1
|
Liu K, Yin Y, Wang B, Liu C, Zhou W, Niu P, Huang R, Li P, Zhao Q. Integrating Significant SNPs Identified by GWAS for Genomic Prediction of the Number of Ribs and Carcass Length in Suhuai Pigs. Animals (Basel) 2025; 15:412. [PMID: 39943181 PMCID: PMC11816145 DOI: 10.3390/ani15030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
The number of ribs (NRs) and the carcass length (CL) are important economic traits. The traits are usually measured after slaughter. To improve the prediction performance of genomic selection (GS) for NRs and CL, one strategy is to integrate the significant loci identified from whole-genome sequencing (WGS) data by genome-wide association study (GWAS) into the genomic prediction (GP) model. This study investigated the GP of different genomic best linear unbiased prediction (GBLUP) and Bayesian models using chip genotype data, imputed WGS (iWGS) data and modeling significant single-nucleotide polymorphisms (SNPs) in different ways for the GP of NRs and CL in the Suhuai pig population. The prediction accuracy, bias and running time of 15 different GP models were evaluated by 10-fold cross-validation. The prediction accuracy of GBLUP using chip data for NRs and CL was 0.314 ± 0.022 and 0.194 ± 0.040, respectively. For NRs, based on the iWGS data, treating the most significant SNP as fixed effects in the GBLUP model had the highest predictive performance, with a prediction accuracy of 0.528 ± 0.023. For CL, based on the chip data, the model that added all the significant SNPs identified by imputed data by GWAS into the multi-trait GBLUP as the second random additive effect was the highest predictive performance, with a prediction accuracy of 0.305 ± 0.027. This study provides insights into optimizing GP models for small populations with phenotypes that are difficult to measure.
Collapse
Affiliation(s)
- Kaiyue Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
| | - Yanzhen Yin
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
| | - Binbin Wang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
| | - Wuduo Zhou
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huai’an 223005, China;
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
- Huaian Academy, Nanjing Agricultural University, Huai’an 223005, China;
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
- Huaian Academy, Nanjing Agricultural University, Huai’an 223005, China;
| | - Qingbo Zhao
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China; (K.L.); (Y.Y.); (B.W.); (C.L.); (W.Z.); (R.H.)
- Huaian Academy, Nanjing Agricultural University, Huai’an 223005, China;
| |
Collapse
|
2
|
Purev C, Wu H, Lkhagva K, Tumendemberel O. Understanding molecular mechanisms of vertebral number of variations on Mongolian sheep using candidate genes analysis. Anim Biosci 2025; 38:247-254. [PMID: 39210812 PMCID: PMC11725747 DOI: 10.5713/ab.24.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/01/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the genetic link between variations in vertebral number and meat production traits, such as body weight and body measurements (body length, body height, heart girth, and shin width) in Mongolian (Bayantsagaan) sheep. Additionally, we examined the association of single-nucleotide polymorphisms (SNPs) in candidate genes, particularly vertnin (VRTN), nuclear receptor subfamily 6, group A, member 1 (NR6A1), and synapse differentiation-inducing 1-like (SYNDIG1L), with vertebral number variations and their potential impact on meat production traits. METHODS The study involved 220 Bayantsagaan sheep from Bayantsagaan soum, Tov province, Mongolia, including 104 sheep with extra vertebrae group and 116 individuals with typical vertebral number as the control group. Morphological data, including body weight and body measurements, were collected, and genetic samples were obtained. The impact of vertebral number on morphological traits was estimated using a general linear model. The SNPs in the VRTN, NR6A1, and SYNDIG1L genes were sequenced, and their association with vertebral number was analyzed using one-way analysis of variance. RESULTS Bayantsagaan sheep with extra vertebrae were, on average, 4.45 kg heavier and exhibited higher variability in body size traits compared to the control group. Four polymorphic sites were identified at the VRTN gene, with one polymorphic locus (VRTN1716) showing a significant association with vertebrae number and body size. Sheep with C/C genotype at VRTN1716 locus, had more vertebrae and larger body size compared to other genotypes. CONCLUSION The findings suggest that variations in vertebral number and VRTN gene polymorphisms are linked to favorable meat production traits in Bayantsagaan sheep. The identified SNP (VRTN1716) associated with vertebral number and body size offers the potential for marker-assisted selection in breeding programs. These results provide valuable insights into the genetic basis of meat production traits in Bayantsagaan sheep and may contribute to the development of more efficient breeding strategies.
Collapse
Affiliation(s)
- Chimgee Purev
- Technology Incubator, Mongolian Academy of Sciences, Ulaanbaatar 13330,
Mongolia
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225100,
China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225100,
China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225100,
China
| | - Khosbayar Lkhagva
- Laboratory of Molecular Biology, Mongolian National Center of Livestock Genebank, Khongor soum, Darkhan-Uul 45000,
Mongolia
| | - Odbayar Tumendemberel
- Fish Genetics Laboratory, Pacific States of Marine Fisheries Commission and Idaho Department of Fish and Game, Eagle, ID 83616,
USA
- Conservation Genetics Laboratory, Boise State University, Boise, ID 83725,
USA
| |
Collapse
|
3
|
Peka M, Balatsky V. Bioinformatic approach to identifying causative missense polymorphisms in animal genomes. BMC Genomics 2024; 25:1226. [PMID: 39701989 DOI: 10.1186/s12864-024-11126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Trends in the development of genetic markers for the purposes of genomic and marker-assisted selection primarily focus on identifying causative polymorphisms. Using these polymorphisms as markers enables a more accurate association between genotype and phenotype. Bioinformatic analysis allows calculating the impact of missense polymorphisms on the structural and functional characteristics of proteins, which makes it promising for identifying causative polymorphisms. In this study, a bioinformatic approach is applied to evaluate and differentiate polymorphisms based on their causality in genes that affect the production traits of pigs and cows, which are two important livestock species. RESULTS The influence of both known causative and candidate missense polymorphisms in the MC4R, NR6A1, PRKAG3, RYR1, and SYNGR2 genes of pigs, as well as the ABCG2, DGAT1, GHR, and MSTN genes of cows, was assessed. The study included an evaluation of the effect of polymorphisms on protein functions, considering the evolutionary and physicochemical characteristics of amino acids at polymorphic sites. Additionally, it examined the impact of polymorphisms on the stability of tertiary protein structures, including changes in folding, binding of protein monomers, and interaction with ligands. CONCLUSIONS The comprehensive bioinformatic analysis used in this study enables the differentiation of polymorphisms into neutral, where both amino acids in the polymorphic site do not significantly affect the structure and function of the protein, and causative, where one of the amino acids significantly impacts the protein's properties. This approach can be employed in future research to screen extensive sets of polymorphisms in animal genomes, identifying the most promising polymorphisms for further investigation in association studies.
Collapse
Affiliation(s)
- Mykyta Peka
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine.
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022, Ukraine.
| | - Viktor Balatsky
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine
| |
Collapse
|
4
|
Neelathi UM, Ullah E, George A, Maftei MI, Boobalan E, Sanchez-Mendoza D, Adams C, McGaughey D, Sergeev YV, Rawi RA, Naik A, Bender C, Maumenee IH, Michaelides M, Tan TG, Lin S, Villasmil R, Blain D, Hufnagel RB, Arno G, Young RM, Guan B, Brooks BP. Variants in NR6A1 cause a novel oculo-vertebral-renal (OVR) syndrome. RESEARCH SQUARE 2024:rs.3.rs-5375105. [PMID: 39606449 PMCID: PMC11601836 DOI: 10.21203/rs.3.rs-5375105/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colobomatous microphthalmia is a potentially blinding congenital ocular malformation that can present either in isolation or together with other syndromic features. Despite a strong genetic component to disease, many cases lack a molecular diagnosis. We describe a novel autosomal dominant oculo-vertebral-renal (OVR) syndrome in six independent families characterized by colobomatous microphthalmia, missing vertebrae and congenital kidney abnormalities. Genome sequencing identified six rare variants in the orphan nuclear receptor gene NR6A1 in these families. We performed in silico, cellular and zebrafish experiments to demonstrate the NR6A1 variants were pathogenic or likely pathogenic for OVR syndrome. Knockdown of either or both zebrafish paralogs of NR6A1 results in abnormal eye and somite development, which was rescued by wild-type but not variant NR6A1 mRNA. Illustrating the power of genomic ascertainment in medicine, our study establishes NR6A1 as a critical factor in eye and vertebral development and a pleiotropic gene responsible for OVR syndrome.
Collapse
Affiliation(s)
- Uma M Neelathi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Aman George
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mara I Maftei
- UCL Institute of Ophthalmology, University College, London, London, UK
| | - Elangovan Boobalan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Sanchez-Mendoza
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chloe Adams
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - David McGaughey
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuri V Sergeev
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ranya Ai Rawi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amelia Naik
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chelsea Bender
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irene H Maumenee
- Harkness Eye Institute, Columbia University, 622 W 168 St., New York, NY 10032
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Tun Giap Tan
- Torbay Hospital, Torbay and South Devon NHS Foundation Trust, Devon, UK
| | - Siying Lin
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | | | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Center for Integrated Health Care Research, Kaiser Permanente Hawai'i; Hawai'i Permanente Medical Group, Honolulu, HI
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College, London, London, UK
- Greenwood Genetic Center, Greenwood, SC 29646
| | - Rodrigo M Young
- UCL Institute of Ophthalmology, University College, London, London, UK
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Bin Guan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed
| |
Collapse
|
5
|
Neelathi UM, Ullah E, George A, Maftei MI, Boobalan E, Sanchez-Mendoza D, Adams C, McGaughey D, Sergeev YV, Rawi RA, Naik A, Bender C, Maumenee IH, Michaelides M, Tan TG, Lin S, Villasmil R, Blain D, Hufnagel RB, Arno G, Young RM, Guan B, Brooks BP. Variants in NR6A1 cause a novel oculo-vertebral-renal (OVR) syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.09.24316578. [PMID: 39606382 PMCID: PMC11601759 DOI: 10.1101/2024.11.09.24316578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colobomatous microphthalmia is a potentially blinding congenital ocular malformation that can present either in isolation or together with other syndromic features. Despite a strong genetic component to disease, many cases lack a molecular diagnosis. We describe a novel autosomal dominant oculo-vertebral-renal (OVR) syndrome in six independent families characterized by colobomatous microphthalmia, missing vertebrae and congenital kidney abnormalities. Genome sequencing identified six rare variants in the orphan nuclear receptor gene NR6A1 in these families. We performed in silico, cellular and zebrafish experiments to demonstrate the NR6A1 variants were pathogenic or likely pathogenic for OVR syndrome. Knockdown of either or both zebrafish paralogs of NR6A1 results in abnormal eye and somite development, which was rescued by wild-type but not variant NR6A1 mRNA. Illustrating the power of genomic ascertainment in medicine, our study establishes NR6A1 as a critical factor in eye and vertebral development and a pleiotropic gene responsible for OVR syndrome.
Collapse
Affiliation(s)
- Uma M Neelathi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ehsan Ullah
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Aman George
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mara I Maftei
- UCL Institute of Ophthalmology, University College, London, London, UK
| | - Elangovan Boobalan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Sanchez-Mendoza
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chloe Adams
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - David McGaughey
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuri V Sergeev
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ranya Ai Rawi
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amelia Naik
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chelsea Bender
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irene H Maumenee
- Harkness Eye Institute, Columbia University, 622 W 168th St., New York, NY 10032
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Tun Giap Tan
- Torbay Hospital, Torbay and South Devon NHS Foundation Trust, Devon, UK
| | - Siying Lin
- UCL Institute of Ophthalmology, University College, London, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | | | - Delphine Blain
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Robert B Hufnagel
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Center for Integrated Health Care Research, Kaiser Permanente Hawai'i; Hawai'i Permanente Medical Group, Honolulu, HI
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College, London, London, UK
- Greenwood Genetic Center, Greenwood, SC 29646
| | - Rodrigo M Young
- UCL Institute of Ophthalmology, University College, London, London, UK
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Bin Guan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed
| |
Collapse
|
6
|
Uno M, Bono H. Transcriptional Signatures of Domestication Revealed through Meta-Analysis of Pig, Chicken, Wild Boar, and Red Junglefowl Gene Expression Data. Animals (Basel) 2024; 14:1998. [PMID: 38998110 PMCID: PMC11240496 DOI: 10.3390/ani14131998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Domesticated animals have undergone significant changes in their behavior, morphology, and physiological functions during domestication. To identify the changes in gene expression associated with domestication, we collected the RNA-seq data of pigs, chickens, wild boars, and red junglefowl from public databases and performed a meta-analysis. Gene expression was quantified, and the expression ratio between domesticated animals and their wild ancestors (DW-ratio) was calculated. Genes were classified as "upregulated", "downregulated", or "unchanged" based on their DW-ratio, and the DW-score was calculated for each gene. Gene set enrichment analysis revealed that genes upregulated in pigs were related to defense from viral infection, whereas those upregulated in chickens were associated with aminoglycan and carbohydrate derivative catabolic processes. Genes commonly upregulated in pigs and chickens are involved in the immune response, olfactory learning, epigenetic regulation, cell division, and extracellular matrix. In contrast, genes upregulated in wild boar and red junglefowl are related to stress response, cell proliferation, cardiovascular function, neural regulation, and energy metabolism. These findings provide valuable insights into the genetic basis of the domestication process and highlight potential candidate genes for breeding applications.
Collapse
Affiliation(s)
- Motoki Uno
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Hidemasa Bono
- Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
7
|
Zhang W, Xu C, Zhou M, Liu L, Ni Z, Su S, Wang C. Copy number variants selected during pig domestication inferred from whole genome resequencing. Front Vet Sci 2024; 11:1364267. [PMID: 38505001 PMCID: PMC10950068 DOI: 10.3389/fvets.2024.1364267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Over extended periods of natural and artificial selection, China has developed numerous exceptional pig breeds. Deciphering the germplasm characteristics of these breeds is crucial for their preservation and utilization. While many studies have employed single nucleotide polymorphism (SNP) analysis to investigate the local pig germplasm characteristics, copy number variation (CNV), another significant type of genetic variation, has been less explored in understanding pig resources. In this study, we examined the CNVs of 18 Wanbei pigs (WBP) using whole genome resequencing data with an average depth of 12.61. We identified a total of 8,783 CNVs (~30.07 Mb, 1.20% of the pig genome) in WBP, including 8,427 deletions and 356 duplications. Utilizing fixation index (Fst), we determined that 164 CNVs were within the top 1% of the Fst value and defined as under selection. Functional enrichment analyses of the genes associated with these selected CNVs revealed genes linked to reproduction (SPATA6, CFAP43, CFTR, BPTF), growth and development (NR6A1, SMYD3, VIPR2), and immunity (PARD3, FYB2). This study enhances our understanding of the genomic characteristics of the Wanbei pig and offers a theoretical foundation for the future breeding of this breed.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chengliang Xu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Linqing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Zelan Ni
- Anhui Provincial Livestock and Poultry Genetic Resources Conservation Center, Hefei, China
| | - Shiguang Su
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Anhui Provincial Breeding Pig Genetic Evaluation Center, Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, China
| |
Collapse
|
8
|
Chen Z, Li J, Bai Y, Liu Z, Wei Y, Guo D, Jia X, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Unlocking the Transcriptional Control of NCAPG in Bovine Myoblasts: CREB1 and MYOD1 as Key Players. Int J Mol Sci 2024; 25:2506. [PMID: 38473754 DOI: 10.3390/ijms25052506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Muscle formation directly determines meat production and quality. The non-SMC condensin I complex subunit G (NCAPG) is strongly linked to the growth features of domestic animals because it is essential in controlling muscle growth and development. This study aims to elucidate the tissue expression level of the bovine NCAPG gene, and determine the key transcription factors for regulating the bovine NCAPG gene. In this study, we observed that the bovine NCAPG gene exhibited high expression levels in longissimus dorsi and spleen tissues. Subsequently, we cloned and characterized the promoter region of the bovine NCAPG gene, consisting of a 2039 bp sequence, through constructing the deletion fragment double-luciferase reporter vector and site-directed mutation-identifying core promoter region with its key transcription factor binding site. In addition, the key transcription factors of the core promoter sequence of the bovine NCAPG gene were analyzed and predicted using online software. Furthermore, by integrating overexpression experiments and the electrophoretic mobility shift assay (EMSA), we have shown that cAMP response element binding protein 1 (CREB1) and myogenic differentiation 1 (MYOD1) bind to the core promoter region (-598/+87), activating transcription activity in the bovine NCAPG gene. In conclusion, these findings shed important light on the regulatory network mechanism that underlies the expression of the NCAPG gene throughout the development of the muscles in beef cattle.
Collapse
Affiliation(s)
- Zongchang Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingsheng Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanbin Bai
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhanxin Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yali Wei
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dashan Guo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Jia
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangmin Han
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Li J, Mascarinas P, McGlinn E. The expanding roles of Nr6a1 in development and evolution. Front Cell Dev Biol 2024; 12:1357968. [PMID: 38440075 PMCID: PMC10909835 DOI: 10.3389/fcell.2024.1357968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
The Nuclear Receptor (NR) family of transcriptional regulators possess the ability to sense signalling molecules and directly couple that to a transcriptional response. While this large class of proteins are united by sequence and structural homology, individual NR functional output varies greatly depending on their expression, ligand selectivity and DNA binding sequence specificity. Many NRs have remained somewhat enigmatic, with the absence of a defined ligand categorising them as orphan nuclear receptors. One example is Nuclear Receptor subfamily 6 group A member 1 (Nr6a1), an orphan nuclear receptor that has no close evolutionary homologs and thus is alone in subfamily 6. Nonetheless, Nr6a1 has emerged as an important player in the regulation of key pluripotency and developmental genes, as functionally critical for mid-gestational developmental progression and as a possible molecular target for driving evolutionary change in animal body plan. Here, we review the current knowledge on this enigmatic nuclear receptor and how it impacts development and evolution.
Collapse
|
10
|
Khan MZ, Chen W, Huang B, Liu X, Wang X, Liu Y, Chai W, Wang C. Advancements in Genetic Marker Exploration for Livestock Vertebral Traits with a Focus on China. Animals (Basel) 2024; 14:594. [PMID: 38396562 PMCID: PMC10885964 DOI: 10.3390/ani14040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
In livestock breeding, the number of vertebrae has gained significant attention due to its impact on carcass quality and quantity. Variations in vertebral traits have been observed across different animal species and breeds, with a strong correlation to growth and meat production. Furthermore, vertebral traits are classified as quantitative characteristics. Molecular marker techniques, such as marker-assisted selection (MAS), have emerged as efficient tools to identify genetic markers associated with vertebral traits. In the current review, we highlight some key potential genes and their polymorphisms that play pivotal roles in controlling vertebral traits (development, length, and number) in various livestock species, including pigs, donkeys, and sheep. Specific genetic variants within these genes have been linked to vertebral development, number, and length, offering valuable insights into the genetic mechanisms governing vertebral traits. This knowledge has significant implications for selective breeding strategies to enhance structural characteristics and meat quantity and quality in livestock, ultimately improving the efficiency and quality of the animal husbandry industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | | | | | | | | | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
11
|
Palma-Granados P, Muñoz M, Delgado-Gutierrez MA, Óvilo C, Nuñez Y, Fernández-Barroso MA, Sánchez-Esquiliche F, Ramírez L, García-Casco JM. Candidate SNPs for meat quality and carcass composition in free-range Iberian pigs. Meat Sci 2024; 207:109373. [PMID: 37906998 DOI: 10.1016/j.meatsci.2023.109373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Several genetic markers, previously associated with meat quality traits, have been proposed to be included in Iberian pig breeding programs. However, before being implemented, effects of these candidate SNPs on premium cuts' yield should be evaluated to avoid potential undesirable antagonistic effects. Therefore, the main goals of this study were to evaluate the effects of a set of 26 polymorphisms on premium cuts weights and to corroborate their effects on meat quality in a larger population. Phenotypic data of approximately 1550 Iberian pigs were recorded. The PRKAG3_rs319678464C and PRKAG3_rs1108399077G alleles were associated with an increase of shear force, water losses and color values and a reduction of average daily gain (ADG). The CAST_rs196949783G > A and ADIPOQ_rs3476515794T > G SNPs mainly affected IMF content, with this last SNP being the only one with significant effects on any of the carcass measures, specifically Longissimus thoracis et lumborum (LTL) weight. The ELOVL6_rs3473714672A, FASN_rs331694510A, MTTP_rs335896411C and ACACA_rs340781986C alleles were linked to a higher percentage of oleic acid and monounsaturated FA and a decrease in palmitic, palmitoleic and saturated FA. Besides, suggestive effects were observed between ELOVL6_rs3473714672A > G and ham and shoulder weights, and between MTTP_rs335896411T > C and LTL muscle weight. Finally, the NR6A1_rs326780270T allele was associated with a significant increase in ADG and tended to reduce the ham weight. The SNPs mapped to PRKAG3 (rs319678464G > C), ACACA, FASN and CAST genes could be implemented in breeding programs to improve meat quality traits without undesirable effects on carcass composition. The SNPs mapped to PRKAG3 (rs1108399077G > A) ELOVL6, MTTP and NR6A1 should continue to be tested in a larger number of animals.
Collapse
Affiliation(s)
- Patricia Palma-Granados
- Centro de I+D en Cerdo Ibérico, INIA-CSIC, Ctra. EX101 km 4,7, 06300 Zafra, Spain; Dpto. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña km 7,5, 28040 Madrid, Spain.
| | - María Muñoz
- Dpto. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña km 7,5, 28040 Madrid, Spain
| | - Miguel A Delgado-Gutierrez
- Centro de I+D en Cerdo Ibérico, INIA-CSIC, Ctra. EX101 km 4,7, 06300 Zafra, Spain; Dpto. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña km 7,5, 28040 Madrid, Spain
| | - Cristina Óvilo
- Dpto. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña km 7,5, 28040 Madrid, Spain
| | - Yolanda Nuñez
- Dpto. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña km 7,5, 28040 Madrid, Spain
| | - Miguel A Fernández-Barroso
- Centro de I+D en Cerdo Ibérico, INIA-CSIC, Ctra. EX101 km 4,7, 06300 Zafra, Spain; Dpto. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña km 7,5, 28040 Madrid, Spain
| | | | - Luisa Ramírez
- Sánchez Romero Carvajal Jabugo SA, Ctra. San Juan del Puerto, 21290 Huelva, Spain
| | - Juan M García-Casco
- Centro de I+D en Cerdo Ibérico, INIA-CSIC, Ctra. EX101 km 4,7, 06300 Zafra, Spain; Dpto. Mejora Genética Animal, INIA-CSIC, Ctra La Coruña km 7,5, 28040 Madrid, Spain
| |
Collapse
|
12
|
Lozovska A, Korovesi AG, Duarte P, Casaca A, Assunção T, Mallo M. The control of transitions along the main body axis. Curr Top Dev Biol 2023; 159:272-308. [PMID: 38729678 DOI: 10.1016/bs.ctdb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network. The transitions from head-to-trunk and from trunk-to-tail development thus involve major changes in regulatory mechanisms, requiring proper coordination to guarantee smooth progression of embryonic development. In this review, we will discuss the key cellular and embryological events associated with those transitions giving particular attention to their regulation, aiming to provide a cohesive outlook of this important component of vertebrate development.
Collapse
Affiliation(s)
| | | | - Patricia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Ana Casaca
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Tereza Assunção
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, Oeiras, Portugal.
| |
Collapse
|
13
|
Ribani A, Taurisano V, Karatosidi D, Schiavo G, Bovo S, Bertolini F, Fontanesi L. Signatures of Admixture and Genetic Uniqueness in the Autochthonous Greek Black Pig Breed Deduced from Gene Polymorphisms Affecting Domestication-Derived Traits. Animals (Basel) 2023; 13:1763. [PMID: 37889646 PMCID: PMC10251807 DOI: 10.3390/ani13111763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 09/29/2023] Open
Abstract
The Greek Black Pig (or Greek Pig) is the only recognized autochthonous pig breed raised in Greece, usually in extensive or semi-extensive production systems. According to its name, the characteristic breed coat color is solid black. In this study, with the aim to start a systematic genetic characterization of the Greek Black Pig breed, we investigated polymorphisms in major genes well known to affect exterior and production traits (MC1R, KIT, NR6A1, VRTN and IGF2) and compared these data with population genetic information available in other Mediterranean and Western Balkan pig breeds and wild boars. None of the investigated gene markers were fixed for one allele, suggesting that, in the past, this breed experienced introgression from wild boars and admixture from cosmopolitan pig breeds, enriching the breed genetic pool that should be further investigated to design appropriate conservation genetic strategies. We identified a new MC1R allele, containing two missense mutations already reported in two other independent alleles, but here present in the same haplotype. This allele might be useful to disclose biological information that can lead to better understanding the cascade transmission of signals to produce melanin pigments. This study demonstrated that autochthonous genetic resources can be an interesting reservoir of unexpected genetic variants.
Collapse
Affiliation(s)
- Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Despoina Karatosidi
- Research Institute of Animal Science, General Directorate of Hellenic Agricultural Organisation “Demeter”, Paralimni Giannitsa, 58100 Pella, Greece;
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Francesca Bertolini
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy; (A.R.); (V.T.); (G.S.); (S.B.); (F.B.)
| |
Collapse
|
14
|
Xu Q, Luo Y, Chao Z, Zhang J, Liu X, Tang Q, Wang K, Tan S, Fang M. Integrated Analysis of Transcriptome Expression Profiles Reveals miRNA-326-NKX3.2-Regulated Porcine Chondrocyte Differentiation. Int J Mol Sci 2023; 24:ijms24087257. [PMID: 37108419 PMCID: PMC10138716 DOI: 10.3390/ijms24087257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine body length trait is an essential factor affecting meat production and reproductive performance. It is evident that the development/lengthening of individual vertebrae is one of the main reasons for increases in body length; however, the underlying molecular mechanism remains unclear. In this study, RNA-seq analysis was used to profile the transcriptome (lncRNA, mRNA, and miRNA) of the thoracic intervertebral cartilage (TIC) at two time points (1 and 4 months) during vertebral column development in Yorkshire (Y) and Wuzhishan pigs (W). There were four groups: 1- (Y1) and 4-month-old (Y4) Yorkshire pigs and 1- (W1) and 4-month-old (W4) Wuzhishan pigs. In total, 161, 275, 86, and 126 differentially expressed (DE) lncRNAs, 1478, 2643, 404, and 750 DE genes (DEGs), and 74,51, 34, and 23 DE miRNAs (DE miRNAs) were identified in the Y4 vs. Y1, W4 vs. W1, Y4 vs. W4, and Y1 vs. W1 comparisons, respectively. Functional analysis of these DE transcripts (DETs) demonstrated that they had participated in various biological processes, such as cellular component organization or biogenesis, the developmental process, the metabolic process, bone development, and cartilage development. The crucial bone development-related candidate genes NK3 Homeobox 2 (NKX3.2), Wnt ligand secretion mediator (WLS), gremlin 1 (GREM1), fibroblast growth factor receptor 3 (FGFR3), hematopoietically expressed homeobox (HHEX), (collagen type XI alpha 1 chain (COL11A1), and Wnt Family Member 16 (WNT16)) were further identified by functional analysis. Moreover, lncRNA, miRNA, and gene interaction networks were constructed; a total of 55 lncRNAs, 6 miRNAs, and 7 genes formed lncRNA-gene, miRNA-gene, and lncRNA-miRNA-gene pairs, respectively. The aim was to demonstrate that coding and non-coding genes may co-regulate porcine spine development through interaction networks. NKX3.2 was identified as being specifically expressed in cartilage tissues, and it delayed chondrocyte differentiation. miRNA-326 regulated chondrocyte differentiation by targeting NKX3.2. The present study provides the first non-coding RNA and gene expression profiles in the porcine TIC, constructs the lncRNA-miRNA-gene interaction networks, and confirms the function of NKX3.2 in vertebral column development. These findings contribute to the understanding of the potential molecular mechanisms regulating pig vertebral column development. They expand our knowledge about the differences in body length between different pig species and provide a foundation for future studies.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhe Chao
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jibin Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91006, USA
| | - Ximing Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiguo Tang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuyi Tan
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Suárez-Mesa R, Ros-Freixedes R, Laghouaouta H, Pena RN, Hernández-Ortiz B, Rondón-Barragán I, Estany J. Identification of breed-specific genomic variants in Colombian Creole pig breeds by whole-genome sequencing. Trop Anim Health Prod 2023; 55:154. [PMID: 37041265 PMCID: PMC10089996 DOI: 10.1007/s11250-023-03557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Dissecting genetic variation of local breeds is important for the success of conservation. In this research, we investigated the genomic variation of Colombian Creole (CR) pigs, with a focus on the breed-specific variants in the exonic region of 34 genes with reported effects on adaptive and economic traits. Seven individuals of each of the three CR breeds (CM, Casco de Mula; SP, San Pedreño; and ZU, Zungo) were whole-genome sequenced along with 7 Iberian (IB) pigs and 7 pigs of each of the four most used cosmopolitan (CP) breeds (Duroc, Landrace × Large White, and Pietrain). Molecular variability in CR (6,451,218 variants; from 3,919,242, in SP, to 4,648,069, in CM) was comparable to that in CP, but higher than in IB. For the investigated genes, SP pigs displayed less exonic variants (178) than ZU (254), CM (263), IB (200), and the individual CP genetic types (201 to 335). Sequence variation in these genes confirmed the resemblance of CR to IB and indicates that CR pigs, particularly ZU and CM, are not exempt from selective introgression of other breeds. A total of 50 exonic variants were identified as being potentially specific to CR, including a high-impact deletion in the intron between exons 15 and 16 of the leptin receptor gene, which was only found in CM and ZU. The identification of breed-specific variants in genes related to adaptive and economical traits can bolster the understanding of the role of gene-environment interactions on local adaptation and points the way for effective breeding and conservation of CR pigs.
Collapse
Affiliation(s)
- Rafael Suárez-Mesa
- Department of Animal Science, University of Lleida Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain.
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Barrio Santa Helena Parte Alta, Ibagué, Colombia.
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain
| | - Houda Laghouaouta
- Department of Animal Science, University of Lleida Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain
| | - Ramona N Pena
- Department of Animal Science, University of Lleida Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain
| | - Byron Hernández-Ortiz
- Research and Innovation Group in Animal Health and Welfare Germplasm Animal Bank, Agrosavia, Bogotá, 250047, Colombia
| | - Iang Rondón-Barragán
- Research Group in Immunobiology and Pathogenesis, Faculty of Veterinary Medicine and Zootechnics, University of Tolima, Barrio Santa Helena Parte Alta, Ibagué, Colombia
| | - Joan Estany
- Department of Animal Science, University of Lleida Agrotecnio-CERCA Center, 191 Rovira Roure, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
16
|
Xie Q, Zhang Z, Chen Z, Sun J, Li M, Wang Q, Pan Y. Integration of Selection Signatures and Protein Interactions Reveals NR6A1, PAPPA2, and PIK3C2B as the Promising Candidate Genes Underlying the Characteristics of Licha Black Pig. BIOLOGY 2023; 12:biology12040500. [PMID: 37106701 PMCID: PMC10135650 DOI: 10.3390/biology12040500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Licha black (LI) pig has the specific characteristics of larger body length and appropriate fat deposition among Chinese indigenous pigs. Body length is one of the external traits that affect production performance, and fat deposition influences meat quality. However, the genetic characteristics of LI pigs have not yet been systematically uncovered. Here, the genomic information from 891 individuals of LI pigs, commercial pigs, and other Chinese indigenous pigs was used to analyze the breed characteristics of the LI pig with runs of homozygosity, haplotype, and FST selection signatures. The results showed the growth traits-related genes (i.e., NR6A1 and PAPPA2) and the fatness traits-related gene (i.e., PIK3C2B) were the promising candidate genes that closely related to the characteristics of LI pigs. In addition, the protein–protein interaction network revealed the potential interactions between the promising candidate genes and the FASN gene. The RNA expression data from FarmGTEx indicated that the RNA expression levels of NR6A1, PAPPA2, PIK3C2B, and FASN were highly correlated in the ileum. This study provides valuable molecular insights into the mechanisms that affect pig body length and fat deposition, which can be used in the further breeding process to improve meat quality and commercial profitability.
Collapse
|
17
|
Liu K, Hou L, Yin Y, Wang B, Liu C, Zhou W, Niu P, Li Q, Huang R, Li P. Genome-wide association study reveals new QTL and functional candidate genes for the number of ribs and carcass length in pigs. Anim Genet 2023. [PMID: 36911996 DOI: 10.1111/age.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
The number of ribs (NR) and carcass length (CL) are important economic traits in pig breeding programs. Pigs with a higher NR and longer CL produce greater pork yields. In the present study, Suhuai pigs with NR and CL phenotypes were genotyped using the Neogen® GGP Porcine 80 K SNP array to identify the QTL affecting NR and CL and dissect the candidate genes for the two traits. The SNP-chip data was imputed to the whole-genome sequence (iWGS) to increase the probability of identifying causal variants. Through genome-wide association studies (GWAS) based on both chip and iWGS data, significant SNPs were detected on Sus scrofa chromosome (SSC) 1, SSC4 and SSC7 for NR and on SSC5, SSC16 and SSC17 for CL. Moreover, two SNPs (H3GA0022644 and WU_10.2_7_103460706) on SSC7 detected in chip-based GWAS were significantly associated with both NR and CL. Through Bayes fine mapping, one reported QTL for NR on SSC7 and two reported QTL for CL on SSC17 were verified, and two new QTL (SSC1: 14.05-15.84 Mb and SSC4: 64.83-66.59 Mb) affecting NR and two new QTL (SSC5: 58.31-59.84 Mb and SSC16: 22.98-23.43 Mb) affecting CL were detected. According to the biological functions of genes, MTHFD1L on SSC1 and SULF1 on SSC4 are novel functional candidate genes for NR, and EMP1 on SSC5 and EGFLAM on SSC16 are novel functional candidate genes for CL. Overall, our findings provide a basis for identifying new causal genes and mutations affecting NR and CL.
Collapse
Affiliation(s)
- Kaiyue Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Liming Hou
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Yanzhen Yin
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Binbin Wang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Wuduo Zhou
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Qiang Li
- Huaiyin Xinhuai Pig Breeding Farm of Huaian City, Huaian, China
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing, China.,Huaian Academy, Nanjing Agricultural University, Huaian, China
| |
Collapse
|
18
|
Transcriptomics and Selection Pressure Analysis Reveals the Influence Mechanism of PLIN1 Protein on the Development of Small Size in Min Pigs. Int J Mol Sci 2023; 24:ijms24043947. [PMID: 36835359 PMCID: PMC9960057 DOI: 10.3390/ijms24043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Body size is an important biological phenotypic trait that has attracted substantial attention. Small domestic pigs can serve as excellent animal models for biomedicine and also help meet sacrificial culture needs in human societies. Although the mechanisms underlying vertebral development regulating body size variation in domestic pigs during the embryonic period have been well described, few studies have examined the genetic basis of body size variation in post embryonic developmental stages. In this study, seven candidate genes-PLIN1, LIPE, PNPLA1, SCD, FABP5, KRT10 and IVL-significantly associated with body size were identified in Min pigs, on the basis of weighted gene co-expression network analysis (WGCNA), and most of their functions were found to be associated with lipid deposition. Six candidate genes except for IVL were found to have been subjected to purifying selection. PLIN1 had the lowest ω value (0.139) and showed heterogeneous selective pressure among domestic pig lineages with different body sizes (p < 0.05). These results suggested that PLIN1 is an important genetic factor regulating lipid deposition and consequently affecting body size variation in pigs. The culture of whole pig sacrifice in Manchu during the Qing Dynasty in China might have contributed to the strong artificial domestication and selection of Hebao pigs.
Collapse
|
19
|
Liu C, Hou L, Zhao Q, Zhou W, Liu K, Liu Q, Zhou T, Xu B, Li P, Huang R. The selected genes NR6A1, RSAD2-CMPK2, and COL3A1 contribute to body size variation in Meishan pigs through different patterns. J Anim Sci 2023; 101:skad304. [PMID: 37703114 PMCID: PMC10548407 DOI: 10.1093/jas/skad304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023] Open
Abstract
The high-fertility Meishan pig is currently categorized into medium sized (MMS) and small sized (SMS) based on body size. To identify causal genes responsible for the variation in body size within the two categories, we sequenced individuals representing the entire consanguinity of the existing Meishan pig. This enabled us to conduct genome selective signal analysis. Our findings revealed the genomes of MMS and SMS are stratified, with selective sweep regions formed by differential genomic intervals between the two categories enriched in multiple pig body size related quantitative trait loci (QTLs). Furthermore, the missense mutation c.575T > C of candidate causal gene NR6A1, accounting for the variation in lumbar vertebrae number in pigs, was positively selected in MMS only, leading to an increase in body length of MMS at 6 months of age. To precisely identify causal genes accounting for body size variation through multi-omics, we collected femoral cartilage and liver transcription data from MMS and SMS respectively, and re-sequencing data from pig breeds exhibiting varying body sizes. We found that two selected regions where the RSAD2-CMPK2 and COL3A1 genes are located, respectively, showed different haplotypes in pig breeds of varying body size, and was associated with body or carcass length in hybridized Suhuai pig. Additionally, the above three hub genes, were significantly greater expressed in SMS femoral cartilage and liver tissues compared to MMS. These three genes could strengthen the pathways related to bone resorption and metabolism in SMS, potentially hindering bone and skeletal development and resulting in a smaller body size in SMS. These findings provide valuable insights into the genetic mechanism of body size variation in Meishan pig population.
Collapse
Affiliation(s)
- Chenxi Liu
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Hou
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
| | - Qingbo Zhao
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
| | - Wuduo Zhou
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyue Liu
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Liu
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
| | - Tengbin Zhou
- Kunshan Animal Disease Prevention and Control Center, Suzhou 215000, China
| | - Binbin Xu
- Kunshan Meishan Pig Breeding Co., Ltd., Suzhou 215000, China
| | - Pinghua Li
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223001, China
| | - Ruihua Huang
- Institute of Swine Science (Key Laboratory of Pig Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs (Nanjing)), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Chang YC, Manent J, Schroeder J, Wong SFL, Hauswirth GM, Shylo NA, Moore EL, Achilleos A, Garside V, Polo JM, Trainor P, McGlinn E. Nr6a1 controls Hox expression dynamics and is a master regulator of vertebrate trunk development. Nat Commun 2022; 13:7766. [PMID: 36522318 PMCID: PMC9755267 DOI: 10.1038/s41467-022-35303-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The vertebrate main-body axis is laid down during embryonic stages in an anterior-to-posterior (head-to-tail) direction, driven and supplied by posteriorly located progenitors. Whilst posterior expansion and segmentation appears broadly uniform along the axis, there is developmental and evolutionary support for at least two discrete modules controlling processes within different axial regions: a trunk and a tail module. Here, we identify Nuclear receptor subfamily 6 group A member 1 (Nr6a1) as a master regulator of trunk development in the mouse. Specifically, Nr6a1 was found to control vertebral number and segmentation of the trunk region, autonomously from other axial regions. Moreover, Nr6a1 was essential for the timely progression of Hox signatures, and neural versus mesodermal cell fate choice, within axial progenitors. Collectively, Nr6a1 has an axially-restricted role in all major cellular and tissue-level events required for vertebral column formation, supporting the view that changes in Nr6a1 levels may underlie evolutionary changes in axial formulae.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Manent
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jan Schroeder
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Siew Fen Lisa Wong
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Gabriel M. Hauswirth
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Natalia A. Shylo
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Emma L. Moore
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA
| | - Annita Achilleos
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.413056.50000 0004 0383 4764University of Nicosia, Nicosia, Cyprus
| | - Victoria Garside
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC Australia
| | - Paul Trainor
- grid.250820.d0000 0000 9420 1591Stowers Institute for Medical Research, Kansas City, Missouri USA ,grid.412016.00000 0001 2177 6375Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas USA
| | - Edwina McGlinn
- grid.1002.30000 0004 1936 7857EMBL Australia, Monash University, Clayton, Victoria 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
21
|
Liu Z, Wang T, Shi X, Wang X, Ren W, Huang B, Wang C. Identification of LTBP2 gene polymorphisms and their association with thoracolumbar vertebrae number, body size, and carcass traits in Dezhou donkeys. Front Genet 2022; 13:969959. [PMID: 36482906 PMCID: PMC9723334 DOI: 10.3389/fgene.2022.969959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023] Open
Abstract
The number of thoracolumbar vertebrae in Dezhou donkeys varies from 22 to 24 and is associated with body size and carcass traits. In mammals, the latent transforming growth factor beta binding protein 2 (LTBP2) has been found to have some functions in the development of thoracolumbar vertebrae. The relationship between LTBP2 and TLN (the number of thoracolumbar vertebrae) of Dezhou donkeys is yet to be reported. The purposes of this study are as follows: 1) to quantify the effect of thoracolumbar vertebrae number variation of Dezhou donkeys on body size and carcass trait; 2) to study the distribution of single nucleotide variants (SNVs) in the LTBP2 gene of Dezhou donkeys; and 3) to explore whether these SNVs can be used as candidate sites to study the mechanism of Dezhou donkey muti-thoracolumbar vertebrae development. The TLN, body size, and carcass traits of 392 individuals from a Dezhou donkey breed were recorded. All animals were sequenced for LTBP2 using GBTS liquid chip and 16 SNVs were used for further analysis. We then analyzed the relationship between these SNVs with TLN, body size, and carcass traits. The results showed that: 1) c.5547 + 860 C > T, c.5251 + 281 A > C, c.3769 + 40 C > T, and c.2782 + 3975 A > G were complete genetic linkages and significantly associated with thoracic vertebrae number (TN) (p < 0.05) (wild-type homozygotes had more TN than heterozygotes); 2) c.1381 + 768 T > G and c.1381 + 763 G > T were significantly associated with lumber vertebrae number (LN) (p < 0.05); 3) c.1003 + 704 C > T, c.1003 + 651 C > T, c.1003 + 626 A > G, and c.812 + 22526 T > G were significantly associated with chest circumference (CHC), front carcass weight (CWF), after carcass weight (CWA), and carcass weight (CW) (p < 0.05) (wild-type homozygotes were larger than other genotypes in CHC, CWF, CWA, and CW); and 4) the effect of variation is not consistent in c.565 + 11921 A > G, c.565 + 6840 A > G, c.565 + 3453 C > T, and c.494 + 5808 C > T. These results provide useful information that the polymorphism of LTBP2 is significantly associated with TLN, body size, and carcass traits in Dezhou donkeys, which can serve as a molecule marker to improve donkey production performance.
Collapse
|
22
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Lin ZH, Zhang J, Zhuang LK, Xin YN, Xuan SY. Establishment of a Prognostic Model for Hepatocellular Carcinoma Based on Bioinformatics and the Role of NR6A1 in the Progression of HCC. J Clin Transl Hepatol 2022; 10:901-912. [PMID: 36304495 PMCID: PMC9547269 DOI: 10.14218/jcth.2022.00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Generally acceptable prognostic models for hepatocellular carcinoma (HCC) are not available. This study aimed to establish a prognostic model for HCC by identifying immune-related differentially expressed genes (IR-DEGs) and to investigate the potential role of NR6A1 in the progression of HCC. METHODS Bioinformatics analysis using The Cancer Genome Atlas and ImmPort databases was used to identify IR-DEGs. Lasso Cox regression and multivariate Cox regression analysis were used to establish a prognostic model of HCC. Kaplan-Meier analysis and the receiver operating characteristic (ROC) curves were used to evaluate the performance of the prognostic model, which was further verified in the International Cancer Genome Consortium (ICGC) database. Gene set enrichment analysis was used to explore the potential pathways of NR6A1. Cell counting kit 8, colony formation, wound healing, and Transwell migration assays using Huh7 cells, and tumor formation models in nude mice were conducted. RESULTS A prognostic model established based on ten identified IR-DEGs including HSPA4, FABP6, MAPT, NDRG1, APLN, IL17D, LHB, SPP1, GLP1R, and NR6A1, effectively predicted the prognosis of HCC patients, was confirmed by the ROC curves and verified in ICGC database. NR6A1 expression was significantly up-regulated in HCC patients, and NR6A1 was significantly associated with a low survival rate. Gene set enrichment analysis showed the enrichment of cell cycle, mTOR, WNT, and ERBB signaling pathways in patients with high NR6A1 expression. NR6A1 promoted cell proliferation, invasiveness, migration, and malignant tumor formation and growth in vitro and in vivo. CONCLUSIONS An effective prognostic model for HCC, based on a novel signature of 10 immune-related genes, was established. NR6A1 was up-regulated in HCC and was associated with a poor prognosis of HCC. NR6A1 promoted cell proliferation, migration, and growth of HCC, most likely through the cell cycle, mTOR, WNT, and ERBB signaling pathways.
Collapse
Affiliation(s)
- Zhong-Hua Lin
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Jie Zhang
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Li-Kun Zhuang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Yong-Ning Xin
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Correspondence to: Yong-Ning Xin, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. ORCID: https://orcid.org/0000-0002-3692-7655. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shi-Ying Xuan, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| | - Shi-Ying Xuan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Correspondence to: Yong-Ning Xin, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. ORCID: https://orcid.org/0000-0002-3692-7655. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shi-Ying Xuan, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
24
|
Current Analytical Methods and Research Trends Are Used to Identify Domestic Pig and Wild Boar DNA in Meat and Meat Products. Genes (Basel) 2022; 13:genes13101825. [PMID: 36292710 PMCID: PMC9601671 DOI: 10.3390/genes13101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
The pig, one of the most important livestock species, is a meaningful source of global meat production. It is necessary, however, to prove whether a food product that a discerning customer selects in a store is actually made from pork or venison, or does not contain it at all. The problem of food authenticity is widespread worldwide, and cases of meat adulteration have accelerated the development of food and the identification methods of feed species. It is worth noting that several different molecular biology techniques can identify a porcine component. However, the precise differentiation between wild boar and a domestic pig in meat products is still challenging. This paper presents the current state of knowledge concerning the species identification of the domestic pig and wild boar DNA in meat and its products.
Collapse
|
25
|
Ahbara AM, Musa HH, Robert C, Abebe A, Al-Jumaili AS, Kebede A, Latairish S, Agoub MO, Clark E, Hanotte O, Mwacharo JM. Natural adaptation and human selection of northeast African sheep genomes. Genomics 2022; 114:110448. [PMID: 35964803 DOI: 10.1016/j.ygeno.2022.110448] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
African sheep manifest diverse but distinct physio-anatomical traits, which are the outcomes of natural- and human-driven selection. Here, we generated 34.8 million variants from 150 indigenous northeast African sheep genomes sequenced at an average depth of ∼54× for 130 samples (Ethiopia, Libya) and ∼20× for 20 samples (Sudan). These represented sheep from diverse environments, tail morphology and post-Neolithic introductions to Africa. Phylogenetic and model-based admixture analysis provided evidence of four genetic groups corresponding to altitudinal geographic origins, tail morphotypes and possible historical introduction and dispersal of the species into and across the continent. Running admixture at higher levels of K (6 ≤ K ≤ 25), revealed cryptic levels of genome intermixing as well as distinct genetic backgrounds in some populations. Comparative genomic analysis identified targets of selection that spanned conserved haplotype structures overlapping clusters of genes and gene families. These were related to hypoxia responses, ear morphology, caudal vertebrae and tail skeleton length, and tail fat-depot structures. Our findings provide novel insights underpinning morphological variation and response to human-driven selection and environmental adaptation in African indigenous sheep.
Collapse
Affiliation(s)
- Abulgasim M Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya; School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK.
| | - Hassan H Musa
- Faculty of Medical Laboratory Sciences, University of Khartoum, Sudan
| | - Christelle Robert
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Ayele Abebe
- Debre Berhan Research Centre, Debre Berhan, Ethiopia
| | - Ahmed S Al-Jumaili
- Department of Medical Laboratory Techniques, Al-Maarif University College, Ramadi, Anbar, Iraq
| | - Adebabay Kebede
- LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia; Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Suliman Latairish
- Department of Animal Production, Faculty of Agriculture, Misurata University, Misurata, Libya
| | | | - Emily Clark
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK; LiveGene-CTLGH, International Livestock Research Institute (ILRI) Ethiopia, Addis Ababa, Ethiopia.
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia; Animal and Veterinary Sciences, SRUC, The Roslin Institute Building, Midlothian, Edinburgh, UK; Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, UK.
| |
Collapse
|
26
|
Liu Z, Gao Q, Wang T, Chai W, Zhan Y, Akhtar F, Zhang Z, Li Y, Shi X, Wang C. Multi-Thoracolumbar Variations and NR6A1 Gene Polymorphisms Potentially Associated with Body Size and Carcass Traits of Dezhou Donkey. Animals (Basel) 2022; 12:ani12111349. [PMID: 35681814 PMCID: PMC9179361 DOI: 10.3390/ani12111349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
The number of thoracolumbar vertebrae is a quantitative trait positively correlated with the economic traits of livestock. More thoracolumbar vertebrae individuals could genetically be used to improve the livestock population, as more thoracolumbar vertebrae means a longer carcass, which could bring more meat production. Nuclear receptor subfamily 6 group A member 1 (NR6A1) is considered a strong candidate gene for effecting the number of vertebrae in livestock. The purposes of this study are as follows: (a) Analyzing the effect of TLN variation on body size and carcass traits of Dezhou donkey; (b) Studying the distribution of seven single nucleotide variants (SNVs) in NR6A1 gene of Dezhou donkey; (c) Exploring the relationship between latent SNVs and TLN, the body size and carcass traits. We examined the thoracic and lumbar vertebrae number and seven SNVs in NR6A1 gene of 455 Dezhou donkeys, and analyzed the relationships between them. Five types of thoracolumbar combinations (T17L5 (individual with 17 thoracic and five lumbar vertebrae) 2.4%, T18L5 75.8%, T19L5 1.1%, T17L6 11.9%, and T18L6 8.8%) of Dezhou donkeys were detected in this study. For one thoracolumbar vertebra added, the body length of Dezhou donkey increases by 3 cm and the carcass weight increases by 6 kg. Seven SNVs (g.18093100G > T, g.18094587G > T, g.18106043G > T, g.18108764G > T, g.18110615T > G, g.18112000C > T and g.18114954T > G) of the NR6A1 gene were found to have a significant association with the TLN, body size and carcass traits of Dezhou donkey (p < 0.05), respectively. For instance, g.18114954C > T is significantly associated with lumber vertebrae number, the total number of thoracolumbar, and carcass weight, and individuals with TT genotype had significantly larger value than CC genotype (p < 0.05). Using these 7SNVs, 16 different haplotypes were estimated. Compared to Hap3Hap3, individuals homozygous for Hap2Hap2 showed significantly longer length in one thoracic spine (STL), the total thoracic vertebrae and one thoracolumbar spine. Our study will not only extend the understanding of genetic variation in the NR6A1 gene of Dezhou donkey, but also provide useful information for marker assisted selection in donkey breeding program.
Collapse
Affiliation(s)
- Ziwen Liu
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Qican Gao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China;
| | - Tianqi Wang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Wenqiong Chai
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Yandong Zhan
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Faheem Akhtar
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Zhenwei Zhang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Yuhua Li
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Xiaoyuan Shi
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
| | - Changfa Wang
- Liao Cheng Reaserch Inisitute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng 252059, China; (Z.L.); (T.W.); (W.C.); (Y.Z.); (F.A.); (Z.Z.); (Y.L.); (X.S.)
- Correspondence:
| |
Collapse
|
27
|
Mulley JF. Regulation of posterior Hox genes by sex steroids explains vertebral variation in inbred mouse strains. J Anat 2022; 240:735-745. [PMID: 34747015 PMCID: PMC8930804 DOI: 10.1111/joa.13580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
A series of elegant embryo transfer experiments in the 1950s demonstrated that the uterine environment could alter vertebral patterning in inbred mouse strains. In the intervening decades, attention has tended to focus on the technical achievements involved and neglected the underlying biological question: how can genetically homogenous individuals have a heterogenous number of vertebrae? Here I revisit these experiments and, with the benefit of knowledge of the molecular-level processes of vertebral patterning gained over the intervening decades, suggest a novel hypothesis for homeotic transformation of the last lumbar vertebra to the adjacent sacral type through regulation of Hox genes by sex steroids. Hox genes are involved in both axial patterning and development of male and female reproductive systems and have been shown to be sensitive to sex steroids in vitro and in vivo. Regulation of these genes by sex steroids and resulting alterations to vertebral patterning may hint at a deep evolutionary link between the ribless lumbar region of mammals and the switch from egg-laying to embryo implantation. An appreciation of the impact of sex steroids on Hox genes may explain some puzzling aspects of human disease, and highlights the spine as a neglected target for in utero exposure to endocrine disruptors.
Collapse
|
28
|
Exploiting single-marker and haplotype-based genome-wide association studies to identify QTL for the number of teats in Italian Duroc pigs. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Li C, Liu K, Dai J, Li X, Liu X, Ni W, Li H, Wang D, Qiao J, Wang Y, Cui Y, Xia X, Hu S. Whole-genome resequencing to investigate the determinants of the multi-lumbar vertebrae trait in sheep. Gene 2022; 809:146020. [PMID: 34656743 DOI: 10.1016/j.gene.2021.146020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Multi-lumbar vertebrae trait is a beneficial mutation that can significantly improve livestock meat production. However, the genetic basis of the multi-lumbar vertebrae in sheep is still unclear. Here, we analysed the number of lumbar vertebrae of Duolang sheep and found three different traits of lumbar vertebrae number. Compared with the normal sheep, the length and weight of animal carcass from the multi-lumbar vertebrae sheep increased by 2.21 cm and 0.78 kg, respectively. We performed high-throughput genome resequencing on multi-lumbar vertebrae (n = 18) and normal (n = 11) Duolang sheep and obtained a total of more than 528.87 GB data. We found that the most significantly selective region were located in the 49.68-49.74 MB of chromosome 4 by selective-sweep analysis. We annotated this region and found that it contains SFRP4 which is known to regulate bone development. We further used the PCR-SSCP technology to detect the single nucleotide polymorphism (SNP) of the putative candidate SFRP4 and found that the two SNPs (rs600370085:C > T and rs415133338: A > G) of this gene were significantly associated with the multi-lumbar vertebrae of Duolang sheep. Our study indicates that the SFRP4 may be a potential major gene that affects the number of lumbar vertebrae in Duolang sheep, and has the potential to be utilized for sheep breeding in the future.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kaiping Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jihong Dai
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoyue Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xia Liu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hui Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yue Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yuying Cui
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Shengwei Hu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; College of Life Science, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
30
|
Li J, Peng S, Zhong L, Zhou L, Yan G, Xiao S, Ma J, Huang L. Identification and validation of a regulatory mutation upstream of the BMP2 gene associated with carcass length in pigs. Genet Sel Evol 2021; 53:94. [PMID: 34906088 PMCID: PMC8670072 DOI: 10.1186/s12711-021-00689-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Carcass length is very important for body size and meat production for swine, thus understanding the genetic mechanisms that underly this trait is of great significance in genetic improvement programs for pigs. Although many quantitative trait loci (QTL) have been detected in pigs, very few have been fine-mapped to the level of the causal mutations. The aim of this study was to identify potential causal single nucleotide polymorphisms (SNPs) for carcass length by integrating a genome-wide association study (GWAS) and functional assays. Results Here, we present a GWAS in a commercial Duroc × (Landrace × Yorkshire) (DLY) population that reveals a prominent association signal (P = 4.49E−07) on pig chromosome 17 for carcass length, which was further validated in two other DLY populations. Within the detected 1 Mb region, the BMP2 gene stood out as the most likely causal candidate because of its functions in bone growth and development. Whole-genome gene expression studies showed that the BMP2 gene was differentially expressed in the cartilage tissues of pigs with extreme carcass length. Then, we genotyped an additional 267 SNPs in 500 selected DLY pigs, followed by further whole-genome SNP imputation, combined with deep genome resequencing data on multiple pig breeds. Reassociation analyses using genotyped and imputed SNP data revealed that the rs320706814 SNP, located approximately 123 kb upstream of the BMP2 gene, was the strongest candidate causal mutation, with a large association with carcass length, with a ~ 4.2 cm difference in length across all three DLY populations (N = 1501; P = 3.66E−29). This SNP segregated in all parental lines of the DLY (Duroc, Large White and Landrace) and was also associated with a significant effect on body length in 299 pure Yorkshire pigs (P = 9.2E−4), which indicates that it has a major value for commercial breeding. Functional assays showed that this SNP is likely located within an enhancer and may affect the binding affinity of transcription factors, thereby regulating BMP2 gene expression. Conclusions Taken together, these results suggest that the rs320706814 SNP on pig chromosome 17 is a putative causal mutation for carcass length in the widely used DLY pigs and has great value in breeding for body size in pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00689-0.
Collapse
Affiliation(s)
- Jing Li
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Song Peng
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liepeng Zhong
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lisheng Zhou
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guorong Yan
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shijun Xiao
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junwu Ma
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory for Swine Genetics, Breeding and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
31
|
Johnsson M, Jungnickel MK. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet Sel Evol 2021; 53:67. [PMID: 34461824 PMCID: PMC8404348 DOI: 10.1186/s12711-021-00662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. RESULTS For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. CONCLUSIONS Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Melissa K. Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
32
|
Mi T, Liu K, Guo T, Li L, Wang Y, Li C, Cui Y, Dai J, Zhang Y, Hu S. Analysis of the eighth intron polymorphism of NR6A1 gene in sheep and its correlation with lumbar spine number. Anim Biotechnol 2021; 34:218-224. [PMID: 34346290 DOI: 10.1080/10495398.2021.1954529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
For revealing molecular markers related to the traits of multiple lumbar vertebrae in sheep, we analyze the relationship between NR6A1 gene polymorphism and lumbar vertebrae number traits in Xinjiang Kazakh sheep. Lumbar muscle tissues were collected from 6-lumbar spine (L6) Kazak sheep and 7-lumbar spine (L7) Kazak sheep and the intron-8 of NR6A1 gene was amplified by PCR. The SNP locus was detected by the PCR-SSCP method. One-Way ANOVA and an Independent Chi-square Test is adopted to analyze the genotype association with lumbar spine number variation. There were two SNP loci in the intron-8 of the NR6A1 gene: IVS8-188 and IVS8-281. One-Way ANOVA and Independent Chi-square Test indicated a significant association between IVS8-281 and lumbar spine number. The SNP locus of NR6A1 gene intron 8 (IVS8-281G > A) could play a certain role in the variation of lumbar spine number in Xinjiang Kazakh sheep and demonstrates potential to accelerate the sheep breeding of selection process.
Collapse
Affiliation(s)
- Taotao Mi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China.,College of Life Sciences, Shihezi University, Shihezi, China
| | - Kaiping Liu
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Tao Guo
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Lei Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yuying Cui
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Jihong Dai
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Yunfeng Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
33
|
Abied A, Ahbara AM, Berihulay H, Xu L, Islam R, El-Hag FM, Rekik M, Haile A, Han JL, Ma Y, Zhao Q, Mwacharo JM. Genome Divergence and Dynamics in the Thin-Tailed Desert Sheep From Sudan. Front Genet 2021; 12:659507. [PMID: 34349777 PMCID: PMC8327097 DOI: 10.3389/fgene.2021.659507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
With climate change bound to affect food and feed production, emphasis will shift to resilient and adapted indigenous livestock to sustain animal production. However, indigenous livestock comprise several varieties, strains and ecotypes whose genomes are poorly characterized. Here, we investigated genomic variation in an African thin-tailed Desert Sheep sampled in Sudan, using 600K genotype data generated from 92 individuals representing five ecotypes. We included data from 18 fat-tailed and 45 thin-tailed sheep from China, to investigate shared ancestry and perform comparative genomic analysis. We observed a clear genomic differentiation between the African thin-tailed Desert Sheep and the Chinese thin-tailed and fat-tailed sheep, suggesting a broad genetic structure between the fat-tailed and thin-tailed sheep in general, and that at least two autosomal gene pools comprise the genome profile of the thin-tailed sheep. Further analysis detected two distinct genetic clusters in both the African thin-tailed Desert Sheep and the Chinese thin-tailed sheep, suggesting a fine-scale and complex genome architecture in thin-tailed sheep. Selection signature analysis suggested differences in adaptation, production, reproduction and morphology likely underly the fine-scale genetic structure in the African thin-tailed Desert Sheep. This may need to be considered in designing breeding programs and genome-wide association studies.
Collapse
Affiliation(s)
- Adam Abied
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Dry Land Research Centre and Animal Production, Agricultural Research Corporation, Khartoum, Sudan
| | - Abulgasim M Ahbara
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Haile Berihulay
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rabiul Islam
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Faisal M El-Hag
- Dry Land Research Centre and Animal Production, Agricultural Research Corporation, Khartoum, Sudan.,Arid Land Research Centre, Tottori University, Tottori, Japan
| | - Mourad Rekik
- International Center for Agricultural Research in the Dry Areas (ICARDA), Amman, Jordan
| | - Aynalem Haile
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia.,Animal and Veterinary Sciences, Scotland Rural College and Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, Midlothian, United Kingdom
| |
Collapse
|
34
|
Koseniuk A, Smołucha G, Natonek-Wiśniewska M, Radko A, Rubiś D. Differentiating Pigs from Wild Boars Based on NR6A1 and MC1R Gene Polymorphisms. Animals (Basel) 2021; 11:ani11072123. [PMID: 34359251 PMCID: PMC8300376 DOI: 10.3390/ani11072123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Wild boar meat is much more expensive than pork. Therefore, there are cases when pork is added to wild boar meat products, but this information is not included on the product label. Currently, there is no fully reliable method that would allow the identification of wild boar and domestic swine products. In this study, we tested the possibility of distinguishing two subspecies using polymorphisms within the MC1R and NR6A1 genes. For this purpose, we used two techniques commonly used in molecular biology, PCR-RFLP and Real-time PCR. Abstract This preliminary study aimed to differentiate domestic pigs from wild boars based on MC1R and NR6A1 polymorphisms and to identify admixture between these genomes. We studied samples obtained from wild boars from two regions of Poland and five pig breeds: Polish Landrace, Polish Large White, Złotnicka White, Pulawska and Duroc. Along the MC1R gene sequence, we identified four polymorphic loci comprising three codons. The “wild type” allele was primarily found in wild boar but also in the Duroc and Złotnicka White breeds. Non-wild type alleles were identified in the vast majority of domestic pig samples and in two wild boar samples. Based on MC1R profiles, we conducted a population study, and revealed admixture between both genomes using STRUCTURE and NETWORK Software. Interestingly, an allelic discrimination assay with NR6A1 g.748C > T TaqMan probes revealed a clear separation of samples into two groups: wild boar samples representing the C allele and domestic breeds representing the T allele. Based on the obtained results, we conclude that NR6A1 g.748C > T is an effective marker for differentiating between wild boars and domestic pigs, where this is supported by MC1R data, to identify admixed profiles. We recommend that a larger sample of genomes is studied to verify this method.
Collapse
|
35
|
Niu N, Wang H, Shi G, Liu X, Liu H, Liu Q, Yang M, Wang L, Zhang L. Genome scanning reveals novel candidate genes for vertebral and teat number in the Beijing Black Pig. Anim Genet 2021; 52:734-738. [PMID: 34192356 DOI: 10.1111/age.13111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Porcine vertebral and teat numbers are variable and important economic traits in pig production. However, the quantitative trait loci (QTL) and candidate genes for both of these traits in the Beijing Black Pig are not yet known. In the present study, number of vertebrae and number of teats were obtained for 891 individuals of the Beijing Black Pig and genotyped using the Illumina Porcine 50 K BeadChip. Genome scanning was performed to detect associated variants and candidate genes for both traits using a genome-wide association study by tassel software. For vertebral number, 15 significant SNPs were located on SSC7. According to linkage disequilibrium analysis on SSC7, a haplotype block of 221 kb from 97.4 to 97.6 Mb was shown to contain a good candidate gene ABCD4. Interestingly, on SSC12, we recorded a novel QTL containing three significant SNPs and 34 annotated genes from 24.0 to 25.7 Mb for vertebral number. Of the 34 genes, nine Hox family genes (HOXB 1-7, 9, and 13) were found to be good candidate genes. Using the 34 genes, a gene ontology analysis was performed to detect enrichment of anterior/posterior pattern specification. For teat number, a novel chromosome-wide significant QTL was identified on SSC10. In this QTL region, one significant SNP was identified. The nearest gene, NTRK2, was regarded as a candidate gene. The present results expanded the QTL for vertebral and teat numbers and provided useful molecular markers for breeding in the Beijing Black Pig population.
Collapse
Affiliation(s)
- N Niu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - H Wang
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - G Shi
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - X Liu
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - H Liu
- Beijing Heiliu Stockbreeding Technology Co. Ltd, Beijing, 102211, China
| | - Q Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - M Yang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - L Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Department of Animal Genetics and Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
36
|
Li LY, Xiao SJ, Tu JM, Zhang ZK, Zheng H, Huang LB, Huang ZY, Yan M, Liu XD, Guo YM. A further survey of the quantitative trait loci affecting swine body size and carcass traits in five related pig populations. Anim Genet 2021; 52:621-632. [PMID: 34182604 DOI: 10.1111/age.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Breeding for good meat quality performance while maintaining large body size and desirable carcass traits has been the major challenge for modern swine selective breeding. To address this goal, in the present work we studied five related populations produced by two commercial breeds (Berkshire and Duroc) and two Chinese breeds (Licha black pig and Lulai black pig). A single-trait GWAS performed on 20 body size and carcass traits using a self-developed China Chip-1 porcine SNP50K BeadChip identified 11 genome-wide significant QTL on nine chromosomes and 22 suggestive QTL on 15 chromosomes. For the 11 genome-wide significant QTL, eight were detected in at least two populations, and the rest were population-specific and only mapped in Shanxia black pig. Most of the genome-wide significant QTL were pleiotropic; for example, the QTL around 75.65 Mb on SSC4 was associated with four traits at genome-wide significance level. After screening the genes within 50 kb of the top SNP for each genome-wide significant QTL, NR6A1 and VRTN were chosen as candidate genes for vertebrae number; PLAG1 and BMP2 were identified as candidate genes for body size; and MC4R was the strong candidate gene for body weight. The four genes have been reported as candidates for thoracic vertebrae number, lumbar vertebrae number, carcass length and body weight respectively in previous studies. The effects of VRTN on thoracic vertebrae number, carcass length and body length have been verified in Shanxia black pig. Therefore, the VRTN genotype could be used in gene-assisted selection, and this could accelerate genetic improvement of body size and carcass traits in Shanxia black pig.
Collapse
Affiliation(s)
- L-Y Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - S-J Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - J-M Tu
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - Z-K Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - H Zheng
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China.,Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - L-B Huang
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - Z-Y Huang
- Jiangxi Shanxia Swine Genetic Investment Company Limited, Dingnan, Jiangxi, 341900, China
| | - M Yan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - X-D Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Y-M Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| |
Collapse
|
37
|
Wang K, Zhang L, Duan D, Qiao R, Li X, Li X, Han X. Genomic Analysis Reveals Human-Mediated Introgression From European Commercial Pigs to Henan Indigenous Pigs. Front Genet 2021; 12:705803. [PMID: 34220966 PMCID: PMC8249855 DOI: 10.3389/fgene.2021.705803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Introgression of genetic features from European pigs into Chinese pigs was reported possibly contributing to improvements in productivity traits, such as feed conversion efficiency and body size. However, the genomic differences from European pigs and the potential role of introgression in Henan indigenous pigs remains unclear. In this study, we found significant introgression from European pigs into the genome of Chinese indigenous pigs, especially in Henan indigenous pigs. The introgression in Henan indigenous pigs, particularly in the Nanyang black pig, was mainly derived from Duroc pigs. Most importantly, we found that the NR6A1, GPD2, and CSRNP3 genes were introgressed and reshaped by artificial selection, and these may have contributed to increases in pig body size and feed conversion efficiency. Our results suggest that human-mediated introgression and selection have reshaped the genome of Henan pigs and improved several of their desired traits. These findings contribute to our understanding of the history of Henan indigenous pigs and provide insights into the genetic mechanisms affecting economically important traits in pig populations.
Collapse
Affiliation(s)
- Kejun Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lige Zhang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dongdong Duan
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruimin Qiao
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiuling Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinjian Li
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xuelei Han
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
38
|
Bovo S, Ballan M, Schiavo G, Ribani A, Tinarelli S, Utzeri VJ, Dall'Olio S, Gallo M, Fontanesi L. Single-marker and haplotype-based genome-wide association studies for the number of teats in two heavy pig breeds. Anim Genet 2021; 52:440-450. [PMID: 34096632 PMCID: PMC8362157 DOI: 10.1111/age.13095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
The number of teats is a reproductive‐related trait of great economic relevance as it affects the mothering ability of the sows and thus the number of properly weaned piglets. Moreover, genetic improvement of this trait is fundamental to parallelly help the selection for increased litter size. We present the results of single‐marker and haplotypes‐based genome‐wide association studies for the number of teats in two large cohorts of heavy pig breeds (Italian Large White and Italian Landrace) including 3990 animals genotyped with the 70K GGP Porcine BeadChip and other 1927 animals genotyped with the Illumina PorcineSNP60 BeadChip. In the Italian Large White population, genome scans identified three genome regions (SSC7, SSC10, and SSC12) that confirmed the involvement of the VRTN gene (as we previously reported) and highlighted additional loci known to affect teat counts, including the FRMD4A and HOXB1 gene regions. A different picture emerged in the Italian Landrace population, with a total of 12 genome regions in eight chromosomes (SSC3, SSC6, SSC8, SSC11, SSC13, SSC14, SSC15, and SSC16) mainly detected via the haplotype‐based genome scan. The most relevant QTL was close to the ARL4C gene on SSC15. Markers in the VRTN gene region were not significant in the Italian Landrace breed. The use of both single‐marker and haplotype‐based genome‐wide association analyses can be helpful to exploit and dissect the genome of the pigs of different populations. Overall, the obtained results supported the polygenic nature of the investigated trait and better elucidated its genetic architecture in Italian heavy pigs.
Collapse
Affiliation(s)
- S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Ballan
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Tinarelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy.,Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - S Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, Roma, 00198, Italy
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
39
|
Tinarelli S, Ribani A, Utzeri VJ, Taurisano V, Bovo C, Dall’Olio S, Nen F, Bovo S, Schiavo G, Gallo M, Fontanesi L. Redefinition of the Mora Romagnola Pig Breed Herd Book Standard Based on DNA Markers Useful to Authenticate Its "Mono-Breed" Products: An Example of Sustainable Conservation of a Livestock Genetic Resource. Animals (Basel) 2021; 11:ani11020526. [PMID: 33670521 PMCID: PMC7923016 DOI: 10.3390/ani11020526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Autochthonous breeds are, in general, well adapted to their production systems in which they have been constituted but they are usually less efficient than commercial breeds. Therefore, conservation strategies of livestock genetic resources should be designed to assure profitability to the farmers. The development of “mono-breed” brand products is one of the most effective actions towards this aim. These products are usually sold at a higher price compared to undifferentiated ones, as the consumers consider positively the link between these breeds and the perceived quality of their products. The premium price, however, also attracts fraudsters that unscrupulously see an economic advantage by selling mis-labelled products to obtain an unjustified additional economic gain. These frauds undermine the whole strategy designed to support a sustainable conservation of autochthonous genetic resources. Mora Romagnola is a local pig breed raised in the north of Italy. Mono-breed pork products derived from this breed are part of an important niche value chain that is intrinsically linked to the conservation of this local genetic resource. In this study we present how the Mora Romagnola Herd Book standard integrated information of DNA markers of two genes (MC1R and NR6A1), affecting morphological traits, to allow the authentication of mono-breed products of this breed. This is one of the first examples of sustainable conservation of a pig genetic resource designed starting from the genotype of the animals registered to the breed herd book, with the specific purpose to combat frauds. Abstract Mora Romagnola is an autochthonous pig breed, raised in the north of Italy. Mono-breed pork products of this breed are part of important niche value chain that is intrinsically linked to the conservation of this local genetic resources that can only survive due to the premium price that these products can obtain on the market. However, the added value attracts fraudsters that unscrupulously sell mis-labelled Mora Romagnola products, causing consumer distrust that, in turn, undermines the conservation strategy of this breed. To monitor and better characterise this local breed, we phenotyped 826 Mora Romagnola pigs for three breed-specific traits. Then, we genotyped almost all living sows and boars registered to the Herd Book (n. = 357 animals) for polymorphisms in the MC1R and NR6A1 genes (affecting coat colour and vertebral number, respectively). The results were used to re-define the breed descriptors of the Mora Romagnala breed that included information on the allowed genotypes at these two genes. A few pigs that did not carry the allowed genotypes were excluded from its Herd Book. Finally, we evaluated the usefulness of these DNA markers to authenticate Mora Romagnola meat against meat derived from other 11 pig breeds and wild boars. To our knowledge, the Mora Romagnola Herd Book is one of the first examples that established a direct link between a genetic standard of a breed with the possibility to authenticate mono-breed products using DNA markers with the specific purpose to combat frauds and, indirectly, support the conservation of a livestock genetic resource.
Collapse
Affiliation(s)
- Silvia Tinarelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Roma, Italy; (F.N.); (M.G.)
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Valeria Taurisano
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Claudio Bovo
- Associazione Regionale Allevatori dell’Emilia-Romagna, Viale Della Mercanzia 240-242-244, 40050 Funo di Argelato (BO), Italy;
| | - Stefania Dall’Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Francesco Nen
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Roma, Italy; (F.N.); (M.G.)
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, 00198 Roma, Italy; (F.N.); (M.G.)
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy; (S.T.); (A.R.); (V.J.U.); (V.T.); (S.D.); (S.B.); (G.S.)
- Correspondence: ; Tel.: +39-051-2096535
| |
Collapse
|
40
|
Schiavo G, Bovo S, Muñoz M, Ribani A, Alves E, Araújo JP, Bozzi R, Čandek-Potokar M, Charneca R, Fernandez AI, Gallo M, García F, Karolyi D, Kušec G, Martins JM, Mercat MJ, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Runs of homozygosity provide a genome landscape picture of inbreeding and genetic history of European autochthonous and commercial pig breeds. Anim Genet 2021; 52:155-170. [PMID: 33544919 DOI: 10.1111/age.13045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
ROHs are long stretches of DNA homozygous at each polymorphic position. The proportion of genome covered by ROHs and their length are indicators of the level and origin of inbreeding. Frequent common ROHs within the same population define ROH islands and indicate hotspots of selection. In this work, we investigated ROHs in a total of 1131 pigs from 20 European local pig breeds and in three cosmopolitan breeds, genotyped with the GGP Porcine HD Genomic Profiler. plink software was used to identify ROHs. Size classes and genomic inbreeding parameters were evaluated. ROH islands were defined by evaluating different thresholds of homozygous SNP frequency. A functional overview of breed-specific ROH islands was obtained via over-representation analyses of GO biological processes. Mora Romagnola and Turopolje breeds had the largest proportions of genome covered with ROH (~1003 and ~955 Mb respectively), whereas Nero Siciliano and Sarda breeds had the lowest proportions (~207 and 247 Mb respectively). The highest proportion of long ROH (>16 Mb) was in Apulo-Calabrese, Mora Romagnola and Casertana. The largest number of ROH islands was identified in the Italian Landrace (n = 32), Cinta Senese (n = 26) and Lithuanian White Old Type (n = 22) breeds. Several ROH islands were in regions encompassing genes known to affect morphological traits. Comparative ROH structure analysis among breeds indicated the similar genetic structure of local breeds across Europe. This study contributed to understanding of the genetic history of the investigated pig breeds and provided information to manage these pig genetic resources.
Collapse
Affiliation(s)
- G Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - S Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - A Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - E Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - J P Araújo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, Ponte de Lima, 4990-706, Portugal
| | - R Bozzi
- DAGRI - Animal Science Division, Università di Firenze, Via delle Cascine 5, Firenze, 50144, Italy
| | - M Čandek-Potokar
- Kmetijski Inštitut Slovenije, Hacquetova 17, Ljubljana, SI-1000, Slovenia
| | - R Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - A I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Via Nizza 53, Rome, 00198, Italy
| | - F García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - D Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, Zagreb, 10000, Croatia
| | - G Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, Osijek, 31000, Croatia
| | - J M Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Polo da Mitra, Apartado 94, Évora, 7006-554, Portugal
| | - M-J Mercat
- IFIP Institut du porc, La Motte au Vicomte, BP 35104, Le Rheu Cedex, 35651, France
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - R Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, Barcelona, 08140, Spain
| | - Č Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, 82317, Lithuania
| | - J Riquet
- GenPhySE, Université de Toulouse, INRA, Chemin de Borde-Rouge 24, Auzeville Tolosane, Castanet Tolosan, 31326, France
| | - R Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - G Usai
- Agris Sardegna, Loc. Bonassai, Sassari, 07100, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, Wolpertshausen, 74549, Germany
| | - C Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña, km. 7,5, Madrid, 28040, Spain
| | - L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
41
|
Bovo S, Schiavo G, Utzeri VJ, Ribani A, Schiavitto M, Buttazzoni L, Negrini R, Fontanesi L. A genome-wide association study for the number of teats in European rabbits (Oryctolagus cuniculus) identifies several candidate genes affecting this trait. Anim Genet 2021; 52:237-243. [PMID: 33428230 DOI: 10.1111/age.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/01/2022]
Abstract
In the European rabbit (Oryctolagus cuniculus), a polytocous livestock species, the number of teats indirectly impacts the doe reproduction efficiency and, in turn, the sustainable production of rabbit meat. In this study, we carried out a genome-wide association study (GWAS) for the total number of teats in 247 Italian White does included in the Italian White rabbit breed selection program, by applying a selective genotyping approach. Does had either 8 (n = 121) or 10 teats (n = 126). All rabbits were genotyped with the Affymetrix Axiom OrcunSNP Array. Genomic data from the two extreme groups of rabbits were also analysed with the single-marker fixation index statistic and combined with the GWAS results. The GWAS identified 50 significant SNPs and the fixation index analysis identified a total of 20 SNPs that trespassed the 99.98th percentile threshold, 19 of which confirmed the GWAS results. The most significant SNP (P = 4.31 × 10-11 ) was located on OCU1, close to the NUDT2 gene, a breast carcinoma cells proliferation promoter. Another significant SNP identified as candidate gene NR6A1, which is well known to play an important role in affecting the correlated number of vertebrae in pigs. Other significant markers were close to candidate genes involved in determining body length in mice. Markers associated with increased number of teats could be included in selection programmes to speed up the improvement for this trait in rabbit lines that need to increase maternal performances.
Collapse
Affiliation(s)
- S Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - G Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - V J Utzeri
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - A Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| | - M Schiavitto
- Associazione Nazionale Coniglicoltori Italiani (ANCI), Contrada Giancola snc, Volturara Appula, Foggia, 71030, Italy
| | - L Buttazzoni
- Research Centre for Animal Production and Aquaculture, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Via Salaria 31, Monterotondo, Rome, 00015, Italy
| | - R Negrini
- Associazione Italiana Allevatori, Via G. Tomassetti 9, Rome, 00161, Italy
| | - L Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Viale Giuseppe Fanin 46, Bologna, 40127, Italy
| |
Collapse
|
42
|
Ijiri M, Lai YC, Kawaguchi H, Fujimoto Y, Miura N, Matsuo T, Tanimoto A. NR6A1 Allelic Frequencies as an Index for both Miniaturizing and Increasing Pig Body Size. In Vivo 2021; 35:163-167. [PMID: 33402462 PMCID: PMC7880744 DOI: 10.21873/invivo.12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The number of vertebrae in swine varies from 19 to 23 and is associated with body size. Nuclear receptor subfamily 6 group A member 1 (NR6A1) is considered a strong candidate for affecting the number of vertebrae in swine. Wild boars, which uniformly have 19 vertebrae, have the wild type allele while multi-vertebrae European commercial pigs have the mutated allele. Our aim was to confirm the factor of the miniaturization. MATERIALS AND METHODS We examined vertebrae number and NR6A1 polymorphism in the Microminipig and three domestic breeds that vary in body size. RESULTS The Microminipig had 19 or less vertebrae and a wild type NR6A1 genotype. Three domestic breeds had more than 21 vertebrae while the largest vertebrae number was observed in multi-vertebrae-fixed Large White. Heterozygous genotypes were observed in the middle-sized indigenous pig while homozygous NR6A1 mutations were observed in European commercial breeds. CONCLUSION NR6A1 could be a useful index for both miniaturizing and increasing pig body size.
Collapse
Affiliation(s)
- Moe Ijiri
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yu-Chang Lai
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Hiroaki Kawaguchi
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan;
| | - Yoshikazu Fujimoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Naoki Miura
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Tomohide Matsuo
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- United Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
43
|
Zhang S, Zhang K, Peng X, Zhan H, Lu J, Xie S, Zhao S, Li X, Ma Y. Selective sweep analysis reveals extensive parallel selection traits between large white and Duroc pigs. Evol Appl 2020; 13:2807-2820. [PMID: 33294024 PMCID: PMC7691457 DOI: 10.1111/eva.13085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
In the process of pig genetic improvement, different commercial breeds have been bred for the same purpose, improving meat production. Most of the economic traits, such as growth and fertility, have been selected similarly despite the discrepant selection pressure, which is known as parallel selection. Here, 28 whole-genome sequencing data of Danish large white pigs with an approximately 25-fold depth each were generated, resulting in about 12 million high-quality SNPs for each individual. Combined with the sequencing data of 27 Duroc and 23 European wild boars, we investigated the parallel selection of Danish large white and Duroc pigs using two complementary methods, Fst and iHS. In total, 67 candidate regions were identified as the signatures of parallel selection. The genes in candidate regions of parallel selection were mainly associated with sensory perception, growth rate, and body size. Further functional annotation suggested that the striking consistency of the terms may be caused by the polygenetic basis of quantitative traits, and revealing the complex genetic basis of parallel selection. Besides, some unique terms were enriched in population-specific selection regions, such as the limb development-related terms enriched in Duroc-specific selection regions, suggesting unique selections of breed-specific selected traits. These results will help us better understand the parallel selection process of different breeds. Moreover, we identified several potential causal SNPs that may contribute to the pig genetic breeding process.
Collapse
Affiliation(s)
- Saixian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Kaili Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Xia Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Huiwen Zhan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jiahui Lu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
44
|
Lan D, Ji W, Xiong X, Liang Q, Yao W, Mipam TD, Zhong J, Li J. Population genome of the newly discovered Jinchuan yak to understand its adaptive evolution in extreme environments and generation mechanism of the multirib trait. Integr Zool 2020; 16:685-695. [PMID: 32822522 DOI: 10.1111/1749-4877.12484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The adaptation and diversity of animals to the extreme environments of the Qinghai-Tibet Plateau (QTP) are typical materials to study adaptive evolution. The recently discovered Jinchuan yak population has many individuals with multiple ribs. However, little is known about this yak's origin, evolution, and the genetic mechanisms that formed its unique multirib trait. Here, we report a valuable population genome resource of the Jinchuan yak by resequencing the whole genome of 150 individuals. Population genetic polymorphism and structure analysis reveal that Jinchuan yak can be differentiated as a unique and original yak population among the domestic yak. Combined with geological change, the Jinchuan yak's evolutionary origin is speculated to be about 6290 years ago, which may be related to the unique geographical environment of the eastern edge of the QTP during this period. Compared with other domestic yaks, this new population has 280 positively selected genes. The genes related to skeletal function hold a considerable and remarkable proportion, suggesting that the specific skeletal characteristics have been enhanced in the adaptive evolution of Jinchuan yak in the extreme plateau environment. The genome-wide association study has revealed that TUBA8 and TUBA4A, the genes that regulate the cytoskeleton, are potential genes associated with the multirib trait. Our findings provide a basis to further understand the generation mechanism of the adaptive evolution of this new population in high-altitude extreme environments and the multivertebrate trait of domestic animals.
Collapse
Affiliation(s)
- Daoliang Lan
- Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.,Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Wenhui Ji
- Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.,Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Xianrong Xiong
- Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.,Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Wenye Yao
- Novogene Bioinformatics Institute, Beijing, China
| | - Tserang-Donko Mipam
- Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.,Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Jincheng Zhong
- Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.,Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Jian Li
- Ministry of Education of Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Southwest Minzu University, Chengdu, China.,Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
45
|
Bovo S, Ribani A, Muñoz M, Alves E, Araujo JP, Bozzi R, Čandek-Potokar M, Charneca R, Di Palma F, Etherington G, Fernandez AI, García F, García-Casco J, Karolyi D, Gallo M, Margeta V, Martins JM, Mercat MJ, Moscatelli G, Núñez Y, Quintanilla R, Radović Č, Razmaite V, Riquet J, Savić R, Schiavo G, Usai G, Utzeri VJ, Zimmer C, Ovilo C, Fontanesi L. Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. Genet Sel Evol 2020; 52:33. [PMID: 32591011 PMCID: PMC7318759 DOI: 10.1186/s12711-020-00553-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are the result of these selection events that have contributed to the adaptation of breeds to different environments and production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds (Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European commercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identified by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index (FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/specialization/type. Results We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared populations and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that are already known or new genes that are under selection and relevant for the domestication process in this species, and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that crossbreeding (accidental or deliberate) occurred with wild boars. Conclusions Our findings provide a catalogue of genetic variants of many European pig populations and identify genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Maria Muñoz
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Estefania Alves
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Jose P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, 4990-706, Ponte de Lima, Portugal
| | - Riccardo Bozzi
- DAGRI - Animal Science Section, Università di Firenze, Via delle Cascine 5, 50144, Florence, Italy
| | | | - Rui Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Polo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Graham Etherington
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Ana I Fernandez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Fabián García
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Juan García-Casco
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Danijel Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000, Zagreb, Croatia
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Rome, Italy
| | - Vladimir Margeta
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - José Manuel Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Polo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Marie J Mercat
- IFIP Institut du porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu Cedex, France
| | - Giulia Moscatelli
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Yolanda Núñez
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Raquel Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, 08140, Caldes de Montbui, Barcelona, Spain
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Belgrade-Zemun, 11080, Serbia
| | - Violeta Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, Lithuania
| | - Juliette Riquet
- GenPhySE, INRAE, Université de Toulouse, Chemin de Borde-Rouge 24, Auzeville Tolosane, 31326, Castanet Tolosan, France
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade-Zemun, 11080, Serbia
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Graziano Usai
- AGRIS SARDEGNA, Loc. Bonassai, 07100, Sassari, Italy
| | - Valerio J Utzeri
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Christoph Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Schwäbisch Hall, Germany
| | - Cristina Ovilo
- Departamento Mejora Genética Animal, INIA, Crta. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
46
|
Polymorphism of VRTN Gene g.20311_20312ins291 Was Associated with the Number of Ribs, Carcass Diagonal Length and Cannon Bone Circumference in Suhuai Pigs. Animals (Basel) 2020; 10:ani10030484. [PMID: 32183166 PMCID: PMC7142862 DOI: 10.3390/ani10030484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary An increase in the number of ribs (RIB) could improve carcass length (CL) and body size. Cannon bone circumference (CBC) is a pivotal body size trait, and a large CBC could enhance the capacity to bear excessive body weight, vigorous exercise, and resistance to injuries. Several researchers showed that the vertnin (VRTN) gene g.20311_20312ins291 (NC_010449.5 7: g.20311_20312ins291) is an important variant that is related to RIB and CL of Western pigs. However, it is unknown whether this variant could affect the CBC of pigs. Our study showed that this variant was significantly associated with RIB, carcass diagonal length (CDL), and CBC in Suhuai pigs; therefore, it could be used as a potential molecular marker for improving RIB, CDL, and CBC in this breed. Abstract The vertnin (VRTN) gene g.20311_20312ins291 was reported as an important variant related to the number of ribs (RIB), and the ins/ins genotype was advantageous for improving RIB of Western pigs. The purpose of this study was to determine whether the VRTN gene g.20311_20312ins291 influences RIB, carcass traits, and body size traits, including cannon bone circumference (CBC) in Chinese Suhuai pigs. We found that the VRTN gene g.20311_20312ins291 was polymorphic in Suhuai fattening pigs and gilts. The polymorphism of g.20311_20312ins291 was significantly associated with RIB and CDL in Suhuai fattening pigs (p < 0.01), whereas this variant had no influence on carcass weight (CWT). There was a tendency of association between this variant and carcass straight length (CSL) in Suhuai fattening pigs (p = 0.06). The polymorphism of g.20311_20312ins291 was also significantly associated with CBC in Suhuai gilts (p = 0.04). Furthermore, CBC was positively genetically correlated with body length (0.22, p < 0.01) and body weight (0.15, p < 0.01). Our results indicated that the VRTN gene g.20311_20312ins291 could be used as a potential marker for improving RIB, CDL, and CBC in Suhuai pigs.
Collapse
|
47
|
Lorenzini R, Fanelli R, Tancredi F, Siclari A, Garofalo L. Matching STR and SNP genotyping to discriminate between wild boar, domestic pigs and their recent hybrids for forensic purposes. Sci Rep 2020; 10:3188. [PMID: 32081854 PMCID: PMC7035276 DOI: 10.1038/s41598-020-59644-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
The genetic discrimination between phylogenetically close taxa can be challenging if their gene pools are not differentiated and there are many shared polymorphisms. The gene flow between wild boar (Sus scrofa) and domestic pig (S. s. domesticus) has never been interrupted from domestication onwards, due to non-stop natural and human-mediated crossbreeding. To date there are no individual genetic markers that are able to distinguish between the two forms, nor even to identify effectively their hybrids. We developed a combined molecular protocol based on multiplex porcine-specific STR-profiling system and new real time PCR-based assays of single polymorphisms in the NR6A1 and MC1R genes to gain high diagnostic power in the differentiation of wild boar, pig and hybrids for forensic purposes. The combined approach correctly assigned individuals to one or the other parental gene pool and identified admixed genotypes. Evidence was found for substantial reduction of false negative results by using multiple marker systems jointly, compared to their use individually. Our protocol is a powerful and cost-effective diagnostic tool that can easily be adopted by most forensic laboratories to assist authorities contrast food adulteration, assure veterinary public health and fight against wildlife crimes, like poaching and illegal detention of wild animals.
Collapse
Affiliation(s)
- Rita Lorenzini
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana "M. Aleandri", Centro di Referenza Nazionale per la Medicina Forense Veterinaria, Via Tancia 21, 02100, Rieti, Italy.
| | - Rita Fanelli
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana "M. Aleandri", Centro di Referenza Nazionale per la Medicina Forense Veterinaria, Via Tancia 21, 02100, Rieti, Italy
| | - Francesco Tancredi
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana "M. Aleandri", Via Tancia 21, 02100, Rieti, Italy
| | - Antonino Siclari
- Ente Parco Nazionale dell'Aspromonte, Via Aurora 1, 89057 Gambarie di S. Stefano in Aspromonte, Reggio Calabria, Italy
| | - Luisa Garofalo
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana "M. Aleandri", Centro di Referenza Nazionale per la Medicina Forense Veterinaria, Via Tancia 21, 02100, Rieti, Italy
| |
Collapse
|
48
|
Genome-wide association analyses for several exterior traits in the autochthonous Casertana pig breed. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.103842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Fang X, Lai Z, Liu J, Zhang C, Li S, Wu F, Zhou Z, Lei C, Dang R. A Novel 13 bp Deletion within the NR6A1 Gene Is Significantly Associated with Growth Traits in Donkeys. Animals (Basel) 2019; 9:ani9090681. [PMID: 31540006 PMCID: PMC6770516 DOI: 10.3390/ani9090681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 02/03/2023] Open
Abstract
Simple Summary The detection of genes potentially associated with economic traits and identification of effective variants can provide a basis for molecular marker-assisted selection of livestock. NR6A1 is a member of the nuclear receptor family and is an important candidate gene related to body size traits. Previous studies showed that NR6A1 gene was associated with body size traits in pigs and other livestock, however, it has not yet been observed in donkeys. In the current study, a 13 bp deletion in NR6A1 gene was firstly identified in donkeys. Analysis showed that this deletion had significant associations with body size traits. Abstract Nuclear receptor subfamily 6, group A, member 1 (NR6A1), as an important member of the nuclear receptor family, plays an important role in regulating growth, metabolism, and differentiation of embryonic stem cells. For this reason, the NR6A1 gene is considered to be a promising candidate for economic traits and was found to be associated with body size traits in many livestock. However, no studies have been conducted on NR6A1 in donkeys so far. Thus, in this research, we focused on donkeys and identified a 13 bp deletion in intron-1 of the NR6A1 gene among 408 individuals from Guanzhong and Dezhou donkeys using polyacrylamide gel electrophoresis. Three genotypes were identified, namely II, ID, and DD. The association analysis indicated that the body lengths and body heights5f genotype II individuals were significantly different to those of genotype ID in Dezhou donkeys. Conclusively, the 13 bp deletion was associated with growth traits in both Guanzhong donkeys and Dezhou donkeys, indicating that the NR6A1 gene could be a possible candidate gene in marker-assisted selection for donkey breeding programs.
Collapse
Affiliation(s)
- Xiya Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Jie Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Chunlan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
50
|
Caffaro ME, Raschia MA, Amadio AF, Poli MA. Generalized glycogenosis in Brahman-derived breeds: diagnosis and prevalence in Argentina. Trop Anim Health Prod 2019; 52:483-488. [PMID: 31377960 DOI: 10.1007/s11250-019-02026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
Generalized glycogenosis is a lethal autosomal recessive disease caused by a deficient activity of the acidic 1,4-α-glucosidase enzyme and characterized by an accumulation of glycogen within lysosomes. Three mutations in the GAA gene causing bovine generalized glycogenosis have been identified in two cattle breeds, Brahman and Shorthorn. The objective of this study was to evaluate the prevalence of carriers of the E7 mutation in the GAA gene in Argentinean Brahman-derived herds. A total of 930 Braford, 94 Brangus, and 8 Brahman samples were analyzed. The genotyping was done by polymerase chain reaction and restriction fragment length polymorphism (PCR/RFLP). We found that 12.02% (95% CI 12.00-12.04) of the total number of samples received were heterozygous (i.e., carriers) for the E7 mutation, while 12.58% (95% CI 12.56-12.60) of the Braford, 6.38% (95% CI 6.26-6.51) of the Brangus, and 12.50% (95% CI 9.82-15.18) of the Brahman samples were carriers of this loss-of-function allele. Neither breed nor sex were significantly associated to the presence of the mutation. The prevalence informed in this study is similar to the average prevalence reported for Australian Brahmans. The finding of heterozygous animals suggests that breeders and insemination centers should continue screening their herds to minimize the dissemination of this deleterious allele.
Collapse
Affiliation(s)
- María Eugenia Caffaro
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham (B1686), Buenos Aires, Argentina.
| | - María Agustina Raschia
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham (B1686), Buenos Aires, Argentina.
| | - Ariel Fernando Amadio
- Instituto Nacional de Tecnología Agropecuaria, E.E.A. Rafaela. Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mario Andrés Poli
- Instituto Nacional de Tecnología Agropecuaria, CICVyA-CNIA, Instituto de Genética "Ewald A. Favret", Nicolás Repetto y de Los Reseros s/n, Hurlingham (B1686), Buenos Aires, Argentina
| |
Collapse
|