1
|
Leventhal L, Ruffley M, Exposito-Alonso M. Planting Genomes in the Wild: Arabidopsis from Genetics History to the Ecology and Evolutionary Genomics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:605-635. [PMID: 39971350 DOI: 10.1146/annurev-arplant-071123-095146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The genetics model system Arabidopsis thaliana (L.) Heynh. lives across a vast geographic range with contrasting climates, in response to which it has evolved diverse life histories and phenotypic adaptations. In the last decade, the cataloging of worldwide populations, DNA sequencing of whole genomes, and conducting of outdoor field experiments have transformed it into a powerful evolutionary ecology system to understand the genomic basis of adaptation. Here, we summarize new insights on Arabidopsis following the coordinated efforts of the 1001 Genomes Project, the latest reconstruction of biogeographic and demographic history, and the systematic genomic mapping of trait natural variation through 15 years of genome-wide association studies. We then put this in the context of local adaptation across climates by summarizing insights from 73 Arabidopsis outdoor common garden experiments conducted to date. We conclude by highlighting how molecular and genomic knowledge of adaptation can help us to understand species' (mal)adaptation under ongoing climate change.
Collapse
Affiliation(s)
- Laura Leventhal
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Alaniz-Fabián J, Xiang D, Del Toro-De León G, Gao P, Abreu-Goodger C, Datla R, Gillmor CS. A maternal transcriptome bias in early Arabidopsis embryogenesis. Development 2025; 152:dev204449. [PMID: 40067256 DOI: 10.1242/dev.204449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025]
Abstract
After fertilization in animals, maternal mRNAs and proteins regulate development until the onset of zygotic transcription. In plants, the extent of maternal regulation of early embryo development has been less clear: two hybrid combinations of rice zygotes have a strong maternal transcript bias, zygotes of a third rice hybrid produced by gamete fusion show a small percentage of maternally biased genes, while Arabidopsis Col/Cvi and Col/Ler hybrid embryos display symmetric and asymmetric parental genome activation, respectively. Here, we explore parent-of-origin transcriptome behavior in the Arabidopsis Col/Tsu hybrid, which was previously shown to display maternal effects for embryo defective mutants indistinguishable from those of the reference ecotype, Col. Analysis of Col/Tsu transcriptomes revealed a reciprocal maternal bias in thousands of genes in zygotes and octant stage embryos. Several lines of evidence suggest that this transient maternal bias is due to preferential transcription of maternal alleles in the zygote, rather than inheritance of transcripts from the egg. Our results extend previous observations that parent-of-origin contributions to early embryogenesis differ between hybrids of Arabidopsis, show that the maternal genome plays a predominant role in early embryos of Col/Tsu, and point to a maternal transcriptome bias in early embryos of the Arabidopsis reference ecotype Columbia.
Collapse
Affiliation(s)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | | | - Peng Gao
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8, Canada
| | - C Stewart Gillmor
- Unidad de Genómica Avanzada, Cinvestav, Irapuato, Guanajuato 36824, Mexico
| |
Collapse
|
3
|
Sun H, Abeli P, Campoy JA, Rütjes T, Krause K, Jiao WB, Beaudry R, Schneeberger K. The identification and analysis of meristematic mutations within the apple tree that developed the RubyMac sport mutation. BMC PLANT BIOLOGY 2024; 24:912. [PMID: 39350074 PMCID: PMC11443920 DOI: 10.1186/s12870-024-05628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Understanding the molecular basis of sport mutations in fruit trees has the potential to accelerate generation of improved cultivars. RESULTS For this, we analyzed the genome of the apple tree that developed the RubyMac phenotype through a sport mutation that led to the characteristic fruit coloring of this variety. Overall, we found 46 somatic mutations that distinguished the mutant and wild-type branches of the tree. In addition, we found 54 somatic gene conversions (i.e., loss-of-heterozygosity mutations) that also distinguished the two parts of the tree. Approximately 20% of the mutations were specific to individual cell lineages, suggesting that they originated from the corresponding meristematic layers. Interestingly, the de novo mutations were enriched for GC = > AT transitions while the gene conversions showed the opposite bias for AT = > GC transitions, suggesting that GC-biased gene conversions have the potential to counteract the AT-bias of de novo mutations. By comparing the gene expression patterns in fruit skins from mutant and wild-type branches, we found 56 differentially expressed genes including 18 involved in anthocyanin biosynthesis. While none of the differently expressed genes harbored a somatic mutation, we found that some of them in regions of the genome that were recently associated with natural variation in fruit coloration. CONCLUSION Our analysis revealed insights in the characteristics of somatic change, which not only included de novo mutations but also gene conversions. Some of these somatic changes displayed strong candidate mutations for the change in fruit coloration in RubyMac.
Collapse
Affiliation(s)
- Hequan Sun
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
| | - Patrick Abeli
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - José Antonio Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
| | - Thea Rütjes
- Institute for Plant Genetics, Heinrich Heine University Düsseldorf, University Street 1, 40225, Düsseldorf, Germany
| | - Kristin Krause
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Illumina Solutions Center Berlin, Berlin, Germany
| | - Wen-Biao Jiao
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Randy Beaudry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA.
| | - Korbinian Schneeberger
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-Von-Linné-Weg 10, 50829, Cologne, Germany.
- Cluster of Excellence On Plant Sciences, Heinrich-Heine University, Universitätsstraße 1, Düsseldorf, 40225, Germany.
| |
Collapse
|
4
|
Hou X, Alagoz Y, Welsch R, Mortimer MD, Pogson BJ, Cazzonelli CI. Reducing PHYTOENE SYNTHASE activity fine-tunes the abundance of a cis-carotene-derived signal that regulates the PIF3/HY5 module and plastid biogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1187-1204. [PMID: 37948577 DOI: 10.1093/jxb/erad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
PHYTOENE SYNTHASE (PSY) is a rate-limiting enzyme catalysing the first committed step of carotenoid biosynthesis, and changes in PSY gene expression and/or protein activity alter carotenoid composition and plastid differentiation in plants. Four genetic variants of PSY (psy-4, psy-90, psy-130, and psy-145) were identified using a forward genetics approach that rescued leaf virescence phenotypes and plastid abnormalities displayed by the Arabidopsis CAROTENOID ISOMERASE (CRTISO) mutant ccr2 (carotenoid and chloroplast regulation 2) when grown under a shorter photoperiod. The four non-lethal mutations affected alternative splicing, enzyme-substrate interactions, and PSY:ORANGE multi-enzyme complex binding, constituting the dynamic post-transcriptional fine-tuning of PSY levels and activity without changing localization to the stroma and protothylakoid membranes. psy genetic variants did not alter total xanthophyll or β-carotene accumulation in ccr2, yet they reduced specific acyclic linear cis-carotenes linked to the biosynthesis of a currently unidentified apocarotenoid signal regulating plastid biogenesis, chlorophyll biosynthesis, and photomorphogenic regulation. ccr2 psy variants modulated the PHYTOCHROME-INTERACTING FACTOR 3/ELONGATED HYPOCOTYL 5 (PIF3/HY5) ratio, and displayed a normal prolamellar body formation in etioplasts and chlorophyll accumulation during seedling photomorphogenesis. Thus, suppressing PSY activity and impairing PSY:ORANGE protein interactions revealed how cis-carotene abundance can be fine-tuned through holoenzyme-metabolon interactions to control plastid development.
Collapse
Affiliation(s)
- Xin Hou
- ARC Training Centre for Accelerated Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Yagiz Alagoz
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthew D Mortimer
- ARC Training Centre for Accelerated Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Barry J Pogson
- ARC Training Centre for Accelerated Future Crops Development, Research School of Biology, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
5
|
Wen Y, Wang E, Wang X, Qing S, Chaogetu B, Wang C, Xu Z, Zhang Z, Huang Y. Copy number variations of LRRFIP1 gene and the relationship with growth traits in four Chinese sheep. Anim Biotechnol 2023; 34:3008-3015. [PMID: 36170043 DOI: 10.1080/10495398.2022.2126981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CNVs (copy number variations) are the novel and common structural variants that could cover entire genes found in plenty of species. CNV may influence economically important traits or disease susceptibility in livestock species. Based on the whole genome resequencing results, we found that there was a CNV region on the LRRFIP1 gene. Then we used qPCR to detect the copy number type distribution in 553 individuals of four sheep breeds and used them for association analysis. The results showed that: (1) In the CKS, the sheep with gain type had a larger heart girth (p = 0.049). (2) For the HS, the CNV could significantly affect rump breadth (p = 0.037) and circumference of the cannon (p = 0.035). And the sheep with median type showed better performance in rump breadth and circumference of cannon. (3) At the STHS, the CNV was significantly correlated with chest width (p = 0.000) with loss type as the most favorable CNV type. Meanwhile, the best was the loss type, and the lowest was the median. (4) This CNV had no significant effect on the LTHS. So, the CNV of LRRFIP1 was related to the growth traits of these three sheep breeds and it may be used as a molecular marker for sheep.
Collapse
Affiliation(s)
- Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Si Qing
- Quality and Safety Inspection and Testing Center for Agricultural and Livestock Products of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Buren Chaogetu
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Chenglin Wang
- Agricultural and Animal Husbandry Technology Promotion Service Center of Haixi Mongolian and Tibetan Autonomous Prefecture, Delingha, Qinghai, China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Yu H, Wu X, Liang J, Han Z, Xiao Y, Du H, Liu Y, Guo J, Peng F. Genome-wide identification of nucleotide-binding domain leucine-rich repeat (NLR) genes and their association with green peach aphid (Myzus persicae) resistance in peach. BMC PLANT BIOLOGY 2023; 23:513. [PMID: 37880593 PMCID: PMC10598982 DOI: 10.1186/s12870-023-04474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Resistance genes (R genes) are a class of genes that are immune to a wide range of diseases and pests. In planta, NLR genes are essential components of the innate immune system. Currently, genes belonging to NLR family have been found in a number of plant species, but little is known in peach. Here, 286 NLR genes were identified on peach genome by using their homologous genes in Arabidopsis thaliana as queries. These 286 NLR genes contained at least one NBS domain and LRR domain. Phylogenetic and N-terminal domain analysis showed that these NLRs could be separated into four subfamilies (I-IV) and their promoters contained many cis-elements in response to defense and phytohormones. In addition, transcriptome analysis showed that 22 NLR genes were up-regulated after infected by Green Peach Aphid (GPA), and showed different expression patterns. This study clarified the NLR gene family and their potential functions in aphid resistance process. The candidate NLR genes might be useful in illustrating the mechanism of aphid resistance in peach.
Collapse
Affiliation(s)
- Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziying Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hao Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, 276000, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
7
|
Song B, Ning W, Wei D, Jiang M, Zhu K, Wang X, Edwards D, Odeny DA, Cheng S. Plant genome resequencing and population genomics: Current status and future prospects. MOLECULAR PLANT 2023; 16:1252-1268. [PMID: 37501370 DOI: 10.1016/j.molp.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Advances in DNA sequencing technology have sparked a genomics revolution, driving breakthroughs in plant genetics and crop breeding. Recently, the focus has shifted from cataloging genetic diversity in plants to exploring their functional significance and delivering beneficial alleles for crop improvement. This transformation has been facilitated by the increasing adoption of whole-genome resequencing. In this review, we summarize the current progress of population-based genome resequencing studies and how these studies affect crop breeding. A total of 187 land plants from 163 countries have been resequenced, comprising 54 413 accessions. As part of resequencing efforts 367 traits have been surveyed and 86 genome-wide association studies have been conducted. Economically important crops, particularly cereals, vegetables, and legumes, have dominated the resequencing efforts, leaving a gap in 49 orders, including Lycopodiales, Liliales, Acorales, Austrobaileyales, and Commelinales. The resequenced germplasm is distributed across diverse geographic locations, providing a global perspective on plant genomics. We highlight genes that have been selected during domestication, or associated with agronomic traits, and form a repository of candidate genes for future research and application. Despite the opportunities for cross-species comparative genomics, many population genomic datasets are not accessible, impeding secondary analyses. We call for a more open and collaborative approach to population genomics that promotes data sharing and encourages contribution-based credit policy. The number of plant genome resequencing studies will continue to rise with the decreasing DNA sequencing costs, coupled with advances in analysis and computational technologies. This expansion, in terms of both scale and quality, holds promise for deeper insights into plant trait genetics and breeding design.
Collapse
Affiliation(s)
- Bo Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Huazhong Agricultural University, College of Informatics, Hubei Key Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, China
| | - Di Wei
- Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 53007, China
| | - Mengyun Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Kun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Xingwei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, Nairobi, Kenya
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
8
|
Sudan J, Sharma S, Salgotra RK, Pandey RK, Neelam D, Singh R. Elucidating the process of SNPs identification in non-reference genome crops. J Biomol Struct Dyn 2023; 41:15682-15690. [PMID: 37021361 DOI: 10.1080/07391102.2023.2194002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023]
Abstract
Advances in the next generation sequencing technologies, genome reduction techniques and bioinformatics tools have given a big impetus to the identification of genome-wide single nucleotide polymorphisms (SNPs) in crops. NGS technologies can make available a large amount of sequence data in a short span of time. The huge data requires detailed bioinformatics analysis steps, including preprocessing, mapping, and identification of sequence variants. A plethora of available software meant for sequence analysis is used for different sequence analysis steps. However, SNPs identification is far more challenging for orphaned crops or non-reference genome crops. The current article reports different steps for in silico SNPs identification in a sequential manner and proposes some mapping approaches using CLC Genomics software that could provide an alternative method for SNPs identification in orphan crops having no reference genome. The three mapping approaches: Common reference map from progenitor genomes (CRMPG), step-wise use of progenitor genomes (SWPG) and de novo assembly of sequence read (DASR) were validated with the dd-RAD sequenced data of two genotypes from Brassica juncea.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jebi Sudan
- Department of Biotechnology, JECRC University, Jaipur, Rajasthan, India
| | - Susheel Sharma
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| | - Romesh K Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Deepesh Neelam
- Department of Microbiology, JECRC University, Jaipur, Rajasthan, India
| | - Ravinder Singh
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (J&K), Jammu, India
| |
Collapse
|
9
|
Willems A, Liang Y, Heyman J, Depuydt T, Eekhout T, Canher B, Van den Daele H, Vercauteren I, Vandepoele K, De Veylder L. Plant lineage-specific PIKMIN1 drives APC/CCCS52A2 E3-ligase activity-dependent cell division. PLANT PHYSIOLOGY 2023; 191:1574-1595. [PMID: 36423220 PMCID: PMC10022622 DOI: 10.1093/plphys/kiac528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) marks key cell cycle proteins for proteasomal breakdown, thereby ensuring unidirectional progression through the cell cycle. Its target recognition is temporally regulated by activating subunits, one of which is called CELL CYCLE SWITCH 52 A2 (CCS52A2). We sought to expand the knowledge on the APC/C by using the severe growth phenotypes of CCS52A2-deficient Arabidopsis (Arabidopsis thaliana) plants as a readout in a suppressor mutagenesis screen, resulting in the identification of the previously undescribed gene called PIKMIN1 (PKN1). PKN1 deficiency rescues the disorganized root stem cell phenotype of the ccs52a2-1 mutant, whereas an excess of PKN1 inhibits the growth of ccs52a2-1 plants, indicating the need for control of PKN1 abundance for proper development. Accordingly, the lack of PKN1 in a wild-type background negatively impacts cell division, while its systemic overexpression promotes proliferation. PKN1 shows a cell cycle phase-dependent accumulation pattern, localizing to microtubular structures, including the preprophase band, the mitotic spindle, and the phragmoplast. PKN1 is conserved throughout the plant kingdom, with its function in cell division being evolutionarily conserved in the liverwort Marchantia polymorpha. Our data thus demonstrate that PKN1 represents a novel, plant-specific protein with a role in cell division that is likely proteolytically controlled by the CCS52A2-activated APC/C.
Collapse
Affiliation(s)
- Alex Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
10
|
Lu N, Qiao Y, Lu Z, Tu J. Chimera: The spoiler in multiple displacement amplification. Comput Struct Biotechnol J 2023; 21:1688-1696. [PMID: 36879882 PMCID: PMC9984789 DOI: 10.1016/j.csbj.2023.02.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Multiple displacement amplification (MDA) based on isothermal random priming and high fidelity phi29 DNA polymerase-mediated processive extension has revolutionized the field of whole genome amplification by enabling the amplification of minute amounts of DNA, such as from a single cell, generating vast amounts of DNA with high genome coverage. Despite its advantages, MDA has its own challenges, one of the grandest being the formation of chimeric sequences (chimeras), which presents in all MDA products and seriously disturbs the downstream analysis. In this review, we provide a comprehensive overview of current research on MDA chimeras. We first reviewed the mechanisms of chimera formation and chimera detection methods. We then systematically summarized the characteristics of chimeras, including overlap, chimeric distance, chimeric density, and chimeric rate, as found in independently published sequencing data. Finally, we reviewed the methods used to process chimeric sequences and their impacts on the improvement of data utilization efficiency. The information presented in this review will be useful for those interested in understanding the challenges with MDA and in improving its performance.
Collapse
Affiliation(s)
- Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
11
|
Julca I, Mutwil-Anderwald D, Manoj V, Khan Z, Lai SK, Yang LK, Beh IT, Dziekan J, Lim YP, Lim SK, Low YW, Lam YI, Tjia S, Mu Y, Tan QW, Nuc P, Choo LM, Khew G, Shining L, Kam A, Tam JP, Bozdech Z, Schmidt M, Usadel B, Kanagasundaram Y, Alseekh S, Fernie A, Li HY, Mutwil M. Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36807520 DOI: 10.1111/jipb.13469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Vaishnervi Manoj
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zahra Khan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lay K Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Ing T Beh
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jerzy Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yoon P Lim
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Shen K Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yee W Low
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Yuen I Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiao W Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Le M Choo
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Gillian Khew
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Loo Shining
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Bjoern Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Hoi Y Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
12
|
Lemus T, Mason GA, Bubb KL, Alexandre CM, Queitsch C, Cuperus JT. AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana. Genetics 2023; 223:iyac163. [PMID: 36303325 PMCID: PMC9910400 DOI: 10.1093/genetics/iyac163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 11/14/2022] Open
Abstract
Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.
Collapse
Affiliation(s)
- Tzitziki Lemus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Grace Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
13
|
Dvorianinova EM, Bolsheva NL, Pushkova EN, Rozhmina TA, Zhuchenko AA, Novakovskiy RO, Povkhova LV, Sigova EA, Zhernova DA, Borkhert EV, Kaluzhny DN, Melnikova NV, Dmitriev AA. Isolating Linum usitatissimum L. Nuclear DNA Enabled Assembling High-Quality Genome. Int J Mol Sci 2022; 23:13244. [PMID: 36362031 PMCID: PMC9656206 DOI: 10.3390/ijms232113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)-a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 μg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu-Racon (two iterations)-Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies.
Collapse
Affiliation(s)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
14
|
K-Mer Spectrum-Based Error Correction Algorithm for Next-Generation Sequencing Data. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8077664. [PMID: 35875730 PMCID: PMC9303089 DOI: 10.1155/2022/8077664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
In the mid-1970s, the first-generation sequencing technique (Sanger) was created. It used Advanced BioSystems sequencing devices and Beckman's GeXP genetic testing technology. The second-generation sequencing (2GS) technique arrived just several years after the first human genome was published in 2003. 2GS devices are very quicker than Sanger sequencing equipment, with considerably cheaper manufacturing costs and far higher throughput in the form of short reads. The third-generation sequencing (3GS) method, initially introduced in 2005, offers further reduced manufacturing costs and higher throughput. Even though sequencing technique has result generations, it is error-prone due to a large number of reads. The study of this massive amount of data will aid in the decoding of life secrets, the detection of infections, the development of improved crops, and the improvement of life quality, among other things. This is a challenging task, which is complicated not just by a large number of reads and by the occurrence of sequencing mistakes. As a result, error correction is a crucial duty in data processing; it entails identifying and correcting read errors. Various k-spectrum-based error correction algorithms' performance can be influenced by a variety of characteristics like coverage depth, read length, and genome size, as demonstrated in this work. As a result, time and effort must be put into selecting acceptable approaches for error correction of certain NGS data.
Collapse
|
15
|
Zacharaki V, Ponnu J, Crepin N, Langenecker T, Hagmann J, Skorzinski N, Musialak‐Lange M, Wahl V, Rolland F, Schmid M. Impaired KIN10 function restores developmental defects in the Arabidopsis trehalose 6-phosphate synthase1 (tps1) mutant. THE NEW PHYTOLOGIST 2022; 235:220-233. [PMID: 35306666 PMCID: PMC9320823 DOI: 10.1111/nph.18104] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/09/2022] [Indexed: 05/19/2023]
Abstract
Sensing carbohydrate availability is essential for plants to coordinate their growth and development. In Arabidopsis thaliana, TREHALOSE 6-PHOSPHATE SYNTHASE 1 (TPS1) and its product, trehalose 6-phosphate (T6P), are important for the metabolic control of development. tps1 mutants are embryo-lethal and unable to flower when embryogenesis is rescued. T6P regulates development in part through inhibition of SUCROSE NON-FERMENTING1 RELATED KINASE1 (SnRK1). Here, we explored the role of SnRK1 in T6P-mediated plant growth and development using a combination of a mutant suppressor screen and genetic, cellular and transcriptomic approaches. We report nonsynonymous amino acid substitutions in the catalytic KIN10 and regulatory SNF4 subunits of SnRK1 that can restore both embryogenesis and flowering of tps1 mutant plants. The identified SNF4 point mutations disrupt the interaction with the catalytic subunit KIN10. Contrary to the common view that the two A. thaliana SnRK1 catalytic subunits act redundantly, we found that loss-of-function mutations in KIN11 are unable to restore embryogenesis and flowering, highlighting the important role of KIN10 in T6P signalling.
Collapse
Affiliation(s)
- Vasiliki Zacharaki
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
| | - Jathish Ponnu
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
- Institute for Plant SciencesCologne BiocenterUniversität zu KölnZülpicher Straße 47b50674KölnGermany
| | - Nathalie Crepin
- Laboratory for Molecular Plant BiologyBiology DepartmentUniversity of Leuven–KU LeuvenKasteelpark Arenberg 313001Heverlee‐LeuvenBelgium
- KU Leuven Plant Institute (LPI)3001Heverlee‐LeuvenBelgium
| | - Tobias Langenecker
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| | - Jörg Hagmann
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| | - Noemi Skorzinski
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| | - Magdalena Musialak‐Lange
- Department of Plant Reproductive Biology and EpigeneticsMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Vanessa Wahl
- Department of Plant Reproductive Biology and EpigeneticsMax Planck Institute of Molecular Plant PhysiologyAm Mühlenberg 114476PotsdamGermany
| | - Filip Rolland
- Laboratory for Molecular Plant BiologyBiology DepartmentUniversity of Leuven–KU LeuvenKasteelpark Arenberg 313001Heverlee‐LeuvenBelgium
- KU Leuven Plant Institute (LPI)3001Heverlee‐LeuvenBelgium
| | - Markus Schmid
- Department of Plant PhysiologyUmeå Plant Science CentreUmeå UniversitySE‐901 87UmeåSweden
- Department of Molecular BiologyMax Planck Institute for Developmental BiologySpemannstr. 3572076TübingenGermany
| |
Collapse
|
16
|
Tay Fernandez CG, Nestor BJ, Danilevicz MF, Marsh JI, Petereit J, Bayer PE, Batley J, Edwards D. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Int J Mol Sci 2022; 23:ijms23042276. [PMID: 35216392 PMCID: PMC8879065 DOI: 10.3390/ijms23042276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Pangenomes aim to represent the complete repertoire of the genome diversity present within a species or cohort of species, capturing the genomic structural variance between individuals. This genomic information coupled with phenotypic data can be applied to identify genes and alleles involved with abiotic stress tolerance, disease resistance, and other desirable traits. The characterisation of novel structural variants from pangenomes can support genome editing approaches such as Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated protein Cas (CRISPR-Cas), providing functional information on gene sequences and new target sites in variant-specific genes with increased efficiency. This review discusses the application of pangenomes in genome editing and crop improvement, focusing on the potential of pangenomes to accurately identify target genes for CRISPR-Cas editing of plant genomes while avoiding adverse off-target effects. We consider the limitations of applying CRISPR-Cas editing with pangenome references and potential solutions to overcome these limitations.
Collapse
|
17
|
Lee H. Analysis of Bisulfite Sequencing Data Using Bismark and DMRcaller to Identify Differentially Methylated Regions. Methods Mol Biol 2022; 2443:451-463. [PMID: 35037220 DOI: 10.1007/978-1-0716-2067-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanism of the addition of a methyl group to cytosine has been identified as one of several heritable epigenetic mechanisms. In plants, DNA methylation is involved in mediating response to stress, plant development, polyploidy, and domestication through regulation of gene expression. The correlation of epigenetic variation to phenotypic traits expands our understanding toward plant evolution, and provides new source for targeted manipulation in crop improvement. To address the increasing interest to map methylation landscape in plant species, this chapter describes methods to analyze bisulfite sequencing data and identify epigenetic variation between samples. We also detailed guidelines to highlight possible optimizations, as well as ways to tailor parameters according to data and biological variability.
Collapse
Affiliation(s)
- HueyTyng Lee
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
18
|
Mukherjee K, Dole-Muinos D, Ajayi A, Rossi M, Prosperi M, Boucher C. Finding Overlapping Rmaps via Clustering. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; PP:1-1. [PMID: 34890332 DOI: 10.1109/tcbb.2021.3132534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optical mapping has been largely automated, and first produces single molecule restriction maps, called Rmaps, which are assembled to generate genome wide optical maps. Since the location and orientation of each Rmap is unknown, the first problem in the analysis of this data is finding related Rmaps, i.e., pairs of Rmaps that share the same orientation and have significant overlap in their genomic location. Although heuristics for identifying related Rmaps exist, they all require quantization of the data which leads to a loss in the precision. In this paper, we propose a Gaussian mixture modelling clustering based method, which we refer to as O, that finds overlapping Rmaps without quantization. Using both simulated and real datasets, we show that OMclust substantially improves the precision (from 48.3% to 73.3%) over the state-of-the art methods while also reducing CPU time and memory consumption. Further, we integrated OMclust into the error correction methods (Elmeri and Comet) to demonstrate the increase in the performance of these methods. When OMclust was combined with Comet to error correct Rmap data generated from human DNA, it was able to error correct close to 3x more Ramps, and reduced the CPU time by more than 35x.
Collapse
|
19
|
Mapar M, Chopra D, Stephan L, Schrader A, Sun H, Schneeberger K, Albani M, Coupland G, Hülskamp M. Genetic and Molecular Analysis of Root Hair Development in Arabis alpina. FRONTIERS IN PLANT SCIENCE 2021; 12:767772. [PMID: 34721494 PMCID: PMC8554057 DOI: 10.3389/fpls.2021.767772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Root hair formation in Arabidopsis thaliana is a well-established model system for epidermal patterning and morphogenesis in plants. Over the last decades, many underlying regulatory genes and well-established networks have been identified by thorough genetic and molecular analysis. In this study, we used a forward genetic approach to identify genes involved in root hair development in Arabis alpina, a related crucifer species that diverged from A. thaliana approximately 26-40 million years ago. We found all root hair mutant classes known in A. thaliana and identified orthologous regulatory genes by whole-genome or candidate gene sequencing. Our findings indicate that the gene-phenotype relationships regulating root hair development are largely conserved between A. thaliana and A. alpina. Concordantly, a detailed analysis of one mutant with multiple hairs originating from one cell suggested that a mutation in the SUPERCENTIPEDE1 (SCN1) gene is causal for the phenotype and that AaSCN1 is fully functional in A. thaliana. Interestingly, we also found differences in the regulation of root hair differentiation and morphogenesis between the species, and a subset of root hair mutants could not be explained by mutations in orthologs of known genes from A. thaliana. This analysis provides insight into the conservation and divergence of root hair regulation in the Brassicaceae.
Collapse
Affiliation(s)
- Mona Mapar
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Divykriti Chopra
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Lisa Stephan
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Andrea Schrader
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| | - Hequan Sun
- Faculty of Biology, LMU Munich, Munich, Germany
| | | | - Maria Albani
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute, Biocenter, Cologne University, Cologne, Germany
| |
Collapse
|
20
|
Kambakam S, Ngaki MN, Sahu BB, Kandel DR, Singh P, Sumit R, Swaminathan S, Muliyar-Krishna R, Bhattacharyya MK. Arabidopsis non-host resistance PSS30 gene enhances broad-spectrum disease resistance in the soybean cultivar Williams 82. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1432-1446. [PMID: 34171147 DOI: 10.1111/tpj.15392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 05/27/2023]
Abstract
Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.
Collapse
Affiliation(s)
- Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | - Binod B Sahu
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Devi R Kandel
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Prashant Singh
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | - Rishi Sumit
- Department of Agronomy, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
21
|
Eekhout T, Pedroza-Garcia JA, Kalhorzadeh P, De Jaeger G, De Veylder L. A Mutation in DNA Polymerase α Rescues WEE1KO Sensitivity to HU. Int J Mol Sci 2021; 22:9409. [PMID: 34502313 PMCID: PMC8430855 DOI: 10.3390/ijms22179409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the polα-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase.
Collapse
Affiliation(s)
- Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (T.E.); (J.A.P.-G.); (P.K.); (G.D.J.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (T.E.); (J.A.P.-G.); (P.K.); (G.D.J.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Pooneh Kalhorzadeh
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (T.E.); (J.A.P.-G.); (P.K.); (G.D.J.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (T.E.); (J.A.P.-G.); (P.K.); (G.D.J.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (T.E.); (J.A.P.-G.); (P.K.); (G.D.J.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
22
|
Eekhout T, Dvorackova M, Pedroza Garcia JA, Nespor Dadejova M, Kalhorzadeh P, Van den Daele H, Vercauteren I, Fajkus J, De Veylder L. G2/M-checkpoint activation in fasciata1 rescues an aberrant S-phase checkpoint but causes genome instability. PLANT PHYSIOLOGY 2021; 186:1893-1907. [PMID: 34618100 PMCID: PMC8331141 DOI: 10.1093/plphys/kiab201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 05/13/2023]
Abstract
The WEE1 and ATM AND RAD3-RELATED (ATR) kinases are important regulators of the plant intra-S-phase checkpoint; consequently, WEE1KO and ATRKO roots are hypersensitive to replication-inhibitory drugs. Here, we report on a loss-of-function mutant allele of the FASCIATA1 (FAS1) subunit of the chromatin assembly factor 1 (CAF-1) complex that suppresses the phenotype of WEE1- or ATR-deficient Arabidopsis (Arabidopsis thaliana) plants. We demonstrate that lack of FAS1 activity results in the activation of an ATAXIA TELANGIECTASIA MUTATED (ATM)- and SUPPRESSOR OF GAMMA-RESPONSE 1 (SOG1)-mediated G2/M-arrest that renders the ATR and WEE1 checkpoint regulators redundant. This ATM activation accounts for the telomere erosion and loss of ribosomal DNA that are described for fas1 plants. Knocking out SOG1 in the fas1 wee1 background restores replication stress sensitivity, demonstrating that SOG1 is an important secondary checkpoint regulator in plants that fail to activate the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Martina Dvorackova
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - José Antonio Pedroza Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Martina Nespor Dadejova
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Pooneh Kalhorzadeh
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
23
|
Jiao WB, Patel V, Klasen J, Liu F, Pecinkova P, Ferrand M, Gy I, Camilleri C, Effgen S, Koornneef M, Pecinka A, Loudet O, Schneeberger K. The Evolutionary Dynamics of Genetic Incompatibilities Introduced by Duplicated Genes in Arabidopsis thaliana. Mol Biol Evol 2021; 38:1225-1240. [PMID: 33247726 PMCID: PMC8042742 DOI: 10.1093/molbev/msaa306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although gene duplications provide genetic backup and allow genomic changes under relaxed selection, they may potentially limit gene flow. When different copies of a duplicated gene are pseudofunctionalized in different genotypes, genetic incompatibilities can arise in their hybrid offspring. Although such cases have been reported after manual crosses, it remains unclear whether they occur in nature and how they affect natural populations. Here, we identified four duplicated-gene based incompatibilities including one previously not reported within an artificial Arabidopsis intercross population. Unexpectedly, however, for each of the genetic incompatibilities we also identified the incompatible alleles in natural populations based on the genomes of 1,135 Arabidopsis accessions published by the 1001 Genomes Project. Using the presence of incompatible allele combinations as phenotypes for GWAS, we mapped genomic regions that included additional gene copies which likely rescue the genetic incompatibility. Reconstructing the geographic origins and evolutionary trajectories of the individual alleles suggested that incompatible alleles frequently coexist, even in geographically closed regions, and that their effects can be overcome by additional gene copies collectively shaping the evolutionary dynamics of duplicated genes during population history.
Collapse
Affiliation(s)
- Wen-Biao Jiao
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Vipul Patel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonas Klasen
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fang Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Petra Pecinkova
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marina Ferrand
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Gy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christine Camilleri
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Sigi Effgen
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Maarten Koornneef
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Ales Pecinka
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Institute of Experimental Botany (IEB), Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czech Republic
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Development, characterization, functional annotation and validation of genomic and genic-SSR markers using de novo next generation sequencing in Melia dubia Cav. 3 Biotech 2021; 11:310. [PMID: 34109095 DOI: 10.1007/s13205-021-02858-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022] Open
Abstract
Melia dubia Cav. (Meliaceae), a fast-growing tropical tree finds use in plywood, pulp and high-value solid wood products. To increase its productivity, we must essentially capture genetic diversity and identify genotypes with superior wood properties. This study aimed to develop novel microsatellite markers from genomic data and validate the markers in M. dubia. Direct Seq-to-SSR approach was adopted and using an in-house Perl script, 426,390 SSR markers identified. For validation, selected 151 markers, of which 50 were genomic markers chosen randomly, and 101 were genic markers identified through BLAST2GO. Amplification was observed in all loci, and 81.4% generated high-quality, reproducible amplicons of the expected size. Out of 50 genomic markers, we used ten highly polymorphic markers to assess genetic diversity among 75 genotypes from three populations. One hundred fourteen alleles were recorded, with a moderate level of diversity and a positive fixation index. Twenty-nine genic markers representing 13 enzymes showing polymorphism for wood stiffness were selected for diversity assessment of 24 genotypes (12 genotypes each with high and low-stress wave velocity). The product size ranged from 87 to 279, covering the majority of the genome. Cluster and structure analysis segregated ~ 80% of the genotypes based on the trait. This is the first report of the development of genic markers from a genomic survey and has proved efficient in differentiating genotypes based on the trait. The markers developed in this study will be useful for genetic mapping, diversity estimation, marker-assisted selection for desired traits and breeding for wood traits in M. dubia. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02858-w.
Collapse
|
25
|
Roy NS, Ban YW, Yoo H, Ramekar RV, Cheong EJ, Park NI, Na JK, Park KC, Choi IY. Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean). Genomics Inform 2021; 19:e19. [PMID: 34261303 PMCID: PMC8261272 DOI: 10.5808/gi.21024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 11/20/2022] Open
Abstract
Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.
Collapse
Affiliation(s)
- Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Wook Ban
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Hana Yoo
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Rahul Vasudeo Ramekar
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Eun Ju Cheong
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Jong Kuk Na
- Department of Controlled Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
26
|
Fouracre JP, He J, Chen VJ, Sidoli S, Poethig RS. VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms. PLoS Genet 2021; 17:e1009626. [PMID: 34181637 PMCID: PMC8270478 DOI: 10.1371/journal.pgen.1009626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
How organisms control when to transition between different stages of development is a key question in biology. In plants, epigenetic silencing by Polycomb repressive complex 1 (PRC1) and PRC2 plays a crucial role in promoting developmental transitions, including from juvenile-to-adult phases of vegetative growth. PRC1/2 are known to repress the master regulator of vegetative phase change, miR156, leading to the transition to adult growth, but how this process is regulated temporally is unknown. Here we investigate whether transcription factors in the VIVIPAROUS/ABI3-LIKE (VAL) gene family provide the temporal signal for the epigenetic repression of miR156. Exploiting a novel val1 allele, we found that VAL1 and VAL2 redundantly regulate vegetative phase change by controlling the overall level, rather than temporal dynamics, of miR156 expression. Furthermore, we discovered that VAL1 and VAL2 also act independently of miR156 to control this important developmental transition. In combination, our results highlight the complexity of temporal regulation in plants. During their life-cycles multicellular organisms progress through a series of different developmental phases. The correct timing of the transitions between these phases is essential to ensure that development occurs at an appropriate rate and in the right order. In plants, vegetative phase change—the switch from a juvenile to an adult stage of vegetative growth prior to the onset of reproductive development–is a widely conserved transition associated with a number of phenotypic changes. It is therefore an excellent model to investigate the regulation of developmental timing. The timing of vegetative phase change is determined by a decline in the expression of a regulatory microRNA–miRNA156. However, what controls the temporal decline in miR156 expression is a major unknown in the field. In this study we tested whether members of the VAL gene family, known to be important for coordinating plant developmental transitions, are critical regulators of vegetative phase change. Using a series of genetic and biochemical approaches we found that VAL genes are important determinants of the timing of vegetative phase change. However, we discovered that VAL genes function largely to control the overall level, rather than temporal expression pattern, of miR156.
Collapse
Affiliation(s)
- Jim P. Fouracre
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jia He
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Victoria J. Chen
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - R. Scott Poethig
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Lei L, Goltsman E, Goodstein D, Wu GA, Rokhsar DS, Vogel JP. Plant Pan-Genomics Comes of Age. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:411-435. [PMID: 33848428 DOI: 10.1146/annurev-arplant-080720-105454] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A pan-genome is the nonredundant collection of genes and/or DNA sequences in a species. Numerous studies have shown that plant pan-genomes are typically much larger than the genome of any individual and that a sizable fraction of the genes in any individual are present in only some genomes. The construction and interpretation of plant pan-genomes are challenging due to the large size and repetitive content of plant genomes. Most pan-genomes are largely focused on nontransposable element protein coding genes because they are more easily analyzed and defined than noncoding and repetitive sequences. Nevertheless, noncoding and repetitive DNA play important roles in determining the phenotype and genome evolution. Fortunately, it is now feasible to make multiple high-quality genomes that can be used to construct high-resolution pan-genomes that capture all the variation. However, assembling, displaying, and interacting with such high-resolution pan-genomes will require the development of new tools.
Collapse
Affiliation(s)
- Li Lei
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
| | - Eugene Goltsman
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
| | - David Goodstein
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
| | | | - Daniel S Rokhsar
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, California 94720, USA;
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
28
|
Provart NJ, Brady SM, Parry G, Schmitz RJ, Queitsch C, Bonetta D, Waese J, Schneeberger K, Loraine AE. Anno genominis XX: 20 years of Arabidopsis genomics. THE PLANT CELL 2021; 33:832-845. [PMID: 33793861 PMCID: PMC8226293 DOI: 10.1093/plcell/koaa038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California, 95616, USA
| | - Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Georgia, 30602, USA
| | - Christine Queitsch
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
| | - Jamie Waese
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Faculty of Biology, LMU Munich, 82152 Munich, Germany
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
29
|
Kim M, Xi H, Park J. Genome-wide comparative analyses of GATA transcription factors among 19 Arabidopsis ecotype genomes: Intraspecific characteristics of GATA transcription factors. PLoS One 2021; 16:e0252181. [PMID: 34038437 PMCID: PMC8153473 DOI: 10.1371/journal.pone.0252181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/11/2021] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors (TFs) are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif (CX2CX17-20CX2C) followed by a basic region. Due to the low cost of genome sequencing, multiple strains of specific species have been sequenced: e.g., number of plant genomes in the Plant Genome Database (http://www.plantgenome.info/) is 2,174 originated from 713 plant species. Thus, we investigated GATA TFs of 19 Arabidopsis thaliana genome-widely to understand intraspecific features of Arabidopsis GATA TFs with the pipeline of GATA database (http://gata.genefamily.info/). Numbers of GATA genes and GATA TFs of each A. thaliana genome range from 29 to 30 and from 39 to 42, respectively. Four cases of different pattern of alternative splicing forms of GATA genes among 19 A. thaliana genomes are identified. 22 of 2,195 amino acids (1.002%) from the alignment of GATA domain amino acid sequences display variations across 19 ecotype genomes. In addition, maximally four different amino acid sequences per each GATA domain identified in this study indicate that these position-specific amino acid variations may invoke intraspecific functional variations. Among 15 functionally characterized GATA genes, only five GATA genes display variations of amino acids across ecotypes of A. thaliana, implying variations of their biological roles across natural isolates of A. thaliana. PCA results from 28 characteristics of GATA genes display the four groups, same to those defined by the number of GATA genes. Topologies of bootstrapped phylogenetic trees of Arabidopsis chloroplasts and common GATA genes are mostly incongruent. Moreover, no relationship between geographical distribution and their phylogenetic relationships was found. Our results present that intraspecific variations of GATA TFs in A. thaliana are conserved and evolutionarily neutral along with 19 ecotypes, which is congruent to the fact that GATA TFs are one of the main regulators for controlling essential mechanisms, such as seed germination and hypocotyl elongation.
Collapse
Affiliation(s)
- Mangi Kim
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Inc., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
30
|
Zhao C, Tang Y, Wang J, Zeng Y, Sun H, Zheng Z, Su R, Schneeberger K, Parker JE, Cui H. A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. THE NEW PHYTOLOGIST 2021; 230:1078-1094. [PMID: 33469907 DOI: 10.1111/nph.17218] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Calcium (Ca2+ ) is a second messenger for plant cell surface and intracellular receptors mediating pattern-triggered and effector-triggered immunity (respectively, PTI and ETI). Several CYCLIC NUCLEOTIDE-GATED CHANNELS (CNGCs) were shown to control transient cytosolic Ca2+ influx upon PTI activation. The contributions of specific CNGC members to PTI and ETI remain unclear. ENHANCED DISEASE SUSCEPTIBLITY1 (EDS1) regulates ETI signaling. In an Arabidopsis genetic screen for suppressors of eds1, we identify a recessive gain-of-function mutation in CNGC20, denoted cngc20-4, which partially restores disease resistance in eds1. cngc20-4 enhances PTI responses and ETI hypersensitive cell death. A cngc20-4 single mutant exhibits autoimmunity, which is dependent on genetically parallel EDS1 and salicylic acid (SA) pathways. CNGC20 self-associates, forms heteromeric complexes with CNGC19, and is phosphorylated and stabilized by BOTRYTIS INDUCED KINASE1 (BIK1). The cngc20-4 L371F exchange on a predicted transmembrane channel inward surface does not disrupt these interactions but leads to increased cytosolic Ca2+ accumulation, consistent with mis-regulation of CNGC20 Ca2+ -permeable channel activity. Our data show that ectopic Ca2+ influx caused by a mutant form of CNGC20 in cngc20-4 affects both PTI and ETI responses. We conclude that tight control of the CNGC20 Ca2+ ion channel is important for regulated immunity.
Collapse
Affiliation(s)
- Chunhui Zhao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yinhua Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junli Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Yanhong Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hequan Sun
- Department of Chromosome Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Zichao Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rong Su
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, Cologne, 50829, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf, 40225, Germany
| | - Haitao Cui
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian University Key Laboratory for Plant-Microbe Interaction, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
31
|
Wilches R, Beluch WH, McConnell E, Tautz D, Chan YF. Independent evolution toward larger body size in the distinctive Faroe Island mice. G3-GENES GENOMES GENETICS 2021; 11:6062402. [PMID: 33561246 PMCID: PMC8022703 DOI: 10.1093/g3journal/jkaa051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
Most phenotypic traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly useful for understanding how selection may act on changing trait values. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive natural populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 111 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We hypothesize that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.
Collapse
Affiliation(s)
- Ricardo Wilches
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - William H Beluch
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Ellen McConnell
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, 24306 Plön, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, 24306 Plön, Germany
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Chakraborty J, Ghosh P. Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. PLANTA 2020; 252:101. [PMID: 33180185 DOI: 10.1007/s00425-020-03512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In this review, we have included evolution of plant intracellular immune receptors, oligomeric complex formation, enzymatic action, engineering, and mechanisms of immune inspection for appropriate defense outcomes. NLR (Nucleotide binding oligomerization domain containing leucine-rich repeat) proteins are the intracellular immune receptors that recognize pathogen-derived virulence factors to confer effector-triggered immunity (ETI). Activation of plant defense by the NLRs are often conveyed through N-terminal Toll-like/ IL-1 receptor (TIR) or non-TIR (coiled-coils or CC) domains. Homodimerization or self-association property of CC/ TIR domains of plant NLRs contribute to their auto-activity and induction of in planta ectopic cell death. High resolution crystal structures of Arabidopsis thaliana RPS4TIR, L6TIR, SNC1TIR, RPP1TIR and Muscadinia rotundifolia RPV1TIR showed that interaction is mediated through one or two distinct interfaces i.e., αA and αE helices comprise AE interface and αD and αE helices were found to form DE interface. By contrast, conserved helical regions were determined for CC domains of plant NLRs. Evolutionary history of NLRs diversification has shown that paired forms were originated from NLR singletons. Plant TIRs executed NAD+ hydrolysis activity for cell death promotion. Plant NLRs were found to form large oligomeric complexes as observed in animal inflammasomes. We have also discussed different protein engineering methods includes domain shuffling, and decoy modification that increase effector recognition spectrum of plant NLRs. In summary, our review highlights structural basis of perception of the virulence factors by NLRs or NLR pairs to design novel classes of plant immune receptors.
Collapse
Affiliation(s)
| | - Prithwi Ghosh
- Department of Botany, Narajole Raj College, Narajole, Paschim Medinipur, 721211, West Bengal, India
| |
Collapse
|
33
|
Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. PLANTS 2020; 9:plants9101355. [PMID: 33066352 PMCID: PMC7602136 DOI: 10.3390/plants9101355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The recent advancements in forward genetics have expanded the applications of mutation techniques in advanced genetics and genomics, ahead of direct use in breeding programs. The advent of next-generation sequencing (NGS) has enabled easy identification and mapping of causal mutations within a short period and at relatively low cost. Identifying the genetic mutations and genes that underlie phenotypic changes is essential for understanding a wide variety of biological functions. To accelerate the mutation mapping for crop improvement, several high-throughput and novel NGS based forward genetic approaches have been developed and applied in various crops. These techniques are highly efficient in crop plants, as it is relatively easy to grow and screen thousands of individuals. These approaches have improved the resolution in quantitative trait loci (QTL) position/point mutations and assisted in determining the functional causative variations in genes. To be successful in the interpretation of NGS data, bioinformatics computational methods are critical elements in delivering accurate assembly, alignment, and variant detection. Numerous bioinformatics tools/pipelines have been developed for such analysis. This article intends to review the recent advances in NGS based forward genetic approaches to identify and map the causal mutations in the crop genomes. The article also highlights the available bioinformatics tools/pipelines for reducing the complexity of NGS data and delivering the concluding outcomes.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sudhir Kumar Gupta
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India;
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
- Correspondence: (D.S.); (B.K.D.)
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Correspondence: (D.S.); (B.K.D.)
| |
Collapse
|
34
|
Park J, Xi H, Kim Y. The Complete Chloroplast Genome of Arabidopsis thaliana Isolated in Korea (Brassicaceae): An Investigation of Intraspecific Variations of the Chloroplast Genome of Korean A. thaliana. Int J Genomics 2020; 2020:3236461. [PMID: 32964010 PMCID: PMC7492873 DOI: 10.1155/2020/3236461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Arabidopsis thaliana (L.) Heynh. is a model organism of plant molecular biology. More than 1,700 whole genome sequences have been sequenced, but no Korean isolate genomes have been sequenced thus far despite the fact that many A. thaliana isolated in Japan and China have been sequenced. To understand the genetic background of Korean natural A. thaliana (named as 180404IB4), we presented its complete chloroplast genome, which is 154,464 bp long and has four subregions: 85,164 bp of large single copy (LSC) and 17,781 bp of small single copy (SSC) regions are separated by 26,257 bp of inverted repeat (IRs) regions including 130 genes (85 protein-coding genes, eight rRNAs, and 37 tRNAs). Fifty single nucleotide polymorphisms (SNPs) and 14 insertion and deletions (INDELs) are identified between 180404IB4 and Col0. In addition, 101 SSRs and 42 extendedSSRs were identified on the Korean A. thaliana chloroplast genome, indicating a similar number of SSRs on the rest five chloroplast genomes with a preference of sequence variations toward the SSR region. A nucleotide diversity analysis revealed two highly variable regions on A. thaliana chloroplast genomes. Phylogenetic trees with three more chloroplast genomes of East Asian natural isolates show that Korean and Chinese natural isolates are clustered together, whereas two Japanese isolates are not clustered, suggesting the need for additional investigations of the chloroplast genomes of East Asian isolates.
Collapse
Affiliation(s)
- Jongsun Park
- InfoBoss Inc., 301 Room, 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, 301 Room, 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Hong Xi
- InfoBoss Inc., 301 Room, 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, 301 Room, 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Inc., 301 Room, 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, 301 Room, 670, Seolleung-ro, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
35
|
Willems A, Heyman J, Eekhout T, Achon I, Pedroza-Garcia JA, Zhu T, Li L, Vercauteren I, Van den Daele H, van de Cotte B, De Smet I, De Veylder L. The Cyclin CYCA3;4 Is a Postprophase Target of the APC/C CCS52A2 E3-Ligase Controlling Formative Cell Divisions in Arabidopsis. THE PLANT CELL 2020; 32:2979-2996. [PMID: 32690720 PMCID: PMC7474283 DOI: 10.1105/tpc.20.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/12/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) controls unidirectional progression through the cell cycle by marking key cell cycle proteins for proteasomal turnover. Its activity is temporally regulated by the docking of different activating subunits, known in plants as CELL DIVISION PROTEIN20 (CDC20) and CELL CYCLE SWITCH52 (CCS52). Despite the importance of the APC/C during cell proliferation, the number of identified targets in the plant cell cycle is limited. Here, we used the growth and meristem phenotypes of Arabidopsis (Arabidopsis thaliana) CCS52A2-deficient plants in a suppressor mutagenesis screen to identify APC/CCCS52A2 substrates or regulators, resulting in the identification of a mutant cyclin CYCA3;4 allele. CYCA3;4 deficiency partially rescues the ccs52a2-1 phenotypes, whereas increased CYCA3;4 levels enhance the scored ccs52a2-1 phenotypes. Furthermore, whereas the CYCA3;4 protein is promptly broken down after prophase in wild-type plants, it remains present in later stages of mitosis in ccs52a2-1 mutant plants, marking it as a putative APC/CCCS52A2 substrate. Strikingly, increased CYCA3;4 levels result in aberrant root meristem and stomatal divisions, mimicking phenotypes of plants with reduced RETINOBLASTOMA-RELATED PROTEIN1 (RBR1) activity. Correspondingly, RBR1 hyperphosphorylation was observed in CYCA3;4 gain-of-function plants. Our data thus demonstrate that an inability to timely destroy CYCA3;4 contributes to disorganized formative divisions, possibly in part caused by the inactivation of RBR1.
Collapse
Affiliation(s)
- Alex Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Jose Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lei Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| |
Collapse
|
36
|
Zhang L, Sun PY, Xie HK, Zhang YH, Zhang YY, Peng XM, Yang Z. Characterization of γ-Radiation-Induced DNA Polymorphisms in the M1 Population of the Japonica Rice Variety Gaogengnuo by Whole-Genome Resequencing. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420060149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Zmienko A, Marszalek-Zenczak M, Wojciechowski P, Samelak-Czajka A, Luczak M, Kozlowski P, Karlowski WM, Figlerowicz M. AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. THE PLANT CELL 2020; 32:1797-1819. [PMID: 32265262 PMCID: PMC7268809 DOI: 10.1105/tpc.19.00640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Copy number variations (CNVs) greatly contribute to intraspecies genetic polymorphism and phenotypic diversity. Recent analyses of sequencing data for >1000 Arabidopsis (Arabidopsis thaliana) accessions focused on small variations and did not include CNVs. Here, we performed genome-wide analysis and identified large indels (50 to 499 bp) and CNVs (500 bp and larger) in these accessions. The CNVs fully overlap with 18.3% of protein-coding genes, with enrichment for evolutionarily young genes and genes involved in stress and defense. By combining analysis of both genes and transposable elements (TEs) affected by CNVs, we revealed that the variation statuses of genes and TEs are tightly linked and jointly contribute to the unequal distribution of these elements in the genome. We also determined the gene copy numbers in a set of 1060 accessions and experimentally validated the accuracy of our predictions by multiplex ligation-dependent probe amplification assays. We then successfully used the CNVs as markers to analyze population structure and migration patterns. Finally, we examined the impact of gene dosage variation triggered by a CNV spanning the SEC10 gene on SEC10 expression at both the transcript and protein levels. The catalog of CNVs, CNV-overlapping genes, and their genotypes in a top model dicot will stimulate the exploration of the genetic basis of phenotypic variation.
Collapse
Affiliation(s)
- Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Pawel Wojciechowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Anna Samelak-Czajka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Faculty of Computing Science, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
38
|
Wilson-Sánchez D, Lup SD, Sarmiento-Mañús R, Ponce MR, Micol JL. Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis. Nucleic Acids Res 2020; 47:e140. [PMID: 31544937 PMCID: PMC6868388 DOI: 10.1093/nar/gkz806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
Forward genetic screens have successfully identified many genes and continue to be powerful tools for dissecting biological processes in Arabidopsis and other model species. Next-generation sequencing technologies have revolutionized the time-consuming process of identifying the mutations that cause a phenotype of interest. However, due to the cost of such mapping-by-sequencing experiments, special attention should be paid to experimental design and technical decisions so that the read data allows to map the desired mutation. Here, we simulated different mapping-by-sequencing scenarios. We first evaluated which short-read technology was best suited for analyzing gene-rich genomic regions in Arabidopsis and determined the minimum sequencing depth required to confidently call single nucleotide variants. We also designed ways to discriminate mutagenesis-induced mutations from background Single Nucleotide Polymorphisms in mutants isolated in Arabidopsis non-reference lines. In addition, we simulated bulked segregant mapping populations for identifying point mutations and monitored how the size of the mapping population and the sequencing depth affect mapping precision. Finally, we provide the computational basis of a protocol that we already used to map T-DNA insertions with paired-end Illumina-like reads, using very low sequencing depths and pooling several mutants together; this approach can also be used with single-end reads as well as to map any other insertional mutagen. All these simulations proved useful for designing experiments that allowed us to map several mutations in Arabidopsis.
Collapse
Affiliation(s)
- David Wilson-Sánchez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Samuel Daniel Lup
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
39
|
Rossmann S, Richter R, Sun H, Schneeberger K, Töpfer R, Zyprian E, Theres K. Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1234-1248. [PMID: 31663642 DOI: 10.1111/tpj.14588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 05/09/2023]
Abstract
Bunch rot caused by Botrytis cinerea infections is a notorious problem in grapevine cultivation. To produce high quality fruits, grapevine plants are treated with fungicides, which is cost intensive and harmful to the environment. Conversely, loose cluster bunches show a considerably enhanced physical resilience to bunch diseases. With the aim to identify genetic determinants that modulate the development of bunch architecture, we have compared loose and compact 'Pinot noir' clones. Loose cluster architecture was found to be correlated with increased berry size, elongated rachis and elongated pedicels. Using transcriptome analysis in combination with whole genome sequencing, we have identified a growth-regulating factor gene, VvGRF4, upregulated and harbours heterozygous mutations in the loose cluster clones. At late stages of inflorescence development, the mRNA pools of loose cluster clones contain predominantly mRNAs derived from the mutated alleles, which are resistant to miR396 degradation. Expression of the VvGRF4 gene and its mutated variants in Arabidopsis demonstrates that it promotes pedicel elongation. Taken together, VvGRF4 modulates bunch architecture in grapevine 'Pinot noir' clones. This trait can be introduced into other cultivars using marker-assisted breeding or CRISPR-Cas9 technology. Related growth-regulating factors or other genes of the same pathway may have similar functions.
Collapse
Affiliation(s)
- Susanne Rossmann
- Max Planck Institute for Plant Breeding Research, 50931, Cologne, Germany
| | - Robert Richter
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius-Kuehn Institute, 76833, Siebeldingen, Germany
| | - Hequan Sun
- Max Planck Institute for Plant Breeding Research, 50931, Cologne, Germany
| | | | - Reinhard Töpfer
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius-Kuehn Institute, 76833, Siebeldingen, Germany
| | - Eva Zyprian
- Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius-Kuehn Institute, 76833, Siebeldingen, Germany
| | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, 50931, Cologne, Germany
| |
Collapse
|
40
|
Gujas B, Kastanaki E, Sturchler A, Cruz TMD, Ruiz-Sola MA, Dreos R, Eicke S, Truernit E, Rodriguez-Villalon A. A Reservoir of Pluripotent Phloem Cells Safeguards the Linear Developmental Trajectory of Protophloem Sieve Elements. Curr Biol 2020; 30:755-766.e4. [PMID: 32037095 DOI: 10.1016/j.cub.2019.12.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/15/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
Plant cells can change their identity based on positional information, a mechanism that confers developmental plasticity to plants. This ability, common to distinct multicellular organisms, is particularly relevant for plant phloem cells. Protophloem sieve elements (PSEs), one type of phloem conductive cells, act as the main organizers of the phloem pole, which comprises four distinct cell files organized in a conserved pattern. Here, we report how Arabidopsis roots generate a reservoir of meristematic phloem cells competent to swap their cell identities. Although PSE misspecification induces cell identity hybridism, the activity of RECEPTOR LIKE PROTEIN KINASE 2 (RPK2) by perceiving CLE45 peptide contributes to restrict PSE identity to the PSE position. By maintaining a spatiotemporal window when PSE and PSE-adjacent cells' identities are interchangeable, CLE45 signaling endows phloem cells with the competence to re-pattern a functional phloem pole when protophloem fails to form.
Collapse
Affiliation(s)
- Bojan Gujas
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Alessandra Sturchler
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Tiago M D Cruz
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - M Aguila Ruiz-Sola
- Group of Phloem Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Rene Dreos
- Group of NCCR RNA and Disease, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simona Eicke
- Group of Phloem Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Elisabeth Truernit
- Group of Phloem Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
41
|
Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, Lee J, Marri S, Pogson BJ. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. eLife 2020; 9:45310. [PMID: 32003746 PMCID: PMC6994220 DOI: 10.7554/elife.45310] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are a core plastid component and yet their regulatory function during plastid biogenesis remains enigmatic. A unique carotenoid biosynthesis mutant, carotenoid chloroplast regulation 2 (ccr2), that has no prolamellar body (PLB) and normal PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) levels, was used to demonstrate a regulatory function for carotenoids and their derivatives under varied dark-light regimes. A forward genetics approach revealed how an epistatic interaction between a ζ-carotene isomerase mutant (ziso-155) and ccr2 blocked the biosynthesis of specific cis-carotenes and restored PLB formation in etioplasts. We attributed this to a novel apocarotenoid retrograde signal, as chemical inhibition of carotenoid cleavage dioxygenase activity restored PLB formation in ccr2 etioplasts during skotomorphogenesis. The apocarotenoid acted in parallel to the repressor of photomorphogenesis, DEETIOLATED1 (DET1), to transcriptionally regulate PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR), PHYTOCHROME INTERACTING FACTOR3 (PIF3) and ELONGATED HYPOCOTYL5 (HY5). The unknown apocarotenoid signal restored POR protein levels and PLB formation in det1, thereby controlling plastid development.
Collapse
Affiliation(s)
| | - Xin Hou
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yagiz Alagoz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - John Rivers
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australia
| | - Shashikanth Marri
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Barry J Pogson
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
42
|
Read AC, Moscou MJ, Zimin AV, Pertea G, Meyer RS, Purugganan MD, Leach JE, Triplett LR, Salzberg SL, Bogdanove AJ. Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing. PLoS Genet 2020; 16:e1008571. [PMID: 31986137 PMCID: PMC7004385 DOI: 10.1371/journal.pgen.1008571] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/06/2020] [Accepted: 12/16/2019] [Indexed: 12/26/2022] Open
Abstract
Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety. Plants lack adaptive immunity, and instead contain repeat-rich, disease resistance genes that evolve rapidly through duplication, recombination, and transposition. The number, variation, and often clustered arrangement of these genes make them challenging to sequence and catalog. The US heirloom rice variety Carolina Gold Select has resistance to two important bacterial diseases. Toward identifying the responsible gene(s), we combined long- and short-read sequencing technologies to assemble the whole genome and identify the resistance gene repertoire. We previously narrowed the location of the gene(s) to a region on chromosome four. The region in Carolina Gold Select is larger than in the rice reference genome (Nipponbare) and contains twice as many resistance genes. One shares unusual features with a known bacterial disease resistance gene, suggesting that it confers the resistance. Across diverse varieties and related species, we identified two widely-distributed groups of such genes. The results are an important step toward mechanistic characterization and deployment of the bacterial disease resistance. The genome assembly also identified a resistance gene for a fungal disease and predicted a marker phenotype used in breeding for resistance. Thus, the Carolina Gold Select genome assembly can be expected to aid in the identification and deployment of other valuable traits.
Collapse
Affiliation(s)
- Andrew C. Read
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
| | - Matthew J. Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksey V. Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Geo Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Rachel S. Meyer
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
| | - Michael D. Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, United States of America
- Center for Genomics and Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Lindsay R. Triplett
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States of America
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Adam J. Bogdanove
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
43
|
Niu R, Zhou Y, Zhang Y, Mou R, Tang Z, Wang Z, Zhou G, Guo S, Yuan M, Xu G. uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database (Oxford) 2020; 2020:baaa007. [PMID: 32168374 PMCID: PMC7068905 DOI: 10.1093/database/baaa007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Upstream open reading frames (uORFs) are prevalent in eukaryotic mRNAs. They act as a translational control element for precisely tuning the expression of the downstream major open reading frame (mORF). uORF variation has been clearly associated with several human diseases. In contrast, natural uORF variants in plants have not ever been identified or linked with any phenotypic changes. The paucity of such evidence encouraged us to generate this database-uORFlight (http://uorflight.whu.edu.cn). It facilitates the exploration of uORF variation among different splicing models of Arabidopsis and rice genes. Most importantly, users can evaluate uORF frequency among different accessions at the population scale and find out the causal single nucleotide polymorphism (SNP) or insertion/deletion (INDEL), which can be associated with phenotypic variation through database mining or simple experiments. Such information will help to make hypothesis of uORF function in plant development or adaption to changing environments on the basis of the cognate mORF function. This database also curates plant uORF relevant literature into distinct groups. To be broadly interesting, our database expands uORF annotation into more species of fungus (Botrytis cinerea and Saccharomyces cerevisiae), plant (Brassica napus, Glycine max, Gossypium raimondii, Medicago truncatula, Solanum lycopersicum, Solanum tuberosum, Triticum aestivum and Zea mays), metazoan (Caenorhabditis elegans and Drosophila melanogaster) and vertebrate (Homo sapiens, Mus musculus and Danio rerio). Therefore, uORFlight will light up the runway toward how uORF genetic variation determines phenotypic diversity and advance our understanding of translational control mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Yu Zhang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Sibin Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning, Guangxi 530007, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
44
|
Goel M, Sun H, Jiao WB, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol 2019; 20:277. [PMID: 31842948 PMCID: PMC6913012 DOI: 10.1186/s13059-019-1911-0] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023] Open
Abstract
Genomic differences range from single nucleotide differences to complex structural variations. Current methods typically annotate sequence differences ranging from SNPs to large indels accurately but do not unravel the full complexity of structural rearrangements, including inversions, translocations, and duplications, where highly similar sequence changes in location, orientation, or copy number. Here, we present SyRI, a pairwise whole-genome comparison tool for chromosome-level assemblies. SyRI starts by finding rearranged regions and then searches for differences in the sequences, which are distinguished for residing in syntenic or rearranged regions. This distinction is important as rearranged regions are inherited differently compared to syntenic regions.
Collapse
Affiliation(s)
- Manish Goel
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Hequan Sun
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Wen-Biao Jiao
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
45
|
The Striking Flower-in-Flower Phenotype of Arabidopsis thaliana Nossen (No-0) is Caused by a Novel LEAFY Allele. PLANTS 2019; 8:plants8120599. [PMID: 31847079 PMCID: PMC6963406 DOI: 10.3390/plants8120599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/19/2023]
Abstract
The transition to reproduction is a crucial step in the life cycle of any organism. In Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: Firstly, cauline leaves with axillary meristems are formed and internode elongation begins. Secondly, lateral meristems develop into flowers with defined organs. Floral shoots are usually determinate and suppress the development of lateral shoots. Here, we describe a transposon insertion mutant in the Nossen accession with defects in floral development and growth. Most strikingly is the outgrowth of stems from the axillary bracts of the primary flower carrying secondary flowers. Therefore, we named this mutant flower-in-flower (fif). However, the transposon insertion in the annotated gene is not the cause for the fif phenotype. By means of classical and genome sequencing-based mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY gene. The mutation, a G-to-A exchange in the second exon of LEAFY, creates a novel lfy allele and results in a cysteine-to-tyrosine exchange in the α1-helix of LEAFY’s DNA-binding domain. This exchange abolishes target DNA-binding, whereas subcellular localization and homomerization are not affected. To explain the strong fif phenotype against these molecular findings, several hypotheses are discussed.
Collapse
|
46
|
Pucker B, Rückert C, Stracke R, Viehöver P, Kalinowski J, Weisshaar B. Twenty-Five Years of Propagation in Suspension Cell Culture Results in Substantial Alterations of the Arabidopsis Thaliana Genome. Genes (Basel) 2019; 10:E671. [PMID: 31480756 PMCID: PMC6770967 DOI: 10.3390/genes10090671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 01/16/2023] Open
Abstract
Arabidopsis thaliana is one of the best studied plant model organisms. Besides cultivation in greenhouses, cells of this plant can also be propagated in suspension cell culture. At7 is one such cell line that was established about 25 years ago. Here, we report the sequencing and the analysis of the At7 genome. Large scale duplications and deletions compared to the Columbia-0 (Col-0) reference sequence were detected. The number of deletions exceeds the number of insertions, thus indicating that a haploid genome size reduction is ongoing. Patterns of small sequence variants differ from the ones observed between A. thaliana accessions, e.g., the number of single nucleotide variants matches the number of insertions/deletions. RNA-Seq analysis reveals that disrupted alleles are less frequent in the transcriptome than the native ones.
Collapse
Affiliation(s)
- Boas Pucker
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany.
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Ralf Stracke
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615 Bielefeld, NRW, Germany
| |
Collapse
|
47
|
Barragan CA, Wu R, Kim ST, Xi W, Habring A, Hagmann J, Van de Weyer AL, Zaidem M, Ho WWH, Wang G, Bezrukov I, Weigel D, Chae E. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008313. [PMID: 31344025 PMCID: PMC6684095 DOI: 10.1371/journal.pgen.1008313] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
In many plant species, conflicts between divergent elements of the immune system, especially nucleotide-binding oligomerization domain-like receptors (NLR), can lead to hybrid necrosis. Here, we report deleterious allele-specific interactions between an NLR and a non-NLR gene cluster, resulting in not one, but multiple hybrid necrosis cases in Arabidopsis thaliana. The NLR cluster is RESISTANCE TO PERONOSPORA PARASITICA 7 (RPP7), which can confer strain-specific resistance to oomycetes. The non-NLR cluster is RESISTANCE TO POWDERY MILDEW 8 (RPW8) / HOMOLOG OF RPW8 (HR), which can confer broad-spectrum resistance to both fungi and oomycetes. RPW8/HR proteins contain at the N-terminus a potential transmembrane domain, followed by a specific coiled-coil (CC) domain that is similar to a domain found in pore-forming toxins MLKL and HET-S from mammals and fungi. C-terminal to the CC domain is a variable number of 21- or 14-amino acid repeats, reminiscent of regulatory 21-amino acid repeats in fungal HET-S. The number of repeats in different RPW8/HR proteins along with the sequence of a short C-terminal tail predicts their ability to activate immunity in combination with specific RPP7 partners. Whether a larger or smaller number of repeats is more dangerous depends on the specific RPW8/HR autoimmune risk variant.
Collapse
Affiliation(s)
- Cristina A. Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rui Wu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Wanyan Xi
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Hagmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - William Wing Ho Ho
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, Victoria, Australia
| | - George Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
48
|
Hornslien KS, Miller JR, Grini PE. Regulation of Parent-of-Origin Allelic Expression in the Endosperm. PLANT PHYSIOLOGY 2019; 180:1498-1519. [PMID: 31064812 PMCID: PMC6752901 DOI: 10.1104/pp.19.00320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 05/22/2023]
Abstract
Genomic imprinting is an epigenetic phenomenon established in the gametes prior to fertilization that causes differential expression of parental alleles, mainly in the endosperm of flowering plants. The overlap between previously identified panels of imprinted genes is limited. To investigate imprinting, we used high-resolution sequencing data acquired with sequence-capture technology. We present a bioinformatics pipeline to assay parent-of-origin allele-specific expression and report more than 300 loci with parental expression bias in Arabidopsis (Arabidopsis thaliana). In most cases, the level of expression from maternal and paternal alleles was not binary, instead supporting a differential dosage hypothesis for the evolution of imprinting in plants. To address imprinting regulation, we systematically employed mutations in regulative epigenetic pathways suggested to be major players in the process. We established the mechanistic mode of imprinting for more than 50 loci regulated by DNA methylation and Polycomb-dependent histone methylation. However, the imprinting patterns of most genes were not affected by these mechanisms. To this end, we also demonstrated that the RNA-directed DNA methylation pathway alone does not substantially influence imprinting patterns, suggesting that more complex epigenetic pathways regulate most of the identified imprinted genes.
Collapse
Affiliation(s)
- Karina S Hornslien
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Jason R Miller
- College of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, West Virginia 25443-5000
- J. Craig Venter Institute, Rockville, Maryland 20850
| | - Paul E Grini
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
49
|
Wiehle L, Thorn GJ, Raddatz G, Clarkson CT, Rippe K, Lyko F, Breiling A, Teif VB. DNA (de)methylation in embryonic stem cells controls CTCF-dependent chromatin boundaries. Genome Res 2019; 29:750-761. [PMID: 30948436 PMCID: PMC6499307 DOI: 10.1101/gr.239707.118] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 03/27/2019] [Indexed: 01/25/2023]
Abstract
Coordinated changes of DNA (de)methylation, nucleosome positioning, and chromatin binding of the architectural protein CTCF play an important role for establishing cell-type-specific chromatin states during differentiation. To elucidate molecular mechanisms that link these processes, we studied the perturbed DNA modification landscape in mouse embryonic stem cells (ESCs) carrying a double knockout (DKO) of the Tet1 and Tet2 dioxygenases. These enzymes are responsible for the conversion of 5-methylcytosine (5mC) into its hydroxymethylated (5hmC), formylated (5fC), or carboxylated (5caC) forms. We determined changes in nucleosome positioning, CTCF binding, DNA methylation, and gene expression in DKO ESCs and developed biophysical models to predict differential CTCF binding. Methylation-sensitive nucleosome repositioning accounted for a significant portion of CTCF binding loss in DKO ESCs, whereas unmethylated and nucleosome-depleted CpG islands were enriched for CTCF sites that remained occupied. A number of CTCF sites also displayed direct correlations with the CpG modification state: CTCF was preferentially lost from sites that were marked with 5hmC in wild-type (WT) cells but not from 5fC-enriched sites. In addition, we found that some CTCF sites can act as bifurcation points defining the differential methylation landscape. CTCF loss from such sites, for example, at promoters, boundaries of chromatin loops, and topologically associated domains (TADs), was correlated with DNA methylation/demethylation spreading and can be linked to down-regulation of neighboring genes. Our results reveal a hierarchical interplay between cytosine modifications, nucleosome positions, and DNA sequence that determines differential CTCF binding and regulates gene expression.
Collapse
Affiliation(s)
- Laura Wiehle
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Graeme J Thorn
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christopher T Clarkson
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120 Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Achim Breiling
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Vladimir B Teif
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| |
Collapse
|
50
|
Seymour DK, Chae E, Arioz BI, Koenig D, Weigel D. Transmission ratio distortion is frequent in Arabidopsis thaliana controlled crosses. Heredity (Edinb) 2019; 122:294-304. [PMID: 29955170 PMCID: PMC6169738 DOI: 10.1038/s41437-018-0107-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
The equal probability of transmission of alleles from either parent during sexual reproduction is a central tenet of genetics and evolutionary biology. Yet, there are many cases where this rule is violated. The preferential transmission of alleles or genotypes is termed transmission ratio distortion (TRD). Examples of TRD have been identified in many species, implying that they are universal, but the resolution of species-wide studies of TRD are limited. We have performed a species-wide screen for TRD in over 500 segregating F2 populations of Arabidopsis thaliana using pooled reduced-representation genome sequencing. TRD was evident in up to a quarter of surveyed populations. Most populations exhibited distortion at only one genomic region, with some regions being repeatedly affected in multiple populations. Our results begin to elucidate the species-level architecture of biased transmission of genetic material in A. thaliana, and serve as a springboard for future studies into the biological basis of TRD in this species.
Collapse
Affiliation(s)
- Danelle K Seymour
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Burak I Arioz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Daniel Koenig
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|