1
|
Min L, Huo F, Zhu Z, Din L, Zhang L, Xu Y, Xing X, Zhang P, Wang Q. Mechanistic study of METTL3 inducing ferroptosis to promote cervical cancer progression through mediating m6A modification of COTE-1. Cell Signal 2025; 128:111649. [PMID: 39923928 DOI: 10.1016/j.cellsig.2025.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Cervical Cancer (CC) is one of the leading causes of tumor-related deaths among women worldwide, and the mechanisms underlying the anti-ferroptosis of CC cells are still unclear. Methyltransferase like 3 (METTL3) is widely expressed various types of tissues and plays a crucial role in tumorigenesis in part by mediating cell death. However, its regulatory function in CC progression and especially the underlying mechanisms have not been fully elucidated. This study aims to explore the role of METTL3 in the ferroptosis of CC cells. Mechanistically, by MeRIP-seq, we identified COTE-1 as a target of METTL3 mediated m6A modification, and revealed that METTL3-mediated COTE-1 expression was dependent on the m6A reader-dependent manner. Functionally, in vitro and in vivo experiments that METTL3 promotes proliferation and metastasis of CC cells by regulating COTE-1 expression. In addition, the study verified the effect of the METTL3/COTE-1 axis on autophagy-dependent ferroptosis. In summary, METTL3 influences CC progression by mediating COTE-1 to influence autophagy-dependent ferroptosis, representing a potential therapeutic approach for treating CC.
Collapse
Affiliation(s)
- Luyao Min
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Fuchun Huo
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhiman Zhu
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lina Din
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lin Zhang
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Yuting Xu
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Xuewei Xing
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Peng Zhang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Qingling Wang
- Department of Pathology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
2
|
Spurlock BM, Xie Y, Song Y, Ricketts SN, Hua JR, Chi HR, Nishtala M, Salmenov R, Liu J, Qian L. Mitochondrial fusion and cristae reorganization facilitate acquisition of cardiomyocyte identity during reprogramming of murine fibroblasts. Cell Rep 2025; 44:115377. [PMID: 40048433 PMCID: PMC11973714 DOI: 10.1016/j.celrep.2025.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cardiomyocytes (CMs) rely on mitochondrial energy produced in highly interconnected mitochondrial networks. Direct reprogramming of cardiac fibroblasts (CFs) into induced CMs (iCMs) shows promise for treating cardiac injury, but little work has investigated mitochondrial energetics and morphology during the conversion of CFs to iCMs. We characterized mitochondria during direct cardiac reprogramming of murine neonatal CFs (mnCFs). Reprogramming increased mitochondrial respiration and interconnectivity but not to the levels of native CMs. We therefore investigated whether perturbations to mitochondrial dynamics impacted reprogramming. Mitochondrial fusion (joining) was essential for iCM generation, while various fission (dividing) genes were reprogramming barriers. In particular, the loss of mitochondrial fission regulator 1 like (Mtfr1l) significantly increased the yield of functionally mature iCMs and induced mitochondrial fusion and respiration. These changes were countered by the concomitant loss of fusion effector optical atrophy protein 1 (Opa1). The present study advances our understanding of mitochondrial barriers to and mechanisms of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Brian M Spurlock
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yiran Song
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shea N Ricketts
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James Rock Hua
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haley R Chi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Meenakshi Nishtala
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rustem Salmenov
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Ma W, Zhang X, Ma C, Liu P. Highly expressed FAM189B predicts poor prognosis in hepatocellular carcinoma. Pathol Oncol Res 2022; 28:1610674. [PMID: 36507118 PMCID: PMC9732019 DOI: 10.3389/pore.2022.1610674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant tumors with persistently high morbidity and mortality. However, the expression, prognostic and clinical significance of FAM189 family genes in HCC remain largely unknown. In this study, the expression levels of FAM189 family genes in HCC were analyzed through TCGA-LIHC and ICGC-LIRI-JP cohorts, and further validated in multiple independent GEO datasets. It was found that the expression of FAM189B was significantly upregulated in HCC tumor tissues, while the expression of FAM189A1 and FAM189A2 was not significantly changed between tumor and adjacent tissues. Further analysis revealed that upregulated copy number variation contributed to increased expression of FAM189B in HCC. Survival analysis showed that highly expressed FAM189B was significantly correlated with unfavorable prognosis, including overall survival, disease-specific survival, and progression-free interval. Univariate and multivariate Cox regression analysis showed that FAM189B was a potential novel prognosis factor for HCC patients. In addition, the association between FAM189B expression and clinical and molecular characteristics was analyzed. High expression of FAM189B was associated with high AFP level, high predicted risk metastasis signature, and TP53 mutation, while there was no significant association between FAM189B expression and cancer stage or tumor grade of HCC. Gene set enrichment analysis revealed that highly expressed FAM189B was closely related with signal pathways and biological processes associated with cell proliferation and cell cycle in HCC. In conclusion, this study suggested that FAM189B was highly expressed in HCC and highly expressed FAM189B may serve as an effective prognostic indicator and a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Xiaoning Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China
| | - Chenchen Ma
- Central Laboratory, Affiliated Hospital of Shandong University of Chinese Traditional Medicine, Jinan, Shandong, China
| | - Peng Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, Shandong, China,*Correspondence: Peng Liu,
| |
Collapse
|
4
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
5
|
Langen B, Rudqvist N, Parris TZ, Schüler E, Spetz J, Helou K, Forssell-Aronsson E. Transcriptional response in normal mouse tissues after i.v. (211)At administration - response related to absorbed dose, dose rate, and time. EJNMMI Res 2015; 5:1. [PMID: 25853007 PMCID: PMC4384707 DOI: 10.1186/s13550-014-0078-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/15/2014] [Indexed: 01/26/2023] Open
Abstract
Background In cancer radiotherapy, knowledge of normal tissue responses and toxicity risks is essential in order to deliver the highest possible absorbed dose to the tumor while maintaining normal tissue exposure at non-critical levels. However, few studies have investigated normal tissue responses in vivo after 211At administration. In order to identify molecular biomarkers of ionizing radiation exposure, we investigated genome-wide transcriptional responses to (very) low mean absorbed doses from 211At in normal mouse tissues. Methods Female BALB/c nude mice were intravenously injected with 1.7 kBq 211At and killed after 1 h, 6 h, or 7 days or injected with 105 or 7.5 kBq and killed after 1 and 6 h, respectively. Controls were mock-treated. Total RNA was extracted from tissue samples of kidney cortex and medulla, liver, lungs, and spleen and subjected to microarray analysis. Enriched biological processes were categorized after cellular function based on Gene Ontology terms. Results Responses were tissue-specific with regard to the number of significantly regulated transcripts and associated cellular function. Dose rate effects on transcript regulation were observed with both direct and inverse trends. In several tissues, Angptl4, Per1 and Per2, and Tsc22d3 showed consistent transcript regulation at all exposure conditions. Conclusions This study demonstrated tissue-specific transcriptional responses and distinct dose rate effects after 211At administration. Transcript regulation of individual genes, as well as cellular responses inferred from enriched transcript data, may serve as biomarkers in vivo. These findings expand the knowledge base on normal tissue responses and may help to evaluate and limit side effects of radionuclide therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0078-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden ; Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Zhang H, Tian Y, Shen J, Wang Y, Xu Y, Wang Y, Han Z, Li X. Upregulation of the putative oncogene COTE1 contributes to human hepatocarcinogenesis through modulation of WWOX signaling. Int J Oncol 2014; 45:719-731. [PMID: 24899407 DOI: 10.3892/ijo.2014.2482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/14/2014] [Indexed: 11/05/2022] Open
Abstract
Family with sequence similarity 189, also known as COTE1, has been found to be significantly upregulated in hepatocellular carcinoma (HCC) specimens and cell lines and is associated with tumor size and differentiation. Furthermore, COTE1 contributes to hepatocellular carcinogenesis. The overexpression of COTE1 enhanced in vitro cell viability and colony formation in soft agar, and in vivo tumorigenicity of HCC-derived Focus and Huh7 cells. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes in YY-8103 and WRL-68 HCC cell lines. Mechanistic analyses indicated that COTE1 physically associated with WW domain-containing oxidoreductase (WWOX) and modulated WWOX tyrosine phosphorylation. The ectopic overexpression of COTE1 inhibited the WWOX-p53 signaling pathway by reducing the phosphorylation of WWOX at the Tyr33 residue in Focus cells. Conversely, COTE1 silencing activated tyrosine 33 phosphorylation of WWOX and induced WWOX-p53 mediated mitochondrial apoptosis in WRL-68 cells. In addition, COTE1 upregulation in Huh7 cells blocked the WWOX-cyclin D1 pathway via dephosphorylation of WWOX Tyr287, stimulating cell cycle progression whereas phosphorylation of Tyr287 of WWOX induced by COTE1 silencing resulted in activation of WWOX-cyclin D1 signaling, leading to cell cycle arrest in YY-8103 cells. Together, our findings suggest that the cytoplasmic protein COTE1 contributes to HCC tumorigenesis by regulating cell proliferation through the modulation of WWOX signaling.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, P.R. China
| | - Yuan Tian
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Jian Shen
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yun Wang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yonghua Xu
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| | - Yuping Wang
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P.R. China
| | - Zeguang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, P.R. China
| | - Xiangcheng Li
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Nanjing 210029, P.R. China
| |
Collapse
|
7
|
Kadakkuzha BM, Puthanveettil SV. Genomics and proteomics in solving brain complexity. MOLECULAR BIOSYSTEMS 2013; 9:1807-21. [PMID: 23615871 PMCID: PMC6425491 DOI: 10.1039/c3mb25391k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human brain is extraordinarily complex, composed of billions of neurons and trillions of synaptic connections. Neurons are organized into circuit assemblies that are modulated by specific interneurons and non-neuronal cells, such as glia and astrocytes. Data on human genome sequences predicts that each of these cells in the human brain has the potential of expressing ∼20 000 protein coding genes and tens of thousands of noncoding RNAs. A major challenge in neuroscience is to determine (1) how individual neurons and circuitry utilize this potential during development and maturation of the nervous system, and for higher brain functions such as cognition, and (2) how this potential is altered in neurological and psychiatric disorders. In this review, we will discuss how recent advances in next generation sequencing, proteomics and bioinformatics have transformed our understanding of gene expression and the functions of neural circuitry, memory storage, and disorders of cognition.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458, USA
| | | |
Collapse
|
8
|
Identification of transmembrane protein 134 as a novel LMP1-binding protein by using bimolecular fluorescence complementation and an enhanced retroviral mutagen. J Virol 2012; 86:11345-55. [PMID: 22855487 DOI: 10.1128/jvi.00523-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein-Barr virus induces constitutive signaling in infected cells. LMP1 signaling requires oligomerization of LMP1 via its transmembrane domain, localization to lipid rafts in the membrane, and association of the LMP1 cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor-associated factors (TRAFs). Protein complementation is a novel technique to examine protein-protein interaction through the assembly of functional fluorescent proteins or enzymes from inactive fragments. A previous study in our lab demonstrated the use of bimolecular fluorescence complementation (BiFC) to study the assembly of the LMP1 signaling complexes within the plasma membrane of mammalian cells. In the present study, LMP1 was used as bait in a genome-wide BiFC screen with an enhanced retroviral mutagen to identify new LMP1-binding proteins. Our screen identified a novel LMP1-binding protein, transmembrane protein 134 (Tmem134). Tmem134 is a candidate oncogene that is amplified in breast cancer cell lines. Binding, colocalization, and cofractionation between LMP1 and Tmem134 were confirmed. Finally, Tmem134 affected LMP1-induced NF-κB induction. Together, these data suggest that BiFC is a unique and novel platform to identify proteins recruited to the LMP1-signaling complex.
Collapse
|
9
|
Zhang H, Huang CJ, Tian Y, Wang YP, Han ZG, Li XC. Ectopic overexpression of COTE1 promotes cellular invasion of hepatocellular carcinoma. Asian Pac J Cancer Prev 2012; 13:5799-5804. [PMID: 23317259 DOI: 10.7314/apjcp.2012.13.11.5799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Family with sequence similarity 189, member B (FAM189B), alias COTE1, a putative oncogene selected by microarray, for the first time was here found to be significantly up-regulated in hepatocellular carcinoma (HCC) specimens and HCC cell lines. mRNA expression of COTE1 in HCC samples and cell lines was detected by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR, while protein expression of COTE1 in HCC tissues was assessed by immunohistochemistry. In addition, invasion of HCC cells was observed after overexpressing or silencing COTE1. In the total of 48 paired HCC specimens, compared with the adjacent non-cancer tissues, the expression of COTE1 was up-regulated in 31 (p<0.01). In HCC cell lines, COTE1 expression was significantly higher than in normal human adult liver (p<0.01). Overexpression of COTE1 enhanced HCC-derived LM6 and MHCC-L cellular invasion in vitro. In contrast, COTE1 knockdown via RNAi markedly suppressed these phenotypes, as documented in LM3 and MHCC-H HCC cells. Mechanistic analyses indicated that COTE1 could physically associate with WW domain oxidoreductase (WWOX), a tumor suppressor. COTE1 may be closely correlated with invasion of hepatocellular carcinoma (HCC) cells and thus may serve as an effective target for gene therapy.
Collapse
Affiliation(s)
- Hai Zhang
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Shanghai, China
| | | | | | | | | | | |
Collapse
|
10
|
Kuroshu RM, Watanabe, J, Sugano S, Morishita S, Suzuki Y, Kasahara M. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly. PLoS One 2010; 5:e10517. [PMID: 20479877 PMCID: PMC2866332 DOI: 10.1371/journal.pone.0010517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 03/15/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. METHODOLOGY We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. CONCLUSIONS The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.
Collapse
Affiliation(s)
- Reginaldo M. Kuroshu
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Junichi Watanabe,
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (YS); (MK)
| | - Masahiro Kasahara
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- * E-mail: (YS); (MK)
| |
Collapse
|
11
|
Belogrudov GI. A 24-residue presequence localizes human factor B to mitochondria. Arch Biochem Biophys 2007; 461:95-103. [PMID: 17359931 PMCID: PMC1955482 DOI: 10.1016/j.abb.2007.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 01/25/2007] [Accepted: 01/25/2007] [Indexed: 12/01/2022]
Abstract
We reported previously that the human factor B precursor is a 215-amino acid polypeptide, the first 40 amino acid residues of which function as a mitochondrial targeting presequence [G.I. Belogrudov, Y. Hatefi, J. Biol. Chem. 277 (2002) 6097-6103]. Confocal microscopy of live HEK293 cells, transiently transfected with factor B constructs tagged at the C-terminus with green fluorescent protein (GFP) revealed that either a 40- or 25-residue presequence localized factor B to mitochondria. Indirect immunofluorescent labeling of fixed, permeabilized HEK293 cells that were transiently transfected with a construct lacking a presequence, showed diffuse, intracellular staining that was consistent with targeting of ectopically expressed factor B to cellular compartments distinct from the mitochondria. Mutants in which either Met(-25) or both Met(-25)/Met(-24) residues of the presequence were deleted exhibited decreased or undetectable levels, respectively, of the GFP-tagged factor B. The factor B presequence alone was shown to target a reporter polypeptide GFP to mitochondria. Our studies, therefore, demonstrate that a 24-residue presequence is sufficient to localize factor B to mitochondria, and suggest that the human factor B precursor is a 199-amino acid polypeptide.
Collapse
Affiliation(s)
- Grigory I Belogrudov
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| |
Collapse
|
12
|
Labriola L, Ferreira GB, Montor WR, Demasi MAA, Pimenta DC, Lojudice FH, Genzini T, Goldberg AC, Eliaschewitz FG, Sogayar MC. Prolactin-induced changes in protein expression in human pancreatic islets. Mol Cell Endocrinol 2007; 264:16-27. [PMID: 17095147 DOI: 10.1016/j.mce.2006.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 11/26/2022]
Abstract
Ex vivo islet cell culture prior to transplantation appears as an attractive alternative for treatment of type 1 diabetes. Previous results from our laboratory have demonstrated beneficial effects of human prolactin (rhPRL) treatment on human islet primary cultures. In order to probe into the molecular events involved in the intracellular action of rhPRL in these cells, we set out to identify proteins with altered expression levels upon rhPRL cell treatment, using two-dimensional (2D) gel electrophoresis and mass spectrometry (MS). An average of 300 different protein spots were detected, 14 of which were modified upon rhPRL treatment (p<0.01), of which 12 were successfully identified using MS and grouped according to their biological functions. In conclusion, our study provides, for the first time, information about proteins that could be critically involved in PRL's action on human pancreatic islets, and facilitate identification of new and specific targets involved in islet cell function and proliferation.
Collapse
Affiliation(s)
- L Labriola
- Department of Biochemistry, Chemistry Institute, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Bloco 9 Superior Sala 964, São Paulo 05508-900 SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mougeot JLC, Bahrani-Mostafavi Z, Vachris JC, McKinney KQ, Gurlov S, Zhang J, Naumann RW, Higgins RV, Hall JB. Gene Expression Profiling of Ovarian Tissues for Determination of Molecular Pathways Reflective of Tumorigenesis. J Mol Biol 2006; 358:310-29. [PMID: 16503337 DOI: 10.1016/j.jmb.2006.01.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 02/01/2023]
Abstract
Ovarian cancer is the fourth leading cause of gynecological cancer death among women in the United States. Early detection is a critical prerequisite to initiating effective cancer therapy. Gene microarray technology and proteomics have provided much of the biomarkers with potential use for diagnosis. However, more research is needed to fully understand disease onset and progression. To this end, we have performed microarray analysis with the goal of identifying molecular interaction networks defining tumor growth. Microarray analysis was performed on a limited set of ovarian tissues with various pathological diagnoses using Human Genome Focus Array (HGFA) for the detection of approximately 8500 human transcripts. Hierarchical clustering identified groups of ovarian tissues reflective of low malignant potential/early cancer onset and possible pre-cancerous stages involving small molecule, cytokine and/or hormone-dependent feed-back responses specific to the pelvic reproductive system and a priori initiated tumor suppression mechanisms. ANOVA followed by post hoc Scheffe confirmed our hypotheses. Moreover, we established a protein/protein interaction database associated with HGFA probe sets. This database was used to build and visualize molecular networks integrating small but significant changes in gene expression. In conclusion, we were able for the first time to delineate an intersecting genetic pattern linking ovarian tissues reflective of low potential malignancy/early cancer onset stages via long distance signaling between tissues of gynecological origin.
Collapse
Affiliation(s)
- Jean-Luc C Mougeot
- Cannon Research Center, Department of Research Services, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Csurös M, Milosavljevic A. Pooled Genomic Indexing (PGI): analysis and design of experiments. J Comput Biol 2005; 11:1001-21. [PMID: 15700414 DOI: 10.1089/cmb.2004.11.1001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pooled Genomic Indexing (PGI) is a novel method for physical mapping of clones onto known sequences. PGI is carried out by pooling arrayed clones and generating shotgun sequence reads from the pools. The shotgun sequences are compared to a reference sequence. In the simplest case, clones are placed on an array and are pooled by rows and columns. If a shotgun sequence from a row pool and another shotgun sequence from a column pool match the reference sequence at a close distance, they are both assigned to the clone at the intersection of the two pools. Accordingly, the clone is mapped onto the region of the reference sequence between the two matches. A probabilistic model for PGI is developed, and several pooling designs are described and analyzed, including transversal designs and designs from linear codes. The probabilistic model and the pooling schemes are validated in simulated experiments where 625 rat bacterial artificial chromosome (BAC) clones and 207 mouse BAC clones are mapped onto homologous human sequence.
Collapse
Affiliation(s)
- Miklós Csurös
- Département d'informatique et de recherche opérationnelle, Université de Montréal, CP 6128 succ. Centre-Ville, Montréal, QC H3C 3J7, Canada.
| | | |
Collapse
|
15
|
Kang X, Chong J, Ni M. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses. THE PLANT CELL 2005; 17:822-35. [PMID: 15705950 PMCID: PMC1069701 DOI: 10.1105/tpc.104.029165] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Accepted: 12/15/2004] [Indexed: 05/19/2023]
Abstract
Plant photoreceptors that regulate photomorphogenic development include red/far-red-light-absorbing phytochromes and blue/UV-A-light-absorbing cryptochromes. We have undertaken a genetic screen to identify additional components downstream of the photoreceptors in Arabidopsis thaliana. We identified a short hypocotyl mutant under red and blue light, hypersensitive to red and blue 1 (hrb1). Mutation in HRB1 also enhances the end-of-day far-red light response, inhibits leaf expansion and petiole elongation, and attenuates the expression of CAB3 and CHS. Double mutant analysis indicates that phyB is epistatic to hrb1 under red light, and cry1 cry2 is epistatic to hrb1 under blue light for both hypocotyl growth and light-regulated gene expression responses. HRB1 localizes to the nucleus and belongs to a protein family of Drought induced 19 (Di19). HRB1 and all other family members contain a ZZ-type zinc finger domain, which in other organisms is implicated in protein-protein interactions between dystrophin and calmodulin and between transcriptional adaptors and activators. HRB1 activity is also required for red and blue light-induced expression of PHYTOCHROME INTERACTING FACTOR 4 (PIF4). pif4 shows a very similar hypersensitive response as hrb1 to both red light and blue light and is epistatic to hrb1 in control of light-regulated gene expression responses. Thus, the roles of HRB1 and PIF4 together in regulating both red and blue light responses may represent points where red light signaling and blue light signaling intersect.
Collapse
Affiliation(s)
- Xiaojun Kang
- Department of Plant Biology, University of Minesota, St. Paul, Minesota 55108, USA
| | | | | |
Collapse
|
16
|
Wang D, De Deken X, Milenkovic M, Song Y, Pirson I, Dumont JE, Miot F. Identification of a novel partner of duox: EFP1, a thioredoxin-related protein. J Biol Chem 2004; 280:3096-103. [PMID: 15561711 DOI: 10.1074/jbc.m407709200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H(2)O(2) is a crucial substrate of thyroproxidase (TPO) to iodinate thyroglobulin and synthesize thyroid hormones in thyroid. ThOX proteins (thyroid oxidase) also called Duox are believed to be responsible for H(2)O(2) generation. Duoxs expressed in transfected cells do not generate an active system, nor permit their membrane localization suggesting that other proteins are required to fulfill these functions. In this study, we demonstrate interactions of Duoxs with TPO and with p22(phox) without any effect on Duox activity. By yeast two-hybrid method using EF-hand fragment of dog Duox1 as the bait we have isolated EFP1 (EF-hand binding protein 1), one partner of Duoxs that belongs to the thioredoxin-related protein family. EFP1 shares moderate similarities with other members of thioredoxin-related proteins, but the characteristic active site and the folding structures are well conserved. EFP1 can be co-immunoprecipitated with Duoxs in transfected COS cells as well as in primary cultured human thyrocytes. It interacts also with TPO but not thyroglobulin. Immunofluorescence studies show that EFP1 and Duox proteins are co-localized inside the transfected cells, suggesting that EFP1 is not sufficient to induce either the expression of Duox at the plasma membrane or to permit H(2)O(2) production. EFP1 and Duox mRNA share similar distribution in nine different tissues. These results suggest that EFP1 could be one of the partners in the assembly of the multiprotein complex constituting the thyroid H(2)O(2) generating system but is certainly not sufficient to permit H(2)O(2) generation.
Collapse
Affiliation(s)
- Dantong Wang
- Institut de Recherche Interdisciplinaire, Université Libre De Bruxelles, Campus Erasme, 808, route de Lennik, 1070 Bruxelles, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Furey TS, Diekhans M, Lu Y, Graves TA, Oddy L, Randall-Maher J, Hillier LW, Wilson RK, Haussler D. Analysis of human mRNAs with the reference genome sequence reveals potential errors, polymorphisms, and RNA editing. Genome Res 2004; 14:2034-40. [PMID: 15489323 PMCID: PMC528917 DOI: 10.1101/gr.2467904] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The NCBI Reference Sequence (RefSeq) project and the NIH Mammalian Gene Collection (MGC) together define a set of approximately 30,000 nonredundant human mRNA sequences with identified coding regions representing 17,000 distinct loci. These high-quality mRNA sequences allow for the identification of transcribed regions in the human genome sequence, and many researchers accept them as the correct representation of each defined gene sequence. Computational comparison of these mRNA sequences and the recently published essentially finished human genome sequence reveals several thousand undocumented nonsynonymous substitution and frame shift discrepancies between the two resources. Additional analysis is undertaken to verify that the euchromatic human genome is sufficiently complete--containing nearly the whole mRNA collection, thus allowing for a comprehensive analysis to be undertaken. Many of the discrepancies will prove to be genuine polymorphisms in the human population, somatic cell genomic variants, or examples of RNA editing. It is observed that the genome sequence variant has significant additional support from other mRNAs and ESTs, almost four times more often than does the mRNA variant, suggesting that the genome sequence is more accurate. In approximately 15% of these cases, there is substantial support for both variants, suggestive of an undocumented polymorphism. An initial screening against a 24-individual genomic DNA diversity panel verified 60% of a small set of potential single nucleotide polymorphisms from which successful results could be obtained. We also find statistical evidence that a few of these discrepancies are due to RNA editing. Overall, these results suggest that the mRNA collections may contain a substantial number of errors. For current and future mRNA collections, it may be prudent to fully reconcile each genome sequence discrepancy, classifying each as a polymorphism, site of RNA editing or somatic cell variation, or genome sequence error.
Collapse
Affiliation(s)
- Terrence S Furey
- Center for Biomolecular Science and Engineering, Department of Computer Science, University of California, Santa Cruz, Santa Cruz, California 95064, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu JQ, Garcia AM, Hulyk S, Sneed A, Kowis C, Yuan Y, Steffen D, McPherson JD, Gunaratne PH, Gibbs RA. Large-scale RT-PCR recovery of full-length cDNA clones. Biotechniques 2004; 36:690-6, 698-700. [PMID: 15088387 DOI: 10.2144/04364dd03] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pseudogenes, alternative transcripts, noncoding RNA, and polymorphisms each add extensive complexity to the mammalian transcriptome and confound estimation of the total number of genes. Despite advanced algorithms for gene prediction and several large-scale efforts to obtain cDNA clones for all human open reading frames (ORFs), no single collection is complete. To enhance this effort, we have developed a high-throughput pipeline for reverse transcription PCR (RT-PCR) gene recovery. Most importantly, novel molecular strategies for improving RT-PCR yield of transcripts that have been difficult to isolate by other means and computational strategies for clone sequence validation have been developed and optimized. This systematic gene recovery pipeline allows both rescue of predicted human and rat genes and provides insight into the complexity of the transcriptome through comparisons with existing data sets.
Collapse
Affiliation(s)
- Jia Qian Wu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cózar-Castellano I, del Valle Machargo M, Trujillo E, Arteaga MF, González T, Martín-Vasallo P, Avila J. hIscA: a protein implicated in the biogenesis of iron–sulfur clusters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:179-88. [PMID: 15262227 DOI: 10.1016/j.bbapap.2004.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 02/20/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
This article describes the gene called hIscA, its transcription product and protein (hIscA) and its putative function. We screened a human brain cDNA expression library with serum from a patient suffering from the autoimmune Sjögren's syndrome (S5:823/94). One cDNA of 1.6-kbp clone was isolated. This clone contains the entire coding sequence for a protein unknown in human. IscA is ubiquitously expressed and expression levels vary among tissues. The 15.5-kDa predicted protein contains a structural domain named HESB, is located in the mitochondria and is implicated in the biogenesis of iron-sulfur clusters. Since this unknown protein is related to IscA-like protein, we suggest as name for this protein hIscA. The recombinant protein is recognized by a rabbit polyclonal antiserum generated against the carboxyl extreme of the Saccharomyces cerevisiae orthologue Isa1. In this article, we demonstrate the functional homology between hIscA and Isa1 proteins using Isa1 null mutant S. cerevisiae transformed with hIscA in a yeast functional complementation test. We also describe the rat homologue to this gene.
Collapse
Affiliation(s)
- Irene Cózar-Castellano
- Laboratorio de Biología del Desarrollo, Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Gunaratne PH, Wu JQ, Garcia AM, Hulyk S, Worley KC, Margolin JF, Gibbs RA. Concatenation cDNA sequencing for transcriptome analysis. C R Biol 2004; 326:971-7. [PMID: 14744103 DOI: 10.1016/j.crvi.2003.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe a high-throughput cDNA sequencing pipeline (http://www.hgsc.bcm.tmc.edu/projects/cdna) built in response to the emerging need for rapid sequencing of large cDNA collections. Using this strategy cDNA inserts are purified and joined through concatenation into large molecules. These 'pseudo-BACs' are subjected to random shotgun sequencing whereby the majority of cDNA inserts in the pool are sequenced. Using this concatenation cDNA sequencing platform, we have contributed more than 13000 full-length cDNA sequences from human and mouse to the Mammalian Gene Collection (MGC).
Collapse
Affiliation(s)
- Preethi H Gunaratne
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Qiu J, Gunaratne P, Peterson LE, Khurana D, Walsham N, Loulseged H, Karni RJ, Roussel E, Gibbs RA, Margolin JF, Gingras MC. Novel potential ALL low-risk markers revealed by gene expression profiling with new high-throughput SSH-CCS-PCR. Leukemia 2003; 17:1891-900. [PMID: 12970791 DOI: 10.1038/sj.leu.2403073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The current systems of risk grouping in pediatric acute lymphoblastic leukemia (ALL) fail to predict therapeutic success in 10-35% of patients. To identify better predictive markers of clinical behavior in ALL, we have developed an integrated approach for gene expression profiling that couples suppression subtractive hybridization, concatenated cDNA sequencing, and reverse transcriptase real-time quantitative PCR. Using this approach, a total of 600 differentially expressed genes were identified between t(4;11) ALL and pre-B ALL with no determinant chromosomal translocation. The expression of 67 genes was analyzed in different cytogenetic ALL subgroups and B lymphocytes isolated from healthy donors. Three genes, BACH1, TP53BPL, and H2B/S, were consistently expressed as a significant cluster associated with the low-risk ALL subgroups. A total of 42 genes were differentially expressed in ALL vs normal B lymphocytes, with no specific association with any particular ALL subgroups. The remaining 22 genes were part of a specific expression profile associated with the hyperdiploid, t(12;21), or t(4;11) subgroups. Using an unsupervised hierarchical cluster analysis, the discriminating power of these specific expression profiles allowed the clustering of patients according to their subgroups. These genes could help to understand the difference in treatment response and become therapeutical targets to improve ALL clinical outcomes.
Collapse
Affiliation(s)
- J Qiu
- Texas Children's Cancer Center and Department of Pediatrics, department of Baylor College of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cui S, Selwood L. Cloning and expression of a novel cDNA encoding shell coat protein, cp4, from the brushtail possum (Trichosurus vulpecula). Mol Reprod Dev 2003; 65:141-7. [PMID: 12704724 DOI: 10.1002/mrd.10296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The marsupial conceptus is enclosed by several egg coats of evolutionary significance and unknown composition, of which the shell coat in mammals occurs only in marsupials and monotremes. Intact coats are vital to marsupial embryonic development. Towards a better understanding of the marsupial coat proteins, a cDNA sequence (cp4) encoding a shell coat protein was cloned from the brushtail possum. A cDNA library of a zygote stage uterus was screened using a deduced oligonucleotide sequence based on a partial amino acid sequence of the coat protein. This study has confirmed a single copy cp4 gene encoding a unique protein of 306 amino acids, although its N-terminus shares high sequence identity with the C-terminal half of the enzyme alpha-enolase. Using Northern blots, the expression of cp4 in adult tissues showed that cp4 transcript is restricted predominantly to the uterus with two stages of expression occurring in the gravid uterus at early cleavage and bilaminar stages, suggesting an important developmental role for CP4. Using RT-PCR, cp4-specific expression as represented by the 3'-end 400 bp was present in heart, liver, oviduct, and uterus. Uterine expression reflected the increase found with Northern blot except that expression was low at unilaminar and bilaminar stages.
Collapse
Affiliation(s)
- Shuliang Cui
- Department of Zoology, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
23
|
Edgar AJ. The gene structure and expression of human ABHD1: overlapping polyadenylation signal sequence with Sec12. BMC Genomics 2003; 4:18. [PMID: 12735795 PMCID: PMC156608 DOI: 10.1186/1471-2164-4-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2002] [Accepted: 05/07/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Overlapping sense/antisense genes orientated in a tail-to-tail manner, often involving only the 3'UTRs, form the majority of gene pairs in mammalian genomes and can lead to the formation of double-stranded RNA that triggers the destruction of homologous mRNAs. Overlapping polyadenylation signal sequences have not been described previously. RESULTS An instance of gene overlap has been found involving a shared single functional polyadenylation site. The genes involved are the human alpha/beta hydrolase domain containing gene 1 (ABHD1) and Sec12 genes. The nine exon human ABHD1 gene is located on chromosome 2p23.3 and encodes a 405-residue protein containing a catalytic triad analogous to that present in serine proteases. The Sec12 protein promotes efficient guanine nucleotide exchange on the Sar1 GTPase in the ER. Their sequences overlap for 42 bp in the 3'UTR in an antisense manner. Analysis by 3' RACE identified a single functional polyadenylation site, ATTAAA, within the 3'UTR of ABHD1 and a single polyadenylation signal, AATAAA, within the 3'UTR of Sec12. These polyadenylation signals overlap, sharing three bp. They are also conserved in mouse and rat. ABHD1 was expressed in all tissues and cells examined, but levels of ABHD1 varied greatly, being high in skeletal muscle and testis and low in spleen and fibroblasts. CONCLUSIONS Mammalian ABHD1 and Sec12 genes contain a conserved 42 bp overlap in their 3'UTR, and share a conserved TTTATTAAA/TTTAATAAA sequence that serves as a polyadenylation signal for both genes. No inverse correlation between the respective levels of ABHD1 and Sec12 RNA was found to indicate that any RNA interference occurred.
Collapse
Affiliation(s)
- Alasdair J Edgar
- Department of Clinical and Diagnostic Oral Science, Clinical Research Centre, Queen Mary, University of London, 2 Newark Street, London, E1 2AD, UK.
| |
Collapse
|
24
|
Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YSN, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJM, Marra MA. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 2002; 99:16899-903. [PMID: 12477932 PMCID: PMC139241 DOI: 10.1073/pnas.242603899] [Citation(s) in RCA: 1365] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http:mgc.nci.nih.gov).
Collapse
|
25
|
Netz DJA, Pohl R, Beck-Sickinger AG, Selmer T, Pierik AJ, Bastos MDCDF, Sahl HG. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J Mol Biol 2002; 319:745-56. [PMID: 12054867 DOI: 10.1016/s0022-2836(02)00368-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aureocin A53 is produced by Staphylococcus aureus A53. It is encoded on a 10.4 kb plasmid, pRJ9, and is active against Listeria monocytogenes. Aureocin A53 is a highly cationic 51-residue peptide containing ten lysine and five tryptophan residues. Aureocin A53 was purified to homogeneity by hydrophobic-interaction, cation-exchange, and reverse-phase chromatography. MALDI-TOF mass spectrometry yielded a molecular mass of 6012.5 Da, which was 28 Da higher than predicted from the structural gene sequence of the bacteriocin. The mass increment resulted from an N-formylmethionine residue, indicating that the aureocin A53 is synthesised and secreted without a typical bacteriocin leader sequence or sec-dependent signal peptide. The structural identity of aureocin A53 was verified by Edman sequencing after de-blocking with cyanogen bromide and extensive mass spectrometry analysis of enzymatically and laser-generated fragments. The complete sequence of pRJ9 was determined and none of the open reading frames identified in the vicinity of the structural gene aucA showed similarity to genes that are typically found in bacteriocin gene clusters. Thus, neither a dedicated protease or transporter, nor modifying enzymes and regulatory elements seemed to be involved in the production of aureocin A53. Further unique features that distinguish aureocin A53 from other peptide bacteriocins include remarkable protease stability and a defined, rigid structure in aqueous solution.
Collapse
Affiliation(s)
- Daili Jacqueline Aguilar Netz
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, CCS, Bloco I, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Shevchenko Y, Bouffard GG, Butterfield YSN, Blakesley RW, Hartley JL, Young AC, Marra MA, Jones SJM, Touchman JW, Green ED. Systematic sequencing of cDNA clones using the transposon Tn5. Nucleic Acids Res 2002; 30:2469-77. [PMID: 12034835 PMCID: PMC117195 DOI: 10.1093/nar/30.11.2469] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In parallel with the production of genomic sequence data, attention is being focused on the generation of comprehensive cDNA-sequence resources. Such efforts are increasingly emphasizing the production of high-accuracy sequence corresponding to the entire insert of cDNA clones, especially those presumed to reflect the full-length mRNA. The complete sequencing of cDNA clones on a large scale presents unique challenges because of the generally small, yet heterogeneous, sizes of the cloned inserts. We have developed a strategy for high-throughput sequencing of cDNA clones using the transposon Tn5. This approach has been tailored for implementation within an existing large-scale 'shotgun-style' sequencing program, although it could be readily adapted for use in virtually any sequencing environment. In addition, we have developed a modified version of our strategy that can be applied to cDNA clones with large cloning vectors, thereby overcoming a potential limitation of transposon-based approaches. Here we describe the details of our cDNA-sequencing pipeline, including a summary of the experience in sequencing more than 4200 cDNA clones to produce more than 8 million base pairs of high-accuracy cDNA sequence. These data provide both convincing evidence that the insertion of Tn5 into cDNA clones is sufficiently random for its effective use in large-scale cDNA sequencing as well as interesting insight about the sequence context preferred for insertion by Tn5.
Collapse
Affiliation(s)
- Yuriy Shevchenko
- NIH Intramural Sequencing Center, National Institutes of Health, Gaithersburg, MD 20877, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R, Guarin H, Kronmiller B, Pacleb J, Park S, Wan K, Rubin GM, Celniker SE. A Drosophila full-length cDNA resource. Genome Biol 2002; 3:RESEARCH0080. [PMID: 12537569 PMCID: PMC151182 DOI: 10.1186/gb-2002-3-12-research0080] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 11/27/2002] [Accepted: 11/27/2002] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND A collection of sequenced full-length cDNAs is an important resource both for functional genomics studies and for the determination of the intron-exon structure of genes. Providing this resource to the Drosophila melanogaster research community has been a long-term goal of the Berkeley Drosophila Genome Project. We have previously described the Drosophila Gene Collection (DGC), a set of putative full-length cDNAs that was produced by generating and analyzing over 250,000 expressed sequence tags (ESTs) derived from a variety of tissues and developmental stages. RESULTS We have generated high-quality full-insert sequence for 8,921 clones in the DGC. We compared the sequence of these clones to the annotated Release 3 genomic sequence, and identified more than 5,300 cDNAs that contain a complete and accurate protein-coding sequence. This corresponds to at least one splice form for 40% of the predicted D. melanogaster genes. We also identified potential new cases of RNA editing. CONCLUSIONS We show that comparison of cDNA sequences to a high-quality annotated genomic sequence is an effective approach to identifying and eliminating defective clones from a cDNA collection and ensure its utility for experimentation. Clones were eliminated either because they carry single nucleotide discrepancies, which most probably result from reverse transcriptase errors, or because they are truncated and contain only part of the protein-coding sequence.
Collapse
Affiliation(s)
- Mark Stapleton
- Berkeley Drosophila Genome Project Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cai WW, Chen R, Gibbs RA, Bradley A. A clone-array pooled shotgun strategy for sequencing large genomes. Genome Res 2001; 11:1619-23. [PMID: 11591638 DOI: 10.1101/gr.198101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A simplified strategy for sequencing large genomes is proposed. Clone-Array Pooled Shotgun Sequencing (CAPSS) is based on pooling rows and columns of arrayed genomic clones, for shotgun library construction. Random sequences are accumulated, and the data are processed by sequential comparison of rows and columns to assemble the sequence of clones at points of intersection. Compared with either a clone-by-clone approach or whole-genome shotgun sequencing, CAPSS requires relatively few library constructions and only minimal computational power for a complete genome assembly. The strategy is suitable for sequencing large genomes for which there are no sequence-ready maps, but for which relatively high resolution STS maps and highly redundant BAC libraries are available. It is immediately applicable to the sequencing of mouse, rat, zebrafish, and other important genomes, and can be managed in a cooperative fashion to take advantage of a distributed international DNA sequencing capacity.
Collapse
Affiliation(s)
- W W Cai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
29
|
Netz DJ, Sahl HG, Marcelino R, dos Santos Nascimento J, de Oliveira SS, Soares MB, do Carmo de Freire Bastos M, Marcolino R. Molecular characterisation of aureocin A70, a multi-peptide bacteriocin isolated from Staphylococcus aureus. J Mol Biol 2001; 311:939-49. [PMID: 11531330 DOI: 10.1006/jmbi.2001.4885] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus A70 produces a heat-stable bacteriocin designated aureocin A70. Aureocin A70 is encoded within a mobilisable 8 kb plasmid, pRJ6, and is active against Listeria monocytogenes. Experiments of transposition mutagenesis and gene cloning had shown that aureocin A70 production and immunity were associated with the HindIII-A and B fragments of pRJ6. Therefore, a 6332 bp region of the plasmid, encompassing both these fragments, was sequenced using a concatenation DNA sequencing procedure. DNA sequence and genetic analyses revealed the presence of three transcriptional units that appear to be involved in bacteriocin activity. The first transcriptional unit contains a single gene, aurT, which encodes a protein that resembles an ATP-dependent transporter, similar to those involved in lantibiotic export. AurT is required for aureocin A70 production and it appears to be essential for mobilisation of pRJ6. The second putative operon contains two open reading frames (ORFs); the first gene, orfA, is predicted to encode a protein similar to small repressor proteins found in some Archaea, whose function remains to be elucidated. The second gene, orfB, codes for an 138 amino acid residue protein which shares a number of characteristics (high pI and hydrophobicity profile) with proteins associated with immunity, needed for self-protection against bacteriocin. Four other genes are present in the third operon, aurABCD. aurABCD encode four related peptides that are small (30-31 amino acid residues), strongly cationic (pI of 9.85 to 10.04) and highly hydrophobic. Theses peptides also have a high content of small amino acid residues like glycine and alanine, and no cysteine residue. Tn917-lac insertional mutations, which affected aureocin A70 activity, reside within operon aurABCD. Analysis of purified bacteriocin preparations by mass spectrometry demonstrated that all four peptides encoded by aurABCD operon are produced, expressed and excreted without post-translational modifications. Thus, aureocin A70 is a multi-peptide non-lantibiotic bacteriocin, which is transported without processing.
Collapse
Affiliation(s)
- D J Netz
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Magré J, Delépine M, Khallouf E, Gedde-Dahl T, Van Maldergem L, Sobel E, Papp J, Meier M, Mégarbané A, Bachy A, Verloes A, d'Abronzo FH, Seemanova E, Assan R, Baudic N, Bourut C, Czernichow P, Huet F, Grigorescu F, de Kerdanet M, Lacombe D, Labrune P, Lanza M, Loret H, Matsuda F, Navarro J, Nivelon-Chevalier A, Polak M, Robert JJ, Tric P, Tubiana-Rufi N, Vigouroux C, Weissenbach J, Savasta S, Maassen JA, Trygstad O, Bogalho P, Freitas P, Medina JL, Bonnicci F, Joffe BI, Loyson G, Panz VR, Raal FJ, O'Rahilly S, Stephenson T, Kahn CR, Lathrop M, Capeau J. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 2001; 28:365-70. [PMID: 11479539 DOI: 10.1038/ng585] [Citation(s) in RCA: 524] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Congenital generalized lipodystrophy, or Berardinelli-Seip syndrome (BSCL), is a rare autosomal recessive disease characterized by a near-absence of adipose tissue from birth or early infancy and severe insulin resistance. Other clinical and biological features include acanthosis nigricans, hyperandrogenism, muscular hypertrophy, hepatomegaly, altered glucose tolerance or diabetes mellitus, and hypertriglyceridemia. A locus (BSCL1) has been mapped to 9q34 with evidence of heterogeneity. Here, we report a genome screen of nine BSCL families from two geographical clusters (in Lebanon and Norway). We identified a new disease locus, designated BSCL2, within the 2.5-Mb interval flanked by markers D11S4076 and D11S480 on chromosome 11q13. Analysis of 20 additional families of various ethnic origins led to the identification of 11 families in which the disease cosegregates with the 11q13 locus; the remaining families provide confirmation of linkage to 9q34. Sequence analysis of genes located in the 11q13 interval disclosed mutations in a gene homologous to the murine guanine nucleotide-binding protein (G protein), gamma3-linked gene (Gng3lg) in all BSCL2-linked families. BSCL2 is most highly expressed in brain and testis and encodes a protein (which we have called seipin) of unknown function. Most of the variants are null mutations and probably result in a severe disruption of the protein. These findings are of general importance for understanding the molecular mechanisms underlying regulation of body fat distribution and insulin resistance.
Collapse
Affiliation(s)
- J Magré
- INSERM U.402, Faculté de Médecine Saint-Antoine, Université Pierre et Marie Curie, 27 rue Chaligny, 75012 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ramalho JS, Tolmachova T, Hume AN, McGuigan A, Gregory-Evans CY, Huxley C, Seabra MC. Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene. BMC Genet 2001; 2:2. [PMID: 11178108 PMCID: PMC29082 DOI: 10.1186/1471-2156-2-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 02/02/2001] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Rab GTPases are regulators of intracellular membrane traffic. The Rab27 subfamily consists of Rab27a and Rab27b. Rab27a has been recently implicated in Griscelli Disease, a disease combining partial albinism with severe immunodeficiency. Rab27a plays a key role in the function of lysosomal-like organelles such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Little is known about Rab27b. RESULTS The human RAB27B gene is organised in six exons, spanning about 69 kb in the chromosome 18q21.1 region. Exon 1 is non-coding and is separated from the others by 49 kb of DNA and exon 6 contains a long 3' untranslated sequence (6.4 kb). The mouse Rab27b cDNA shows 95% identity with the human cDNA at the protein level and maps to mouse chromosome 18. The mouse mRNA was detected in stomach, large intestine, spleen and eye by RT-PCR, and in heart, brain, spleen and kidney by Northern blot. Transient over-expression of EGF-Rab27b fusion protein in cultured melanocytes revealed that Rab27b is associated with melanosomes, as observed for EGF-Rab27a. CONCLUSIONS Our results indicate that the Rab27 subfamily of Ras-like GTPases is highly conserved in mammals. There is high degree of conservation in sequence and gene structure between RAB27A and RAB27B genes. Exogenous expression of Rab27b in melanocytes results in melanosomal association as observed for Rab27a, suggesting the two Rab27 proteins are functional homologues. As with RAB27A in Griscelli Disease, RAB27B may be also associated with human disease mapping to chromosome 18.
Collapse
Affiliation(s)
- José S Ramalho
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Tanya Tolmachova
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Alistair N Hume
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Amanda McGuigan
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Cheryl Y Gregory-Evans
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Clare Huxley
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Miguel C Seabra
- Cell and Molecular Biology, Division of Biomedical Sciences, Imperial College School of Medicine, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
32
|
Posey KL, Jones LB, Cerda R, Bajaj M, Huynh T, Hardin PE, Hardin SH. Survey of transcripts in the adult Drosophila brain. Genome Biol 2001; 2:RESEARCH0008. [PMID: 11276425 PMCID: PMC30707 DOI: 10.1186/gb-2001-2-3-research0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Revised: 01/22/2001] [Accepted: 01/24/2001] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Classic methods of identifying genes involved in neural function include the laborious process of behavioral screening of mutagenized flies and then rescreening candidate lines for pleiotropic effects due to developmental defects. To accelerate the molecular analysis of brain function in Drosophila we constructed a cDNA library exclusively from adult brains. Our goal was to begin to develop a catalog of transcripts expressed in the brain. These transcripts are expected to contain a higher proportion of clones that are involved in neuronal function. RESULTS The library contains approximately 6.75 million independent clones. From our initial characterization of 271 randomly chosen clones, we expect that approximately 11% of the clones in this library will identify transcribed sequences not found in expressed sequence tag databases. Furthermore, 15% of these 271 clones are not among the 13,601 predicted Drosophila genes. CONCLUSIONS Our analysis of this unique Drosophila brain library suggests that the number of genes may be underestimated in this organism. This work complements the Drosophila genome project by providing information that facilitates more complete annotation of the genomic sequence. This library should be a useful resource that will help in determining how basic brain functions operate at the molecular level.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Leslie B Jones
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Rosalinda Cerda
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Monica Bajaj
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Thao Huynh
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Paul E Hardin
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | - Susan H Hardin
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| |
Collapse
|
33
|
Whittaker AJ, Royzman I, Orr-Weaver TL. Drosophila Double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev 2000. [DOI: 10.1101/gad.14.14.1765] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We identified a Drosophila gene, double parked(dup), that is essential for DNA replication and belongs to a new family of replication proteins conserved fromSchizosaccharomyces pombe to humans. Strong mutations indup cause embryonic lethality, preceded by a failure to undergo S phase during the postblastoderm divisions. dup is required also for DNA replication in the adult ovary, establishing thatdup is needed for DNA replication at multiple stages of development. Strikingly, DUP protein colocalizes with the origin recognition complex to specific sites in the ovarian follicle cells. This suggests that DUP plays a direct role in DNA replication. Thedup transcript is cell cycle regulated and is under the control of E2F and Cyclin E. Interestingly, dup mutant embryos fail both to downregulate S phase genes and to engage a checkpoint preventing mitosis until completion of S phase. This could be either because these events depend on progression of S phase beyond the point blocked in the dup mutants or because DUP is needed directly for these feedback mechanisms.
Collapse
|
34
|
Whittaker AJ, Royzman I, Orr-Weaver TL. Drosophila double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev 2000; 14:1765-76. [PMID: 10898791 PMCID: PMC316778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We identified a Drosophila gene, double parked (dup), that is essential for DNA replication and belongs to a new family of replication proteins conserved from Schizosaccharomyces pombe to humans. Strong mutations in dup cause embryonic lethality, preceded by a failure to undergo S phase during the postblastoderm divisions. dup is required also for DNA replication in the adult ovary, establishing that dup is needed for DNA replication at multiple stages of development. Strikingly, DUP protein colocalizes with the origin recognition complex to specific sites in the ovarian follicle cells. This suggests that DUP plays a direct role in DNA replication. The dup transcript is cell cycle regulated and is under the control of E2F and Cyclin E. Interestingly, dup mutant embryos fail both to downregulate S phase genes and to engage a checkpoint preventing mitosis until completion of S phase. This could be either because these events depend on progression of S phase beyond the point blocked in the dup mutants or because DUP is needed directly for these feedback mechanisms.
Collapse
Affiliation(s)
- A J Whittaker
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
35
|
Li C, Rodriguez M, Adamson JW, Banerjee D. Identification of a glialblastoma cell differentiation factor-related gene mRNA in human microvascular endothelial cells. Genomics 2000; 65:243-52. [PMID: 10857748 DOI: 10.1006/geno.2000.6176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial cells (VEC) transduce mitogenic and chemoattractant signals in response to erythropoietin (Epo). An analysis of changes in gene expression in VEC would be helpful to understanding the molecular nature of mitogenic signals. An effective method for analysis of gene expression is through differential display. Using this approach, we obtained from Epo-treated human microvascular endothelial cells (HMVEC) a cDNA fragment with characteristics of the 3'end of mRNA. Using the cDNA fragment, we then isolated a full-length clone from a HMVEC cDNA library. The cDNA of interest encodes a protein consisting of 404 amino acids with a carboxy-terminal end sequence identical to glialblastoma cell differentiation factor-related protein (GBDR1). Northern blot analysis showed that GBDR1 mRNA was ubiquitously expressed in human tissues. In Southern blot analysis, GBDR1 cDNA identified a single gene on chromosome 9. Since analysis of the amino acid sequence revealed several putative phosphorylation sites for different protein kinases, the GBDR1 protein was expressed and purified from bacterial extracts and, as predicted, casein kinase II phosphorylated GBDR1 in vitro. Immunofluorescence and biochemical data revealed that the GBDR1 protein is not entirely localized in the cytosolic fraction, suggesting that it may interact with another protein(s). These findings demonstrate that GBDR1 is an intracellular signaling molecule that may play a role in the regulation of endothelial cell growth.
Collapse
Affiliation(s)
- C Li
- The Lindsley F. Kimball Research Institute, The New York Blood Center, New York 10021, USA
| | | | | | | |
Collapse
|
36
|
Mei G, Hardin SH. Octamer-primed sequencing technology: development of primer identification software. Nucleic Acids Res 2000; 28:E22. [PMID: 10710439 PMCID: PMC102805 DOI: 10.1093/nar/28.7.e22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Octamer sequencing technology (OST) is a primer-directed sequencing strategy in which an individual octamer primer is selected from a pre-synthesized octamer primer library and used to sequence a DNA fragment. However, selecting candidate primers from such a library is time consuming and can be a bottleneck in the sequencing process. To accelerate the sequencing process and to obtain high quality sequencing data, a computer program, electronic OST or eOST, was developed to automatically identify candidate primers from an octamer primer library. eOST integrates the base calling software PHRED to provide a quality assessment for target sequences and identifies potential primer binding sites located within a high quality target region. To increase the sequencing success rate, eOST includes a simple dynamic folding algorithm to automatically calculate the free energy and predict the secondary structure within the template in the vicinity of the octamer-binding site. Several parameters were found to be important, including base quality threshold, the window size of the template sequence segment, and the threshold [Delta] G value. OST, coupled with the eOST software, can be used to sequence short DNA fragments or in the finishing assembly stage of large-scale sequencing of genomic DNA.
Collapse
Affiliation(s)
- G Mei
- Department of Biology and Biochemistry, Institute of Molecular Biology, University of Houston, Houston, TX 77204-5513, USA
| | | |
Collapse
|
37
|
Hayashi MA, Portaro FC, Tambourgi DV, Sucupira M, Yamane T, Fernandes BL, Ferro ES, Rebouças NA, de Camargo AC. Molecular and immunochemical evidences demonstrate that endooligopeptidase A is the predominant cytosolic oligopeptidase of rabbit brain. Biochem Biophys Res Commun 2000; 269:7-13. [PMID: 10694468 DOI: 10.1006/bbrc.2000.2243] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligopeptidases are tissue endopeptidases that do not attack proteins and are likely to be involved in the maturation and degradation of peptide hormones and neuropeptides. The rabbit brain endooligopeptidase A and the rat testes soluble metallopeptidase (EC 3.4.24.15) are thiol-activated oligopeptidases which are able to generate enkephalin from a number of opioid peptides and to inactivate bradykinin and neurotensin by hydrolyzing the same peptide bonds. A monospecific antibody raised against the purified rabbit brain endooligopeptidase A allowed the identification of a 2. 3 kb cDNA coding for a truncated enzyme of 512 amino acids, displaying the same enzymatic features as endooligopeptidase A. In spite of all efforts, employing several strategies, the full-length cDNA could not be cloned until now. The analysis of the deduced amino acid sequence showed no similarity to the rat testes metalloendopeptidase sequence, except for the presence of the typical metalloprotease consensus sequence [HEXXH]. The antibody raised against recombinant endooligopeptidase A specifically inhibited its own activity and reduced the thiol-activated oligopeptidase activity of rabbit brain cytosol to less than 30%. Analysis of the endooligopeptidase A tissue distribution indicated that this enzyme is mainly expressed in the CNS, whereas the soluble metallo EC 3.4.24.15 is mainly expressed in peripheral tissues.
Collapse
Affiliation(s)
- M A Hayashi
- Department of Biophysics and Biochemistry, Butantan Institute, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Khare N, Fascetti N, DaRocha S, Chiquet-Ehrismann R, Baumgartner S. Expression patterns of two new members of the Semaphorin family in Drosophila suggest early functions during embryogenesis. Mech Dev 2000; 91:393-7. [PMID: 10704872 DOI: 10.1016/s0925-4773(99)00297-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We report the sequence and expression analysis of two new Drosophila members of the Semaphorin family. Both proteins show the presence of Semaphorin domains and transmembrane domains. Both genes are expressed maternally and in embryos, and reveal distinct expression patterns much earlier than the onset of neurogenesis. We also present an overview of the domain structure of all so far known semaphorins in Drosophila. Furthermore, we compared all Drosophila and C. elegans Semaphorins and discuss them in the light of their evolution.
Collapse
Affiliation(s)
- N Khare
- Department of Cell & Molecular Biology, Box 94, Lund University, S-22100, Lund, Sweden
| | | | | | | | | |
Collapse
|
39
|
Volorio S, Simon G, Repetto M, Cucciardi M, Banfi S, Borsani G, Ballabio A, Zollo M. Sequencing analysis of forty-eight human image cDNA clones similar to Drosophila mutant protein. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:307-15. [PMID: 10524757 DOI: 10.3109/10425179809008469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have sequenced 48 human IMAGE cDNA clones selected from the public EST database (dbEST) for their significant homology to Drosophila mutant genes. A dynamically updated analysis report was produced by BlastX and BlastN analysis searches in the latest databases available. This analysis led us to estimate the grade of similarity with homologous genes isolated in other species. Bottlenecks were detected in the sequencing process and here we have presented our problem-solving approach. We think the value of this full-length sequencing project is an enrichment of the sequence database information that is currently available to the human genome community.
Collapse
Affiliation(s)
- S Volorio
- Telethon Institute of Genetics and Medicine (TIGEM), San Raffaele Biomedical Science Park, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- J Bouck
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA.
| | | | | | | |
Collapse
|
41
|
Winberg ML, Noordermeer JN, Tamagnone L, Comoglio PM, Spriggs MK, Tessier-Lavigne M, Goodman CS. Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 1998; 95:903-16. [PMID: 9875845 DOI: 10.1016/s0092-8674(00)81715-8] [Citation(s) in RCA: 374] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Semaphorins comprise a large family of secreted and transmembrane proteins, some of which function as repellents during axon guidance. Semaphorins fall into seven subclasses. Neuropilins are neuronal receptors for class III Semaphorins. In the immune system, VESPR, a member of the Plexin family, is a receptor for a viral-encoded Semaphorin. Here, we identify two Drosophila Plexins, both of which are expressed in the developing nervous system. We present evidence that Plexin A is a neuronal receptor for class I Semaphorins (Sema 1a and Sema 1b) and show that Plexin A controls motor and CNS axon guidance. Plexins, which themselves contain complete Semaphorin domains, may be both the ancestors of classical Semaphorins and binding partners for Semaphorins.
Collapse
Affiliation(s)
- M L Winberg
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|