1
|
Yanagibashi S, Bamba T, Kirisako T, Kondo A, Hasunuma T. Beneficial effect of optimizing the expression balance of the mevalonate pathway introduced into the mitochondria on terpenoid production in Saccharomyces cerevisiae. J Biosci Bioeng 2024; 137:16-23. [PMID: 38042754 DOI: 10.1016/j.jbiosc.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/04/2023]
Abstract
Terpenoids are used in various industries, and Saccharomyces cerevisiae is a promising microorganism for terpenoid production. Introducing the mevalonate (MVA) pathway into the mitochondria of a strain with an augmented inherent cytosolic MVA pathway increased terpenoid production but also led to the accumulation of toxic pyrophosphate intermediates that negatively affected terpenoid production. We first engineered the inherent MVA pathway in the cytosol and then introduced the MVA pathway into the mitochondria using several promoter combinations, considering the toxicity of pyrophosphate intermediates. However, the highest titer, 183 mg/L, tends to be only 5% higher than that of the strain that only augmented the inherent MVA pathway (SYCM1; 174 mg/L). Next, we hypothesized that, in addition to the toxicity of pyrophosphate, other compounds in the MVA pathway could affect the squalene titer. Thus, we constructed a combinatorial strain library expressing MVA pathway enzymes in the mitochondria with various promoter combinations. The highest squalene titer (230 mg/L) was 32% higher than that of SYCM1. The promoter set revealed that mitigation of mono- and pyrophosphate compound accumulation was important for mitochondrial usage. This study demonstrated that a combinatorial strain library is useful for discovering the optimal gene expression balance in engineering yeast.
Collapse
Affiliation(s)
- So Yanagibashi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Takayoshi Kirisako
- Kirin Central Research Institute, Kirin Holdings Company, Ltd., 26-1-12-12 Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
2
|
Jiang X, Bai J, Zhang H, Yuan J, Lu G, Wang Y, Jiang L, Liu B, Huang D, Feng L. Development of an O-polysaccharide based recombinant glycoconjugate vaccine in engineered E. coli against ExPEC O1. Carbohydr Polym 2022; 277:118796. [PMID: 34893224 DOI: 10.1016/j.carbpol.2021.118796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Extraintestinal pathogenic Escherichia coli O1 is a frequently identified serotype that causes serious infections and is often refractory to antimicrobial therapy. Glycoconjugate vaccine represents a promising measure to reduce ExPEC infections. Herein, we designed an O1-specific glyco-optimized chassis strain for manufacture of O-polysaccharide (OPS) antigen and OPS-based bioconjugate. Specifically, OPS and OPS-based glycoprotein were synthesized in glyco-optimized chassis strain, when compared to the unmeasurable level of the parent strain. The optimal expression of oligosaccharyltransferase and carrier protein further improved the titer. MS analysis elucidated the correct structure of resulting bioconjugate at routine and unreported glycosylation sequons of carrier protein, with a higher glycosylation efficiency. Finally, purified bioconjugate stimulated mouse to generate specific IgG antibodies and protected them against virulent ExPEC O1 challenge. The plug-and-play glyco-optimized platform is suitable for bioconjugate synthesis, thus providing a potential platform for future medical applications.
Collapse
Affiliation(s)
- Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jing Bai
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Huijing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Lingyan Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| | - Lu Feng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, PR China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, PR China.
| |
Collapse
|
3
|
Liu X, Wang M, Song Y, Li Y, Liu P, Shi H, Li Y, Hao T, Zhang H, Jiang W, Chen S, Li J. Combined Assembly and Targeted Integration of Multigene for Nitrogenase Biosynthetic Pathway in Saccharomyces cerevisiae. ACS Synth Biol 2019; 8:1766-1775. [PMID: 31117360 DOI: 10.1021/acssynbio.9b00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological nitrogen fixation, a process unique to diazotrophic prokaryote, is catalyzed by the nitrogenase complex. There has been a long-standing interest in reconstituting a nitrogenase biosynthetic pathway in a eukaryotic host with the final aim of developing N2-fixing cereal crops. In this study, we report that a nitrogenase biosynthetic pathway (∼38 kb containing 15 genes) was assembled in two individual one-step methods via in vivo assembly and integrated at δ and HO sites in Saccharomyces cerevisiae chromosome. Of the 15 genes, 11 genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA, nifV, groES, groEL) were from Paenibacillus polymyxa WLY78 and 4 genes (nifS, nifU, nifF, nifJ) were from Klebsiella oxytoca. The 15-gene nitrogenase biosynthetic pathway was correctly assembled and transcribed in the recombinant S. cerevisiae. The NifDK tetramer with an identical molecular weight as that of P. polymyxa was formed in yeast and the expressed NifH exhibited the activity of Fe protein. This study demonstrates that it will be possible to produce active nitrogenase in eukaryotic hosts.
Collapse
Affiliation(s)
- Xiaomeng Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Minyang Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yi Song
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yongbin Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Pengxi Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Haowen Shi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Yunlong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Tianyi Hao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Haowei Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Wei Jiang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| | - Jilun Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences and Key Laboratory of Soil Microbiology of Agriculture Ministry, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
4
|
Flagg MP, Kao A, Hampton RY. Integrating after CEN Excision (ICE) Plasmids: Combining the ease of yeast recombination cloning with the stability of genomic integration. Yeast 2019; 36:593-605. [PMID: 31074531 DOI: 10.1002/yea.3400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/23/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
Yeast recombination cloning is a straightforward and powerful method for recombining a plasmid backbone with a specific DNA fragment. However, the utility of yeast recombination cloning is limited by the requirement for the backbone to contain an CEN/ARS element, which allows for the recombined plasmids to propagate. Although yeast CEN/ARS plasmids are often suitable for further studies, we demonstrate here that they can vary considerably in copy number from cell to cell and from colony to colony. Variation in plasmid copy number can pose an unacceptable and often unacknowledged source of phenotypic variation. If expression levels are critical to experimentation, then constructs generated with yeast recombination cloning must be subcloned into integrating plasmids, a step that often abrogates the utility of recombination cloning. Accordingly, we have designed a vector that can be used for yeast recombination cloning but can be converted into the integrating version of the resulting vector without an additional subcloning. We call these "ICE" vectors, for "Integrating after CEN Excision." The ICE series was created by introducing a "rare-cutter" NotI-flanked CEN/ARS element into the multiple cloning sites of the pRS series yeast integration plasmids. Upon recovery from yeast, the CEN/ARS is excised by NotI digest and subsequently religated without need for purification or transfer to new conditions. Excision by this approach takes ~3 hr, allowing this refinement in the same time frame as standard recombination cloning.
Collapse
Affiliation(s)
- Matthew P Flagg
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California
| | - Andy Kao
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California
| | - Randolph Y Hampton
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California
| |
Collapse
|
5
|
Green MR, Sambrook J. Attaching Phosphorylated Adaptors/Linkers to Blunt-Ended DNAs. Cold Spring Harb Protoc 2019; 2019:2019/8/pdb.prot101261. [PMID: 31371475 DOI: 10.1101/pdb.prot101261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adaptors and linkers are attached to the end of DNA fragments to facilitate their insertion into plasmid vectors for cloning and expression.
Collapse
|
6
|
Liu MA, Reeves PR. Customizable Cloning of Whole Polysaccharide Gene Clusters by Yeast Homologous Recombination. Methods Mol Biol 2019; 1954:1-14. [PMID: 30864119 DOI: 10.1007/978-1-4939-9154-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cloning of whole polysaccharide biosynthesis gene clusters for expression in a common Escherichia coli tester strain has the major advantage of enabling direct functional comparisons between gene clusters that are normally found in different strains, where their expression is potentially under differential regulatory control. However, due to the large size of many of these gene clusters, classical cloning methods are highly inefficient, time-consuming, and/or labor-intensive. Here we describe a recently developed system, called the operon assembly protocol (OAP), in which yeast homologous recombination pathways are used to assemble overlapping PCR fragments onto a specially engineered yeast E. coli shuttle vector, resulting in full-length customizable gene cluster clones on single-copy plasmids. Multiple versions of the same gene cluster can also be assembled in parallel with genes deleted, replaced, or rearranged, allowing the function and/or specificity of individual genes to be examined. Since the vector can be easily modified to include other bacterial replicons, it can also be broadly applied to the functional analysis of a wide range of bacterial gene clusters and operons.
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Liu MA, Morris P, Reeves PR. Wzx flippases exhibiting complex O-unit preferences require a new model for Wzx-substrate interactions. Microbiologyopen 2018; 8:e00655. [PMID: 29888516 PMCID: PMC6436433 DOI: 10.1002/mbo3.655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/08/2022] Open
Abstract
The Wzx flippase is a critical component of the O‐antigen biosynthesis pathway, being responsible for the translocation of oligosaccharide O units across the inner membrane in Gram‐negative bacteria. Recent studies have shown that Wzx has a strong preference for its cognate O unit, but the types of O‐unit structural variance that a given Wzx can accommodate are poorly understood. In this study, we identified two Yersinia pseudotuberculosis Wzx that can distinguish between different terminal dideoxyhexose sugars on a common O‐unit main‐chain, despite both being able to translocate several other structurally‐divergent O units. We also identified other Y. pseudotuberculosis Wzx that can translocate a structurally divergent foreign O unit with high efficiency, and thus exhibit an apparently relaxed substrate preference. It now appears that Wzx substrate preference is more complex than previously suggested, and that not all O‐unit residues are equally important determinants of translocation efficiency. We propose a new “Structure‐Specific Triggering” model in which Wzx translocation proceeds at a low level for a wide variety of substrates, with high‐frequency translocation only being triggered by Wzx interacting with one or more preferred O‐unit structural elements found on its cognate O unit(s).
Collapse
Affiliation(s)
- Michael A Liu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paraskevi Morris
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter R Reeves
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Rapid customised operon assembly by yeast recombinational cloning. Appl Microbiol Biotechnol 2017; 101:4569-4580. [PMID: 28324143 DOI: 10.1007/s00253-017-8213-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
Abstract
We have developed a system called the Operon Assembly Protocol (OAP), which takes advantage of the homologous recombination DNA repair pathway in Saccharomyces cerevisiae to assemble full-length operons from a series of overlapping PCR products into a specially engineered yeast-Escherichia coli shuttle vector. This flexible, streamlined system can be used to assemble several operon clones simultaneously, and each clone can be expressed in the same E. coli tester strain to facilitate direct functional comparisons. We demonstrated the utility of the OAP by assembling and expressing a series of E. coli O1A O-antigen gene cluster clones containing various gene deletions or replacements. We then used these constructs to assess the substrate preferences of several Wzx flippases, which are responsible for translocation of oligosaccharide repeat units (O units) across the inner membrane during O-antigen biosynthesis. We were able to identify several O unit structural features that appear to be important determinants of Wzx substrate preference. The OAP system should be broadly applicable for the genetic manipulation of any bacterial operon and can be modified for use in other host species. It could also have potential uses in fields such as glycoengineering.
Collapse
|
9
|
Liu W, Zhang B, Jiang R. Improving acetyl-CoA biosynthesis in Saccharomyces cerevisiae via the overexpression of pantothenate kinase and PDH bypass. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:41. [PMID: 28239413 PMCID: PMC5316175 DOI: 10.1186/s13068-017-0726-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/09/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Acetyl-CoA is an important precursor in Saccharomyces cerevisiae. Various approaches have been adopted to improve its cytosolic level previously with the emphasis on engineering the "acetyl-" part of acetyl-CoA. To the best of our knowledge, there have been no reports on engineering the "-CoA" part so far. RESULTS In this study, we had tried to engineer S. cerevisiae from both the "-CoA" part via pantothenate kinase overexpression (PanK from S. cerevisiae, the rate-limiting enzyme for CoA synthesis) and the "acetyl-"part through PDH bypass introduction (ALD6 from S. cerevisiae and SeAcsL641P from Salmonella enteric). A naringenin-producing reporter strain had been constructed to reflect cytosolic acetyl-CoA level as acetyl-CoA is the precursor of naringenin. It was found that PanK overexpression or PDH bypass introduction alone only led to a twofold or 6.74-fold increase in naringenin titer, but the combination of both (strain CENFPAA01) had resulted in 24.4-fold increase as compared to the control (strain CENF09) in the presence of 0.5 mM substrate p-coumaric acid. The supplement of PanK substrate pantothenate resulted in another 19% increase in naringenin production. CONCLUSIONS To greatly enhance acetyl-CoA level in yeast cytosol, it is feasible to engineer both the "acetyl-" part and the "-CoA" part simultaneously. Insufficient CoA supply might aggravate acetyl-CoA shortage and cause low yield of target product.
Collapse
Affiliation(s)
- Wenshan Liu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Bo Zhang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
10
|
Liu D, Liu H, Li BZ, Qi H, Jia B, Zhou X, Du HX, Zhang W, Yuan YJ. Multigene Pathway Engineering with Regulatory Linkers (M-PERL). ACS Synth Biol 2016; 5:1535-1545. [PMID: 27389125 DOI: 10.1021/acssynbio.6b00123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multigene pathway engineering usually needs amounts of part libraries on transcriptional and translational regulation as well as mutant enzymes to achieve the optimal part combinations of the target pathways. We report a new strategy for multigene pathway engineering with regulatory linkers (M-PERL) focusing on tuning the transcriptional start site (TSS) of yeast promoters. The regulatory linkers are composed of two homologous ends of two adjacent gene parts for assembly and a central regulatory region between them. We investigated the effect of the homologous end's length on multigene assembly, analyzed the influences of truncated, replaced, and elongated TSS and the adjacent region on promoters, and introduced 5 to 40 random bases of N (A/T/C/G) in the central regulatory region of the linkers which effectively varied the promoter's strengths. The distinct libraries of five regulatory linkers were used simultaneously to assemble and tune all five genes in the violacein synthesis pathway. The gene expressions affected the product profiles significantly, and the recombinants for enhanced single component synthesis and varied composition synthesis were obtained. This study offers an efficient tool to assemble and regulate multigene pathways.
Collapse
Affiliation(s)
- Duo Liu
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hong Liu
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bing-Zhi Li
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hao Qi
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Bin Jia
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xiao Zhou
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Hao-Xing Du
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Wei Zhang
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Ying-Jin Yuan
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
11
|
Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection. J Immunol Res 2016; 2016:2743292. [PMID: 27213160 PMCID: PMC4861779 DOI: 10.1155/2016/2743292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/28/2016] [Accepted: 03/22/2016] [Indexed: 01/06/2023] Open
Abstract
Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.
Collapse
|
12
|
Czarnecki O, Bryan AC, Jawdy SS, Yang X, Cheng ZM, Chen JG, Tuskan GA. Simultaneous knockdown of six non-family genes using a single synthetic RNAi fragment in Arabidopsis thaliana. PLANT METHODS 2016; 12:16. [PMID: 26889205 PMCID: PMC4756541 DOI: 10.1186/s13007-016-0116-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/08/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs or multiple transformation events that is often restricted by a lack of available transformation markers. RESULTS Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. CONCLUSIONS We present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.
Collapse
Affiliation(s)
- Olaf Czarnecki
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA ; KWS SAAT SE, Grimsehlstraße 31, 37555 Einbeck, Germany
| | - Anthony C Bryan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sara S Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Zong-Ming Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
13
|
High-Throughput Construction of Genetically Modified Fungi. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
van Leeuwen J, Andrews B, Boone C, Tan G. Construction of Multifragment Plasmids by Homologous Recombination in Yeast. Cold Spring Harb Protoc 2015; 2015:pdb.top084111. [PMID: 26330631 DOI: 10.1101/pdb.top084111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Over the past decade, the focus of cloning has shifted from constructing plasmids that express a single gene of interest to creating multigenic constructs that contain entire pathways or even whole genomes. Traditional cloning methods that rely on restriction digestion and ligation are limited by the number and size of fragments that can efficiently be combined. Here, we focus on the use of homologous-recombination-based DNA manipulation in the yeast Saccharomyces cerevisiae for the construction of plasmids from multiple DNA fragments. Owing to its simplicity and high efficiency, cloning by homologous recombination in yeast is very accessible and can be applied to high-throughput construction procedures. Its applications extend beyond yeast-centered purposes and include the cloning of large mammalian DNA sequences and entire bacterial genomes.
Collapse
Affiliation(s)
- Jolanda van Leeuwen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Brenda Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Guihong Tan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
15
|
Baek CH, Chesnut J, Katzen F. Positive selection improves the efficiency of DNA assembly. Anal Biochem 2015; 476:1-4. [PMID: 25660533 DOI: 10.1016/j.ab.2015.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
With the advent of synthetic biology and cell engineering, the demand for large synthetic DNA fragments has been steadily increasing. Consequently, a number of multi-fragment cloning technologies optimized for the assembly of sizable DNA constructs have been developed. Still, screening for the right clone can be tedious because the high incidence of illegitimate assembly results in a relatively large proportion of missing or shuffled DNA elements. To mitigate this risk, we have developed a strategy that reduces the rate of fragment mis-assembly and is compatible with a variety of cloning methodologies. The approach is based on the positive selection of truncated plasmid markers, which are rendered active by providing their missing sequences during the assembly process. The method has been successfully validated in the context of complex in vivo and in vitro homologous recombination workflows, but it could be readily adapted to other cloning strategies, including those based on restriction endonucleases.
Collapse
|
16
|
Abstract
ABSTRACT
Since the discovery of restriction enzymes and the generation of the first recombinant DNA molecule over 40 years ago, molecular biology has evolved into a multidisciplinary field that has democratized the conversion of a digitized DNA sequence stored in a computer into its biological counterpart, usually as a plasmid, stored in a living cell. In this article, we summarize the most relevant tools that allow the swift assembly of DNA sequences into useful plasmids for biotechnological purposes. We cover the main components and stages in a typical DNA assembly workflow, namely
in silico
design,
de novo
gene synthesis, and
in vitro
and
in vivo
sequence assembly methodologies.
Collapse
|
17
|
Andréasson C, Schick AJ, Pfeiffer SM, Sarov M, Stewart F, Wurst W, Schick JA. Direct cloning of isogenic murine DNA in yeast and relevance of isogenicity for targeting in embryonic stem cells. PLoS One 2013; 8:e74207. [PMID: 24058528 PMCID: PMC3772885 DOI: 10.1371/journal.pone.0074207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/30/2013] [Indexed: 12/25/2022] Open
Abstract
Efficient gene targeting in embryonic stem cells requires that modifying DNA sequences are identical to those in the targeted chromosomal locus. Yet, there is a paucity of isogenic genomic clones for human cell lines and PCR amplification cannot be used in many mutation-sensitive applications. Here, we describe a novel method for the direct cloning of genomic DNA into a targeting vector, pRTVIR, using oligonucleotide-directed homologous recombination in yeast. We demonstrate the applicability of the method by constructing functional targeting vectors for mammalian genes Uhrf1 and Gfap. Whereas the isogenic targeting of the gene Uhrf1 showed a substantial increase in targeting efficiency compared to non-isogenic DNA in mouse E14 cells, E14-derived DNA performed better than the isogenic DNA in JM8 cells for both Uhrf1 and Gfap. Analysis of 70 C57BL/6-derived targeting vectors electroporated in JM8 and E14 cell lines in parallel showed a clear dependence on isogenicity for targeting, but for three genes isogenic DNA was found to be inhibitory. In summary, this study provides a straightforward methodological approach for the direct generation of isogenic gene targeting vectors.
Collapse
Affiliation(s)
- Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna J. Schick
- Physiologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanne M. Pfeiffer
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Munich-Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Mihail Sarov
- The TransgeneOme Project Group, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Francis Stewart
- Genomics, BioInnovationZentrum, Technische Universität Dresden, Dresden, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Munich-Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Joel A. Schick
- Institute of Developmental Genetics, Helmholtz Zentrum Munich, Munich-Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
18
|
Kuijpers NGA, Solis-Escalante D, Bosman L, van den Broek M, Pronk JT, Daran JM, Daran-Lapujade P. A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 2013; 12:47. [PMID: 23663359 PMCID: PMC3669052 DOI: 10.1186/1475-2859-12-47] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/29/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In vivo recombination of overlapping DNA fragments for assembly of large DNA constructs in the yeast Saccharomyces cerevisiae holds great potential for pathway engineering on a small laboratory scale as well as for automated high-throughput strain construction. However, the current in vivo assembly methods are not consistent with respect to yields of correctly assembled constructs and standardization of parts required for routine laboratory implementation has not been explored. Here, we present and evaluate an optimized and robust method for in vivo assembly of plasmids from overlapping DNA fragments in S. cerevisiae. RESULTS To minimize occurrence of misassembled plasmids and increase the versatility of the assembly platform, two main improvements were introduced; i) the essential elements of the vector backbone (yeast episome and selection marker) were disconnected and ii) standardized 60 bp synthetic recombination sequences non-homologous with the yeast genome were introduced at each flank of the assembly fragments. These modifications led to a 100 fold decrease in false positive transformants originating from the backbone as compared to previous methods. Implementation of the 60 bp synthetic recombination sequences enabled high flexibility in the design of complex expression constructs and allowed for fast and easy construction of all assembly fragments by PCR. The functionality of the method was demonstrated by the assembly of a 21 kb plasmid out of nine overlapping fragments carrying six glycolytic genes with a correct assembly yield of 95%. The assembled plasmid was shown to be a high fidelity replica of the in silico design and all glycolytic genes carried by the plasmid were proven to be functional. CONCLUSION The presented method delivers a substantial improvement for assembly of multi-fragment expression vectors in S. cerevisiae. Not only does it improve the efficiency of in vivo assembly, but it also offers a versatile platform for easy and rapid design and assembly of synthetic constructs. The presented method is therefore ideally suited for the construction of complex pathways and for high throughput strain construction programs for metabolic engineering purposes. In addition its robustness and ease of use facilitate the construction of any plasmid carrying two or more genes.
Collapse
Affiliation(s)
- Niels GA Kuijpers
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, Delft, 2600 GA, The Netherlands
| | - Daniel Solis-Escalante
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, Delft, 2600 GA, The Netherlands
| | - Lizanne Bosman
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, Delft, 2600 GA, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, Delft, 2600 GA, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, Delft, 2600 GA, The Netherlands
- Platform Green Synthetic Biology, Julianalaan 67, Delft, 2628 BC, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, Delft, 2600 GA, The Netherlands
- Platform Green Synthetic Biology, Julianalaan 67, Delft, 2628 BC, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft, 2628 BC, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, Delft, 2600 GA, The Netherlands
| |
Collapse
|
19
|
Abstract
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an “ultra-low background DNA cloning system” on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Ampr). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Ampr 5′ UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Ampr 3′ UTR. This cassette allowed conversion of the Ampr-containing vector into the yeast/E. coli shuttle vector through use of the Ampr sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific “origins of replication” to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.
Collapse
Affiliation(s)
- Kenta Goto
- Analytical Research Center for Experimental Sciences, Saga University, Honjo, Saga, Japan.
| | | |
Collapse
|
20
|
Abstract
The yeast Saccharomyces cerevisiae can take up and assemble at least 38 overlapping single-stranded oligonucleotides and a linear double-stranded vector in one transformation event. These oligonucleotides can overlap by as few as 20 bp and can be as long as 200 nucleotides in length to produce kilobase-sized synthetic DNA molecules. A protocol for designing the oligonucleotides to be assembled, transforming them into yeast, and confirming their assembly is described here. This straightforward scheme for assembling chemically synthesized oligonucleotides can be a useful tool for building synthetic DNA molecules.
Collapse
Affiliation(s)
- Daniel G Gibson
- Department of Synthetic Biology, J. Craig Venter Institute, Inc., Rockville, MD, USA.
| |
Collapse
|
21
|
Tsvetanova B, Peng L, Liang X, Li K, Hammond L, Peterson TC, Katzen F. Advanced DNA assembly technologies in drug discovery. Expert Opin Drug Discov 2012; 7:371-4. [PMID: 22468854 DOI: 10.1517/17460441.2012.672408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recombinant DNA technologies have had a fundamental impact on drug discovery. The continuous emergence of unique gene assembly techniques resulted in the generation of a variety of therapeutic reagents such as vaccines, cancer treatment molecules and regenerative medicine precursors. With the advent of synthetic biology there is a growing need for precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes. In this article, we summarize the highlights of the recombinant DNA technology since its inception in the early 1970s, emphasizing on the most recent advances, and underscoring their principles, advantages and shortcomings. Current and prior cloning trends are discussed in the context of sequence requirements and scars left behind. Our opinion is that despite the remarkable progress that has enabled the generation and manipulation of very large DNA sequences, a better understanding of the cell's natural circuits is needed in order to fully exploit the current state-of-the-art gene assembly technologies.
Collapse
|
22
|
Karas BJ, Tagwerker C, Yonemoto IT, Hutchison CA, Smith HO. Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synth Biol 2012; 1:22-8. [PMID: 23651007 DOI: 10.1021/sb200013j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cloning of whole genomes of the genus Mycoplasma in yeast has been an essential step for the creation of the first synthetic cell. The genome of the synthetic cell is based on Mycoplasma mycoides, which deviates from the universal genetic code by encoding tryptophan rather than the UGA stop codon. The feature was thought to be important because bacterial genes might be toxic to the host yeast cell if driven by a cryptic promoter active in yeast. As we move to expand the range of bacterial genomes cloned in yeast, we extended this technology to bacteria that use the universal genetic code. Here we report cloning of the Acholeplasma laidlawii PG-8A genome, which uses the universal genetic code. We discovered that only one A. laidlawii gene, a surface anchored extracellular endonuclease, was toxic when cloned in yeast. This gene was inactivated in order to clone and stably maintain the A. laidlawii genome as a centromeric plasmid in the yeast cell.
Collapse
Affiliation(s)
- Bogumil J. Karas
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Christian Tagwerker
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Isaac T. Yonemoto
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Clyde A. Hutchison
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| | - Hamilton O. Smith
- J. Craig Venter Institute, 10355 Science Center Drive, San Diego, California 92121, United
States
| |
Collapse
|
23
|
Liang X, Peng L, Tsvetanova B, Li K, Yang JP, Ho T, Shirley J, Xu L, Potter J, Kudlicki W, Peterson T, Katzen F. Recombination-based DNA assembly and mutagenesis methods for metabolic engineering. Methods Mol Biol 2012; 834:93-109. [PMID: 22144356 DOI: 10.1007/978-1-61779-483-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In recent years there has been a growing interest in the precise and concerted assembly of multiple DNA fragments of diverse sizes, including chromosomes, and the fine tuning of gene expression levels and protein activity. Commercial DNA assembly solutions have not been conceived to support the cloning of very large or very small genetic elements or a combination of both. Here we summarize a series of protocols that allow the seamless, simultaneous, flexible, and highly efficient assembly of DNA elements of a wide range of sizes (up to hundred thousand base pairs). The protocols harness the power of homologous recombination and are performed either in vitro or within the living cells. The DNA fragments may or may not share homology at their ends. An efficient site-directed mutagenesis protocol enhanced by homologous recombination is also described.
Collapse
Affiliation(s)
- Xiquan Liang
- Life Technologies Corporation, Carlsbad, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsvetanova B, Peng L, Liang X, Li K, Yang JP, Ho T, Shirley J, Xu L, Potter J, Kudlicki W, Peterson T, Katzen F. Genetic assembly tools for synthetic biology. Methods Enzymol 2011; 498:327-48. [PMID: 21601684 DOI: 10.1016/b978-0-12-385120-8.00014-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
With the completion of myriad genome sequencing projects, genetic bioengineering has expanded into many applications including the integrated analysis of complex pathways, the construction of new biological parts and the redesign of existing, natural biological systems. All these areas require the precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes, and the fine-tuning of gene expression levels and protein activity. Current commercial cloning products are not robust enough to support the assembly of very large or very small genetic elements or a combination of both. In addition, current strategies are not flexible enough to allow further modifications to the original design without having to undergo complicated cloning strategies. Here, we present a set of protocols that allow the seamless, simultaneous, flexible, and highly efficient assembly of genetic material, designed for a wide size dynamic range (10s to 100,000s base pairs). The assembly can be performed either in vitro or within the living cells and the DNA fragments may or may not share homology at their ends. A novel site-directed mutagenesis approach enhanced by in vitro recombineering is also presented.
Collapse
|
25
|
Gibson DG. Gene and genome construction in yeast. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2011; Chapter 3:Unit3.22. [PMID: 21472698 DOI: 10.1002/0471142727.mb0322s94] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The yeast Saccharomyces cerevisiae has the capacity to take up and assemble dozens of different overlapping DNA molecules in one transformation event. These DNA molecules can be single-stranded oligonucleotides, to produce gene-sized fragments, or double-stranded DNA fragments, to produce molecules up to hundreds of kilobases in length, including complete bacterial genomes. This unit presents protocols for designing the DNA molecules to be assembled, transforming them into yeast, and confirming their assembly.
Collapse
|
26
|
Kalivoda EJ, Horzempa J, Stella NA, Sadaf A, Kowalski RP, Nau GJ, Shanks RMQ. New vector tools with a hygromycin resistance marker for use with opportunistic pathogens. Mol Biotechnol 2011; 48:7-14. [PMID: 20972648 PMCID: PMC3617578 DOI: 10.1007/s12033-010-9342-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability of many bacterial strains to tolerate antibiotics can limit the number of molecular tools available for research of these organisms. To help address this problem, we have modified a diverse set of vectors to include a broadly expressed hygromycin resistance (HmR) marker. Hygromycin B is an aminoglycoside antibiotic not used to treat infections in humans and has antimicrobial activity against a wide range of microorganisms. Vectors with four replication origins are represented, with potential applications including general cloning, allelic replacement, and transcriptional analysis. We show that vectors with the broad host range pBBR1-replicon conferred HmR to Achromobacter xylosoxidans, Acinetobacter baumannii, Pseudomonas aeruginosa, and Serratia marcescens, and a pC194-based vector was able to confer HmR to Francisella tularensis. We also used a subset of these plasmids to manipulate the genome of S. marcescens. Each vector has an origin of transfer for conjugation, and is also able to replicate in Saccharomyces cerevisiae to take advantage of the powerful yeast recombineering system.
Collapse
Affiliation(s)
- Eric J Kalivoda
- The Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Gaida A, Becker MM, Schmid CD, Bühlmann T, Louis EJ, Beck HP. Cloning of the repertoire of individual Plasmodium falciparum var genes using transformation associated recombination (TAR). PLoS One 2011; 6:e17782. [PMID: 21408186 PMCID: PMC3049791 DOI: 10.1371/journal.pone.0017782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/10/2011] [Indexed: 01/31/2023] Open
Abstract
One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member.
Collapse
Affiliation(s)
- Annette Gaida
- Department for Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marion M. Becker
- Centre for Genetics and Genomics, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Christoph D. Schmid
- Department for Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Tobias Bühlmann
- Department for Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Edward J. Louis
- Centre for Genetics and Genomics, The University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail:
| | - Hans-Peter Beck
- Department for Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Zhou X, Li G, Xu JR. Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods Mol Biol 2011; 722:199-212. [PMID: 21590423 DOI: 10.1007/978-1-61779-040-9_15] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For functional characterization of predicted genes encoding hypothetical proteins in fungal genomes, it is complementary to genetic studies to determine their expression and subcellular localization patterns in different developmental or infection stages. It is also important to identify and characterize other proteins that are physically associated with or functionally related to these genes in vivo by co-immunoprecipitation or affinity purification analyses. In this chapter, we described a set of yeast shuttle vectors and protocols to generate fusion constructs by the yeast gap repair approach. Because of the simplicity and efficiency of yeast gap repair, these vectors and the general methods described in this chapter are suitable for functional genomics studies in filamentous fungi.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
29
|
Bentley KL, Shashikant CS, Wang W, Ruddle NH, Ruddle FH. A yeast-based recombinogenic targeting toolset for transgenic analysis of human disease genes. Ann N Y Acad Sci 2010; 1207 Suppl 1:E58-68. [PMID: 20961307 DOI: 10.1111/j.1749-6632.2010.05712.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transgenic mouse models are valuable resources for analyzing functions of genes involved in human diseases. Mouse models provide critical insights into biological processes, including in vivo visualization of vasculature critical to our understanding of the immune system. Generating transgenic mice requires the capture and modification of large-insert DNAs representing genes of interest. We have developed a methodology using a yeast-bacterial shuttle vector, pClasper, that enables the capture and modification of bacterial artificial chromosomes (BAC)-sized DNA inserts. Numerous improvements and technical advances in the original pClasper vector have allowed greater flexibility and utility in this system. Examples of such pClasper mediated gene modifications include: Claspette-mediated capture of large-insert genomic fragments from BACs-human polycystic kidney disease-1 (PKD1); modification of pClasperA clones by the RareGap method-PKD1 mutations; Claspette-mediated modification of pClasper clones-mouse albumin-1 gene; and, of most relevance to our interest in lymph node vasculature-Claspimer-mediated modification of pClasper clones-high endothelial venule and lymphatic vessel genes. Mice that have been generated with these methods include mice with fluorescent high endothelial venules.
Collapse
Affiliation(s)
- Kevin L Bentley
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520-8089, USA
| | | | | | | | | |
Collapse
|
30
|
Introduction of large DNA inserts into the barley pathogenic fungus, Ustilago hordei, via recombined binary BAC vectors and Agrobacterium-mediated transformation. Curr Genet 2010; 57:63-73. [PMID: 20936474 DOI: 10.1007/s00294-010-0324-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Genetic transformation of organisms with large genome fragments containing complete genes, with regulatory elements or clusters of genes, can contribute to the functional analysis of such genes. However, large inserts, such as those found on bacterial artificial chromosome (BAC) clones, are often not easy to transfer. We exploited an existing technique to convert BAC clones, containing genomic DNA fragments from the barley-covered smut fungus Ustilago hordei to binary BACs (BIBACs) to make them transferable by the Agrobacterium tumefaciens T-DNA transfer machinery. Genetic transformation of U. hordei with BAC clones using polyethylene glycol or electroporation is difficult. As a proof of concept, two BAC clones were successfully converted into BIBAC vectors and transferred by A. tumefaciens into U. hordei and U. maydis, the related corn smut fungi. Molecular analysis of the transformants showed that the T-DNA containing the BAC clones with their inserts was stably integrated into the U. hordei genome. A transformation frequency of approximately 10⁻⁴ was achieved both for U. hordei sporidia and protoplasts; the efficiencies were 25-30 times higher for U. maydis. The combination of in vivo recombineering technology for BAC clones and A. tumefaciens-mediated transformation of Ustilago species should pave the way for functional genomics studies.
Collapse
|
31
|
Pisterzi LF, Jansma DB, Georgiou J, Woodside MJ, Chou JTC, Angers S, Raicu V, Wells JW. Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer. J Biol Chem 2010; 285:16723-38. [PMID: 20304928 PMCID: PMC2878013 DOI: 10.1074/jbc.m109.069443] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 03/07/2010] [Indexed: 11/06/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M(2) muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M(2) receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M(2) receptor to enhanced green fluorescent protein-M(2) receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 +/- 0.019; n = 4, 0.202 +/- 0.010; n = 6, 0.128 +/- 0.006; n = 8, 0.093 +/- 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20-0.24, identifying the M(2) receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process.
Collapse
Affiliation(s)
- Luca F. Pisterzi
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - David B. Jansma
- the Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - John Georgiou
- The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Michael J. Woodside
- the Imaging Facility, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and
| | - Judy Tai-Chieh Chou
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Stéphane Angers
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Valerică Raicu
- the Departments of Physics and Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin 53211
| | - James W. Wells
- From The Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
32
|
Shivers RP, Pagano DJ, Kooistra T, Richardson CE, Reddy KC, Whitney JK, Kamanzi O, Matsumoto K, Hisamoto N, Kim DH. Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet 2010; 6:e1000892. [PMID: 20369020 PMCID: PMC2848548 DOI: 10.1371/journal.pgen.1000892] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 03/02/2010] [Indexed: 11/18/2022] Open
Abstract
Innate immunity in Caenorhabditis elegans requires a conserved PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway that regulates the basal and pathogen-induced expression of immune effectors. The mechanisms by which PMK-1 p38 MAPK regulates the transcriptional activation of the C. elegans immune response have not been identified. Furthermore, in mammalian systems the genetic analysis of physiological targets of p38 MAPK in immunity has been limited. Here, we show that C. elegans ATF-7, a member of the conserved cyclic AMP–responsive element binding (CREB)/activating transcription factor (ATF) family of basic-region leucine zipper (bZIP) transcription factors and an ortholog of mammalian ATF2/ATF7, has a pivotal role in the regulation of PMK-1–mediated innate immunity. Genetic analysis of loss-of-function alleles and a gain-of-function allele of atf-7, combined with expression analysis of PMK-1–regulated genes and biochemical characterization of the interaction between ATF-7 and PMK-1, suggest that ATF-7 functions as a repressor of PMK-1–regulated genes that undergoes a switch to an activator upon phosphorylation by PMK-1. Whereas loss-of-function mutations in atf-7 can restore basal expression of PMK-1–regulated genes observed in the pmk-1 null mutant, the induction of PMK-1–regulated genes by pathogenic Pseudomonas aeruginosa PA14 is abrogated. The switching modes of ATF-7 activity, from repressor to activator in response to activated PMK-1 p38 MAPK, are reminiscent of the mechanism of regulation mediated by the corresponding ancestral Sko1p and Hog1p proteins in the yeast response to osmotic stress. Our data point to the regulation of the ATF2/ATF7/CREB5 family of transcriptional regulators by p38 MAPK as an ancient conserved mechanism for the control of innate immunity in metazoans, and suggest that ATF2/ATF7 may function in a similar manner in the regulation of mammalian innate immunity. We have investigated mechanisms of how the soil nematode Caenorhabditis elegans interacts with pathogenic bacteria. Previously, we have established that a conserved PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway regulates immunity in C. elegans, establishing the conservation of key innate immune signaling pathways of mammals in the immune response of C. elegans. Whereas multiple proteins have been identified as potential targets of p38 MAPK in immunity, the identification of physiological substrates of p38 MAPK in mammalian organisms has been challenging. Here, using a forward genetic approach to identify downstream regulators of the C. elegans innate immune response, we have characterized the transcription factor ATF-7, a conserved member of the basic-region leucine zipper (bZIP) transcription factor family orthologous to mammalian ATF2. We find that ATF-7 functions as a transcriptional regulator of PMK-1 MAPK–mediated innate immunity, functioning as a repressor of immune gene expression that undergoes a switch to an activator upon activation by PMK-1. Our data point to the regulation of the ATF2/ATF7/CREB5 family of transcriptional regulators by p38 MAPK as an ancient conserved mechanism for the control of innate immunity in metazoans and suggests a mechanism by which the protean effects of p38 MAPK on the mammalian innate immune response may be mediated.
Collapse
Affiliation(s)
- Robert P. Shivers
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daniel J. Pagano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tristan Kooistra
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Claire E. Richardson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kirthi C. Reddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Janelle K. Whitney
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Odile Kamanzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Naoki Hisamoto
- Department of Molecular Biology, Nagoya University, Nagoya, Japan
| | - Dennis H. Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Kitazono AA. Improved gap-repair cloning method that uses oligonucleotides to target cognate sequences. Yeast 2009; 26:497-505. [PMID: 19621470 DOI: 10.1002/yea.1680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In vivo or gap-repair cloning in yeast has been widely recognized as one of the most efficient means for error-free construction of plasmids. A protocol is described here that allows easy and efficient gap-repair cloning that is based on two major modifications. Instead of subcloning, the targeting plasmids are constructed using oligonucleotides from sequences derived from the upstream and downstream sequences of the fragment to be cloned. These sequences are selected so that they can lead to the generation of recognition sites for restriction enzymes that produce blunt ends. Accordingly, this procedure can be applied to any DNA fragment, regardless of whether these include unique restriction sites to generate the targeting ends. With the strategy described, approximately 50 bp upstream and downstream targeting ends are generated that allow efficient cloning. Further, to allow easy identification of the positive clones, the annealed oligonucleotides are cloned in frame with the lacZ fragment present in the plasmid. Accordingly, these plasmids produce blue Escherichia coli colonies on media containing X-Gal. On the other hand, plasmids rescued from yeast that have acquired the respective cognate sequences produce white colonies. To demonstrate the efficiency of the method, this report includes the cloning of fragments harbouring the CDC28, CAK1, CIN5 and CLB2 genes. We found that 30-100% of the analysed plasmids carried the expected inserts.
Collapse
Affiliation(s)
- Ana A Kitazono
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA.
| |
Collapse
|
34
|
Gibson DG. Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 2009; 37:6984-90. [PMID: 19745056 PMCID: PMC2777417 DOI: 10.1093/nar/gkp687] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here it is demonstrated that the yeast Saccharomyces cerevisiae can take up and assemble at least 38 overlapping single-stranded oligonucleotides and a linear double-stranded vector in one transformation event. These oligonucleotides can overlap by as few as 20 bp, and can be as long as 200 nucleotides in length. This straightforward scheme for assembling chemically-synthesized oligonucleotides could be a useful tool for building synthetic DNA molecules.
Collapse
Affiliation(s)
- Daniel G Gibson
- The J Craig Venter Institute, Synthetic Biology Group, 9704 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
35
|
Shanks RMQ, Kadouri DE, MacEachran DP, O'Toole GA. New yeast recombineering tools for bacteria. Plasmid 2009; 62:88-97. [PMID: 19477196 DOI: 10.1016/j.plasmid.2009.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 11/16/2022]
Abstract
Recombineering with Saccharomyces cerevisiae is a powerful methodology that can be used to clone multiple unmarked pieces of DNA to generate complex constructs with high efficiency. Here, we introduce two new tools that utilize the native recombination enzymes of S. cerevisiae to facilitate the manipulation of DNA. First, yeast recombineering was used to make directed nested deletions in a bacteria-yeast shuttle plasmid using only one or two single stranded oligomers, thus obviating the need for a PCR step. Second, we have generated several new shuttle vectors for yeast recombineering capable of replication in a wide variety of bacterial genera. As a demonstration of utility, some of the approaches and vectors generated in this study were used to make a pigP deletion mutation in the opportunistic pathogen Serratia marcescens.
Collapse
Affiliation(s)
- Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh Eye Center, PA 15213, USA.
| | | | | | | |
Collapse
|
36
|
Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 2008; 37:e16. [PMID: 19074487 PMCID: PMC2632897 DOI: 10.1093/nar/gkn991] [Citation(s) in RCA: 524] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies.
Collapse
Affiliation(s)
- Zengyi Shao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Zhao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering and Department of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- *To whom correspondence should be addressed. Tel: +1 217 333 2631; Fax: +1 217 333 5052;
| |
Collapse
|
37
|
One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 2008; 105:20404-9. [PMID: 19073939 DOI: 10.1073/pnas.0811011106] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported assembly and cloning of the synthetic Mycoplasma genitalium JCVI-1.0 genome in the yeast Saccharomyces cerevisiae by recombination of six overlapping DNA fragments to produce a 592-kb circle. Here we extend this approach by demonstrating assembly of the synthetic genome from 25 overlapping fragments in a single step. The use of yeast recombination greatly simplifies the assembly of large DNA molecules from both synthetic and natural fragments.
Collapse
|
38
|
Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Müller R, Zhang Y. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 2008; 36:e113. [PMID: 18701643 PMCID: PMC2553598 DOI: 10.1093/nar/gkn499] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jun Fu
- Gene Bridges GmbH, BioInnovationsZentrum Dresden, Department of Genomics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nagano Y, Takao S, Kudo T, Iizasa E, Anai T. Yeast-based recombineering of DNA fragments into plant transformation vectors by one-step transformation. PLANT CELL REPORTS 2007; 26:2111-7. [PMID: 17680244 DOI: 10.1007/s00299-007-0428-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/12/2007] [Accepted: 07/23/2007] [Indexed: 05/16/2023]
Abstract
T-DNA binary vectors are often used in plant transformation experiments. Because they are usually very large and have few restriction sites suitable for DNA ligation reactions, cloning DNA fragments into these vectors is difficult. We provide herein an alternative to cloning DNA fragments into very large vectors. Our yeast-based recombineering method enables DNA fragments to be cloned into certain types of T-DNA binary vectors by one-step transformation without the requirement of specific recombination sites or precisely positioned restriction ends, thus making the cloning process more flexible. Moreover, this method is inexpensive and is applicable to multifragment cloning.
Collapse
Affiliation(s)
- Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
| | | | | | | | | |
Collapse
|
40
|
Microarray-based genomic selection for high-throughput resequencing. Nat Methods 2007; 4:907-9. [PMID: 17934469 DOI: 10.1038/nmeth1109] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 09/20/2007] [Indexed: 11/08/2022]
Abstract
We developed a general method, microarray-based genomic selection (MGS), capable of selecting and enriching targeted sequences from complex eukaryotic genomes without the repeat blocking steps necessary for bacterial artificial chromosome (BAC)-based genomic selection. We demonstrate that large human genomic regions, on the order of hundreds of kilobases, can be enriched and resequenced with resequencing arrays. MGS, when combined with a next-generation resequencing technology, can enable large-scale resequencing in single-investigator laboratories.
Collapse
|
41
|
Kemp BJ, Hatzold J, Sternick LA, Cornman-Homonoff J, Whitaker JM, Tieu PJ, Lambie EJ. In vivo construction of recombinant molecules within the Caenorhabditis elegans germ line using short regions of terminal homology. Nucleic Acids Res 2007; 35:e133. [PMID: 17933760 PMCID: PMC2095804 DOI: 10.1093/nar/gkm857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination provides a means for the in vivo construction of recombinant DNA molecules that may be problematic to assemble in vitro. We have investigated the efficiency of recombination within the Caenorhabditis elegans germ line as a function of the length of homology between recombining molecules. Our findings indicate that recombination can occur between molecules that share only 10 bp of terminal homology, and that 25 bp is sufficient to mediate relatively high levels of recombination. Recombination occurs with lower efficiency when the location of the homologous segment is subterminal or internal. As in yeast, recombination can also be mediated by either single- or double-stranded bridging oligonucleotides. We find that ligation between cohesive ends is highly efficient and does not require that the ends be phosphorylated; furthermore, precise intermolecular ligation between injected molecules that have blunt ends can also occur within the germ line.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eric J. Lambie
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
42
|
Li L, Ding SL, Sharon A, Orbach M, Xu JR. Mirl is highly upregulated and localized to nuclei during infectious hyphal growth in the rice blast fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:448-58. [PMID: 17427815 DOI: 10.1094/mpmi-20-4-0448] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rice blast, caused by Magnaporthe grisea, is a devastating disease of rice throughout the world. Many recent molecular studies have focused on the early infection stages, but our knowledge about molecular events at the infectious hyphae stage is limited. In this study, 750 hygromycin-resistant transformants were isolated by transforming M. grisea Guyll with a promoterless enhanced green fluorescent protein (EGFP) construct. In one of the transformants, L1320, EGFP signals were observed in the nuclei of infectious hyphae. The transforming vector was inserted in a predicted gene named MIR1 and resulted in a Mir1 1-107-EGFP fusion. Mir1 is a low-complexity protein with no known protein domain and has no homolog in GenBank or other sequenced fungal genomes. Quantitative real-time reverse-transcriptase polymerase chain reaction analysis and expression assays of MIR1-EGFP fusion constructs indicated that the expression of MIR1 was highly induced during plant infection. Deletion analyses identified a 458-bp region that was sufficient for the MIR1 promoter activity. Further characterization revealed that a 96-bp sequence was essential for the enhanced in planta expression. MIR1 is an M. grisea-specific gene that is highly conserved among the field isolates belonging to the M. grisea species complex. The mir1 mutants had no obvious defects in appressorial penetration and rice infection. When overexpressed with the RP27 promoter, nuclear localization of the Mir1-EGFP fusion was observed in conidia and vegetative hyphae. These data suggest that the expression but not the nuclear localization of MIR1 is specific to infectious hyphae and that reporter genes based on MIR1 may be suitable for monitoring infectious growth in M. grisea.
Collapse
Affiliation(s)
- Lei Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
43
|
Certain LK, Sibley CH. Plasmodium falciparum: a novel method for analyzing haplotypes in mixed infections. Exp Parasitol 2006; 115:233-41. [PMID: 17049516 PMCID: PMC1950286 DOI: 10.1016/j.exppara.2006.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/22/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
Studying the population genetics of Plasmodium falciparum is necessary for understanding the spread of drug resistance. However, these studies are hampered by the inability to determine haplotypes from patient samples that contain multiple parasite populations. Therefore, we have developed a method for separating for genetic analysis the individual strains in a mixed infection. We amplified a 6 kb region of chromosome 4, including the dihydrofolate reductase gene and upstream microsatellite markers. This PCR product was inserted by recombination into a gapped yeast shuttle plasmid containing both selectable and counter-selectable markers. Because each plasmid contains only one insert and each yeast colony contains only one plasmid, the individual strains are now separate. We analyzed mixtures of 3D7, K1, and Dd2 DNA and correctly identified a haplotype in each case.
Collapse
Affiliation(s)
- Laura K Certain
- University of Washington, Department of Genome Sciences, Seattle, WA 98195, USA
| | | |
Collapse
|
44
|
Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. THE PLANT CELL 2006; 18:2822-35. [PMID: 17056708 PMCID: PMC1626611 DOI: 10.1105/tpc.105.038422] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice blast fungus (Magnaporthe grisea) forms a highly specialized infection structure for plant penetration, the appressorium, the formation and growth of which are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase cascade. We characterized the MST50 gene that directly interacts with both MST11 and MST7. Similar to the mst11 mutant, the mst50 mutant was defective in appressorium formation, sensitive to osmotic stresses, and nonpathogenic. Expressing a dominant active MST7 allele in mst50 complemented its defects in appressorium but not lesion formation. The sterile alpha-motif (SAM) domain of Mst50 was essential for its interaction with Mst11 and for appressorium formation. Although the SAM and Ras-association domain (RAD) of Mst50 were dispensable for its interaction with Mst7, deletion of RAD reduced appressorium formation and virulence on rice (Oryza sativa) seedlings. The interaction between Mst50 and Mst7 or Mst11 was detected by coimmunoprecipitation assays in developing appressoria. Mst50 also interacts with Ras1, Ras2, Cdc42, and Mgb1 in yeast two-hybrid assays. Expressing a dominant active RAS2 allele in the wild-type strain but not in mst50 stimulated abnormal appressorium formation. These results indicate that MST50 functions as an adaptor protein interacting with multiple upstream components and plays critical roles in activating the Pmk1 cascade for appressorium formation and plant infection in M. grisea.
Collapse
Affiliation(s)
- Gyungsoon Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
45
|
Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 2006; 72:5027-36. [PMID: 16820502 PMCID: PMC1489352 DOI: 10.1128/aem.00682-06] [Citation(s) in RCA: 324] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tool kit of vectors was designed to manipulate and express genes from a wide range of gram-negative species by using in vivo recombination. Saccharomyces cerevisiae can use its native recombination proteins to combine several amplicons in a single transformation step with high efficiency. We show that this technology is particularly useful for vector design. Shuttle, suicide, and expression vectors useful in a diverse group of bacteria are described and utilized. This report describes the use of these vectors to mutate clpX and clpP of the opportunistic pathogen Pseudomonas aeruginosa and to explore their roles in biofilm formation and surface motility. Complementation of the rhamnolipid biosynthetic gene rhlB is also described. Expression vectors are used for controlled expression of genes in two pseudomonad species. To demonstrate the facility of building complicated constructs with this technique, the recombination of four PCR-generated amplicons in a single step at >80% efficiency into one of these vectors is shown. These tools can be used for genetic studies of pseudomonads and many other gram-negative bacteria.
Collapse
Affiliation(s)
- Robert M Q Shanks
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|
46
|
Seong K, Li L, Hou Z, Tracy M, Kistler HC, Xu JR. Cryptic promoter activity in the coding region of the HMG-CoA reductase gene in Fusarium graminearum. Fungal Genet Biol 2005; 43:34-41. [PMID: 16377218 DOI: 10.1016/j.fgb.2005.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 10/04/2005] [Accepted: 10/07/2005] [Indexed: 10/25/2022]
Abstract
Head blight or scab disease caused by Fusarium graminearum poses a major threat to wheat and barley production in North America and other countries. To better understand the molecular mechanisms of F. graminearum pathogenesis, we have generated a collection of random insertional mutants. In mutant 222, one of the transformants significantly reduced in virulence, the transforming vector was inserted at amino acid 269 of the hydroxymethyl-glutaryl CoA reductase gene (HMR1) that encodes a key enzyme in sterol and isoprenoid biosynthesis. The N-terminal transmembrane domains of HMR1 were disrupted, but the C-terminal catalytic domain was intact in mutant 222. We failed to isolate mutants deleted of the HMR1 gene, suggesting that HMR1 is an essential gene. Mutants deleted of the N-terminal 254 amino acids of HMR1 were viable and phenotypically similar to mutant 222. In both mutant 222 and the hmr1Delta254 mutants, a 3-kb truncated HMR1 transcript was detectable by northern blot analyses. In the wild-type strain, only the 5-kb messenger was observed. The initiation site of truncated HMR1 transcripts was determined by 5'-RACE to be 507bp upstream from the catalytic subunit. When a HMR1 fragment corresponding to the DNA sequence of HMR1269-641 was translationally fused to a promoter-less GFP construct, green fluorescent signals were detectable in vegetative hyphae of the resulting transformants. These data indicate that this region of HMR1 ORF has cryptic promoter activity and can express the catalytic domain in hmr1 mutants deleted of its N-terminal portion. Our results also illustrate the importance of the HMR1 gene and the function of its transmembrane domains in F. graminearum.
Collapse
Affiliation(s)
- Kyeyong Seong
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
47
|
Sassi HE, Renihan S, Spence AM, Cooperstock RL. Gene CATCHR--gene cloning and tagging for Caenorhabditis elegans using yeast homologous recombination: a novel approach for the analysis of gene expression. Nucleic Acids Res 2005; 33:e163. [PMID: 16254074 PMCID: PMC1270953 DOI: 10.1093/nar/gni164] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression patterns of gene products provide important insights into gene function. Reporter constructs are frequently used to analyze gene expression in Caenorhabditis elegans, but the sequence context of a given gene is inevitably altered in such constructs. As a result, these transgenes may lack regulatory elements required for proper gene expression. We developed Gene Catchr, a novel method of generating reporter constructs that exploits yeast homologous recombination (YHR) to subclone and tag worm genes while preserving their local sequence context. YHR facilitates the cloning of large genomic regions, allowing the isolation of regulatory sequences in promoters, introns, untranslated regions and flanking DNA. The endogenous regulatory context of a given gene is thus preserved, producing expression patterns that are as accurate as possible. Gene Catchr is flexible: any tag can be inserted at any position without introducing extra sequence. Each step is simple and can be adapted to process multiple genes in parallel. We show that expression patterns derived from Gene Catchr transgenes are consistent with previous reports and also describe novel expression data. Mutant rescue assays demonstrate that Gene Catchr-generated transgenes are functional. Our results validate the use of Gene Catchr as a valuable tool to study spatiotemporal gene expression.
Collapse
Affiliation(s)
- Holly E. Sassi
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- Collaborative Program in Developmental Biology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Stephanie Renihan
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Andrew M. Spence
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- Collaborative Program in Developmental Biology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Ramona L. Cooperstock
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- To whom correspondence should be addressed. Tel: +1 416 946 7917; Fax: +1 416 978 6885;
| |
Collapse
|
48
|
Edwards SV, Bryan Jennings W, Shedlock AM. Phylogenetics of modern birds in the era of genomics. Proc Biol Sci 2005; 272:979-92. [PMID: 16024355 PMCID: PMC1599873 DOI: 10.1098/rspb.2004.3035] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the 14 years since the first higher-level bird phylogenies based on DNA sequence data, avian phylogenetics has witnessed the advent and maturation of the genomics era, the completion of the chicken genome and a suite of technologies that promise to add considerably to the agenda of avian phylogenetics. In this review, we summarize current approaches and data characteristics of recent higher-level bird studies and suggest a number of as yet untested molecular and analytical approaches for the unfolding tree of life for birds. A variety of comparative genomics strategies, including adoption of objective quality scores for sequence data, analysis of contiguous DNA sequences provided by large-insert genomic libraries, and the systematic use of retroposon insertions and other rare genomic changes all promise an integrated phylogenetics that is solidly grounded in genome evolution. The avian genome is an excellent testing ground for such approaches because of the more balanced representation of single-copy and repetitive DNA regions than in mammals. Although comparative genomics has a number of obvious uses in avian phylogenetics, its application to large numbers of taxa poses a number of methodological and infrastructural challenges, and can be greatly facilitated by a 'community genomics' approach in which the modest sequencing throughputs of single PI laboratories are pooled to produce larger, complementary datasets. Although the polymerase chain reaction era of avian phylogenetics is far from complete, the comparative genomics era-with its ability to vastly increase the number and type of molecular characters and to provide a genomic context for these characters-will usher in a host of new perspectives and opportunities for integrating genome evolution and avian phylogenetics.
Collapse
Affiliation(s)
- Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
49
|
Smith EE, Sims EH, Spencer DH, Kaul R, Olson MV. Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J Bacteriol 2005; 187:2138-47. [PMID: 15743962 PMCID: PMC1064051 DOI: 10.1128/jb.187.6.2138-2147.2005] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pyoverdine is the primary siderophore of the gram-negative bacterium Pseudomonas aeruginosa. The pyoverdine region was recently identified as the most divergent locus alignable between strains in the P. aeruginosa genome. Here we report the nucleotide sequence and analysis of more than 50 kb in the pyoverdine region from nine strains of P. aeruginosa. There are three divergent sequence types in the pyoverdine region, which correspond to the three structural types of pyoverdine. The pyoverdine outer membrane receptor fpvA may be driving diversity at the locus: it is the most divergent alignable gene in the region, is the only gene that showed substantial intratype variation that did not appear to be generated by recombination, and shows evidence of positive selection. The hypothetical membrane protein PA2403 also shows evidence of positive selection; residues on one side of the membrane after protein folding are under positive selection. R', previously identified as a type IV strain, is clearly derived from a type III strain via a 3.4-kb deletion which removes one amino acid from the pyoverdine side chain peptide. This deletion represents a natural modification of the product of a nonribosomal peptide synthetase enzyme, whose consequences are predictive from the DNA sequence. There is also linkage disequilibrium between the pyoverdine region and pvdY, a pyoverdine gene separated by 30 kb from the pyoverdine region. The pyoverdine region shows evidence of horizontal transfer; we propose that some alleles in the region were introduced from other soil bacteria and have been subsequently maintained by diversifying selection.
Collapse
Affiliation(s)
- Eric E Smith
- Program of Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
50
|
Schaerer-Brodbeck C, Barberis A. Coupling homologous recombination with growth selection in yeast: a tool for construction of random DNA sequence libraries. Biotechniques 2005; 37:202, 204, 206. [PMID: 15335209 DOI: 10.2144/04372bm05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|