the two olfactory cranial nerves. A distinct glycoform of the disease-specific isoform of the prion protein, PrP(Sc), was found in the olfactory mucosa compared to the olfactory bulb, but the total amount of HY TME infectivity in the nasal turbinates was within 100-fold of the titer in the olfactory bulb. PrP(Sc) co-localized with olfactory marker protein in the soma and dendrites of ORNs and VRNs and also with adenylyl cyclase III, which is present in the sensory cilia of ORNs that project into the lumen of the nasal airway. Nasal lavages from HY TME-infected hamsters contained prion titers as high as 10(3.9) median lethal doses per ml, which would be up to 500-fold more infectious in undiluted nasal fluids. These findings were confirmed using the rapid PrP(Sc) amplification QuIC assay, indicating that nasal swabs have the potential to be used for prion diagnostics. These studies demonstrate that prion infection in the olfactory epithelium is likely due to retrograde spread from the olfactory bulb along the olfactory and vomeronasal axons to the soma, dendrites, and cilia of these peripheral neurons. Since prions can replicate to high levels in neurons, we propose that ORNs can release prion infectivity into nasal fluids. The continual turnover and replacement of mature ORNs throughout the adult lifespan may also contribute to prion shedding from the nasal passage and could play a role in transmission of natural prion diseases in domestic and free-ranging ruminants.
Collapse
Affiliation(s)
- Richard A Bessen
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rodríguez-Martínez AB, Garrido JM, Maza S, Benedicto L, Geijo M, Gómez N, Minguijón E, Benestad SL, Juste RA. Atypical/Nor98 scrapie in the Basque Country: a case report of eight outbreaks. BMC Vet Res 2010; 6:17. [PMID: 20346155 PMCID: PMC2859363 DOI: 10.1186/1746-6148-6-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since 2002, an active surveillance program for transmissible spongiform encephalopathy in small ruminants in European Union countries allowed identification of a considerable number of atypical cases with similarities to the previously identified atypical scrapie cases termed Nor98. CASE PRESENTATION Here we report molecular and neuropathological features of eight atypical/Nor98 scrapie cases detected between 2002 and 2009. Significant features of the affected sheep included: their relatively high ages (mean age 7.9 years, range between 4.3 and 12.8), their breed (all Latxa) and their PRNP genotypes (AFRQ/ALRQ, ALRR/ALRQ, AFRQ/AFRQ, AFRQ/AHQ, ALRQ/ALRH, ALRQ/ALRQ). All the sheep were confirmed as atypical scrapie by immunohistochemistry and immunoblotting. Two cases presented more PrP immunolabelling in cerebral cortex than in cerebellum. CONCLUSIONS This work indicates that atypical scrapie constitutes the most common small ruminant transmissible spongiform encephalopathy form in Latxa sheep in the Spanish Basque Country. Moreover, a new genotype (ALRQ/ALRH) was found associated to atypical scrapie.
Collapse
Affiliation(s)
| | - Joseba M Garrido
- Department of Animal Health. Neiker-Tecnalia, 48160 Derio. Bizkaia. Spain
| | - Sonia Maza
- Department of Animal Health. Neiker-Tecnalia, 48160 Derio. Bizkaia. Spain
| | - Leyre Benedicto
- Department of Animal Health. Neiker-Tecnalia, 48160 Derio. Bizkaia. Spain
| | - Mariví Geijo
- Department of Animal Health. Neiker-Tecnalia, 48160 Derio. Bizkaia. Spain
| | - Nieves Gómez
- Department of Animal Health. Neiker-Tecnalia, 48160 Derio. Bizkaia. Spain
| | | | - Sylvie L Benestad
- National Veterinary Institute, Department of Pathology, Postboks 750 Sentrum. 0106 Oslo. Norway
| | - Ramón A Juste
- Department of Animal Health. Neiker-Tecnalia, 48160 Derio. Bizkaia. Spain
| |
Collapse
|
50
|
Prion protein polymorphisms and estimation of risk of scrapie in East Asian sheep. Biochem Genet 2010; 48:13-25. [PMID: 19731007 DOI: 10.1007/s10528-009-9287-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Allele and genotype frequency distributions of prion protein (PrP) polymorphisms at three codons, 136, 154, and 171, in East Asian sheep were determined by PCR-RFLP analysis using 553 animals from nine local breeds of the northern group and four local breeds of the southern group. Based on the genotype distribution, the risk score for scrapie was estimated. Among the local breeds, ARQ appeared predominantly (0.7701-1), followed by ARH and ARR. From such a biased allele distribution, it was difficult to ascertain the prevalent genetic relationships. A marked difference in allele frequencies between the northern and southern groups was seen (P < 0.0001). The East Asian sheep had ARQ at the highest frequency (0.8834); in European sheep it was 0.5317. According to an assessment of scrapie risk in the PrP genotype classes, the predominant ARQ/ARQ in East Asian sheep corresponded to the risk score of R4. This finding suggests that East Asian sheep have a high level of genetic susceptibility to scrapie.
Collapse
|