1
|
Akram F, Shah FI, Ibrar R, Fatima T, Haq IU, Naseem W, Gul MA, Tehreem L, Haider G. Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications. Anal Biochem 2023; 671:115150. [PMID: 37054862 DOI: 10.1016/j.ab.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; The University of Lahore, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahmood Ayaz Gul
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Tehreem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ghanoor Haider
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Nagai S, Sildever S, Nishi N, Tazawa S, Basti L, Kobayashi T, Ishino Y. Comparing PCR-generated artifacts of different polymerases for improved accuracy of DNA metabarcoding. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.77704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accuracy of PCR amplification is vital for obtaining reliable amplicon-sequencing results by metabarcoding. Here, we performed a comparative analysis of error profiles in the PCR products by 14 different PCR kits using a mock eukaryotic community DNA sample mimicking metabarcoding analysis. To prepare a mock eukaryotic community from the marine environment, equal amounts of plasmid DNA from 40 microalgal species were mixed and used for amplicon-sequencing by a high-throughput sequencing approach. To compare the differences in PCR kits used for this experiment, we focused on the following seven parameters: 1) Quality, 2) Chimera, 3) Blast top hit accuracy, 4) Deletion, 5) Insertion, 6) Base substitution and 7) Amplification bias amongst species. The results showed statistically significant differences (p < 0.05) for all of the seven parameters depending on the PCR kits used. These differences may result from the different DNA polymerases included in each kit, although the result can also be influenced by PCR reaction conditions. Simultaneous analysis of several parameters suggested that kits containing KOD plus Neo (TOYOBO) and HotStart Taq DNA polymerase (BiONEER, CA, US) at the annealing temperature of 65 °C displayed better results in terms of parameters associated with chimeras, top hit similarity and deletions.
Collapse
|
3
|
Chow S, Yanagimoto T, Takeyama H. Detection of heteroplasmy and nuclear mitochondrial pseudogenes in the Japanese spiny lobster Panulirus japonicus. Sci Rep 2021; 11:21780. [PMID: 34741113 PMCID: PMC8571370 DOI: 10.1038/s41598-021-01346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Partial mtDNA cytochrome oxidase subunit I (COI) fragments and near entire stretch of 12S rDNA (12S) and control region (Dloop) of the Japanese spiny lobster (Panulirus japonicus) (n = 3) were amplified by PCR and used for direct nucleotide sequencing and for clone library-based nucleotide sequence analysis. Nucleotide sequences of a total of 75 clones in COI, 77 in 12S and 92 in Dloop were determined. Haplotypes of the clones matched with those obtained by direct sequencing were determined to be genuine mtDNA sequence of the individual. Phylogenetic analysis revealed several distinct groups of haplotypes in all three regions. Genuine mtDNA sequences were observed to form a group with their closely related variables, and most of these variables may be due to amplification error but a few to be heteroplasmy. Haplotypes determined as nuclear mitochondrial pseudogenes (NUMTs) formed distinct groups. Nucleotide sequence divergence (K2P distance) between genuine haplotypes and NUMTs were substantial (7.169-23.880% for COI, 1.336-23.434% for 12S, and 7.897-71.862% for Dloop). These values were comparable to or smaller than those between species of the genus Panulirus, indicating that integration of mtDNA into the nuclear genome is a continuous and dynamic process throughout pre- and post-speciation events. Double peaks in electropherograms obtained by direct nucleotide sequencing were attributed to common nucleotides shared by multiple NUMTs. Information on the heteroplasmy and NUMTs would be very important for addressing their impact on direct nucleotide sequencing and for quality control of nucleotide sequences obtained.
Collapse
Affiliation(s)
- Seinen Chow
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Takashi Yanagimoto
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Fukuura 2-12-4, Yokohama, Kanagawa, 236-8648, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan. .,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu cho, Shinjuku, Tokyo, 162-8480, Japan. .,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan.
| |
Collapse
|
4
|
Xue Y, Braslavsky I, Quake SR. Temperature effect on polymerase fidelity. J Biol Chem 2021; 297:101270. [PMID: 34695416 PMCID: PMC8592868 DOI: 10.1016/j.jbc.2021.101270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery of extremophiles helped enable the development of groundbreaking technology such as PCR. Temperature variation is often an essential step of these technology platforms, but the effect of temperature on the error rate of polymerases from different origins is underexplored. Here, we applied high-throughput sequencing to profile the error rates of DNA polymerases from psychrophilic, mesophilic, and thermophilic origins with single-molecule resolution. We found that the reaction temperature substantially increases substitution and deletion error rates of psychrophilic and mesophilic DNA polymerases. Our motif analysis shows that the substitution error profiles cluster according to phylogenetic similarity of polymerases, not the reaction temperature, thus suggesting that the reaction temperature increases the global error rate of polymerases independent of the sequence context. Intriguingly, we also found that the DNA polymerase I of psychrophilic bacteria exhibits higher polymerization activity than its mesophilic ortholog across all temperature ranges, including down to -19 °C, which is well below the freezing temperature of water. Our results provide a useful reference for how the reaction temperature, a crucial parameter of biochemistry, can affect DNA polymerase fidelity in organisms adapted to a wide range of thermal environments.
Collapse
Affiliation(s)
- Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, California, USA; Department of Applied Physics, Stanford University, Stanford, California, USA; Chan Zuckerberg Biohub, Mission Bay, California, USA.
| |
Collapse
|
5
|
Mielinis P, Sukackaitė R, Serapinaitė A, Samoilovas F, Alzbutas G, Matjošaitis K, Lubys A. MuA-based Molecular Indexing for Rare Mutation Detection by Next-Generation Sequencing. J Mol Biol 2021; 433:167209. [PMID: 34419430 DOI: 10.1016/j.jmb.2021.167209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Detection of low-frequency mutations in cancer genomes or other heterogeneous cell populations requires high-fidelity sequencing. Molecular barcoding is one of the key technologies that enables the differentiation of true mutations from errors, which can be caused by sequencing or library preparation processes. However, current approaches where barcodes are introduced via primer extension or adaptor ligation do not utilize the full power of barcoding, due to complicated library preparation workflows and biases. Here we demonstrate the remarkable tolerance of MuA transposase to the presence of multiple replacements in transposon sequence, and explore this unique feature to engineer the MuA transposome complex with randomised nucleotides in 12 transposon positions, which can be introduced as a barcode into the target molecule after transposition event. We applied the approach of Unique MuA-based Molecular Indexing (UMAMI) to assess the power of rare mutation detection by shortgun sequencing on the Illumina platform. Our results show that UMAMI allows detection of rare mutations readily and reliably, and in this paper we report error rate values for the number of thermophilic DNA polymerases measured by using UMAMI.
Collapse
Affiliation(s)
- Paulius Mielinis
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Rasa Sukackaitė
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania.
| | - Aistė Serapinaitė
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Faustas Samoilovas
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Gediminas Alzbutas
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Karolis Matjošaitis
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics UAB, V. A. Graičiūno 8, Vilnius LT-02241, Lithuania
| |
Collapse
|
6
|
Xu J, Liao K, Yang X, Wu C, Wu W, Han S. Using single-cell sequencing technology to detect circulating tumor cells in solid tumors. Mol Cancer 2021; 20:104. [PMID: 34412644 PMCID: PMC8375060 DOI: 10.1186/s12943-021-01392-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by comparing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor cells, primary and metastatic tumors, and metastatic lymph nodes in patients' peripheral blood, providing a new perspective for understanding the biological process of tumors. This article describes the identification, biological characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.
Collapse
Affiliation(s)
- Jiasheng Xu
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.,Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Kaili Liao
- Department of Clinical Laboratory, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xi Yang
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China
| | - Chengfeng Wu
- Department of Vascular Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, 313000, Huzhou, China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District Zhejiang Province, Huzhou, China.
| |
Collapse
|
7
|
Lee SO, Fried SD. An error prone PCR method for small amplicons. Anal Biochem 2021; 628:114266. [PMID: 34081928 DOI: 10.1016/j.ab.2021.114266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
Error-prone PCR (epPCR) is a commonly employed approach in molecular biology, especially in directed evolution, to generate libraries of DNA molecules with broad mutational spectrums. Though commonly applied to mutagenize protein coding sequences of several hundreds or thousands of basepairs, we found that commonly used protocols were not suitable for small (<100 bp) amplicons. Here we report a modified error-prone PCR protocol utilizing a Touchdown approach and employing only commercially available components, that should be broadly useful for the researcher interested in concentrating mutations into a small region of plasmid DNA. It will also be useful for achieving very high mutational loads on a standard-sized amplicon.
Collapse
Affiliation(s)
- Sea On Lee
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Sigwart JD, Blasiak R, Jaspars M, Jouffray JB, Tasdemir D. Unlocking the potential of marine biodiscovery. Nat Prod Rep 2021; 38:1235-1242. [PMID: 34287433 DOI: 10.1039/d0np00067a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tremendous diversity of life in the ocean has proven to be a rich source of inspiration for drug discovery, with success rates for marine natural products up to 4 times higher than other naturally derived compounds. Yet the marine biodiscovery pipeline is characterized by chronic underfunding, bottlenecks and, ultimately, untapped potential. For instance, a lack of taxonomic capacity means that, on average, 20 years pass between the discovery of new organisms and the formal publication of scientific names, a prerequisite to proceed with detecting and isolating promising bioactive metabolites. The need for "edge" research that can spur novel lines of discovery and lengthy high-risk drug discovery processes, are poorly matched with research grant cycles. Here we propose five concrete pathways to broaden the biodiscovery pipeline and open the social and economic potential of the ocean genome for global benefit: (1) investing in fundamental research, even when the links to industry are not immediately apparent; (2) cultivating equitable collaborations between academia and industry that share both risks and benefits for these foundational research stages; (3) providing new opportunities for early-career researchers and under-represented groups to engage in high-risk research without risking their careers; (4) sharing data with global networks; and (5) protecting genetic diversity at its source through strong conservation efforts. The treasures of the ocean have provided fundamental breakthroughs in human health and still remain under-utilised for human benefit, yet that potential may be lost if we allow the biodiscovery pipeline to become blocked in a search for quick-fix solutions.
Collapse
Affiliation(s)
- Julia D Sigwart
- Senckenberg Research Institute, Frankfurt, Germany. and Queen's University Belfast, Marine Laboratory, Portaferry, Northern Ireland
| | - Robert Blasiak
- Stockholm Resilience Centre, Stockholm University, Sweden
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen, Scotland, UK
| | | | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany and Faculty of of Mathematics and Natural Sciences, Kiel University, Germany
| |
Collapse
|
9
|
Ji J, Day A. Construction of a highly error-prone DNA polymerase for developing organelle mutation systems. Nucleic Acids Res 2020; 48:11868-11879. [PMID: 33135056 PMCID: PMC7708058 DOI: 10.1093/nar/gkaa929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
A novel family of DNA polymerases replicates organelle genomes in a wide distribution of taxa encompassing plants and protozoans. Making error-prone mutator versions of gamma DNA polymerases revolutionised our understanding of animal mitochondrial genomes but similar advances have not been made for the organelle DNA polymerases present in plant mitochondria and chloroplasts. We tested the fidelities of error prone tobacco organelle DNA polymerases using a novel positive selection method involving replication of the phage lambda cI repressor gene. Unlike gamma DNA polymerases, ablation of 3'-5' exonuclease function resulted in a modest 5-8-fold error rate increase. Combining exonuclease deficiency with a polymerisation domain substitution raised the organelle DNA polymerase error rate by 140-fold relative to the wild type enzyme. This high error rate compares favourably with error-rates of mutator versions of animal gamma DNA polymerases. The error prone organelle DNA polymerase introduced mutations at multiple locations ranging from two to seven sites in half of the mutant cI genes studied. Single base substitutions predominated including frequent A:A (template: dNMP) mispairings. High error rate and semi-dominance to the wild type enzyme in vitro make the error prone organelle DNA polymerase suitable for elevating mutation rates in chloroplasts and mitochondria.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Binding Sites
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Cloning, Molecular
- DNA Polymerase gamma/chemistry
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/metabolism
- DNA Replication
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Mitochondria/genetics
- Mitochondria/metabolism
- Models, Molecular
- Mutation
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Polymorphism, Single Nucleotide
- Porins/chemistry
- Porins/genetics
- Porins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Selection, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Nicotiana/classification
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Junwei Ji
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
10
|
Branton SA, Ghorbani A, Bolt BN, Fifield H, Berghuis LM, Larijani M. Activation-induced cytidine deaminase can target multiple topologies of double-stranded DNA in a transcription-independent manner. FASEB J 2020; 34:9245-9268. [PMID: 32437054 DOI: 10.1096/fj.201903036rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022]
Abstract
Activation-induced cytidine deaminase (AID) mutates immunoglobulin genes and acts genome-wide. AID targets robustly transcribed genes, and purified AID acts on single-stranded (ss) but not double-stranded (ds) DNA oligonucleotides. Thus, it is believed that transcription is the generator of ssDNA for AID. Previous cell-free studies examining the relationship between transcription and AID targeting have employed a bacterial colony count assay wherein AID reverts an antibiotic resistance stop codon in plasmid substrates, leading to colony formation. Here, we established a novel assay where kb-long dsDNA of varying topologies is incubated with AID, with or without transcription, followed by direct sequencing. This assay allows for an unselected and in-depth comparison of mutation frequency and pattern of AID targeting in the absence of transcription or across a range of transcription dynamics. We found that without transcription, AID targets breathing ssDNA in supercoiled and, to a lesser extent, in relaxed dsDNA. The most optimal transcription only modestly enhanced AID action on supercoiled dsDNA in a manner dependent on RNA polymerase speed. These data suggest that the correlation between transcription and AID targeting may reflect transcription leading to AID-accessible breathing ssDNA patches naturally occurring in de-chromatinized dsDNA, as much as being due to transcription directly generating ssDNA.
Collapse
Affiliation(s)
- Sarah A Branton
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Brittany N Bolt
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Heather Fifield
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Lesley M Berghuis
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Program in Immunology and Infectious Diseases, Department of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
11
|
Isolation and functional characterization of 5-enolpyruvylshikimate 3-phosphate synthase gene from glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47. 3 Biotech 2020; 10:183. [PMID: 32257739 DOI: 10.1007/s13205-020-02176-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022] Open
Abstract
5-Enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the primary target for the broad-spectrum herbicide, glyphosate. Improvement of EPSPS gene for high level of glyphosate tolerance is important to generate glyphosate-tolerant crops. In this study, we report the isolation and characterization of EPSPS genes of glyphosate-tolerant Pseudomonas nitroreducens strains FY43 and FY47. Both P. nitroreducens strains FY43 and FY47, which showed glyphosate tolerance up to 8.768% (518.4 mM, 32 × higher than field application), were isolated from soil samples collected from oil palm plantation with a long history of glyphosate application. The glyphosate tolerance property of EPSPS genes of strains FY43 and FY47 was functionally characterized by expressing the genes in Escherichia coli strain BL21(DE3). Error-prone PCR was performed to mutagenize native EPSPS gene of strains FY43 and FY47. Ten mutagenized EPSPS with amino acid changes (R21C, N265S, A329T, P71L, T258A, L184F, G292C, G292S, L35F and A242V) were generated through error-prone PCR. Both native and mutated EPSPS genes of strains FY43 and FY47 were introduced into Escherichia coli strain BL21(DE3) and transformants were selected on basal salt medium supplemented with 8.768% (518.4 mM) glyphosate. Mutants with mutations (R21C, N265S, A329T, P71L, T258A, L35F, A242V, L184F and G292C) showed sensitivity to 8.768% glyphosate, whereas glyphosate tolerance for mutant with G292S mutation was not affected by the mutation.
Collapse
|
12
|
Bhattacharjee R, Moriam S, Umer M, Nguyen NT, Shiddiky MJA. DNA methylation detection: recent developments in bisulfite free electrochemical and optical approaches. Analyst 2018; 143:4802-4818. [PMID: 30226502 DOI: 10.1039/c8an01348a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is one of the significant epigenetic modifications involved in mammalian development as well as in the initiation and progression of various diseases like cancer. Over the past few decades, an enormous amount of research has been carried out for the quantification of DNA methylation in the mammalian genome. Earlier, most of these methodologies used bisulfite treatment. However, the low conversion, false reading, longer assay time and complex chemical reaction are the common limitations of this method that hinder their application in routine clinical screening. Thus, as an alternative to bisulfite conversion-based DNA methylation detection, numerous bisulfite-free methods have been proposed. In this regard, electrochemical biosensors have gained much attention in recent years for being highly sensitive yet cost-effective, portable, and simple to operate. On the other hand, biosensors with optical readouts enable direct real time detection of biological molecules and are easily adaptable to multiplexing. Incorporation of electrochemical and optical readouts into bisulfite free DNA methylation analysis is paving the way for the translation of this important biomarker into standard patient care. In this review, we provide a critical overview of recent advances in the development of electrochemical and optical readout based bisulfite free DNA methylation assays.
Collapse
Affiliation(s)
- Ripon Bhattacharjee
- School of Environment and Science, Griffith University, Nathan Campus, Nathan, QLD 4111, Australia.
| | | | | | | | | |
Collapse
|
13
|
Single-Molecule Counting of Point Mutations by Transient DNA Binding. Sci Rep 2017; 7:43824. [PMID: 28262827 PMCID: PMC5338343 DOI: 10.1038/srep43824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
Collapse
|
14
|
Potapov V, Ong JL. Examining Sources of Error in PCR by Single-Molecule Sequencing. PLoS One 2017; 12:e0169774. [PMID: 28060945 PMCID: PMC5218489 DOI: 10.1371/journal.pone.0169774] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 01/28/2023] Open
Abstract
Next-generation sequencing technology has enabled the detection of rare genetic or somatic mutations and contributed to our understanding of disease progression and evolution. However, many next-generation sequencing technologies first rely on DNA amplification, via the Polymerase Chain Reaction (PCR), as part of sample preparation workflows. Mistakes made during PCR appear in sequencing data and contribute to false mutations that can ultimately confound genetic analysis. In this report, a single-molecule sequencing assay was used to comprehensively catalog the different types of errors introduced during PCR, including polymerase misincorporation, structure-induced template-switching, PCR-mediated recombination and DNA damage. In addition to well-characterized polymerase base substitution errors, other sources of error were found to be equally prevalent. PCR-mediated recombination by Taq polymerase was observed at the single-molecule level, and surprisingly found to occur as frequently as polymerase base substitution errors, suggesting it may be an underappreciated source of error for multiplex amplification reactions. Inverted repeat structural elements in lacZ caused polymerase template-switching between the top and bottom strands during replication and the frequency of these events were measured for different polymerases. For very accurate polymerases, DNA damage introduced during temperature cycling, and not polymerase base substitution errors, appeared to be the major contributor toward mutations occurring in amplification products. In total, we analyzed PCR products at the single-molecule level and present here a more complete picture of the types of mistakes that occur during DNA amplification.
Collapse
Affiliation(s)
- Vladimir Potapov
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jennifer L. Ong
- New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hestand MS, Van Houdt J, Cristofoli F, Vermeesch JR. Polymerase specific error rates and profiles identified by single molecule sequencing. Mutat Res 2016; 784-785:39-45. [PMID: 26829216 DOI: 10.1016/j.mrfmmm.2016.01.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
DNA polymerases have an innate error rate which is polymerase and DNA context specific. Historically the mutational rate and profiles have been measured using a variety of methods, each with their own technical limitations. Here we used the unique properties of single molecule sequencing to evaluate the mutational rate and profiles of six DNA polymerases at the sequence level. In addition to accurately determining mutations in double strands, single molecule sequencing also captures direction specific transversions and transitions through the analysis of heteroduplexes. Not only did the error rates vary, but also the direction specific transitions differed among polymerases.
Collapse
Affiliation(s)
- Matthew S Hestand
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49-box 602, 3000 Leuven, Belgium
| | - Jeroen Van Houdt
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49-box 602, 3000 Leuven, Belgium
| | - Francesca Cristofoli
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49-box 602, 3000 Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, KU Leuven, O&N I Herestraat 49-box 602, 3000 Leuven, Belgium.
| |
Collapse
|
16
|
Wang X, Zhang J, Li Y, Chen G, Wang X. Enzymatic synthesis of modified oligonucleotides by PEAR using Phusion and KOD DNA polymerases. Nucleic Acid Ther 2014; 25:27-34. [PMID: 25517220 DOI: 10.1089/nat.2014.0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisense synthetic oligonucleotides have been developed as potential gene-targeted therapeutics. We previously reported polymerase-endonuclease amplification reaction (PEAR) for amplification of natural and 5'-O-(1-thiotriphosphate) (S)-modified oligonucleotides. Here, we extended the PEAR technique for enzymatic preparation of 2'-deoxy-2'-fluoro-(2'-F) and 2'-F/S double-modified oligonucleotides. The result showed that KOD and Phusion DNA polymerase could synthesize oligonucleotides with one or two modified nucleotides, and KOD DNA polymerase is more suitable than Phusion DNA polymerase for PEAR amplification of 2'-F and 2'-F/S double modified oligonucleotides. The composition of PEAR products were analyzed by electrospray ionization liquid chromatography mass spectrometry (ESI/LC/MS) detection and showed that the sequence of the PEAR products are maintained at an extremely high accuracy (>99.9%), and after digestion the area percent of full-length modified oligonucleotides reaches 89.24%. PEAR is suitable for synthesis of modified oligonucleotides efficiently and with high purity.
Collapse
Affiliation(s)
- Xuxiang Wang
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China , Qingdao, Shandong Province, China
| | | | | | | | | |
Collapse
|
17
|
Kalle E, Kubista M, Rensing C. Multi-template polymerase chain reaction. BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 2:11-29. [PMID: 27896140 PMCID: PMC5121205 DOI: 10.1016/j.bdq.2014.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
PCR is a formidable and potent technology that serves as an indispensable tool in a wide range of biological disciplines. However, due to the ease of use and often lack of rigorous standards many PCR applications can lead to highly variable, inaccurate, and ultimately meaningless results. Thus, rigorous method validation must precede its broad adoption to any new application. Multi-template samples possess particular features, which make their PCR analysis prone to artifacts and biases: multiple homologous templates present in copy numbers that vary within several orders of magnitude. Such conditions are a breeding ground for chimeras and heteroduplexes. Differences in template amplification efficiencies and template competition for reaction compounds undermine correct preservation of the original template ratio. In addition, the presence of inhibitors aggravates all of the above-mentioned problems. Inhibitors might also have ambivalent effects on the different templates within the same sample. Yet, no standard approaches exist for monitoring inhibitory effects in multitemplate PCR, which is crucial for establishing compatibility between samples.
Collapse
Affiliation(s)
- Elena Kalle
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75007 Uppsala, Sweden
| | - Mikael Kubista
- TATAA Biocenter, Odinsgatan 28, 41103 Göteborg, Sweden; Institute of Biotechnology, Czech Academy of Sciences
| | - Christopher Rensing
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
18
|
Ishino S, Ishino Y. DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 2014; 5:465. [PMID: 25221550 PMCID: PMC4148896 DOI: 10.3389/fmicb.2014.00465] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/15/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase is a ubiquitous enzyme that synthesizes complementary DNA strands according to the template DNA in living cells. Multiple enzymes have been identified from each organism, and the shared functions of these enzymes have been investigated. In addition to their fundamental role in maintaining genome integrity during replication and repair, DNA polymerases are widely used for DNA manipulation in vitro, including DNA cloning, sequencing, labeling, mutagenesis, and other purposes. The fundamental ability of DNA polymerases to synthesize a deoxyribonucleotide chain is conserved. However, the more specific properties, including processivity, fidelity (synthesis accuracy), and substrate nucleotide selectivity, differ among the enzymes. The distinctive properties of each DNA polymerase may lead to the potential development of unique reagents, and therefore searching for novel DNA polymerase has been one of the major focuses in this research field. In addition, protein engineering techniques to create mutant or artificial DNA polymerases have been successfully developing powerful DNA polymerases, suitable for specific purposes among the many kinds of DNA manipulations. Thermostable DNA polymerases are especially important for PCR-related techniques in molecular biology. In this review, we summarize the history of the research on developing thermostable DNA polymerases as reagents for genetic manipulation and discuss the future of this research field.
Collapse
Affiliation(s)
- Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka, Japan
| |
Collapse
|
19
|
Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int 2014; 2014:287430. [PMID: 25197572 PMCID: PMC4150459 DOI: 10.1155/2014/287430] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.
Collapse
|
20
|
Mao X, Dong J, Hua P, He G, Zhang S, Rossiter SJ. Heteroplasmy and ancient translocation of mitochondrial DNA to the nucleus in the Chinese Horseshoe Bat (Rhinolophus sinicus) complex. PLoS One 2014; 9:e98035. [PMID: 24842827 PMCID: PMC4026475 DOI: 10.1371/journal.pone.0098035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts) as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2) and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.
Collapse
Affiliation(s)
- Xiuguang Mao
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ji Dong
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Panyu Hua
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Guimei He
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institute for Advanced Studies in Multidisciplinary Science and Technology, East China Normal University, Shanghai, China
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2013; 97:10243-54. [DOI: 10.1007/s00253-013-5290-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
|
22
|
Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. BIOSENSORS 2013; 3:18-43. [PMID: 25587397 PMCID: PMC4263587 DOI: 10.3390/bios3010018] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/24/2012] [Indexed: 12/05/2022]
Abstract
Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed.
Collapse
Affiliation(s)
- Laura Maria Zanoli
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail:
| | - Giuseppe Spoto
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail: ; Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
23
|
Miraldo A, Hewitt GM, Dear PH, Paulo OS, Emerson BC. Numts help to reconstruct the demographic history of the ocellated lizard (Lacerta lepida) in a secondary contact zone. Mol Ecol 2012; 21:1005-18. [PMID: 22221514 DOI: 10.1111/j.1365-294x.2011.05422.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In northwestern Iberia, two largely allopatric Lacerta lepida mitochondrial lineages occur, L5 occurring to the south of Douro River and L3 to the north, with a zone of putative secondary contact in the region of the Douro River valley. Cytochrome b sequence chromatograms with polymorphisms at nucleotide sites diagnostic for the two lineages were detected in individuals in the region of the Douro River and further north within the range of L3. We show that these polymorphisms are caused by the presence of four different numts (I-IV) co-occurring with the L3 genome, together with low levels of heteroplasmy. Two of the numts (I and II) are similar to the mitochondrial genome of L5 but are quite divergent from the mitochondrial genome of L3 where they occur. We show that these numts are derived from the mitochondrial genome of L5 and were incorporated in L3 through hybridization at the time of secondary contact between the lineages. The additional incidence of these numts to the north of the putative contact zone is consistent with an earlier postglacial northward range expansion of L5, preceding that of L3. We show that genetic exchange between the lineages responsible for the origin of these numts in L3 after secondary contact occurred prior to, or coincident with, the northward expansion of L3. This study shows that, in the context of phylogeographic analysis, numts can provide evidence for past demographic events and can be useful tools for the reconstruction of complex evolutionary histories.
Collapse
Affiliation(s)
- Andreia Miraldo
- School of Biological Sciences, University of East Anglia, Norwich NR4 7J, UK.
| | | | | | | | | |
Collapse
|
24
|
LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9543-9. [PMID: 21981654 DOI: 10.1021/es202775r] [Citation(s) in RCA: 249] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, the impact of tertiary-treated municipal wastewater on the quantity of several antibiotic resistance determinants in Duluth-Superior Harbor was investigated by collecting surface water and sediment samples from 13 locations in Duluth-Superior Harbor, the St. Louis River, and Lake Superior. Quantitative PCR (qPCR) was used to target three different genes encoding resistance to tetracycline (tet(A), tet(X), and tet(W)), the gene encoding the integrase of class 1 integrons (intI1), and total bacterial abundance (16S rRNA genes) as well as total and human fecal contamination levels (16S rRNA genes specific to the genus Bacteroides ). The quantities of tet(A), tet(X), tet(W), intI1, total Bacteroides , and human-specific Bacteroides were typically 20-fold higher in the tertiary-treated wastewater than in nearby surface water samples. In contrast, the quantities of these genes in the St. Louis River and Lake Superior were typically below detection. Analysis of sequences of tet(W) gene fragments from four different samples collected throughout the study site supported the conclusion that tertiary-treated municipal wastewater is a point source of resistance genes into Duluth-Superior Harbor. This study demonstrates that the discharge of exceptionally treated municipal wastewater can have a statistically significant effect on the quantities of antibiotic resistance genes in otherwise pristine surface waters.
Collapse
Affiliation(s)
- Timothy M LaPara
- Department of Civil Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States.
| | | | | | | | | | | |
Collapse
|
25
|
Zhang X, Ryu SH, Xu Y, Elbaz T, Zekri ARN, Abdelaziz AO, Abdel-Hamid M, Thiers V, Elena SF, Fan X, Di Bisceglie AM. The Core/E1 domain of hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma. J Clin Virol 2011; 52:333-8. [PMID: 21925935 DOI: 10.1016/j.jcv.2011.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/16/2011] [Accepted: 08/22/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a well-documented etiological factor for hepatocellular carcinoma (HCC). As HCV shows remarkable genetic diversity, an interesting and important issue is whether such a high viral genetic diversity plays a role in the incidence of HCC. Prior data on this subject are conflicting. OBJECTIVES Potential association between HCV genetic mutations or strain variability and HCC incidence has been examined through a comparative genetic analysis merely focused on a single HCV subtype (genotype 4a) in a single country (Egypt). STUDY DESIGN The study focused on three HCV sequence datasets with explicit sampling dates and disease patterns. An overlapping HCV Core/E1 domain from three datasets was used as the target for comparative analysis through genetic and phylogenetic approaches. RESULTS Based on partial Core/E1 domain (387 bp), genetic and phylogenetic analysis did not identify any HCC-specific viral mutations and strains, respectively. CONCLUSIONS The Core/E1 domain of HCV genotype 4a in Egypt does not contain HCC-specific mutations or strains. Additionally, sequence errors resulting from the polymerase chain reaction, together with a strong evolutionary pressure on HCV in patients with end-stage liver disease, have significant potential to bias data generation and interpretation.
Collapse
Affiliation(s)
- Xiaoan Zhang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim HS, Lo SC, Wear DJ, Stojadinovic A, Weina PJ, Izadjoo MJ. Improvement of anti-Burkholderia mouse monoclonal antibody from various phage-displayed single-chain antibody libraries. J Immunol Methods 2011; 372:146-61. [DOI: 10.1016/j.jim.2011.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 10/17/2022]
|
27
|
Identification and targeted cultivation of abundant novel freshwater sphingomonads and analysis of their population substructure. Appl Environ Microbiol 2011; 77:7355-64. [PMID: 21873487 DOI: 10.1128/aem.05832-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Little is known with respect to bacterial population structures in freshwater environments. Using complementary culture-based, cloning, and high-throughput Illumina sequencing approaches, we investigated microdiverse clusters of bacteria that comprise members with identical or very similar 16S rRNA gene sequences. Two 16S rRNA phylotypes could be recovered by cultivation in low-nutrient-strength liquid media from two lakes of different trophic status. Both phylotypes were found to be physiologically active in situ throughout most of the year, as indicated by the presence of their rRNA sequences in the samples. Analyses of internal transcribed spacer (ITS1) sequences revealed the presence of seven different sequence types among cultured representatives and the cloned rrn fragments. Illumina sequencing yielded 8,576 ITS1 sequences that encompassed 15 major and numerous rare sequence types. The major ITS1 types exhibited distinct temporal patterns, suggesting that the corresponding Sphingomonadaceae lineages occupy different ecological niches. However, since strains of the same ITS1 type showed highly variable substrate utilization patterns, the potential mechanism of niche separation in Sphingomonadaceae cannot be explained by substrate utilization alone and may be related to other traits.
Collapse
|
28
|
Litosh VA, Wu W, Stupi BP, Wang J, Morris SE, Hersh MN, Metzker ML. Improved nucleotide selectivity and termination of 3'-OH unblocked reversible terminators by molecular tuning of 2-nitrobenzyl alkylated HOMedU triphosphates. Nucleic Acids Res 2011; 39:e39. [PMID: 21227920 PMCID: PMC3064798 DOI: 10.1093/nar/gkq1293] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We describe a novel 3′-OH unblocked reversible terminator with the potential to improve accuracy and read-lengths in next-generation sequencing (NGS) technologies. This terminator is based on 5-hydroxymethyl-2′-deoxyuridine triphosphate (HOMedUTP), a hypermodified nucleotide found naturally in the genomes of numerous bacteriophages and lower eukaryotes. A series of 5-(2-nitrobenzyloxy)methyl-dUTP analogs (dU.I–dU.V) were synthesized based on our previous work with photochemically cleavable terminators. These 2-nitrobenzyl alkylated HOMedUTP analogs were characterized with respect to incorporation, single-base termination, nucleotide selectivity and photochemical cleavage properties. Substitution at the α-methylene carbon of 2-nitrobenzyl with alkyl groups of increasing size was discovered as a key structural feature that provided for the molecular tuning of enzymatic properties such as single-base termination and improved nucleotide selectivity over that of natural nucleotides. 5-[(S)-α-tert-Butyl-2-nitrobenzyloxy]methyl-dUTP (dU.V) was identified as an efficient reversible terminator, whereby, sequencing feasibility was demonstrated in a cyclic reversible termination (CRT) experiment using a homopolymer repeat of ten complementary template bases without detectable UV damage during photochemical cleavage steps. These results validate our overall strategy of creating 3′-OH unblocked reversible terminator reagents that, upon photochemical cleavage, transform back into a natural state. Modified nucleotides based on 5-hydroxymethyl-pyrimidines and 7-deaza-7-hydroxymethyl-purines lay the foundation for development of a complete set of four reversible terminators for application in NGS technologies.
Collapse
|
29
|
Schaerli Y, Stein V, Spiering MM, Benkovic SJ, Abell C, Hollfelder F. Isothermal DNA amplification using the T4 replisome: circular nicking endonuclease-dependent amplification and primase-based whole-genome amplification. Nucleic Acids Res 2010; 38:e201. [PMID: 20921065 PMCID: PMC3001092 DOI: 10.1093/nar/gkq795] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In vitro reconstitution of the bacteriophage T4 replication machinery provides a novel system for fast and processive isothermal DNA amplification. We have characterized this system in two formats: (i) in circular nicking endonuclease-dependent amplification (cNDA), the T4 replisome is supplemented with a nicking endonuclease (Nb.BbvCI) and a reverse primer to generate a well-defined uniform double-stranded linear product and to achieve up to 1100-fold linear amplification of a plasmid in 1 h. (ii) The T4 replisome with its primase (gp61) can also support priming and exponential amplification of genomic DNA in primase-based whole-genome amplification (T4 pWGA). Low amplification biases between 4.8 and 9.8 among eight loci for 0.3–10 ng template DNA suggest that this method is indeed suitable for uniform whole-genome amplification. Finally, the utility of the T4 replisome for isothermal DNA amplification is demonstrated in various applications, including incorporation of functional tags for DNA labeling and immobilization; template generation for in vitro transcription/translation and sequencing; and colony screening and DNA quantification.
Collapse
Affiliation(s)
- Yolanda Schaerli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
30
|
Purification of bacterial genomic DNA in less than 20 min using chelex-100 microwave: examples from strains of lactic acid bacteria isolated from soil samples. Antonie van Leeuwenhoek 2010; 98:465-74. [DOI: 10.1007/s10482-010-9462-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 05/26/2010] [Indexed: 01/05/2023]
|
31
|
Yang GP, Erdman DD, Tondella ML, Fields BS. Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens. J Virol Methods 2009; 162:288-90. [PMID: 19699237 DOI: 10.1016/j.jviromet.2009.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/07/2009] [Accepted: 08/12/2009] [Indexed: 12/01/2022]
Abstract
Tetramethylrhodamine (TAMRA) and black hole quencher 1 (BHQ1) quenched probes and five one-step RT-PCR kits were evaluated in TaqMan real-time RT-PCR assays for detection of respiratory pathogens. The intra-assay variability of the BHQ1 probes were 1.2-2.8-fold lower than those of the TAMRA probes. All kits amplified the specific targets, but differed in their sensitivity by up to 3 orders of magnitude. The AgPath-ID kit provided the best overall performance for all assay targets.
Collapse
Affiliation(s)
- Genyan Patrick Yang
- Centers for Disease Control and Prevention, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.
Collapse
|
33
|
Pendini NR, Polyak SW, Booker GW, Wallace JC, Wilce MCJ. Purification, crystallization and preliminary crystallographic analysis of biotin protein ligase from Staphylococcus aureus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:520-3. [PMID: 18540065 PMCID: PMC2496860 DOI: 10.1107/s1744309108012244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/28/2008] [Indexed: 11/10/2022]
Abstract
Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.
Collapse
Affiliation(s)
- Nicole R. Pendini
- School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton VIC 3800, Australia
| | - Steve W. Polyak
- School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Grant W. Booker
- School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - John C. Wallace
- School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Matthew C. J. Wilce
- Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
34
|
Ekstrøm PO, Khrapko K, Li-Sucholeiki XC, Hunter IW, Thilly WG. Analysis of mutational spectra by denaturing capillary electrophoresis. Nat Protoc 2008; 3:1153-66. [PMID: 18600220 PMCID: PMC2742298 DOI: 10.1038/nprot.2008.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The point mutational spectrum over nearly any 75- to 250-bp DNA sequence isolated from cells, tissues or large populations may be discovered using denaturing capillary electrophoresis (DCE). A modification of the standard DCE method that uses cycling temperature (e.g., +/-5 degrees C), CyDCE, permits optimal resolution of mutant sequences using computer-defined target sequences without preliminary optimization experiments. The protocol consists of three steps: computer design of target sequence including polymerase chain reaction (PCR) primers, high-fidelity DNA amplification by PCR and mutant sequence separation by CyDCE and takes about 6 h. DCE and CyDCE have been used to define quantitative point mutational spectra relating to errors of DNA polymerases, human cells in development and carcinogenesis, common gene-disease associations and microbial populations. Detection limits are about 5 x 10(-3) (mutants copies/total copies) but can be as low as 10(-6) (mutants copies/total copies) when DCE is used in combination with fraction collection for mutant enrichment. No other technological approach for unknown mutant detection and enumeration offers the sensitivity, generality and efficiency of the approach described herein.
Collapse
Affiliation(s)
- Per O Ekstrøm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA. or
| | | | | | | | | |
Collapse
|
35
|
Ochieng JW, Henry RJ, Baverstock PR, Steane DA, Shepherd M. Nuclear ribosomal pseudogenes resolve a corroborated monophyly of the eucalypt genus Corymbia despite misleading hypotheses at functional ITS paralogs. Mol Phylogenet Evol 2007; 44:752-64. [PMID: 17570687 DOI: 10.1016/j.ympev.2007.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 03/26/2007] [Accepted: 04/15/2007] [Indexed: 01/08/2023]
Abstract
Divergent paralogs can create both obstacles and opportunities for phylogenetic reconstruction. Phylogenetic relationships among eucalypt genera have been incongruent among datasets in previous studies, where morphological characters supported monophyly of the genus Corymbia, while intergenic spacers of the nuclear ribosomes (ITS) and chloroplast loci (trnL, trnH, psbA) showed Corymbia as either equivocal or paraphyletic. Ribosomal DNA occurs in multiple copies in a genome. We cloned and sequenced the nrITS to investigate if gene duplication was the cause of incongruence among trees in the eucalypts. Three ITS riboforms, two of them widespread, were recovered within some genomes. One of the ITS riboforms recovered a robust phylogeny showing Corymbia as a monophyletic genus, corroborating the evidence from morphology, fossil data, a recent ITS/ETS dataset and microsatellites (SSRs). Compelling evidence suggested that this divergent riboform is a pseudogene, i.e., non-functional paralog: comparatively lower GC content suggesting lower structural stability, deamination-like mutations at potential methylation sites, lack of conserved helices and hairpins and conspicuously lower thermodynamic stability in secondary structures. Phylogenies from the apparently functional riboform retained Corymbia as paraphyletic. We show here that pseudogenes can recover a well-corroborated phylogeny whereas their functional paralogs show misleading hypotheses. We explain that phylogenetic signals may be obscured when functional constraints in ITS necessitate compensatory mutations in the secondary structure helices involved in RNA transcription, whereas pseudogenes mutate under neutrality.
Collapse
Affiliation(s)
- Joel W Ochieng
- Centre for Plant Conservation Genetics, Southern Cross University, Military Road, P.O. Box 157, Lismore, NSW 2480, Australia.
| | | | | | | | | |
Collapse
|
36
|
Gale JM, Tafoya GB. Evaluation of 15 Polymerases and Phosphorothioate Primer Modification for Detection of UV-induced C:G to T:A Mutations by Allele-specific PCR¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00035.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Gale JM, Tafoya GB. Evaluation of 15 polymerases and phosphorothioate primer modification for detection of UV-induced C:G to T:A mutations by allele-specific PCR. Photochem Photobiol 2004; 79:461-9. [PMID: 15191056 DOI: 10.1562/2003-11-12-ra.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allele-specific polymerase chain reaction is based on polymerase extension from primers that contain a 3' end base that is complementary to a specific mutation and inhibition of extension with wild-type DNA due to a 3' end mismatch. Taq polymerase is commonly used for this assay, but because of the high rate of nucleotide extension from primer 3' base mismatches documented for Taq polymerase, high sensitivity is difficult to achieve. To determine whether other polymerases might improve assay sensitivity, 15 polymerases were tested with mutation-specific primers for two ultraviolet-induced mutations in the human 5S ribosomal RNA genes. Of the 15 polymerases tested, six were capable of discriminating these mutations at levels equivalent to or better than Taq polymerase. All primers were phosphorothioate modified on the 3' end to block removal of the critical 3' mutation-specific base by polymerases containing 3' --> 5' exonuclease "proofreading" activity. The effectiveness of phosphorothioate modification was measured in mock polymerase chain reaction reactions and a time course. All six enzymes containing this exonuclease activity showed some ability to digest phosphorothioate-modified primers and could be divided into two groups, showing fast and slow digestion kinetics. Of the three enzymes that showed slow digestion kinetics, two also showed significantly slower digestion kinetics of unmodified primers.
Collapse
Affiliation(s)
- James M Gale
- Department of Cell Biology and Physiology, Steve Schiff Center for Skin Cancer Research, University of New Mexico School Health Sciences Center, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
38
|
Abstract
The amplification efficiencies of several polymerase chain reaction (PCR) enzymes were compared using real-time quantitative PCR with SYBR Green I detection. Amplification data collected during the exponential phase of PCR are highly reproducible, and PCR enzyme performance comparisons based upon efficiency measurements are considerably more accurate than those based on endpoint analysis. DNA polymerase efficiencies were determined under identical conditions using five different amplicon templates that varied in length or percentage GC content. Pfu- and Taq-based formulations showed similar efficiencies when amplifying shorter targets (<900 bp) with 45 to 56% GC content. However, when amplicon length or GC content was increased, Pfu formulations with dUTPase exhibited significantly higher efficiencies than Taq, Pfu, and other archaeal DNA polymerases. We discuss the implications of these results.
Collapse
Affiliation(s)
- Bahram Arezi
- Stratagene Cloning Systems, 11011 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
39
|
Wang W, Kham SKY, Yeo GH, Quah TC, Chong SS. Multiplex minisequencing screen for common Southeast Asian and Indian beta-thalassemia mutations. Clin Chem 2003; 49:209-18. [PMID: 12560342 DOI: 10.1373/49.2.209] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Beta-thalassemia is endemic to many regions in Southeast Asia and India, and <20 beta-globin gene mutations account for > or =90% of beta-thalassemia alleles in these places. We describe a multiplex minisequencing assay to detect these common mutations. METHODS Gap-PCR was used to simultaneously amplify the beta-globin gene from genomic DNA and to detect the Delta619bp deletion mutation. Multiplex minisequencing was then performed on the amplified beta-globin fragment to detect an additional 15 common Southeast Asian and Indian beta-thalassemia mutations. Site-specific primers of different lengths were subjected to multiple rounds of annealing and single-nucleotide extension in the presence of thermostable DNA polymerase and the four dideoxynucleotides, each labeled with a different fluorophore. Minisequencing products were separated and detected by capillary electrophoresis, followed by automated genotyping. The optimized assay was subjected to a double-blind validation analysis of 89 beta-thalassemia and wild-type DNA samples of known genotype. RESULTS Homozygous wild-type or mutant DNA samples produced electropherograms containing only a single colored peak for each mutation site, whereas samples heterozygous for a specific mutation displayed two different-colored peaks for that mutation site. Samples were automatically genotyped based on color and position of primer peaks in the electropherogram. In the double-blind validation analysis, all 89 DNA samples were genotyped correctly (100% assay specificity). CONCLUSIONS The described semiautomated multiplex minisequencing assay can detect the most common Southeast Asian and Indian beta-thalassemia mutations, is amenable to high-throughput scale up, and may bring population-based screening of beta-thalassemia in endemic regions a step closer to implementation.
Collapse
Affiliation(s)
- Wen Wang
- Department of Pediatrics, National University of Singapore, Singapore 119074, Singapore
| | | | | | | | | |
Collapse
|
40
|
Distel DL, Beaudoin DJ, Morrill W. Coexistence of multiple proteobacterial endosymbionts in the gills of the wood-boring Bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl Environ Microbiol 2002; 68:6292-9. [PMID: 12450854 PMCID: PMC134422 DOI: 10.1128/aem.68.12.6292-6299.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wood-boring bivalves of the family Teredinidae (commonly called shipworms) are known to harbor dense populations of gram-negative bacteria within specialized cells (bacteriocytes) in their gills. These symbionts are thought to provide enzymes, e.g., cellulase and dinitrogenase, which assist the host in utilizing wood as a primary food source. A cellulolytic, dinitrogen-fixing bacterium, Teredinibacter turnerae, has been isolated from the gill tissues of numerous teredinid bivalves and has been proposed to constitute the sole or predominant symbiont of this bivalve family. Here we demonstrate that one teredinid species, Lyrodus pedicellatus, contains at least four distinct bacterial 16S rRNA types within its gill bacteriocytes, one of which is identical to that of T. turnerae. Phylogenetic analyses indicate that the three newly detected ribotypes are derived from gamma proteobacteria that are related to but distinct (>6.5% sequence divergence) from T. turnerae. In situ hybridizations with 16S rRNA-directed probes demonstrated that the pattern of occurrence of symbiont ribotypes within bacteriocytes was predictable and specific, with some bacteriocytes containing two symbiont ribotypes. However, only two of the six possible pairwise combinations of the four ribotypes were observed to cooccur within the same host cells. The results presented here are consistent with the existence of a complex multiple symbiosis in this shipworm species.
Collapse
Affiliation(s)
- Daniel L Distel
- Department of Biochemistry, Microbiology, and Molecular Biology, University of Maine, Orono 04469, USA.
| | | | | |
Collapse
|
41
|
Belanger AE, Lai A, Brackman MA, LeBlanc DJ. PCR-based ordered genomic libraries: a new approach to drug target identification for Streptococcus pneumoniae. Antimicrob Agents Chemother 2002; 46:2507-12. [PMID: 12121925 PMCID: PMC127335 DOI: 10.1128/aac.46.8.2507-2512.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Described here are the development and validation of a novel approach to identify genes encoding drug targets in Streptococcus pneumoniae. The method relies on the use of an ordered genomic library composed of PCR amplicons that were generated under error-prone conditions so as to introduce random mutations into the DNA. Since some of the mutations occur in drug target-encoding genes and subsequently affect the binding of the drug to its respective cellular target, amplicons containing drug targets can be identified as those producing drug-resistant colonies when transformed into S. pneumoniae. Examination of the genetic content of the amplicon giving resistance coupled with bioinformatics and additional genetic approaches could be used to rapidly identify candidate drug target genes. The utility of this approach was verified by using a number of known antibiotics. For drugs with single protein targets, amplicons were identified that rendered S. pneumoniae drug resistant. Assessment of amplicon composition revealed that each of the relevant amplicons contained the gene encoding the known target for the particular drug tested. Fusidic acid-resistant mutants that resulted from the transformation of S. pneumoniae with amplicons containing fusA were further characterized by sequence analysis. A single mutation was found to occur in a region of the S. pneumoniae elongation factor G protein that is analogous to that already implicated in other bacteria as being associated with fusidic acid resistance. Thus, in addition to facilitating the identification of genes encoding drug targets, this method could provide strains that aid future mechanistic studies.
Collapse
Affiliation(s)
- Aimee E Belanger
- Infectious Disease Research, Lilly Research Laboratories, Eli Lilly and Company, Drop Code 0428, Indianapolis, IN 46285, USA.
| | | | | | | |
Collapse
|
42
|
|
43
|
Mayol M, Rosselló JA. Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol Phylogenet Evol 2001; 19:167-76. [PMID: 11341800 DOI: 10.1006/mpev.2001.0934] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular systematics of Quercus (Fagaceae) was recently assessed by two teams using independently generated ITS sequences. Although the results disagreed in several remarkable features, the phylogenetic trees for either hypothesis were highly supported by bootstrap resampling. We have reanalyzed the ITS sequences used by both teams (eight taxa) to reveal the underlying patterns of this divergence. Within species, conspicuous length and G + C% divergence were evident in most sequence comparisons. In addition, a high rate of substitutions and deletions involving highly conserved motifs in both ITS spacers were present in a set of sequences. This was coupled with a less thermodynamic stability in the RNA structure, lacking conserved hairpins that are putatively involved in the processing of the RNA transcripts. Compelling evidence suggests that the divergent ITS alleles reported by one team are pseudogenes, i.e., nonfunctional paralogous loci. The hypothesis that the contrasting phylogenetic histories drawn from Quercus using ITS data are not strictly related to technical differences between laboratories, but that they have rather been generated from the analysis of paralogous sequences, best reconciles the available data. The risk of incorporating ITS paralogues in plant evolutionary studies which can distortion the phylogenetic signal should caution molecular systematists. Without a detailed inspection of some basic features of the sequence, including the integrity of the conserved motifs and the thermodynamic stability of the secondary structures of the RNA transcripts, errors in evolutionary inferences could be easily overlooked.
Collapse
Affiliation(s)
- M Mayol
- Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, E-08193, Spain
| | | |
Collapse
|
44
|
Expression of Trigonopsis variabilis D-amino acid oxidase gene in Escherichia coli and characterization of its inactive mutants. Enzyme Microb Technol 2000; 27:482-491. [PMID: 10978770 DOI: 10.1016/s0141-0229(00)00247-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The D-amino acid oxidase cDNA gene (daao) of Trigonopsis variabilis was prepared by reverse transcriptase-polymerase chain reaction (PCR) and cloned into Escherichia coli expression vector, pTrc99A, under the control of tac promoter. Expression of daao gene significantly affected the growth and morphology of E. coli. The highest D-amino acid oxidase (DAAO) activity was 705 U (mg of protein)(-)(1), which was about 12-fold higher than that of D-alanine-induced T. variabilis. The DAAO protein exhibited activity on native-PAGE and had a M(r)value of 39.3 kDa. We also constructed an expression plasmid, pKm-DAAO, in which kanamycin instead of ampicillin was used as the selective marker. High-performance liquid chromatography (HPLC) analysis demonstrated that cephalosporin C could be converted to 7-glutarylcephalosporanic acid by cell-free extract of E. coli harboring pKm-DAAO. Four inactive DAAO mutants were obtained by error-prone PCR. Sequence analysis of these four DAAO mutants indicated the occurrence of mutations at Val-167, Pro-291, Pro-309, and Ala-343 residues. The His(6)-tagged DAAOs were expressed in E. coli and purified by nickel ion affinity chromatography. The results showed that all DAAO mutants lost their enzymatic activities and characteristic adsorption spectra for flavoenzyme. Based on the crystal structure of a homologous protein, pig DAAO, it is suggested that these four residues may play essential structural roles in DAAO conformation, thereby influencing DAAO's catalytic activity.
Collapse
|
45
|
Moore GL, Maranas CD. Modeling DNA mutation and recombination for directed evolution experiments. J Theor Biol 2000; 205:483-503. [PMID: 10882567 DOI: 10.1006/jtbi.2000.2082] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Directed evolution experiments rely on the cyclical application of mutagenesis, screening and amplification in a test tube. They have led to the creation of novel proteins for a wide range of applications. However, directed evolution currently requires an uncertain, typically large, number of labor intensive and expensive experimental cycles before proteins with improved function are identified. This paper introduces predictive models for quantifying the outcome of the experiments aiding in the setup of directed evolution for maximizing the chances of obtaining DNA sequences encoding enzymes with improved activities. Two methods of DNA manipulation are analysed: error-prone PCR and DNA recombination. Error-prone PCR is a DNA replication process that intentionally introduces copying errors by imposing mutagenic reaction conditions. The proposed model calculates the probability of producing a specific nucleotide sequence after a number of PCR cycles. DNA recombination methods rely on the mixing and concatenation of genetic material from a number of parent sequences. This paper focuses on modeling a specific DNA recombination protocol, DNA shuffling. Three aspects of the DNA shuffling procedure are modeled: the fragment size distribution after random fragmentation by DNase I, the assembly of DNA fragments, and the probability of assembling specific sequences or combinations of mutations. Results obtained with the proposed models compare favorably with experimental data.
Collapse
Affiliation(s)
- G L Moore
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
46
|
Fattorini P, Ciofuli R, Cossutta F, Giulianini P, Edomi P, Furlanut M, Previderè C. Fidelity of polymerase chain reaction-direct sequencing analysis of damaged forensic samples. Electrophoresis 1999; 20:3349-57. [PMID: 10608700 DOI: 10.1002/(sici)1522-2683(19991101)20:17<3349::aid-elps3349>3.0.co;2-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polymerase chain reaction (PCR) direct sequence analysis was performed on aged forensic samples, six or thirteen years old. This method allowed unambiguous genetic typing, but PCR products from such samples showed several artifacts. Control samples generated sequence ambiguities at a frequency of 1 in 567 bases, but the aged samples had an error frequency about 30-fold higher. In order to study the molecular composition of these aged DNA samples, reversed-phase high performance liquid chromatography (HPLC) was performed. Reduced amounts of the four DNA bases were observed and anomalous peaks were found. These peaks were analyzed by ionization mass spectrometry and identified as molecular products of DNA oxidation. The frequency of sequencing artifacts was found to be proportional to the decay of the PCR templates. Although PCR fidelity is a relevant concern in the forensic analysis of damaged samples, our data indicate that the risk of mistyping is circumventable by sequencing both strands and by performing replicate amplifications from the same PCR template.
Collapse
Affiliation(s)
- P Fattorini
- Institute of Legal Medicine, University of Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
47
|
Day JP, Hammer RP, Bergstrom D, Barany F. Nucleotide analogs and new buffers improve a generalized method to enrich for low abundance mutations. Nucleic Acids Res 1999; 27:1819-27. [PMID: 10101189 PMCID: PMC148389 DOI: 10.1093/nar/27.8.1819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A high sensitivity method for detecting low level mutations is under development. A PCR reaction is performed in which a restriction site is introduced in wild-type DNA by alteration of specific bases. Digestion of wild-type DNA by the cognate restriction endonuclease (RE) enriches for products with mutations within the recognition site. After reamplification, mutations are identified by a ligation detection reaction (LDR). This PCR/RE/LDR assay was initially used to detect PCR error in known wild-type samples. PCR error was measured in low |Deltap K a| buffers containing tricine, EPPS and citrate, as well as otherwise identical buffers containing Tris. PCR conditions were optimized to minimize PCR error using perfect match primers at the Msp I site in the p53 tumor suppressor gene at codon 248. However, since mutations do not always occur within pre-existing restriction sites, a generalized PCR/RE/LDR method requires the introduction of a new restriction site. In principle, PCR with mismatch primers can alter specific bases in a sequence and generate a new restriction site. However, extension from 3' mismatch primers may generate misextension products. We tested conversion of the Msp I (CCGG) site to a Taq I site (TCGA). Conversion was unsuccessful using a natural base T mismatch primer set. Conversion was successful when modified primers containing the 6 H,8 H -3, 4-dihydropyrimido[4,5- c ][1,2]oxazine-7-one (Q6) base at 3'-ends were used in three cycles of preconversion PCR prior to conversion PCR using the 3' natural base T primers. The ability of the pyrimidine analog Q6 to access both a T-like and C-like tautomer appears to greatly facilitate the conversion.
Collapse
Affiliation(s)
- J P Day
- Department of Microbiology, Box 62, Hearst Microbiology Research Center, Strang Cancer Prevention Center,Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Somatic hypermutation is the most critical mechanism underlying the diversification of Ig genes. Although mutation occurs specifically in B cells during the germinal center reaction, it remains a matter of debate whether the mutation machinery also targets non-Ig genes. We have studied mutations in the 5′ noncoding region of the Bcl6 gene in different subtypes of lymphomas. We found frequent hypermutation in follicular lymphoma (25 of 59 = 42%) (germinal center cell origin) and mucosa-associated lymphoid tissue (MALT) lymphoma (19 of 45 = 42%) (postgerminal center), but only occasionally in mantle cell lymphoma (1 of 21 = 4.8%) (pregerminal center). Most mutations were outside the motifs potentially important for transcription, suggesting they were not important in lymphomagenesis but may, like Ig mutation, represent an inherent feature of the lymphoma precursor cells. Therefore, we investigated their normal cell counterparts microdissected from a reactive tonsil. Bcl6 mutation was found in 13 of 24 (54%) clones from the germinal centre but only in 1 of 24 (4%) clones from the naive B cells of the mantle zone. The frequency, distribution, and nature of these mutations were similar to those resulting from the Ig hypermutation process. The results show unequivocal evidence of non-Ig gene hypermutation in germinal center B cells and provide fresh insights into the process of hypermutation and lymphomagenesis.
Collapse
|
49
|
Abstract
AbstractSomatic hypermutation is the most critical mechanism underlying the diversification of Ig genes. Although mutation occurs specifically in B cells during the germinal center reaction, it remains a matter of debate whether the mutation machinery also targets non-Ig genes. We have studied mutations in the 5′ noncoding region of the Bcl6 gene in different subtypes of lymphomas. We found frequent hypermutation in follicular lymphoma (25 of 59 = 42%) (germinal center cell origin) and mucosa-associated lymphoid tissue (MALT) lymphoma (19 of 45 = 42%) (postgerminal center), but only occasionally in mantle cell lymphoma (1 of 21 = 4.8%) (pregerminal center). Most mutations were outside the motifs potentially important for transcription, suggesting they were not important in lymphomagenesis but may, like Ig mutation, represent an inherent feature of the lymphoma precursor cells. Therefore, we investigated their normal cell counterparts microdissected from a reactive tonsil. Bcl6 mutation was found in 13 of 24 (54%) clones from the germinal centre but only in 1 of 24 (4%) clones from the naive B cells of the mantle zone. The frequency, distribution, and nature of these mutations were similar to those resulting from the Ig hypermutation process. The results show unequivocal evidence of non-Ig gene hypermutation in germinal center B cells and provide fresh insights into the process of hypermutation and lymphomagenesis.
Collapse
|
50
|
Abstract
Tissues from nine species of plants and fungi were treated separately with eight solutions, including seven cytological fixatives (3.7% formaldehyde at pH 3.0 and 7.0, FAA at pH 3.0 and 7. 0, 1% glutaraldehyde at pH 3.0 and 7.0, and Lavdowsky's fluid at pH 3.0) and one storage buffer (SED=NaCl-EDTA-DMSO, pH 7.0). DNA from untreated tissue and SED-treated tissue was of high molecular weight (>50 kb). DNA from glutaraldehyde-treated tissues averaged 20 kb in length, while DNA from all other treatments averaged less than 8 kb in length. Each DNA was subjected to amplification using the polymerase chain reaction, followed by sequencing of 250 bp near the 3' end of the nuclear rRNA small subunit gene. Glutaraldehyde treatments (at pH 3.0 and 7.0) produced damaged bases at rates of 0. 0% to less than 0.1%. Treatments with Lavdowsky's fluid (containing mercuric chloride), FAA at pH 7.0, and SED produced rates of 0.0% to 3.6%. FAA at pH 3.0 produced rates of 7.6% to 15.6%. Nearly 100 attempts to amplify from specimens treated with 3.7% formaldehyde (at pH 3.0 and 7.0) failed, indicating extreme damage to the DNA.
Collapse
Affiliation(s)
- M P Douglas
- Environmental and Forest Biology, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA
| | | |
Collapse
|