1
|
Fusco G, Minelli A. Multiple developmental pathways in organisms with developmentally complex life cycles. Front Cell Dev Biol 2025; 13:1585073. [PMID: 40438145 PMCID: PMC12116582 DOI: 10.3389/fcell.2025.1585073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/30/2025] [Indexed: 06/01/2025] Open
Abstract
One aspect under which an organism's life cycle can be considered complex is when the very same organism can undertake, or obligatorily undertakes, multiple developmental pathways. Examples are organisms with alternation of generations, like most plants, or organisms with reproductive and/or developmental options, like many marine invertebrates. With a broad taxonomic coverage across the eukaryotes, we survey these developmentally complex life cycles, presenting selected case studies to illustrate the relationships between the diverse developmental pathways within the same organism for what concerns morphogenesis and gene expression. We highlight the deep connections between the different types of cycles and show their relationship with phenotypic plasticity, sexual dimorphism and ecological adaptation. The collected materials and organized concepts can provide the basis for future investigations on the disparity of complex life cycles and their evolution across the tree of life.
Collapse
Affiliation(s)
- Giuseppe Fusco
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
2
|
Tan CH, Wang TY, Park H, Lomenick B, Chou TF, Sternberg PW. Single-tissue proteomics in Caenorhabditis elegans reveals proteins resident in intestinal lysosome-related organelles. Proc Natl Acad Sci U S A 2024; 121:e2322588121. [PMID: 38861598 PMCID: PMC11194598 DOI: 10.1073/pnas.2322588121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
O'Keeffe C, Greenwald I. EGFR signal transduction is downregulated in C. elegans vulval precursor cells during dauer diapause. Development 2022; 149:dev201094. [PMID: 36227589 PMCID: PMC9793418 DOI: 10.1242/dev.201094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Caenorhabditis elegans larvae display developmental plasticity in response to environmental conditions: in adverse conditions, second-stage larvae enter a reversible, long-lived dauer stage instead of proceeding to reproductive adulthood. Dauer entry interrupts vulval induction and is associated with a reprogramming-like event that preserves the multipotency of vulval precursor cells (VPCs), allowing vulval development to reinitiate if conditions improve. Vulval induction requires the LIN-3/EGF-like signal from the gonad, which activates EGFR-Ras-ERK signal transduction in the nearest VPC, P6.p. Here, using a biosensor and live imaging we show that EGFR-Ras-ERK activity is downregulated in P6.p in dauers. We investigated this process using gene mutations or transgenes to manipulate different steps of the pathway, and by analyzing LET-23/EGFR subcellular localization during dauer life history. We found that the response to EGF is attenuated at or upstream of Ras activation, and discuss potential membrane-associated mechanisms that could achieve this. We also describe other findings pertaining to the maintenance of VPC competence and quiescence in dauer larvae. Our analysis indicates that VPCs have L2-like and unique dauer stage features rather than features of L3 VPCs in continuous development.
Collapse
Affiliation(s)
- Catherine O'Keeffe
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
4
|
Fu X, Ezemaduka AN, Lu X, Chang Z. The Caenorhabditis elegans 12-kDa small heat shock proteins with little in vitro chaperone activity play crucial roles for its dauer formation, longevity, and reproduction. Protein Sci 2021; 30:2170-2182. [PMID: 34272907 DOI: 10.1002/pro.4160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/31/2023]
Abstract
Small heat shock proteins (sHSPs) are known to exhibit in vitro chaperone activity by suppressing the aggregation of misfolded proteins. The 12-kDa sHSPs (Hsp12s) subfamily members from Caenorhabditis elegans, including Hsp12.2, Hsp12.3, and Hsp12.6, however, are devoid of such chaperone activity, and their in vivo functions are poorly understood. Here we verified that Hsp12.1, similar to its homologs Hsp12.2, Hsp12.3, and Hsp12.6, hardly exhibited any chaperone activity. Strikingly, we demonstrated that these Hsp12s seem to play crucial physiological roles in C. elegans, for suppressing dauer formation and promoting both longevity and reproduction. A unique sHSP gene from Filarial nematode worm Brugia malayi was identified such that it encodes two products, one as a full-length Hsp12.6 protein and the other one having an N-terminal arm of normal length but lacks the C-terminal extension. This gene may represent an intermediate form in evolution from a common sHSP to a Hsp12. Together, our study offers insights on what biological functions the chaperone-defective sHSPs may exhibit and also implicates an evolutionary scenario for the unique Hsp12s subfamily.
Collapse
Affiliation(s)
- Xinmiao Fu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou City, Fujian Province, China.,School of Life Sciences, Peking University, Beijing, China
| | - Anastasia N Ezemaduka
- School of Life Sciences, Peking University, Beijing, China.,Key Laboratory of Wetland Ecology and Environment, Northeast institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xinping Lu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Zengyi Chang
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Developmental plasticity and the response to nutrient stress in Caenorhabditis elegans. Dev Biol 2021; 475:265-276. [PMID: 33549550 DOI: 10.1016/j.ydbio.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Developmental plasticity refers the ability of an organism to adapt to various environmental stressors, one of which is nutritional stress. Caenorhabditis elegans require various nutrients to successfully progress through all the larval stages to become a reproductive adult. If nutritional criteria are not satisfied, development can slow or completely arrest. In poor growth conditions, the animal can enter various diapause stages, depending on its developmental progress. In C. elegans, there are three well-characterized diapauses: the L1 arrest, the dauer diapause, and adult reproductive diapause, each associated with drastic changes in metabolism and germline development. At the centre of these changes is AMP-activated protein kinase (AMPK). AMPK is a metabolic regulator that maintains energy homeostasis, particularly during times of nutrient stress. Without AMPK, metabolism is disrupted during dauer, leading to the rapid consumption of lipid stores as well as misregulation of metabolic enzymes, leading to reduced survival. During the L1 arrest and dauer diapause, AMPK is responsible for ensuring germline quiescence by modifying the germline chromatin landscape to maintain germ cell integrity until conditions improve. Similar to classic hormonal signalling, small RNAs also play a critical role in regulating development and behaviour in a cell non-autonomous fashion. Thus, during the challenges associated with developmental plasticity, AMPK summons an army of signalling pathways to work collectively to preserve reproductive fitness during these periods of unprecedented uncertainty.
Collapse
|
6
|
Tarazona E, Lucas-Lledó JI, Carmona MJ, García-Roger EM. Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes. Sci Rep 2020; 10:21366. [PMID: 33288800 PMCID: PMC7721884 DOI: 10.1038/s41598-020-77727-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 12/02/2022] Open
Abstract
In unpredictable environments in which reliable cues for predicting environmental variation are lacking, a diversifying bet-hedging strategy for diapause exit is expected to evolve, whereby only a portion of diapausing forms will resume development at the first occurrence of suitable conditions. This study focused on diapause termination in the rotifer Brachionus plicatilis s.s., addressing the transcriptional profile of diapausing eggs from environments differing in the level of predictability and the relationship of such profiles with hatching patterns. RNA-Seq analyses revealed significant differences in gene expression between diapausing eggs produced in the laboratory under combinations of two contrasting selective regimes of environmental fluctuation (predictable vs unpredictable) and two different diapause conditions (passing or not passing through forced diapause). The results showed that the selective regime was more important than the diapause condition in driving differences in the transcriptome profile. Most of the differentially expressed genes were upregulated in the predictable regime and mostly associated with molecular functions involved in embryo morphological development and hatching readiness. This was in concordance with observations of earlier, higher, and more synchronous hatching in diapausing eggs produced under the predictable regime.
Collapse
Affiliation(s)
- Eva Tarazona
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - J Ignacio Lucas-Lledó
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - María José Carmona
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain
| | - Eduardo M García-Roger
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de València, Valencia, Spain.
| |
Collapse
|
7
|
Chen HY, Toullec JY, Lee CY. The Crustacean Hyperglycemic Hormone Superfamily: Progress Made in the Past Decade. Front Endocrinol (Lausanne) 2020; 11:578958. [PMID: 33117290 PMCID: PMC7560641 DOI: 10.3389/fendo.2020.578958] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Early studies recognizing the importance of the decapod eyestalk in the endocrine regulation of crustacean physiology-molting, metabolism, reproduction, osmotic balance, etc.-helped found the field of crustacean endocrinology. Characterization of putative factors in the eyestalk using distinct functional bioassays ultimately led to the discovery of a group of structurally related and functionally diverse neuropeptides, crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), and mandibular organ-inhibiting hormone (MOIH). These peptides, along with the first insect member (ion transport peptide, ITP), constitute the original arthropod members of the crustacean hyperglycemic hormone (CHH) superfamily. The presence of genes encoding the CHH-superfamily peptides across representative ecdysozoan taxa has been established. The objective of this review is to, aside from providing a general framework, highlight the progress made during the past decade or so. The progress includes the widespread identification of the CHH-superfamily peptides, in particular in non-crustaceans, which has reshaped the phylogenetic profile of the superfamily. Novel functions have been attributed to some of the newly identified members, providing exceptional opportunities for understanding the structure-function relationships of these peptides. Functional studies are challenging, especially for the peptides of crustacean and insect species, where they are widely expressed in various tissues and usually pleiotropic. Progress has been made in deciphering the roles of CHH, ITP, and their alternatively spliced counterparts (CHH-L, ITP-L) in the regulation of metabolism and ionic/osmotic hemostasis under (eco)physiological, developmental, or pathological contexts, and of MIH in the stimulation of ovarian maturation, which implicates it as a regulator for coordinating growth (molt) and reproduction. In addition, experimental elucidation of the steric structure and structure-function relationships have given better understanding of the structural basis of the functional diversification and overlapping among these peptides. Finally, an important finding was the first-ever identification of the receptors for this superfamily of peptides, specifically the receptors for ITPs of the silkworm, which will surely give great impetus to the functional study of these peptides for years to come. Studies regarding recent progress are presented and synthesized, and prospective developments remarked upon.
Collapse
Affiliation(s)
- Hsiang-Yin Chen
- Department of Aquaculture, National Penghu University of Science and Technology, Magong, Taiwan
| | - Jean-Yves Toullec
- Sorbonne Université, Faculté des Sciences, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Chi-Ying Lee
- Graduate Program of Biotechnology and Department of Biology, National Changhua University of Education, Changhua, Taiwan
| |
Collapse
|
8
|
Male reproductive tract antimicrobial expression in the extremes of ages of rats. Gene 2019; 710:218-232. [PMID: 31158448 DOI: 10.1016/j.gene.2019.05.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 11/23/2022]
Abstract
Alterations in the global gene expression profile are considered to contribute to the various physiological and pathological changes during the course of ageing. Genes that code for the molecular components of the innate system are alter markedly as ageing occurs; and this may define the susceptibility of very young and very old individuals to reproductive tract infections. The expression pattern of genes that code for beta-defensins (effectors of innate immune response) in male reproductive tract tissues of different stages of ageing is not yet reported. Further, the induction of beta-defensins during endotoxin challenge and whether epigenetic modulators can influence the expression of these genes in different stages of ageing are not reported. We analyzed the basal mRNA levels of beta-defensins and defensin-like proteins (Sperm Associated Antigen 11 (SPAG11) family members), their induction during endotoxin challenge and modulation by epigenetic modifiers (Trichostatin A and Azacytidine) in the caput, cauda, testis, prostate and seminal vesicle of rats that represent early stage to late stages of life (20 day to 730 day old). We observed differential basal gene expression pattern in the male reproductive tract tissues and the induction by LPS was not consistent neither among the age groups not the tissues analyzed. Trichostatin A and Azacytidine also influenced antimicrobial gene expression and the pattern was not consistent in different tissues obtained from different age groups. Results of this study demonstrate that antimicrobial gene expression varies to a great extent during ageing and is strongly influenced by endotoxins and epigenetic modulators.
Collapse
|
9
|
White PS, Penley MJ, Tierney ARP, Soper DM, Morran LT. Dauer life stage of Caenorhabditis elegans induces elevated levels of defense against the parasite Serratia marcescens. Sci Rep 2019; 9:11575. [PMID: 31399616 PMCID: PMC6688991 DOI: 10.1038/s41598-019-47969-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/23/2019] [Indexed: 01/17/2023] Open
Abstract
Host-parasite research often focuses on a single host life stage, yet different life stages may exhibit different defenses. The nematode Caenorhabditis elegans has an alternate dispersal life stage, dauer. Despite dauer's importance in nature, we know little of how it responds to parasites. Previous research indicates that non-dauer C. elegans prefer to consume the virulent bacterial parasite, Serratia marcescens, when given a choice between the parasite and benign Escherichia coli. Here, we compared the preferences of dauer individuals from six strains of C. elegans to the preferences of other life stages. We found that dauer individuals exhibited reduced preference for S. marcescens, and dauers from some strains preferred E. coli to S. marcescens. In addition to testing food preference, a mechanism of parasite avoidance, we also measured host mortality rates after direct parasite exposure to determine if life stage also altered host survival. Overall, dauer individuals exhibited reduced mortality rates. However, dauer versus non-dauer larvae mortality rates also varied significantly by host strain. Collectively, we found evidence of dauer-induced parasite avoidance and reduced mortality in the presence of a parasite, but these effects were strain-specific. These results demonstrate the importance of host life stage and genotype when assessing infection dynamics.
Collapse
Affiliation(s)
- P Signe White
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, 30322, USA.
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Aimee R Paulk Tierney
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Deanna M Soper
- Biology Department, University of Dallas, Irving, TX, 75062, USA
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
10
|
Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci 2019; 20:ijms20163898. [PMID: 31405082 PMCID: PMC6719183 DOI: 10.3390/ijms20163898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Pheromones are neuronal signals that stimulate conspecific individuals to react to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated and biochemically defined in 2005. In this review, we highlight the current research on the structural diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation of ascarylose to very long-chain fatty acids that are then processed via peroxisomal β-oxidation to yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension, repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried out in coordination with three G protein-coupled receptors that function as putative pheromone receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid β-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling, including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end, we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary research area within chemical ecology for system-wide investigation of animal pheromones.
Collapse
|
11
|
Park H, Shin MS, Kim M, Bilsborrow JB, Mohanty S, Montgomery RR, Shaw AC, You S, Kang I. Transcriptomic analysis of human IL-7 receptor alpha low and high effector memory CD8 + T cells reveals an age-associated signature linked to influenza vaccine response in older adults. Aging Cell 2019; 18:e12960. [PMID: 31044512 PMCID: PMC6612637 DOI: 10.1111/acel.12960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/10/2019] [Indexed: 12/20/2022] Open
Abstract
Here, we investigated the relationship of the age‐associated expansion of IL‐7 receptor alpha low (IL‐7Rαlow) effector memory (EM) CD8+ T cells with the global transcriptomic profile of peripheral blood cells in humans. We found 231 aging signature genes of IL‐7Rαlow EM CD8+ T cells that corresponded to 15% of the age‐associated genes (231/1,497) reported by a meta‐analysis study on human peripheral whole blood from approximately 15,000 individuals, having high correlation with chronological age. These aging signature genes were the target genes of several transcription factors including MYC, SATB1, and BATF, which also belonged to the 231 genes, supporting the upstream regulatory role of these transcription factors in altering the gene expression profile of peripheral blood cells with aging. We validated the differential expression of these transcription factors between IL‐7Rαlow and high EM CD8+ T cells as well as in peripheral blood mononuclear cells (PBMCs) of young and older adults. Finally, we found a significant association with influenza vaccine responses in older adults, suggesting the possible biological significance of the aging signature genes of IL‐7Rαlow EM CD8+ T cells. The results of our study support the relationship of the expansion of IL‐7Rαlow EM CD8+ T cells with the age‐associated changes in the gene expression profile of peripheral blood cells and its possible biological implications.
Collapse
Affiliation(s)
- Hong‐Jai Park
- Department of Internal Medicine Yale University School of Medicine New Haven Connecticut
| | - Min Sun Shin
- Department of Internal Medicine Yale University School of Medicine New Haven Connecticut
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences Cedars‐Sinai Medical Center Los Angeles California
| | - Joshua B. Bilsborrow
- Department of Internal Medicine Yale University School of Medicine New Haven Connecticut
| | - Subhasis Mohanty
- Department of Internal Medicine Yale University School of Medicine New Haven Connecticut
| | - Ruth R. Montgomery
- Department of Internal Medicine Yale University School of Medicine New Haven Connecticut
| | - Albert C. Shaw
- Department of Internal Medicine Yale University School of Medicine New Haven Connecticut
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences Cedars‐Sinai Medical Center Los Angeles California
- Samuel Oschin Comprehensive Cancer Institute Cedars‐Sinai Medical Center Los Angeles California
| | - Insoo Kang
- Department of Internal Medicine Yale University School of Medicine New Haven Connecticut
| |
Collapse
|
12
|
Bui LT, Ragsdale EJ. Multiple plasticity regulators reveal targets specifying an induced predatory form in nematodes. Mol Biol Evol 2019; 36:2387-2399. [PMID: 31364718 DOI: 10.1093/molbev/msz171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs - microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty - as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor (NR) NHR-40, physically binds to promoters with putative HNF4⍺ (the NR class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative "on-off" function in plasticity regulation. Further, predatory morph-biased genes included candidates - namely, all four P. pacificus homologs of Hsp70, which have HNF4⍺ motifs - whose natural variation in expression matches phenotypic differences among P. pacificus wild isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, Indiana University, Bloomington, IN
| | | |
Collapse
|
13
|
Caneo M, Julian V, Byrne AB, Alkema MJ, Calixto A. Diapause induces functional axonal regeneration after necrotic insult in C. elegans. PLoS Genet 2019; 15:e1007863. [PMID: 30640919 PMCID: PMC6347329 DOI: 10.1371/journal.pgen.1007863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/25/2019] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Many neurons are unable to regenerate after damage. The ability to regenerate after an insult depends on life stage, neuronal subtype, intrinsic and extrinsic factors. C. elegans is a powerful model to test the genetic and environmental factors that affect axonal regeneration after damage, since its axons can regenerate after neuronal insult. Here we demonstrate that diapause promotes the complete morphological regeneration of truncated touch receptor neuron (TRN) axons expressing a neurotoxic MEC-4(d) DEG/ENaC channel. Truncated axons of different lengths were repaired during diapause and we observed potent axonal regrowth from somas alone. Complete morphological regeneration depends on DLK-1 but neuronal sprouting and outgrowth is DLK-1 independent. We show that TRN regeneration is fully functional since animals regain their ability to respond to mechanical stimulation. Thus, diapause induced regeneration provides a simple model of complete axonal regeneration which will greatly facilitate the study of environmental and genetic factors affecting the rate at which neurons die.
Collapse
Affiliation(s)
- Mauricio Caneo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Victoria Julian
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Alexandra B. Byrne
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Mark J. Alkema
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Andrea Calixto
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- * E-mail: ,
| |
Collapse
|
14
|
FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proc Natl Acad Sci U S A 2017; 114:E10726-E10735. [PMID: 29167374 DOI: 10.1073/pnas.1710374114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Animals, including humans, can adapt to environmental stress through phenotypic plasticity. The free-living nematode Caenorhabditis elegans can adapt to harsh environments by undergoing a whole-animal change, involving exiting reproductive development and entering the stress-resistant dauer larval stage. The dauer is a dispersal stage with dauer-specific behaviors for finding and stowing onto carrier animals, but how dauers acquire these behaviors, despite having a physically limited nervous system of 302 neurons, is poorly understood. We compared dauer and reproductive development using whole-animal RNA sequencing at fine time points and at sufficient depth to measure transcriptional changes within single cells. We detected 8,042 genes differentially expressed during dauer and reproductive development and observed striking up-regulation of neuropeptide genes during dauer entry. We knocked down neuropeptide processing using sbt-1 mutants and demonstrate that neuropeptide signaling promotes the decision to enter dauer rather than reproductive development. We also demonstrate that during dauer neuropeptides modulate the dauer-specific nictation behavior (carrier animal-hitchhiking) and are necessary for switching from repulsion to CO2 (a carrier animal cue) in nondauers to CO2 attraction in dauers. We tested individual neuropeptides using CRISPR knockouts and existing strains and demonstrate that the combined effects of flp-10 and flp-17 mimic the effects of sbt-1 on nictation and CO2 attraction. Through meta-analysis, we discovered similar up-regulation of neuropeptides in the dauer-like infective juveniles of diverse parasitic nematodes, suggesting the antiparasitic target potential of SBT-1. Our findings reveal that, under stress, increased neuropeptide signaling in C. elegans enhances their decision-making accuracy and expands their behavioral repertoire.
Collapse
|
15
|
Lam SM, Wang Z, Li J, Huang X, Shui G. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival. Redox Biol 2017; 12:967-977. [PMID: 28499251 PMCID: PMC5429230 DOI: 10.1016/j.redox.2017.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022] Open
Abstract
Mechanistic basis governing the extreme longevity and developmental quiescence of dauer juvenile, a "non-ageing" developmental variant of Caenorhabditis elegans, has remained largely obscure. Using a lipidomic approach comprising multiple reaction monitoring transitions specific to distinct fatty acyl moieties, we demonstrated that in comparison to other developmental stages, the membrane phospholipids of dauer larva contain a unique enrichment of polyunsaturated fatty acids (PUFAs). Esterified PUFAs in phospholipids exhibited temporal accumulation throughout the course of dauer endurance, followed by sharp reductions prior to termination of diapause. Reductions in esterified PUFAs were accompanied by concomitant increases in unbound PUFAs, as well as their corresponding downstream oxidized derivatives (i.e. eicosanoids). Global phospholipidomics has unveiled that PUFA sequestration in membrane phospholipids denotes an essential aspect of dauer dormancy, principally via suppression of eicosanoid production; and a failure to upkeep membrane lipid homeostasis is associated with termination of dauer endurance.
Collapse
Affiliation(s)
- Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zehua Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jie Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
16
|
Li B, Gadahi JA, Gao W, Zhang Z, Ehsan M, Xu L, Song X, Li X, Yan R. Characterization of a novel aspartyl protease inhibitor from Haemonchus contortus. Parasit Vectors 2017; 10:191. [PMID: 28420411 PMCID: PMC5395858 DOI: 10.1186/s13071-017-2137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Background Aspartyl protease inhibitor (API) was thought to protect intestinal parasitic nematodes from their hostile proteolytic environment. Studies on Ostertagia ostertagi, Ascaris suum and Brugia malayi indicated that aspins might play roles in nematode infection. In a recent study, proteins differentially expressed between free-living third-stage larvae (L3) and activated L3 (xL3) of Haemonchus contortus were identified by 2D-DIGE. API was found downregulated in xL3 when compared with L3. However, there was no report about the functions of H. contortus API in the parasite-host interaction. In this study, the gene encoding API from H. contortus was cloned, expressed, and part of its biological characteristics were studied. Results A DNA fragment of 681 bp was amplified by RT-PCR. Ninety one percent of the amino acid sequence was similar with that for aspin from O. ostertagi. The recombinant API protein was fusion-expressed with a molecular weight of 48 × 103. Results of Western blot showed that the recombinant API could be recognized by serum from goat infected with H. contortus. It was found that API was localized exclusively in the subcutaneous tissue and epithelial cells of the gastrointestinal tract in adult H. contortus. qRT-PCR suggested that the API gene was differentially transcribed in different life-cycle stages, with the lowest level in female adults and the highest in free-living L3 larvae. Enzyme inhibition assay indicated that the recombinant API can inhibit the activity of pepsin significantly, and the optimal reaction pH and temperature were 4.0 and 37–50 °C respectively. In vitro study showed that the recombinant API could induce goat PBMCs to express IFN-γ, IL-4 and IL-10. Conclusions A new aspartyl protease inhibitor was cloned from H. contortus and its characteristics were studied for the first time. The results indicate that API may regulate the immune response of the host and play roles in the infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baojie Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - Wenxiang Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
17
|
Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 2016; 6:36766. [PMID: 27905558 PMCID: PMC5131338 DOI: 10.1038/srep36766] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Diverse stresses and aging alter expression levels of microRNAs, suggesting a role for these posttranscriptional regulators of gene expression in stress modulation and longevity. Earlier studies demonstrated a central role for the miR-34 family in promoting cell cycle arrest and cell death following stress in human cells. However, the biological significance of this response was unclear. Here we show that in C. elegans mir-34 upregulation is necessary for developmental arrest, correct morphogenesis, and adaptation to a lower metabolic state to protect animals against stress-related damage. Either deletion or overexpression of mir-34 lead to an impaired stress response, which can largely be explained by perturbations in DAF-16/FOXO target gene expression. We demonstrate that mir-34 expression is regulated by the insulin signaling pathway via a negative feedback loop between miR-34 and DAF-16/FOXO. We propose that mir-34 provides robustness to stress response programs by controlling noise in the DAF-16/FOXO-regulated gene network.
Collapse
Affiliation(s)
- Meltem Isik
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - T Keith Blackwell
- Joslin Diabetes Center, Harvard Stem Cell Institute and Harvard Medical School Department of Genetics, Boston, Massachusetts, United States of America
| | - Eugene Berezikov
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.,European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Kamal M, D'Amora DR, Kubiseski TJ. Loss of hif-1 promotes resistance to the exogenous mitochondrial stressor ethidium bromide in Caenorhabditis elegans. BMC Cell Biol 2016; 17 Suppl 1:34. [PMID: 27618966 PMCID: PMC5020483 DOI: 10.1186/s12860-016-0112-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 09/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is one of the leading causes of neurological disorders in humans. Mitochondrial perturbations lead to adaptive mechanisms that include HIF-1 stabilization, though the consequences of increased levels of HIF-1 following mitochondrial stress remain poorly understood. RESULTS Using Caenorhabditis elegans, we show that a hif-1 loss-of-function mutation confers resistance towards the mitochondrial toxin ethidium bromide (EtBr) and suppresses EtBr-induced production of ROS. In mammals, the PD-related gene DJ-1 is known to act as a redox sensor to confer protection against antioxidants and mitochondrial inhibitors. A deletion mutant of the C. elegans homolog djr-1.1 also showed increased resistance to EtBr. Furthermore, our data implicates p38 MAP kinase as an indispensable factor for survival against mitochondrial stress in both hif-1 and djr-1.1 mutants. CONCLUSIONS We propose that EtBr-induced HIF-1 activates pathways that are antagonistic in conferring protection against EtBr toxicity and that blocking HIF-1 activity may promote survival in cells with compromised mitochondrial function.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Biology, York University, Toronto, Canada.,Present address: Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Terrance J Kubiseski
- Department of Biology, York University, Toronto, Canada. .,Department of Neuroscience, York University, Toronto, Canada.
| |
Collapse
|
19
|
Ow MC, Hall SE. A Method for Obtaining Large Populations of Synchronized Caenorhabditis elegans Dauer Larvae. Methods Mol Biol 2016; 1327:209-19. [PMID: 26423977 DOI: 10.1007/978-1-4939-2842-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The C. elegans dauer is an attractive model with which to investigate fundamental biological questions, such as how environmental cues are sensed and are translated into developmental decisions through a series of signaling cascades that ultimately result in a transformed animal. Here we describe a simple method of using egg white plates to obtain highly synchronized purified dauers that can be used in downstream applications requiring large quantities of dauers or postdauer animals.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Biology, Syracuse University, 107 College Place, Room 110, Syracuse, NY, 13244, USA
| | - Sarah E Hall
- Department of Biology, Syracuse University, 107 College Place, Room 110, Syracuse, NY, 13244, USA.
| |
Collapse
|
20
|
Kim S, Lee HJ, Hahm JH, Jeong SK, Park DH, Hancock WS, Paik YK. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans. J Proteome Res 2016; 15:531-9. [DOI: 10.1021/acs.jproteome.5b00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunhee Kim
- Department
of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyoung-Joo Lee
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - Jeong-Hoon Hahm
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - Seul-Ki Jeong
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - Don-Ha Park
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - William S. Hancock
- Department
of Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Young-Ki Paik
- Department
of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
- Department
of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| |
Collapse
|
21
|
MacInnes AW. The role of the ribosome in the regulation of longevity and lifespan extension. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:198-212. [PMID: 26732699 DOI: 10.1002/wrna.1325] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The most energy-consuming process that a cell must undertake to stay viable is the continuous biogenesis of ribosomes for the translation of RNA into protein. Given the inextricable links between energy consumption and cellular lifespan, it is not surprising that mutations and environmental cues that reduce ribosome biogenesis result in an extension of eukaryotic lifespan. This review goes into detail describing recent discoveries of different and often unexpected elements that play a role in the regulation of longevity by virtue of their ribosome biogenesis functions. These roles include controlling the transcription and processing of ribosomal RNA (rRNA), the translation of ribosomal protein (RP) genes, and the number of ribosomes overall. Together these findings suggest that a fundamental mechanism across eukaryotic species for extending lifespan is to slow down or halt the expenditure of cellular energy that is normally absorbed by the manufacturing and assembly of new ribosomes.
Collapse
|
22
|
Wang F, Xu L, Song X, Li X, Yan R. Identification of differentially expressed proteins between free-living and activated third-stage larvae of Haemonchus contortus. Vet Parasitol 2015; 215:72-7. [PMID: 26790740 DOI: 10.1016/j.vetpar.2015.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 10/14/2015] [Accepted: 10/31/2015] [Indexed: 01/25/2023]
Abstract
The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this nematode is enclosed in a second cuticle. Once the L3 is ingested by the host, the outer cuticle undergoes an exsheathment process that marks the transition from the free-living stage to the parasitic stage. This study explored the changes in protein expression relative to this transition. Proteins extracted from free living L3 and exsheathed L3 (xL3) were analyzed by two dimensional differential gel electrophoresis (2D-DIGE). More than 2200 protein spots were recognized, and 124 of them was found to be differentially expressed (average ratio of xL3/L3>1.5 or xL3/L3<-1.5, p<0.05). Of these, 83 spots were up-regulated and 41 spots were down-regulated in xL3 when compared with L3. These differentially expressed spots were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) or MALDI-TOF-MS/MS and 40 proteins were identified. To predict the functions of these identified proteins, they were assigned for gene ontology (GO) annotation. Results showed that the proteins may be involved in biological processes of reproduction, cellular organization or biogenesis, multi-cellular organismal processes, single-organism processes, metabolic processes, signaling, biological regulation, response to stimulus, cellular processes, biological adhesion, growth, locomotion, localization, developmental processes and multi-organism processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were also performed, which was useful for exploring the process of metabolism and signal transduction pathways. This study indicated that some key alterations taking place, during the transition from L3 to xL3 may be interesting antiparasite targets, and some of the proteins involved in this process might be candidate antigens for vaccine development.
Collapse
Affiliation(s)
- Fang Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
23
|
Hunter GJ, Trinh CH, Bonetta R, Stewart EE, Cabelli DE, Hunter T. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex. Protein Sci 2015; 24:1777-88. [PMID: 26257399 PMCID: PMC4622211 DOI: 10.1002/pro.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 01/18/2023]
Abstract
C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41-54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. Analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substrate access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k4 of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.
Collapse
Affiliation(s)
- Gary J Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of LeedsLeeds, United Kingdom
| | - Rosalin Bonetta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Emma E Stewart
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of LeedsLeeds, United Kingdom
| | - Diane E Cabelli
- Chemistry Department, Brookhaven National LaboratoryUpton, New York
| | - Therese Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
24
|
Abstract
Food availability determines developmental rate, behavior, and survival of animals. Animals that enter diapause or hibernate in response to lack of food have a double advantage: they are able to adapt to environmental and cellular challenges and survive to these challenges for a prolonged time. The metabolic and physiological adaptations that make possible diapause and hibernation also provide a favorable cellular environment for tissue protection. This review highlights the benefits of dormancy on neuronal protection in the model organism Caenorhabditis elegans and small mammals such as squirrels. Additionally, I discuss the link between metabolic restructuring occurring in diapause and changes in gene expression with the increased capacity of diapausing animals to protect neurons from degeneration and potentially foster their regeneration.
Collapse
Affiliation(s)
- Andrea Calixto
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
25
|
Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, Wilson YA, Kobes S, Tukiainen T, Ramos YF, Göring HHH, Fornage M, Liu Y, Gharib SA, Stranger BE, De Jager PL, Aviv A, Levy D, Murabito JM, Munson PJ, Huan T, Hofman A, Uitterlinden AG, Rivadeneira F, van Rooij J, Stolk L, Broer L, Verbiest MMPJ, Jhamai M, Arp P, Metspalu A, Tserel L, Milani L, Samani NJ, Peterson P, Kasela S, Codd V, Peters A, Ward-Caviness CK, Herder C, Waldenberger M, Roden M, Singmann P, Zeilinger S, Illig T, Homuth G, Grabe HJ, Völzke H, Steil L, Kocher T, Murray A, Melzer D, Yaghootkar H, Bandinelli S, Moses EK, Kent JW, Curran JE, Johnson MP, Williams-Blangero S, Westra HJ, McRae AF, Smith JA, Kardia SLR, Hovatta I, Perola M, Ripatti S, Salomaa V, Henders AK, Martin NG, Smith AK, Mehta D, Binder EB, Nylocks KM, Kennedy EM, Klengel T, Ding J, Suchy-Dicey AM, Enquobahrie DA, Brody J, Rotter JI, Chen YDI, Houwing-Duistermaat J, Kloppenburg M, Slagboom PE, Helmer Q, den Hollander W, Bean S, Raj T, Bakhshi N, Wang QP, Oyston LJ, Psaty BM, Tracy RP, Montgomery GW, Turner ST, et alPeters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, Wilson YA, Kobes S, Tukiainen T, Ramos YF, Göring HHH, Fornage M, Liu Y, Gharib SA, Stranger BE, De Jager PL, Aviv A, Levy D, Murabito JM, Munson PJ, Huan T, Hofman A, Uitterlinden AG, Rivadeneira F, van Rooij J, Stolk L, Broer L, Verbiest MMPJ, Jhamai M, Arp P, Metspalu A, Tserel L, Milani L, Samani NJ, Peterson P, Kasela S, Codd V, Peters A, Ward-Caviness CK, Herder C, Waldenberger M, Roden M, Singmann P, Zeilinger S, Illig T, Homuth G, Grabe HJ, Völzke H, Steil L, Kocher T, Murray A, Melzer D, Yaghootkar H, Bandinelli S, Moses EK, Kent JW, Curran JE, Johnson MP, Williams-Blangero S, Westra HJ, McRae AF, Smith JA, Kardia SLR, Hovatta I, Perola M, Ripatti S, Salomaa V, Henders AK, Martin NG, Smith AK, Mehta D, Binder EB, Nylocks KM, Kennedy EM, Klengel T, Ding J, Suchy-Dicey AM, Enquobahrie DA, Brody J, Rotter JI, Chen YDI, Houwing-Duistermaat J, Kloppenburg M, Slagboom PE, Helmer Q, den Hollander W, Bean S, Raj T, Bakhshi N, Wang QP, Oyston LJ, Psaty BM, Tracy RP, Montgomery GW, Turner ST, Blangero J, Meulenbelt I, Ressler KJ, Yang J, Franke L, Kettunen J, Visscher PM, Neely GG, Korstanje R, Hanson RL, Prokisch H, Ferrucci L, Esko T, Teumer A, van Meurs JBJ, Johnson AD. The transcriptional landscape of age in human peripheral blood. Nat Commun 2015; 6:8570. [PMID: 26490707 PMCID: PMC4639797 DOI: 10.1038/ncomms9570] [Show More Authors] [Citation(s) in RCA: 475] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/07/2015] [Indexed: 02/08/2023] Open
Abstract
Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the ‘transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts. Ageing increases the risk of many diseases. Here the authors compare blood cell transcriptomes of over 14,000 individuals and identify a set of about 1,500 genes that are differently expressed with age, shedding light on transcriptional programs linked to the ageing process and age-associated diseases.
Collapse
Affiliation(s)
- Marjolein J Peters
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Roby Joehanes
- The National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20817, USA
| | - Luke C Pilling
- Epidemiology and Public Health, University of Exeter Medical School, Exeter EX4 1DB, UK
| | - Claudia Schurmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17493, Germany.,The Charles Bronfman Institute for Personalized Medicine, Genetics of Obesity &Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York 10029, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia 30301, USA
| | - Joseph Powell
- Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, University of Queensland, St Lucia, Brisbane, Queensland 4000, Australia.,The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4000, Australia
| | - Eva Reinmaa
- Estonian Genome Center, University of Tartu, Tartu 0794, Estonia
| | - George L Sutphin
- Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 9700RB, The Netherlands
| | - Katharina Schramm
- Institute of Human Genetics, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany.,Institute of Human Genetics, Technical University Munich, Munich 85540, Germany
| | - Yana A Wilson
- Neuroscience Division, Garvan Institute of Medical Research, Australia and Charles Perkins Centre and School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona 85001, USA
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki 00131, Finland.,Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki 00131, Finland
| | | | - Yolande F Ramos
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - Harald H H Göring
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78201, USA
| | - Myriam Fornage
- Division of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Sciences, Center at Houston, Texas 77001, USA.,Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas 77001, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, Washington 98101, USA
| | - Barbara E Stranger
- Section of Genetic Medicine, Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois 60290, USA
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Newark 07101, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20817, USA
| | - Joanne M Murabito
- The National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702, USA.,General Internal Medicine Section, Boston University, Boston, Massachusetts 02108, USA
| | - Peter J Munson
- The Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20817, USA
| | - Tianxiao Huan
- The National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20817, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000CA, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000CA, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000CA, The Netherlands
| | - Jeroen van Rooij
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Lisette Stolk
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Michael M P J Verbiest
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Mila Jhamai
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Pascal Arp
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 0794, Estonia
| | - Liina Tserel
- Molecular Pathology, Institute of Biomedicine, University of Tartu, Tartu 0794, Estonia
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu 0794, Estonia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1, UK.,National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE1, UK
| | - Pärt Peterson
- Molecular Pathology, Institute of Biomedicine, University of Tartu, Tartu 0794, Estonia
| | - Silva Kasela
- Institute of Molecular and Cell Biology, Estonian Genome Center, University of Tartu, Tartu 0794, Estonia
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1, UK.,National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE1, UK
| | - Annette Peters
- Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Cavin K Ward-Caviness
- Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Christian Herder
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf 40593, Germany
| | - Melanie Waldenberger
- Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf 40593, Germany.,Division of Endocrinology and Diabetology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf 40593, Germany
| | - Paula Singmann
- Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Sonja Zeilinger
- Institute of Epidemiologie II, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover 30519, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17493, Germany
| | - Hans-Jörgen Grabe
- Department of Psychiatry and Psychotherapy, Helios Hospital Stralsund, University Medicine Greifswald, Greifswald 17489, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald 17489, Germany
| | - Leif Steil
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17493, Germany
| | - Thomas Kocher
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, University Medicine Greifswald, Greifswald 17489, Germany
| | - Anna Murray
- Epidemiology and Public Health, University of Exeter Medical School, Exeter EX4 1DB, UK
| | - David Melzer
- Epidemiology and Public Health, University of Exeter Medical School, Exeter EX4 1DB, UK
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | | | - Eric K Moses
- Centre for Genetic Origins of Health and Disease, The University of Western Australia, and Faculty of Health Sciences, Curtin University, Perth, Western Australia 9011, Australia
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78201, USA
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78201, USA
| | - Matthew P Johnson
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78201, USA
| | | | - Harm-Jan Westra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 9700RB, The Netherlands.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge 02138, USA.,Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA.,Partners Center for Personalized Genetic Medicine, Boston, Massachusetts 02108, USA
| | - Allan F McRae
- The Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4000, Australia.,University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4000, Australia
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48103, USA
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48103, USA
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki 00100, Finland.,Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki 00100, Finland
| | - Markus Perola
- Estonian Genome Center, University of Tartu, Tartu 0794, Estonia.,Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki 00131, Finland.,Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki 00131, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki 00131, Finland.,Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki 00131, Finland.,Wellcome Trust Sanger Institute, Hinxton, Cambridge CB4, UK.,Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki 00100, Finland
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki 00131, Finland
| | - Anjali K Henders
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4000, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4000, Australia
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30301, USA
| | - Divya Mehta
- Max-Planck Institute of Psychiatry, Munich 80331, Germany
| | | | - K Maria Nylocks
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30301, USA
| | - Elizabeth M Kennedy
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia 30301, USA
| | | | - Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA
| | - Astrid M Suchy-Dicey
- Department of Epidemiology, University of Washington, Seattle, Washington 98101, USA
| | - Daniel A Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, Washington 98101, USA
| | - Jennifer Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98101, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90501, USA
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90501, USA
| | | | - Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Center, Leiden 2300RC, The Netherlands.,Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - Quinta Helmer
- Department of Medical Statistics, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - Wouter den Hollander
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - Shannon Bean
- Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Towfique Raj
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02138, USA
| | - Noman Bakhshi
- Neuroscience Division, Garvan Institute of Medical Research, Australia and Charles Perkins Centre and School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Qiao Ping Wang
- Neuroscience Division, Garvan Institute of Medical Research, Australia and Charles Perkins Centre and School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lisa J Oyston
- Neuroscience Division, Garvan Institute of Medical Research, Australia and Charles Perkins Centre and School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA.,Cardiovascular Health Research Unit, Department of Health Services, University of Washington, Seattle, Washington 98195, USA.,Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98195, USA
| | - Russell P Tracy
- Department of Pathology, University of Vermont College of Medicine, Colchester, Vermont 98195, USA
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4000, Australia
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78201, USA
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden 2300RC, The Netherlands
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30301, USA
| | - Jian Yang
- The Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4000, Australia.,University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4000, Australia
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 9700RB, The Netherlands
| | - Johannes Kettunen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki 00131, Finland.,Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki 00131, Finland.,Computational Medicine, Institute of Health Sciences, Faculty of Medicine, University of Oulu, Oulu 90570, Finland
| | - Peter M Visscher
- The Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4000, Australia.,University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4000, Australia
| | - G Gregory Neely
- Neuroscience Division, Garvan Institute of Medical Research, Australia and Charles Perkins Centre and School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ron Korstanje
- Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona 85001, USA
| | - Holger Prokisch
- Institute of Human Genetics, Helmholz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany.,Institute of Human Genetics, Technical University Munich, Munich 85540, Germany
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland 21218, USA
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, Tartu 0794, Estonia.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge 02138, USA.,Division of Endocrinology, Children's Hospital Boston, Boston, Massachusetts 02108, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Alexander Teumer
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17493, Germany
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus Medical Centre Rotterdam, Rotterdam 3000CA, The Netherlands
| | - Andrew D Johnson
- The National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, Massachusetts 01702, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20817, USA
| |
Collapse
|
26
|
Gelmedin V, Delaney A, Jennelle L, Hawdon JM. Expression profile of heat shock response factors during hookworm larval activation and parasitic development. Mol Biochem Parasitol 2015; 202:1-14. [PMID: 26296769 DOI: 10.1016/j.molbiopara.2015.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/19/2023]
Abstract
When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock protein expression, slightly down regulated both genes under similar conditions. Both modulators inhibited activation-associated feeding, but neither had an effect on hsp-1 levels in activated L3 at 16h. Both celastrol and KNK437 prevent the up-regulation of daf-21 and hsf-1 seen in non-activated control larvae during activation, and significantly down regulated expression of the HSF-1 negative regulator Aca-hsb-1 in activated larvae. Expression levels of heat shock response factors were examined in developing Ancylostoma ceylanicum larvae recovered from infected hosts and found to differ significantly from the expression profile of activated L3, suggesting that feeding during in vitro activation is regulated differently than parasitic development. Our results indicate that a classical heat shock response is not induced at host temperature and is suppressed during larval recovery and parasitic development in the host, but a partial heat shock response is induced after extended incubation at host temperature in the absence of a developmental signal, possibly to protect against heat stress.
Collapse
Affiliation(s)
- Verena Gelmedin
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - Angela Delaney
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - Lucas Jennelle
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - John M Hawdon
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States.
| |
Collapse
|
27
|
Abstract
SIGNIFICANCE The molecular mechanism of aging is still vigorously debated, although a general consensus exists that mitochondria are significantly involved in this process. However, the previously postulated role of mitochondrial-derived reactive oxygen species (ROS) as the damaging agents inducing functional loss in aging has fallen out of favor in the recent past. In this review, we critically examine the role of ROS in aging in the light of recent advances on the relationship between mitochondrial structure and function. RECENT ADVANCES The functional mitochondrial respiratory chain is now recognized as a reflection of the dynamic association of respiratory complexes in the form of supercomplexes (SCs). Besides providing kinetic advantage (channeling), SCs control ROS generation by the respiratory chain, thus providing a means to regulate ROS levels in the cell. Depending on their concentration, these ROS are either physiological signals essential for the life of the cell or toxic species that damage cell structure and functions. CRITICAL ISSUES We propose that under physiological conditions the dynamic nature of SCs reversibly controls the generation of ROS as signals involved in mitochondrial-nuclear communication. During aging, there is a progressive loss of control of ROS generation so that their production is irreversibly enhanced, inducing a vicious circle in which signaling is altered and structural damage takes place. FUTURE DIRECTIONS A better understanding on the forces affecting SC association would allow the manipulation of ROS generation, directing these species to their physiological signaling role.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| |
Collapse
|
28
|
Essers PB, Nonnekens J, Goos YJ, Betist MC, Viester MD, Mossink B, Lansu N, Korswagen HC, Jelier R, Brenkman AB, MacInnes AW. A Long Noncoding RNA on the Ribosome Is Required for Lifespan Extension. Cell Rep 2015; 10:339-345. [PMID: 25600869 DOI: 10.1016/j.celrep.2014.12.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/29/2014] [Accepted: 12/13/2014] [Indexed: 11/18/2022] Open
Abstract
The biogenesis of ribosomes and their coordination of protein translation consume an enormous amount of cellular energy. As such, it has been established that the inhibition of either process can extend eukaryotic lifespan. Here, we used next-generation sequencing to compare ribosome-associated RNAs from normal strains of Caenorhabditis elegans to those carrying the life-extending daf-2 mutation. We found a long noncoding RNA (lncRNA), transcribed telomeric sequence 1 (tts-1), on ribosomes of the daf-2 mutant. Depleting tts-1 in daf-2 mutants increases ribosome levels and significantly shortens their extended lifespan. We find tts-1 is also required for the longer lifespan of the mitochondrial clk-1 mutants but not the feeding-defective eat-2 mutants. In line with this, the clk-1 mutants express more tts-1 and fewer ribosomes than the eat-2 mutants. Our results suggest that the expression of tts-1 functions in different longevity pathways to reduce ribosome levels in a way that promotes life extension.
Collapse
Affiliation(s)
- Paul B Essers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Julie Nonnekens
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Yvonne J Goos
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Marco C Betist
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Marjon D Viester
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Britt Mossink
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Nico Lansu
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Rob Jelier
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Arjan B Brenkman
- Section Metabolic Diseases, Department of Molecular Cancer Research, Wilhelmina Children's Hospital, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Alyson W MacInnes
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
29
|
Ewald CY, Landis JN, Porter Abate J, Murphy CT, Blackwell TK. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature 2014; 519:97-101. [PMID: 25517099 PMCID: PMC4352135 DOI: 10.1038/nature14021] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 10/27/2014] [Indexed: 01/04/2023]
Abstract
Interventions that delay ageing mobilize mechanisms that protect and repair cellular components, but it is unknown how these interventions might slow the functional decline of extracellular matrices, which are also damaged during ageing. Reduced insulin/IGF-1 signalling (rIIS) extends lifespan across the evolutionary spectrum, and in juvenile Caenorhabditis elegans also allows the transcription factor DAF-16/FOXO to induce development into dauer, a diapause that withstands harsh conditions. It has been suggested that rIIS delays C. elegans ageing through activation of dauer-related processes during adulthood, but some rIIS conditions confer robust lifespan extension unaccompanied by any dauer-like traits. Here we show that rIIS can promote C. elegans longevity through a program that is genetically distinct from the dauer pathway, and requires the Nrf (NF-E2-related factor) orthologue SKN-1 acting in parallel to DAF-16. SKN-1 is inhibited by IIS and has been broadly implicated in longevity, but is rendered dispensable for rIIS lifespan extension by even mild activity of dauer-related processes. When IIS is decreased under conditions that do not induce dauer traits, SKN-1 most prominently increases expression of collagens and other extracellular matrix genes. Diverse genetic, nutritional, and pharmacological pro-longevity interventions delay an age-related decline in collagen expression. These collagens mediate adulthood extracellular matrix remodelling, and are needed for ageing to be delayed by interventions that do not involve dauer traits. By genetically delineating a dauer-independent rIIS ageing pathway, our results show that IIS controls a broad set of protective mechanisms during C. elegans adulthood, and may facilitate elucidation of processes of general importance for longevity. The importance of collagen production in diverse anti-ageing interventions implies that extracellular matrix remodelling is a generally essential signature of longevity assurance, and that agents promoting extracellular matrix youthfulness may have systemic benefit.
Collapse
Affiliation(s)
- Collin Y Ewald
- 1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| | - Jess N Landis
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, 148 Carl Icahn Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - Jess Porter Abate
- 1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, 148 Carl Icahn Laboratory, Washington Road, Princeton, New Jersey 08544, USA
| | - T Keith Blackwell
- 1] Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA [2] Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA [3] Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02215, USA
| |
Collapse
|
30
|
Xu D, Wei G, Lu P, Luo J, Chen X, Skogerbø G, Chen R. Analysis of the p53/CEP-1 regulated non-coding transcriptome in C. elegans by an NSR-seq strategy. Protein Cell 2014; 5:770-82. [PMID: 24844773 PMCID: PMC4180458 DOI: 10.1007/s13238-014-0071-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022] Open
Abstract
In recent years, large numbers of non-coding RNAs (ncRNAs) have been identified in C. elegans but their functions are still not well studied. In C. elegans, CEP-1 is the sole homolog of the p53 family of genes. In order to obtain transcription profiles of ncRNAs regulated by CEP-1 under normal and UV stressed conditions, we applied the 'not-so-random' hexamers priming strategy to RNA sequencing in C. elegans, This NSR-seq strategy efficiently depleted rRNA transcripts from the samples and showed high technical replicability. We identified more than 1,000 ncRNAs whose apparent expression was repressed by CEP-1, while around 200 were activated. Around 40% of the CEP-1 activated ncRNAs promoters contain a putative CEP-1-binding site. CEP-1 regulated ncRNAs were frequently clustered and concentrated on the X chromosome. These results indicate that numerous ncRNAs are involved in CEP-1 transcriptional network and that these are especially enriched on the X chromosome in C. elegans.
Collapse
Affiliation(s)
- Derong Xu
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Guifeng Wei
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
- Graduate University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Ping Lu
- Key Laboratory of Forest Protection, State Forestry
Administration/Research Institute of Forest Ecology, Environment and
Protection, Chinese Academy of Forestry, Beijing, 100091 China
| | - Jianjun Luo
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaomin Chen
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Geir Skogerbø
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Runsheng Chen
- Laboratory of Non-coding RNA, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
31
|
Byun YJ, Koo MY, Joo HJ, Ha-Lee YM, Lee DH. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. PHYSIOLOGIA PLANTARUM 2014; 152:256-74. [PMID: 24494996 DOI: 10.1111/ppl.12163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 05/20/2023]
Abstract
Cold acclimated plants show an elevated tolerance against subsequent cold stress. Such adaptation requires alterations in gene expression as well as physiological changes. We were interested in gene expression changes at the transcriptional level during adaptation processes. The patterns of transcriptional changes associated with cold acclimation, deacclimation and reacclimation in Arabidopsis leaves were characterized using the Coldstresschip. Gene expression profiles were further analyzed by 'coexpressed gene sets' using gene set enrichment analysis (GSEA). Genes involved in signal transduction through calcium, and cascades of kinases and transcription factor genes, were distinctively induced in the early response of cold acclimation. On the other hand, genes involved in antioxidation, cell wall biogenesis and sterol synthesis were upregulated in the late response of cold acclimation. After the removal of cold, the expression patterns of most genes rapidly returned to the original states. However, photosynthetic light-harvesting complex genes and lipid metabolism-related genes stayed upregulated in cold deacclimated plants compared to non-treated plants. It is also notable that many well-known cold-inducible genes are slightly induced in reacclimation and their expression remains at relatively low levels in cold reacclimation compared to the expression during the first cold acclimation. The results in this study show the dynamic nature of gene expression occurring during cold acclimation, deacclimation and reacclimation. Our results suggest that there is a memory of cold stress and that the 'memory of cold stress' is possibly due to elevated photosynthetic efficiency, modified lipid metabolism, increased calcium signaling, pre-existing defense protein made during first cold acclimation and/or modified signal transduction from pre-existing defense protein.
Collapse
Affiliation(s)
- Youn-Jung Byun
- Graduate Department of Life and Pharmaceutical Science, Ewha Womans University, Seoul, 120-750, South Korea
| | | | | | | | | |
Collapse
|
32
|
Abstract
Nematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.
Collapse
|
33
|
Depuydt G, Xie F, Petyuk VA, Smolders A, Brewer HM, Camp DG, Smith RD, Braeckman BP. LC-MS proteomics analysis of the insulin/IGF-1-deficient Caenorhabditis elegans daf-2(e1370) mutant reveals extensive restructuring of intermediary metabolism. J Proteome Res 2014; 13:1938-56. [PMID: 24555535 PMCID: PMC3993954 DOI: 10.1021/pr401081b] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 12/11/2022]
Abstract
The insulin/IGF-1 receptor is a major known determinant of dauer formation, stress resistance, longevity, and metabolism in Caenorhabditis elegans. In the past, whole-genome transcript profiling was used extensively to study differential gene expression in response to reduced insulin/IGF-1 signaling, including the expression levels of metabolism-associated genes. Taking advantage of the recent developments in quantitative liquid chromatography mass spectrometry (LC-MS)-based proteomics, we profiled the proteomic changes that occur in response to activation of the DAF-16 transcription factor in the germline-less glp-4(bn2);daf-2(e1370) receptor mutant. Strikingly, the daf-2 profile suggests extensive reorganization of intermediary metabolism, characterized by the upregulation of many core intermediary metabolic pathways. These include glycolysis/gluconeogenesis, glycogenesis, pentose phosphate cycle, citric acid cycle, glyoxylate shunt, fatty acid β-oxidation, one-carbon metabolism, propionate and tyrosine catabolism, and complexes I, II, III, and V of the electron transport chain. Interestingly, we found simultaneous activation of reciprocally regulated metabolic pathways, which is indicative of spatiotemporal coordination of energy metabolism and/or extensive post-translational regulation of these enzymes. This restructuring of daf-2 metabolism is reminiscent to that of hypometabolic dauers, allowing the efficient and economical utilization of internal nutrient reserves and possibly also shunting metabolites through alternative energy-generating pathways to sustain longevity.
Collapse
Affiliation(s)
- Geert Depuydt
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | - Fang Xie
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vladislav A. Petyuk
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Arne Smolders
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| | - Heather M. Brewer
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David G. Camp
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological
Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bart P. Braeckman
- Biology
Department, Ghent University, Proeftuinstraat 86 N1, B-9000 Ghent, Belgium
| |
Collapse
|
34
|
Alvares SM, Mayberry GA, Joyner EY, Lakowski B, Ahmed S. H3K4 demethylase activities repress proliferative and postmitotic aging. Aging Cell 2014; 13:245-53. [PMID: 24134677 PMCID: PMC4020274 DOI: 10.1111/acel.12166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/16/2022] Open
Abstract
Homeostasis of postmitotic and proliferating cells is maintained by pathways that repress stress. We found that the Caenorhabditis elegans histone 3 lysine 4 (H3K4) demethylases RBR-2 and SPR-5 promoted postmitotic longevity of stress-resistant daf-2 adults, altered pools of methylated H3K4, and promoted silencing of some daf-2 target genes. In addition, RBR-2 and SPR-5 were required for germ cell immortality at a high temperature. Transgenerational proliferative aging was enhanced for spr-5; rbr-2 double mutants, suggesting that these histone demethylases may function sequentially to promote germ cell immortality by targeting distinct H3K4 methyl marks. RBR-2 did not play a comparable role in the maintenance of quiescent germ cells in dauer larvae, implying that it represses stress that occurs as a consequence of germ cell proliferation, rather than stress that accumulates in nondividing cells. We propose that H3K4 demethylase activities promote the maintenance of chromatin states during stressful growth conditions, thereby repressing postmitotic aging of somatic cells as well as proliferative aging of germ cells.
Collapse
Affiliation(s)
- Stacy M. Alvares
- Department of Genetics University of North Carolina Chapel Hill NC 27599‐3280USA
- SPIRE Postdoctoral Fellowship Program University of North Carolina Chapel Hill NC 27599‐3280USA
| | - Gaea A. Mayberry
- Department of Biology University of North Carolina Chapel Hill NC 27599‐3280USA
| | - Ebony Y. Joyner
- Department of Natural Sciences Fayetteville State University Fayetteville NC 28301‐4298USA
| | - Bernard Lakowski
- Department of Neuroscience Institut Pasteur 75724 Paris Cedex 15 France
| | - Shawn Ahmed
- Department of Genetics University of North Carolina Chapel Hill NC 27599‐3280USA
- Department of Biology University of North Carolina Chapel Hill NC 27599‐3280USA
| |
Collapse
|
35
|
Developmental drift as a mechanism for aging: lessons from nematodes. Biogerontology 2013; 14:693-701. [DOI: 10.1007/s10522-013-9462-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/30/2013] [Indexed: 01/16/2023]
|
36
|
Liu J, Yang B, Ai J. Advance in research of microRNA in Caenorhabditis elegans. J Cell Biochem 2013; 114:994-1000. [PMID: 23161250 DOI: 10.1002/jcb.24448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022]
Abstract
microRNA (miRNA) is a family of small, non-coding RNA first discovered as an important regulator of development in Caenorhabditis elegans (C. elegans). Numerous miRNAs have been found in C. elegans, and some of them are well conserved in many organisms. Though, the biologic function of miRNAs in C. elegans was largely unknown, more and more studies support the idea that miRNA is an important molecular for C. elegans. In this review, we revisit the research progress of miRNAs in C. elegans related with development, aging, cancer, and neurodegenerative diseases and compared the function of miRNAs between C. elegans and human.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | | | | |
Collapse
|
37
|
Saito TL, Hashimoto SI, Gu SG, Morton JJ, Stadler M, Blumenthal T, Fire A, Morishita S. The transcription start site landscape of C. elegans. Genome Res 2013; 23:1348-61. [PMID: 23636945 PMCID: PMC3730108 DOI: 10.1101/gr.151571.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/18/2013] [Indexed: 11/24/2022]
Abstract
More than half of Caenorhabditis elegans pre-mRNAs lose their original 5' ends in a process termed "trans-splicing" in which the RNA extending from the transcription start site (TSS) to the site of trans-splicing of the primary transcript, termed the "outron," is replaced with a 22-nt spliced leader. This complicates the mapping of TSSs, leading to a lack of available TSS mapping data for these genes. We used growth at low temperature and nuclear isolation to enrich for transcripts still containing outrons, applying a modified SAGE capture procedure and high-throughput sequencing to characterize 5' termini in this transcript population. We report from this data both a landscape of 5'-end utilization for C. elegans and a representative collection of TSSs for 7351 trans-spliced genes. TSS distributions for individual genes were often dispersed, with a greater average number of TSSs for trans-spliced genes, suggesting that trans-splicing may remove selective pressure for a single TSS. Upstream of newly defined TSSs, we observed well-known motifs (including TATAA-box and SP1) as well as novel motifs. Several of these motifs showed association with tissue-specific expression and/or conservation among six worm species. Comparing TSS features between trans-spliced and non-trans-spliced genes, we found stronger signals among outron TSSs for preferentially positioning of flanking nucleosomes and for downstream Pol II enrichment. Our data provide an enabling resource for both experimental and theoretical analysis of gene structure and function in C. elegans.
Collapse
Affiliation(s)
- Taro Leo Saito
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| | - Shin-ichi Hashimoto
- Department of Laboratory Medicine, Faculty of Medicine, Kanazawa University, Kanazawa, 920-8641 Japan
| | - Sam Guoping Gu
- Department of Pathology, School of Medicine, Stanford University, Stanford, California 94305-5324, USA
| | - J. Jason Morton
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Michael Stadler
- Department of Pathology, School of Medicine, Stanford University, Stanford, California 94305-5324, USA
| | - Thomas Blumenthal
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Andrew Fire
- Departments of Pathology and Genetics, School of Medicine, Stanford University, Stanford, California 94305-5324, USA
| | - Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
| |
Collapse
|
38
|
Molecular characterisation of the recovery process in the entomopathogenic nematode Heterorhabditis bacteriophora. Int J Parasitol 2013; 43:843-52. [PMID: 23806512 DOI: 10.1016/j.ijpara.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/21/2022]
Abstract
In Heterorhabditis bacteriophora, an insect-parasitic nematode, the third juvenile is the infective, developmentally arrested form. When it infects a suitable host, the infective juvenile recovers from developmental arrest and resumes growth and development. This process is called recovery and it is the first outcome of the host-parasite interaction. Recovery is also very important from a commercial point of view. To characterise the recovery in H. bacteriophora, we sought to identify genes involved in this process. A large-scale bioassay for recovery was established and subtraction libraries of recovering infective juvenile from arrested infective juvenile transcripts were constructed at different time points. Most of the genes identified as differentially expressed between recovering and developmentally arrested infective juveniles belonged to metabolic pathways. Elevated expression levels of 23 selected genes during recovery were confirmed by quantitative PCR. For eight of these genes, transcription silencing in H. bacteriophora resulted in a significant decline in infective juvenile recovery rates, suggesting that these genes are critical to the recovery process. Two of the genes were associated with the insulin-like growth factor-1 (insulin/IGF-1) pathway, known to regulate dauer formation in the free-living nematode Caenorhabditis elegans, whereas the other six genes were associated with pathways not previously associated with recovery in nematodes. These results suggest that although little is known about parasitism-unique genes, the pathways regulating recovery in H. bacteriophora include those activated in C. elegans and those that might be unique to parasitic nematodes; the latter may be activated in response to host signals and enable the parasite to recognise its host.
Collapse
|
39
|
Hall SE, Chirn GW, Lau NC, Sengupta P. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans. RNA (NEW YORK, N.Y.) 2013; 19:306-319. [PMID: 23329696 PMCID: PMC3677242 DOI: 10.1261/rna.036418.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/26/2012] [Indexed: 05/30/2023]
Abstract
Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms.
Collapse
Affiliation(s)
- Sarah E. Hall
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
40
|
Feng H, Hope IA. The Caenorhabditis elegans homeobox gene ceh-19 is required for MC motorneuron function. Genesis 2013; 51:163-78. [PMID: 23315936 PMCID: PMC3638342 DOI: 10.1002/dvg.22365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 12/18/2012] [Accepted: 12/24/2012] [Indexed: 12/29/2022]
Abstract
Simplicity has made C. elegans pharyngeal development a particularly well-studied subject. Nevertheless, here we add the previously uncharacterized homeobox gene F20D12.6/ceh-19 to the set of transcription factor genes involved. GFP reporter assays revealed that ceh-19 is expressed in three pairs of neurons, the pharyngeal pace-maker neurons MC, the amphid neurons ADF and the phasmid neurons PHA. ceh-19(tm452) mutants are viable and fertile, but grow slightly slower, produce less progeny over a prolonged period, and live longer than the wild type. These phenotypes are likely due to the moderately reduced pharyngeal pumping speed arising from the impairment of MC activity. MC neurons are still born in the ceh-19 mutants but display various morphological defects. ceh-19 expression in MC is completely lost in progeny from animals subject to RNAi for pha-4, which encodes an organ-specifying forkhead transcription factor. CEH-19 is required for the activation in MCs of the excitatory FMRFamide-like neuropeptide-encoding gene flp-2. A regulatory pathway from pha-4 through ceh-19 to flp-2 is thereby defined. The resilience of MC identity in the absence of CEH-19 may reflect the buffering qualities of transcription factor regulatory networks. genesis 51:163–178, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Huiyun Feng
- School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
41
|
Characterization of heat shock protein 70 gene fromHaemonchus contortusand its expression and promoter analysis inCaenorhabditis elegans. Parasitology 2013; 140:683-94. [DOI: 10.1017/s0031182012002168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARYHaemonchus contortusinfections in small ruminants are of major economic importance worldwide. Heat shock proteins (HSPs) are a family of molecular chaperones that play important roles in the process of invasion and survival of nematodes. Although HSP70 has been identified in several parasitic nematodes, little is known of its distribution and function inHaemonchus contortus. The aims of this study were to characterize HSP70 fromHaemonchus contortus(designed as Hc-hsp70), express Hc-hsp70 and analyse the promoter activity inCaenorhabditis elegans. Bioinformatic analysis revealed that the open reading frame of the Hc-hsp70 cDNA encodes a 646-amino acid peptide, which is highly conserved in comparison to HSP70 in other nematodes. Phylogenetic analysis indicated thatH. contortusis closely related toCaenorhabditis. The 5′-flanking region promoted green fluorescence protein (GFP) expression in the intestine in all larval stages and adult with 2 expression patterns inC. elegans. Expression of Hc-hsp70 mRNA transcripts inC. elegansincreased following 2, 4, 6 h of heat shock and peaked at 4 h. However, its expression induced down-regulation ofhsp-1ofC. elegans. These results suggest that theH. contortushsp70 might have a similar function to that ofC. elegans hsp-1.
Collapse
|
42
|
Physiological control of germline development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:101-31. [PMID: 22872476 DOI: 10.1007/978-1-4614-4015-4_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The intersection between developmental programs and environmental conditions that alter physiology is a growing area of research interest. The C. elegans germ line is emerging as a particularly sensitive and powerful model for these studies. The germ line is subject to environmentally regulated diapause points that allow worms to withstand harsh conditions both prior to and after reproduction commences. It also responds to more subtle changes in physiological conditions. Recent studies demonstrate that different aspects of germ line development are sensitive to environmental and physiological changes and that conserved signaling pathways such as the AMPK, Insulin/IGF, TGFβ, and TOR-S6K, and nuclear hormone receptor pathways mediate this sensitivity. Some of these pathways genetically interact with but appear distinct from previously characterized mechanisms of germline cell fate control such as Notch signaling. Here, we review several aspects of hermaphrodite germline development in the context of "feasting," "food-limited," and "fasting" conditions. We also consider connections between lifespan, metabolism and the germ line, and we comment on special considerations for examining germline development under altered environmental and physiological conditions. Finally, we summarize the major outstanding questions in the field.
Collapse
|
43
|
Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis 2012; 6:e1854. [PMID: 23145190 PMCID: PMC3493385 DOI: 10.1371/journal.pntd.0001854] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/26/2012] [Indexed: 01/25/2023] Open
Abstract
The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies. Parasitic nematodes infect over one billion people worldwide and cause many diseases, including strongyloidiasis, filariasis, and hookworm disease. For many of these parasites, including Strongyloides stercoralis, the infectious form is a developmentally arrested and long-lived thirdstage larva (L3i). Upon encountering a host, L3i quickly resume development and mature into parasitic adults. In the free-living nematode Caenorhabditis elegans, a similar developmentally arrested third-stage larva, known as the dauer, is regulated by four key cellular mechanisms. We hypothesized that similar cellular mechanisms control L3i arrest and activation. Therefore, we used deep-sequencing technology to characterize the S. stercoralis transcriptome (RNAseq), which allowed us to identify S. stercoralis homologs of components of these four mechanisms and examine their temporal regulation. We found similar temporal regulation between S. stercoralis and C. elegans for components of two mechanisms, but dissimilar temporal regulation for two others, suggesting conserved as well as novel modes of developmental regulation for L3i. Understanding L3i development may lead to novel control strategies as well as new treatments for strongyloidiasis and other diseases caused by parasitic nematodes.
Collapse
Affiliation(s)
- Jonathan D. Stoltzfus
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Samuel Minot
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
PDHK-2 deficiency is associated with attenuation of lipase-mediated fat consumption for the increased survival of Caenorhabditis elegans dauers. PLoS One 2012; 7:e41755. [PMID: 22848591 PMCID: PMC3407204 DOI: 10.1371/journal.pone.0041755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
In Caenorhabditis elegans, slow fat consumption has been suggested to contribute to the extension of the survival rate during nutritionally adverse conditions. Here, we investigated the potential role of pyruvate dehydrogenase kinase (PDHK)-2, the C. elegans homolog of mammalian PDK, effects on fat metabolism under nutritional conditions. PDHK-2 was expressed at low levels under well-fed conditions but was highly induced during long-term starvation and in the dauer state. This increase in pdhk-2 expression was regulated by both DAF-16 and NHR-49. Dauer-specific induction of PDHK-2 was abolished upon entry into the post-dauer stage. Interestingly, in the long-term dauer state, stored fat levels were higher in daf-2(e1370);pdhk-2 double mutants than in daf-2(e1370), suggesting a positive relationship between PDHK-2 activity and fat consumption. PDHK-2 deficiency has been shown to lead to greater preservation of residual fats, which would be predicted to contribute to survival during the dauer state. A test of this prediction showed that the survival rates of daf-2(e1370);pdhk-2(tm3075) and daf-2(e1370);pdhk-2(tm3086) double mutants were higher than that of daf-2(e1370), suggesting that loss of either the ATP-binding domain (tm3075) or branched chain keto-acid dehydrogenase kinase domain (tm3086) of PDHK-2 leads to reduced fat consumption and thus favors increased dauer survival. This attenuated fat consumption in the long-term dauer state of C. elegans daf-2 (e1370);pdhk-2 mutants was associated with concomitant down-regulation of the lipases ATGL (adipose triglyceride lipase), HSL (hormone-sensitive lipase), and C07E3.9 (phospholipase). In contrast, PDHK-2 overexpression in wild-type starved worms induced lipase expression and promoted abnormal dauer formation. Thus, we propose that PDHK-2 serves as a molecular bridge, connecting fat metabolism and survival under nutritionally adverse conditions in C. elegans.
Collapse
|
45
|
Sinha A, Sommer RJ, Dieterich C. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans. BMC Genomics 2012; 13:254. [PMID: 22712530 PMCID: PMC3443458 DOI: 10.1186/1471-2164-13-254] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/12/2012] [Indexed: 11/20/2022] Open
Abstract
Background An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. Results We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Conclusion Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution.
Collapse
Affiliation(s)
- Amit Sinha
- Max-Planck Institute for Developmental Biology, Department for Evolutionary Biology, Tübingen, Germany
| | | | | |
Collapse
|
46
|
Smith LM, Hartmann L, Drewe P, Bohnert R, Kahles A, Lanz C, Rätsch G. Multiple insert size paired-end sequencing for deconvolution of complex transcriptomes. RNA Biol 2012; 9:596-609. [PMID: 22614838 DOI: 10.4161/rna.19683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Deep sequencing of transcriptomes allows quantitative and qualitative analysis of many RNA species in a sample, with parallel comparison of expression levels, splicing variants, natural antisense transcripts, RNA editing and transcriptional start and stop sites the ideal goal. By computational modeling, we show how libraries of multiple insert sizes combined with strand-specific, paired-end (SS-PE) sequencing can increase the information gained on alternative splicing, especially in higher eukaryotes. Despite the benefits of gaining SS-PE data with paired ends of varying distance, the standard Illumina protocol allows only non-strand-specific, paired-end sequencing with a single insert size. Here, we modify the Illumina RNA ligation protocol to allow SS-PE sequencing by using a custom pre-adenylated 3' adaptor. We generate parallel libraries with differing insert sizes to aid deconvolution of alternative splicing events and to characterize the extent and distribution of natural antisense transcription in C. elegans. Despite stringent requirements for detection of alternative splicing, our data increases the number of intron retention and exon skipping events annotated in the Wormbase genome annotations by 127% and 121%, respectively. We show that parallel libraries with a range of insert sizes increase transcriptomic information gained by sequencing and that by current established benchmarks our protocol gives competitive results with respect to library quality.
Collapse
Affiliation(s)
- Lisa M Smith
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Morrow G, Tanguay RM. Small heat shock protein expression and functions during development. Int J Biochem Cell Biol 2012; 44:1613-21. [PMID: 22502646 DOI: 10.1016/j.biocel.2012.03.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 11/19/2022]
Abstract
The expression of small heat shock proteins is tightly regulated during development in multiple organisms. As housekeeping proteins, small heat shock proteins help protect cells from apoptosis, stabilize the cytoskeleton and contribute to proteostasis. Consistently, depletion of one small heat shock protein is usually not detrimental due to a certain level of redundancy between the functions of each small heat shock protein. However, while their stress-induced expression is regulated by heat shock factors, their constitutive expression is under the control of other specific transcription factors, suggesting the existence of very specialized functions. This review focuses on the expression patterns and functions of small heat shock proteins in various organisms during development. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Geneviève Morrow
- Laboratory of Cell and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Institut de Biologie Intégrative et des Systèmes and PROTEO, Université Laval, Québec, Canada G1V 0A6
| | | |
Collapse
|
48
|
Abstract
Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution.
Collapse
|
49
|
Zhang Q, Lu YX, Xu WH. Integrated Proteomic and Metabolomic Analysis of Larval Brain Associated with Diapause Induction and Preparation in the Cotton Bollworm, Helicoverpa armigera. J Proteome Res 2012; 11:1042-53. [DOI: 10.1021/pr200796a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qi Zhang
- State Key
Laboratory of Biocontrol, School of Life
Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - Yu-Xuan Lu
- State Key
Laboratory of Biocontrol, School of Life
Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - Wei-Hua Xu
- State Key
Laboratory of Biocontrol, School of Life
Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| |
Collapse
|
50
|
|