1
|
Anand S, Lal M, Bhardwaj E, Shukla R, Pokhriyal E, Jain A, Sri T, Srivastava PS, Singh A, Das S. MIR159 regulates multiple aspects of stamen and carpel development and requires dissection and delimitation of differential downstream regulatory network for manipulating fertility traits. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1437-1456. [PMID: 38076769 PMCID: PMC10709278 DOI: 10.1007/s12298-023-01377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023]
Abstract
Unravelling genetic networks regulating developmental programs are key to devising and implementing genomics assisted trait modification strategies. It is crucial to understand the role of small RNAs, and the basis of their ability to modify traits. MIR159 has been previously reported to cause defects in anther development in Arabidopsis; however, the complete spectrum and basis of the defects remained unclear. The present study was therefore undertaken to comprehensively investigate the role of miR159 from Brassica juncea in modulating vegetative and reproductive traits. Owing to the polyploid nature of Brassica, paralogous and homeologous copies of MIR159A, MIR159B, and, MIR159C were identified and analysis of the precursor uncovered extensive structural and sequence variation. The MIR159 locus with mature miR159 with perfect target complimentarily with MYB65, was cloned from Brassica juncea var. Varuna for functional characterization by generating constitutively over-expressing lines in Arabidopsis thaliana Col-0. Apart from statistically significant difference in multiple vegetative traits, drastic differences were observed in stamen and pistil. Over-expression of miR159a led to shortening of filament length and loss of tetradynamous condition. Anthers were apiculate, with improper lobe formation, and unsynchronized cellular growth between connective tissue and another lobe development. Analysis revealed arrested meiosis/cytokinesis in microspores, and altered lignin deposition pattern in endothecial walls thus affecting anther dehiscence. In the gynoecium, flaccid, dry stigmatic papillae, and large embryo sac in the female gametophyte was observed. Over-expression of miR159a thus severely affected pollination and seed-set. Analysis of the transcriptome data revealed components of regulatory networks of anther and carpel developmental pathway, and lignin metabolism that are affected. Expression analysis allowed us to position the miR159a-MYB65 module in the genetic network of stamen development, involved in pollen-grain maturation; in GA-mediated regulation of stamen development, and in lignin metabolism. The study, on one hand indicates role of miR159a-MYB65 in regulating multiple aspects of reproductive organ development that can be manipulated for trait modification, but also raises several unaddressed questions such as relationship between miR159a and male-meiosis, miR159a and filament elongation for future investigations. Accession numbers: KC204951-KC204960. Project number PRJNA1035268. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01377-7.
Collapse
Affiliation(s)
- Saurabh Anand
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Richa Shukla
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Ekta Pokhriyal
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Aditi Jain
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Tanu Sri
- TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi, 110 070 India
| | - P. S. Srivastava
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, Delhi 110 062 India
| | - Anandita Singh
- TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi, 110 070 India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
2
|
Fonseca AA, Laguardia-Nascimento M, Ferreira APS, Pinto CDA, da Silva Gonçalves VL, Barbosa AAS, Rivetti Junior AV, Camargos MF. Genetic differentiation of Megalocytivirus by real time PCR and sequencing. Mol Biol Rep 2023; 50:3439-3450. [PMID: 36757549 DOI: 10.1007/s11033-023-08282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Megalocytiviruses (MCV) are double-stranded DNA viruses that infect fish. Two species within the genus are epidemiologically important for fish farming: red sea bream iridovirus (RSIV) and infectious spleen and kidney necrosis virus (ISKNV). The objective of this work was to study regions that allow the differentiation and correct diagnosis of RSIV and ISKNV. METHODS The regions ORF450L, ORF342L, ORF077, and the intergenic region between ORF37 and ORF42R were sequenced and compared with samples from the database. RESULTS The tree constructed using the sequencing of the PCR product Megalocytivirus. ORF077 separated the three major clades of MCV. RISV genotypes were well divided, but not ISKNV. All qPCRs tests showed acceptable repeatability values, that is, less than 5%. CONCLUSION Two qPCRs for ISKNV detection and two for RSIV were considered suitable for use in the diagnosis and typing of MCV. The results of this study demonstrate the importance of an accurate evaluation of methodologies for the differentiation of MCV.
Collapse
Affiliation(s)
- Antônio Augusto Fonseca
- Laboratório Federal de Defesa Agropecuária de Minas Gerais, Pedro Leopoldo, Brazil. .,UNIFEMM - Centro Universitário, Sete Lagoas, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Lal M, Bhardwaj E, Chahar N, Yadav S, Das S. Comprehensive analysis of 1R- and 2R-MYBs reveals novel genic and protein features, complex organisation, selective expansion and insights into evolutionary tendencies. Funct Integr Genomics 2022; 22:371-405. [PMID: 35260976 DOI: 10.1007/s10142-022-00836-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Myeloblastosis (MYB) family, the largest plant transcription factor family, has been subcategorised based on the number and type of repeats in the MYB domain. In spite of several reports, evolution of MYB genes and repeats remains enigmatic. Brassicaceae members are endowed with complex genomes, including dysploidy because of its unique history with multiple rounds of polyploidisation, genomic fractionations and rearrangements. The present study is an attempt to gain insights into the complexities of MYB family diversity, understand impacts of genome evolution on gene families and develop an evolutionary framework to understand the origin of various subcategories of MYB gene family. We identified and analysed 1129 MYBs that included 1R-, 2R-, 3R- and atypical-MYBs across sixteen species representing protists, fungi, animals and plants and exclude MYB identified from Brassicaceae except Arabidopsis thaliana; in addition, a total of 1137 2R-MYB genes from six Brassicaceae species were also analysed. Comparative analysis revealed predominance of 1R-MYBs in protists, fungi, animals and lower plants. Phylogenetic reconstruction and analysis of selection pressure suggested ancestral nature of R1-type repeat containing 1R-MYBs that might have undergone intragenic duplication to form multi-repeat MYBs. Distinct differences in gene structure between 1R-MYB and 2R-MYBs were observed regarding intron number, the ratio of gene length to coding DNA sequence (CDS) length and the length of exons encoding the MYB domain. Conserved as well as novel and lineage-specific intron phases were identified. Analyses of physicochemical properties revealed drastic differences indicating functional diversification in MYBs. Phylogenetic reconstruction of 1R- and 2R-MYB genes revealed a shared structure-function relationship in clades which was supported when transcriptome data was analysed in silico. Comparative genomics to study distribution pattern and mapping of 2R-MYBs revealed congruency and greater degree of synteny and collinearity among closely related species. Micro-synteny analysis of genomic segments revealed high conservation of genes that are immediately flanking the surrounding tandemly organised 2R-MYBs along with instances of local duplication, reorganisations and genome fractionation. In summary, polyploidy, dysploidy, reshuffling and genome fractionation were found to cause loss or gain of 2R-MYB genes. The findings need to be supported with functional validation to understand gene structure-function relationship along the evolutionary lineage and adaptive strategies based on comparative functional genomics in plants.
Collapse
Affiliation(s)
- Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Nishu Chahar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shobha Yadav
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Peterson D, Bonham KS, Rowland S, Pattanayak CW, Klepac-Ceraj V. Comparative Analysis of 16S rRNA Gene and Metagenome Sequencing in Pediatric Gut Microbiomes. Front Microbiol 2021; 12:670336. [PMID: 34335499 PMCID: PMC8320171 DOI: 10.3389/fmicb.2021.670336] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 01/04/2023] Open
Abstract
The colonization of the human gut microbiome begins at birth, and over time, these microbial communities become increasingly complex. Most of what we currently know about the human microbiome, especially in early stages of development, was described using culture-independent sequencing methods that allow us to identify the taxonomic composition of microbial communities using genomic techniques, such as amplicon or shotgun metagenomic sequencing. Each method has distinct tradeoffs, but there has not been a direct comparison of the utility of these methods in stool samples from very young children, which have different features than those of adults. We compared the effects of profiling the human infant gut microbiome with 16S rRNA amplicon vs. shotgun metagenomic sequencing techniques in 338 fecal samples; younger than 15, 15-30, and older than 30 months of age. We demonstrate that observed changes in alpha-diversity and beta-diversity with age occur to similar extents using both profiling methods. We also show that 16S rRNA profiling identified a larger number of genera and we find several genera that are missed or underrepresented by each profiling method. We present the link between alpha diversity and shotgun metagenomic sequencing depth for children of different ages. These findings provide a guide for selecting an appropriate method and sequencing depth for the three studied age groups.
Collapse
Affiliation(s)
- Danielle Peterson
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Kevin S Bonham
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Sophie Rowland
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Cassandra W Pattanayak
- Department of Mathematics, Quantitative Reasoning Program, and the Quantitative Analysis Institute at Wellesley College, Wellesley, MA, United States
| | | | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
5
|
Jayakodi M, Schreiber M, Stein N, Mascher M. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Res 2021; 28:6117190. [PMID: 33484244 PMCID: PMC7934568 DOI: 10.1093/dnares/dsaa030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Pan-genomic studies aim at representing the entire sequence diversity within a species to provide useful resources for evolutionary studies, functional genomics and breeding of cultivated plants. Cost reductions in high-throughput sequencing and advances in sequence assembly algorithms have made it possible to create multiple reference genomes along with a catalogue of all forms of genetic variations in plant species with large and complex or polyploid genomes. In this review, we summarize the current approaches to building pan-genomes as an in silico representation of plant sequence diversity and outline relevant methods for their effective utilization in linking structural with phenotypic variation. We propose as future research avenues (i) transcriptomic and epigenomic studies across multiple reference genomes and (ii) the development of user-friendly and feature-rich pan-genome browsers.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mona Schreiber
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
6
|
Qiao L, Li X, Ke X, Chu J. A two-component system gene SACE_0101 regulates copper homeostasis in Saccharopolyspora erythraea. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0299-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Saccharopolyspora erythraea (S. erythraea) is a Gram-positive bacterium widely used for the production of erythromycin, a potent macrolide antibiotic. However, the mechanism behind erythromycin production is poorly understood. In the high erythromycin-producer strain S. erythraea HL3168 E3, the level of copper ions positively correlates with erythromycin production. To explain this correlation, we performed a genome-based comparison between the wild-type strain NRRL23338 and the mutant strain HL3168 E3, and further characterized the identified gene(s) by targeted genome editing, mRNA transcript analysis, and functional analysis.
Results
The response regulator of the two-component system (TCS) encoded by the gene SACE_0101 in S. erythraea showed high similarity with CopR of TCS CopRS in Streptomyces coelicolor, which is involved in the regulation of copper metabolism. The deletion of SACE_0101 was beneficial for erythromycin synthesis most likely by causing changes in the intracellular copper homeostasis, leading to enhanced erythromycin production. In addition, Cu2+ supplementation and gene expression analysis suggested that SACE_0101 may be involved in the regulation of copper homeostasis and erythromycin production.
Conclusions
The mutation of SACE_0101 gene increased the yield of erythromycin, especially upon the addition of copper ions. Therefore, the two-component system gene SACE_0101 plays a crucial role in regulating copper homeostasis and erythromycin synthesis in S. erythraea.
Collapse
|
7
|
Woronik A, Tunström K, Perry MW, Neethiraj R, Stefanescu C, Celorio-Mancera MDLP, Brattström O, Hill J, Lehmann P, Käkelä R, Wheat CW. A transposable element insertion is associated with an alternative life history strategy. Nat Commun 2019; 10:5757. [PMID: 31848330 PMCID: PMC6917731 DOI: 10.1038/s41467-019-13596-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Tradeoffs affect resource allocation during development and result in fitness consequences that drive the evolution of life history strategies. Yet despite their importance, we know little about the mechanisms underlying life history tradeoffs. Many species of Colias butterflies exhibit an alternative life history strategy (ALHS) where females divert resources from wing pigment synthesis to reproductive and somatic development. Due to this reallocation, a wing color polymorphism is associated with the ALHS: either yellow/orange or white. Here we map the locus associated with this ALHS in Colias crocea to a transposable element insertion located downstream of the Colias homolog of BarH-1, a homeobox transcription factor. Using CRISPR/Cas9 gene editing, antibody staining, and electron microscopy we find white-specific expression of BarH-1 suppresses the formation of pigment granules in wing scales and gives rise to white wing color. Lipid and transcriptome analyses reveal physiological differences associated with the ALHS. Together, these findings characterize a mechanism for a female-limited ALHS. Tradeoffs are central to life history theory and evolutionary biology, yet almost nothing is known about their mechanistic basis. Here the authors characterize one such mechanism and find a transposable element insertion is associated with the switch between alternative life history strategies.
Collapse
Affiliation(s)
- Alyssa Woronik
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden. .,Department of Biology, New York University, New York, NY, 10003, USA.
| | - Kalle Tunström
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden
| | - Michael W Perry
- Department of Biology, New York University, New York, NY, 10003, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Constanti Stefanescu
- Museum of Natural Sciences of Granollers, Granollers, Catalonia, 08402, Spain.,CREAF, Cerdanyola del Valles, Catalonia, 08193, Spain
| | | | - Oskar Brattström
- Department of Zoology, University of Cambridge, Cambridge, CB23EJ, UK
| | - Jason Hill
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philipp Lehmann
- Department of Zoology, Stockholm University, S106 91, Stockholm, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Molecular and Integrative Biosciences Research Programme, University of Helsinki, FI00014, Helsinki, Finland
| | | |
Collapse
|
8
|
Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol 2019; 20:246. [PMID: 31747936 PMCID: PMC6868818 DOI: 10.1186/s13059-019-1828-7] [Citation(s) in RCA: 378] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Recent research into structural variants (SVs) has established their importance to medicine and molecular biology, elucidating their role in various diseases, regulation of gene expression, ethnic diversity, and large-scale chromosome evolution-giving rise to the differences within populations and among species. Nevertheless, characterizing SVs and determining the optimal approach for a given experimental design remains a computational and scientific challenge. Multiple approaches have emerged to target various SV classes, zygosities, and size ranges. Here, we review these approaches with respect to their ability to infer SVs across the full spectrum of large, complex variations and present computational methods for each approach.
Collapse
Affiliation(s)
- Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA
| | - Nastassia Gobet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Diana Ivette Cruz-Dávalos
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Ninon Mounier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Christophe Dessimoz
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, London, UK.
- Department of Computer Science, University College London, London, UK.
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
9
|
Bi R, Chandappa LH, Siddalingaiah L, Raju SKK, Balakrishna SH, Kumar J, Kuruba V, Hittalmani S. Leveraging barrel medic genome sequence for the development and use of genomic resources for genetic analysis and breeding in legumes. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
10
|
Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. A Practical Guide to miRNA Target Prediction. Methods Mol Biol 2019; 1970:1-13. [PMID: 30963484 DOI: 10.1007/978-1-4939-9207-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous noncoding RNA molecules that posttranscriptionally regulate gene expression. Since their discovery, a huge number of miRNAs have been identified in a wide range of species. Through binding to the 3' UTR of mRNA, miRNA can block translation or stimulate degradation of the targeted mRNA, thus affecting nearly all biological processes. Prediction and identification of miRNA target genes is crucial toward understanding the biology of miRNAs. Currently, a number of sophisticated bioinformatics approaches are available to perform effective prediction of miRNA target sites. In this chapter, we present the major features that most algorithms take into account to efficiently predict miRNA target: seed match, free energy, conservation, target site accessibility, and contribution of multiple binding sites. We also give an overview of the frequently used bioinformatics tools for miRNA target prediction. Understanding the basis of these prediction methodologies may help users to better select the appropriate tools and analyze their output.
Collapse
Affiliation(s)
| | - Luigina Micolucci
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Antonio Domenico Procopio
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| |
Collapse
|
11
|
Margres MJ, Ruiz-Aravena M, Hamede R, Jones ME, Lawrance MF, Hendricks SA, Patton A, Davis BW, Ostrander EA, McCallum H, Hohenlohe PA, Storfer A. The Genomic Basis of Tumor Regression in Tasmanian Devils (Sarcophilus harrisii). Genome Biol Evol 2018; 10:3012-3025. [PMID: 30321343 PMCID: PMC6251476 DOI: 10.1093/gbe/evy229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic basis of disease-related phenotypes, such as cancer susceptibility, is crucial for the advancement of personalized medicine. Although most cancers are somatic in origin, a small number of transmissible cancers have been documented. Two such cancers have emerged in the Tasmanian devil (Sarcophilus harrisii) and now threaten the species with extinction. Recently, cases of natural tumor regression in Tasmanian devils infected with the clonally contagious cancer have been detected. We used whole-genome sequencing and FST-based approaches to identify the genetic basis of tumor regression by comparing the genomes of seven individuals that underwent tumor regression with those of three infected individuals that did not. We found three highly differentiated candidate genomic regions containing several genes related to immune response and/or cancer risk, indicating that the genomic basis of tumor regression was polygenic. Within these genomic regions, we identified putative regulatory variation in candidate genes but no nonsynonymous variation, suggesting that natural tumor regression may be driven, at least in part, by differential host expression of key loci. Comparative oncology can provide insight into the genetic basis of cancer risk, tumor development, and the pathogenicity of cancer, particularly due to our limited ability to monitor natural, untreated tumor progression in human patients. Our results support the hypothesis that host immune response is necessary for triggering tumor regression, providing candidate genes that may translate to novel treatments in human and nonhuman cancers.
Collapse
Affiliation(s)
- Mark J Margres
- School of Biological Sciences, Washington State University
| | - Manuel Ruiz-Aravena
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Sarah A Hendricks
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Austin Patton
- School of Biological Sciences, Washington State University
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station.,Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Hamish McCallum
- School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow
| | - Andrew Storfer
- School of Biological Sciences, Washington State University
| |
Collapse
|
12
|
Dijkman R, Feberwee A, Landman WJM. Development and evaluation of a multi-locus sequence typing scheme for Mycoplasma synoviae. Avian Pathol 2017; 45:426-42. [PMID: 26926568 DOI: 10.1080/03079457.2016.1154135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Reproducible molecular Mycoplasma synoviae typing techniques with sufficient discriminatory power may help to expand knowledge on its epidemiology and contribute to the improvement of control and eradication programmes of this mycoplasma species. The present study describes the development and validation of a novel multi-locus sequence typing (MLST) scheme for M. synoviae. Thirteen M. synoviae isolates originating from different poultry categories, farms and lesions, were subjected to whole genome sequencing. Their sequences were compared to that of M. synoviae reference strain MS53. A high number of single nucleotide polymorphisms (SNPs) indicating considerable genetic diversity were identified. SNPs were present in over 40 putative target genes for MLST of which five target genes were selected (nanA, uvrA, lepA, ruvB and ugpA) for the MLST scheme. This scheme was evaluated analysing 209 M. synoviae samples from different countries, categories of poultry, farms and lesions. Eleven clonal clusters and 76 different sequence types (STs) were obtained. Clustering occurred following geographical origin, supporting the hypothesis of regional population evolution. M. synoviae samples obtained from epidemiologically linked outbreaks often harboured the same ST. In contrast, multiple M. synoviae lineages were found in samples originating from swollen joints or oviducts from hens that produce eggs with eggshell apex abnormalities indicating that further research is needed to identify the genetic factors of M. synoviae that may explain its variations in tissue tropism and disease inducing potential. Furthermore, MLST proved to have a higher discriminatory power compared to variable lipoprotein and haemagglutinin A typing, which generated 50 different genotypes on the same database.
Collapse
Affiliation(s)
- R Dijkman
- a GD-Animal Health Service , Deventer , the Netherlands
| | - A Feberwee
- a GD-Animal Health Service , Deventer , the Netherlands
| | - W J M Landman
- a GD-Animal Health Service , Deventer , the Netherlands
| |
Collapse
|
13
|
Dousse A, Junier T, Zdobnov EM. CEGA--a catalog of conserved elements from genomic alignments. Nucleic Acids Res 2015; 44:D96-100. [PMID: 26527719 PMCID: PMC4702837 DOI: 10.1093/nar/gkv1163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 01/05/2023] Open
Abstract
By identifying genomic sequence regions conserved among several species, comparative genomics offers opportunities to discover putatively functional elements without any prior knowledge of what these functions might be. Comparative analyses across mammals estimated 4-5% of the human genome to be functionally constrained, a much larger fraction than the 1-2% occupied by annotated protein-coding or RNA genes. Such functionally constrained yet unannotated regions have been referred to as conserved non-coding sequences (CNCs) or ultra-conserved elements (UCEs), which remain largely uncharacterized but probably form a highly heterogeneous group of elements including enhancers, promoters, motifs, and others. To facilitate the study of such CNCs/UCEs, we present our resource of Conserved Elements from Genomic Alignments (CEGA), accessible from http://cega.ezlab.org. Harnessing the power of multiple species comparisons to detect genomic elements under purifying selection, CEGA provides a comprehensive set of CNCs identified at different radiations along the vertebrate lineage. Evolutionary constraint is identified using threshold-free phylogenetic modeling of unbiased and sensitive global alignments of genomic synteny blocks identified using protein orthology. We identified CNCs independently for five vertebrate clades, each referring to a different last common ancestor and therefore to an overlapping but varying set of CNCs with 24 488 in vertebrates, 241 575 in amniotes, 709 743 in Eutheria, 642 701 in Boreoeutheria and 612 364 in Euarchontoglires, spanning from 6 Mbp in vertebrates to 119 Mbp in Euarchontoglires. The dynamic CEGA web interface displays alignments, genomic locations, as well as biologically relevant data to help prioritize and select CNCs of interest for further functional investigations.
Collapse
Affiliation(s)
- Aline Dousse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Thomas Junier
- Department of Genetic Medicine and Development, University of Geneva Medical School, Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Swiss Institute of Bioinformatics, rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Filée J. Genomic comparison of closely related Giant Viruses supports an accordion-like model of evolution. Front Microbiol 2015; 6:593. [PMID: 26136734 PMCID: PMC4468942 DOI: 10.3389/fmicb.2015.00593] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023] Open
Abstract
Genome gigantism occurs so far in Phycodnaviridae and Mimiviridae (order Megavirales). Origin and evolution of these Giant Viruses (GVs) remain open questions. Interestingly, availability of a collection of closely related GV genomes enabling genomic comparisons offer the opportunity to better understand the different evolutionary forces acting on these genomes. Whole genome alignment for five groups of viruses belonging to the Mimiviridae and Phycodnaviridae families show that there is no trend of genome expansion or general tendency of genome contraction. Instead, GV genomes accumulated genomic mutations over the time with gene gains compensating the different losses. In addition, each lineage displays specific patterns of genome evolution. Mimiviridae (megaviruses and mimiviruses) and Chlorella Phycodnaviruses evolved mainly by duplications and losses of genes belonging to large paralogous families (including movements of diverse mobiles genetic elements), whereas Micromonas and Ostreococcus Phycodnaviruses derive most of their genetic novelties thought lateral gene transfers. Taken together, these data support an accordion-like model of evolution in which GV genomes have undergone successive steps of gene gain and gene loss, accrediting the hypothesis that genome gigantism appears early, before the diversification of the different GV lineages.
Collapse
Affiliation(s)
- Jonathan Filée
- Laboratoire Evolution, Génome, Comportement, Ecologie, Centre National de la Recherche Scientifique UMR 9191, IRD UMR 247, Université Paris-Saclay Gif-sur-Yvette, France
| |
Collapse
|
15
|
Pritchard RE, Prassinos AJ, Osborne JD, Raviv Z, Balish MF. Reduction of hydrogen peroxide accumulation and toxicity by a catalase from Mycoplasma iowae. PLoS One 2014; 9:e105188. [PMID: 25127127 PMCID: PMC4134286 DOI: 10.1371/journal.pone.0105188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/19/2014] [Indexed: 12/02/2022] Open
Abstract
Mycoplasma iowae is a well-established avian pathogen that can infect and damage many sites throughout the body. One potential mediator of cellular damage by mycoplasmas is the production of H2O2 via a glycerol catabolic pathway whose genes are widespread amongst many mycoplasma species. Previous sequencing of M. iowae serovar I strain 695 revealed the presence of not only genes for H2O2 production through glycerol catabolism but also the first documented mycoplasma gene for catalase, which degrades H2O2. To test the activity of M. iowae catalase in degrading H2O2, we studied catalase activity and H2O2 accumulation by both M. iowae serovar K strain DK-CPA, whose genome we sequenced, and strains of the H2O2-producing species Mycoplasma gallisepticum engineered to produce M. iowae catalase by transformation with the M. iowae putative catalase gene, katE. H2O2-mediated virulence by M. iowae serovar K and catalase-producing M. gallisepticum transformants were also analyzed using a Caenorhabditis elegans toxicity assay, which has never previously been used in conjunction with mycoplasmas. We found that M. iowae katE encodes an active catalase that, when expressed in M. gallisepticum, reduces both the amount of H2O2 produced and the amount of damage to C. elegans in the presence of glycerol. Therefore, the correlation between the presence of glycerol catabolism genes and the use of H2O2 as a virulence factor by mycoplasmas might not be absolute.
Collapse
Affiliation(s)
- Rachel E. Pritchard
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | | | - John D. Osborne
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ziv Raviv
- Department of Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mitchell F. Balish
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Gruber A, Kroth PG. Deducing intracellular distributions of metabolic pathways from genomic data. Methods Mol Biol 2014; 1083:187-211. [PMID: 24218217 DOI: 10.1007/978-1-62703-661-0_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the recent years, a large number of genomes from a variety of different organisms have been sequenced. Most of the sequence data has been publicly released and can be assessed by interested users. However, this wealth of information is currently underexploited by scientists not directly involved in genome annotation. This is partially because sequencing, assembly, and automated annotation can be done much faster than the identification, classification, and prediction of the intracellular localization of the gene products. This part of the annotation process still largely relies on manual curation and addition of contextual information. Users of genome databases who are unfamiliar with the types of data available from (whole) genomes might therefore find themselves either overwhelmed by the vast amount and multiple layers of data or dissatisfied with less-than-meaningful analyses of the data.In this chapter we present procedures and approaches to identify and characterize gene models of enzymes involved in metabolic pathways based on their similarity to known sequences. Furthermore we describe how to predict the subcellular location of the proteins using publicly available prediction servers and how to interpret the obtained results. The strategies we describe are generally applicable to organisms with primary plastids such as land plants or green algae. Additionally, we describe strategies suitable for those groups of algae with secondary plastids (for instance diatoms), which are characterized by a different cellular topology and a larger number of intracellular compartments compared to plants.
Collapse
Affiliation(s)
- Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | | |
Collapse
|
17
|
Khalaj M, Abbasi A, Yamanishi H, Akiyama K, Wakitani S, Kikuchi S, Hirose M, Yuzuriha M, Magari M, Degheidy HA, Abe K, Ogura A, Hashimoto H, Kunieda T. A missense mutation in Rev7 disrupts formation of Polζ, impairing mouse development and repair of genotoxic agent-induced DNA lesions. J Biol Chem 2013; 289:3811-24. [PMID: 24356953 DOI: 10.1074/jbc.m113.514752] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Repro22 is a mutant mouse produced via N-ethyl-N-nitrosourea-induced mutagenesis that shows sterility with germ cell depletion caused by defective proliferation of primordial germ cells, decreased body weight, and partial lethality during embryonic development. Using a positional cloning strategy, we identified a missense mutation in Rev7/Mad2l2 (Rev7(C70R)) and confirmed that the mutation is the cause of the defects in repro22 mice through transgenic rescue with normal Rev7. Rev7/Mad2l2 encodes a subunit of DNA polymerase ζ (Polζ), 1 of 10 translesion DNA synthesis polymerases known in mammals. The mutant REV7 did not interact with REV3, the catalytic subunit of Polζ. Rev7(C70R/C70R) cells showed decreased proliferation, increased apoptosis, and arrest in S phase with extensive γH2AX foci in nuclei that indicated accumulation of DNA damage after treatment with the genotoxic agent mitomycin C. The Rev7(C70R) mutation does not affect the mitotic spindle assembly checkpoint. These results demonstrated that Rev7 is essential in resolving the replication stalls caused by DNA damage during S phase. We concluded that Rev7 is required for primordial germ cell proliferation and embryonic viability and development through the translesion DNA synthesis activity of Polζ preserving DNA integrity during cell proliferation, which is required in highly proliferating embryonic cells.
Collapse
Affiliation(s)
- Maryam Khalaj
- From the Graduate School of Natural Science and Technology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Andrey G, Montavon T, Mascrez B, Gonzalez F, Noordermeer D, Leleu M, Trono D, Spitz F, Duboule D. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 2013; 340:1234167. [PMID: 23744951 DOI: 10.1126/science.1234167] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, and later, when digits form. The transition between early and late regulations involves a functional switch between two opposite topological domains. This switch is reflected by a subset of Hoxd genes mapping centrally into the cluster, which initially interact with the telomeric domain and subsequently swing toward the centromeric domain, where they establish new contacts. This transition between independent regulatory landscapes illustrates both the modularity of the limbs and the distinct evolutionary histories of its various pieces. It also allows the formation of an intermediate area of low HOX proteins content, which develops into the wrist, the transition between our arms and our hands. This regulatory strategy accounts for collinear Hox gene regulation in land vertebrate appendages.
Collapse
Affiliation(s)
- Guillaume Andrey
- School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Woods DC, White YAR, Niikura Y, Kiatpongsan S, Lee HJ, Tilly JL. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation in vitro and in vivo. Reprod Sci 2013; 20:524-35. [PMID: 23536570 DOI: 10.1177/1933719113483017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Differentiating embryonic stem cells (ESCs) can form ovarian follicle-like structures in vitro, consisting of an oocyte-like cell surrounded by somatic cells capable of steroidogenesis. Using a dual-fluorescence reporter system in which mouse ESCs express green fluorescent protein (GFP) under the control of a germ cell-specific Pou5f1 gene promoter and red fluorescent protein (Discosoma sp red [DsRed]) driven by the granulosa cell-specific Forkhead box L2 (Foxl2) gene promoter, we first confirmed in vitro formation of follicle-like structures containing GFP-positive cells surrounded by DsRed-positive cells. Isolated DsRed-positive cells specified from ECSs exhibited a gene expression profile consistent with granulosa cells, as revealed by the detection of messenger RNAs (mRNAs) for Foxl2, follistatin (Fst), anti-Müllerian hormone (Amh), and follicle-stimulating hormone receptor (Fshr) as well as by production of both progesterone and estradiol. In addition, treatment of isolated DsRed-expressing cells with follicle-stimulating hormone (FSH) significantly increased estradiol production over basal levels, confirming the presence of functional FSH receptors in these cells. Last, ESC-derived DsRed-positive cells injected into neonatal mouse ovaries became incorporated within the granulosa cell layer of immature follicles. These studies demonstrate that Foxl2-expressing ovarian somatic cells derived in vitro from differentiating ESCs express granulosa cell markers, actively associate with germ cells in vitro, synthesize steroids, respond to FSH, and participate in folliculogenesis in vivo.
Collapse
Affiliation(s)
- Dori C Woods
- Vincent Center for Reproductive Biology, MGH Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Woods DC, White YAR, Niikura Y, Kiatpongsan S, Lee HJ, Tilly JL. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation in vitro and in vivo. Reprod Sci 2013; 20:7-15. [PMID: 23536570 DOI: 10.1177/1933719112462632] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Differentiating embryonic stem cells (ESCs) can form ovarian follicle-like structures in vitro, consisting of an oocyte-like cell surrounded by somatic cells capable of steroidogenesis. Using a dual-fluorescence reporter system in which mouse ESCs express green fluorescent protein (GFP) under the control of a germ cell-specific Pou5f1 gene promoter and red fluorescent protein (Discosoma sp red [DsRed]) driven by the granulosa cell-specific Forkhead box L2 (Foxl2) gene promoter, we first confirmed in vitro formation of follicle-like structures containing GFP-positive cells surrounded by DsRed-positive cells. Isolated DsRed-positive cells specified from ECSs exhibited a gene expression profile consistent with granulosa cells, as revealed by the detection of messenger RNAs (mRNAs) for Foxl2, follistatin (Fst), anti-Müllerian hormone (Amh), and follicle-stimulating hormone receptor (Fshr) as well as by production of both progesterone and estradiol. In addition, treatment of isolated DsRed-expressing cells with follicle-stimulating hormone (FSH) significantly increased estradiol production over basal levels, confirming the presence of functional FSH receptors in these cells. Last, ESC-derived DsRed-positive cells injected into neonatal mouse ovaries became incorporated within the granulosa cell layer of immature follicles. These studies demonstrate that Foxl2-expressing ovarian somatic cells derived in vitro from differentiating ESCs express granulosa cell markers, actively associate with germ cells in vitro, synthesize steroids, respond to FSH, and participate in folliculogenesis in vivo.
Collapse
Affiliation(s)
- Dori C Woods
- Vincent Center for Reproductive Biology, MGH Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Minguillon C, Nishimoto S, Wood S, Vendrell E, Gibson-Brown JJ, Logan MPO. Hox genes regulate the onset of Tbx5 expression in the forelimb. Development 2012; 139:3180-8. [PMID: 22872086 DOI: 10.1242/dev.084814] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tbx4 and Tbx5 are two closely related T-box genes that encode transcription factors expressed in the prospective hindlimb and forelimb territories, respectively, of all jawed vertebrates. Despite their striking limb type-restricted expression pattern, we have shown that these genes do not participate in the acquisition of limb type-specific morphologies. Instead, Tbx4 and Tbx5 play similar roles in the initiation of hindlimb and forelimb outgrowth, respectively. We hypothesized that different combinations of Hox proteins expressed in different rostral and caudal domains of the lateral plate mesoderm, where limb induction occurs, might be involved in regulating the limb type-restricted expression of Tbx4 and Tbx5 and in the later determination of limb type-specific morphologies. Here, we identify the minimal regulatory element sufficient for the earliest forelimb-restricted expression of the mouse Tbx5 gene and show that this sequence is Hox responsive. Our results support a mechanism in which Hox genes act upstream of Tbx5 to control the axial position of forelimb formation.
Collapse
Affiliation(s)
- Carolina Minguillon
- Division of Developmental Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 2012; 368:127-39. [PMID: 22595514 DOI: 10.1016/j.ydbio.2012.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022]
Abstract
The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification.
Collapse
Affiliation(s)
- Arielle Woznica
- Department of Molecular and Cellular Biology, Molecular Cardiovascular Research Program, University of Arizona, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Domingues VS, Poh YP, Peterson BK, Pennings PS, Jensen JD, Hoekstra HE. Evidence of adaptation from ancestral variation in young populations of beach mice. Evolution 2012; 66:3209-23. [PMID: 23025610 DOI: 10.1111/j.1558-5646.2012.01669.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To understand how organisms adapt to novel habitats, which involves both demographic and selective events, we require knowledge of the evolutionary history of populations and also selected alleles. There are still few cases in which the precise mutations (and hence, defined alleles) that contribute to adaptive change have been identified in nature; one exception is the genetic basis of camouflaging pigmentation of oldfield mice (Peromyscus polionotus) that have colonized the sandy dunes of Florida's Gulf Coast. To quantify the genomic impact of colonization as well as the signature of selection, we resequenced 5000 1.5-kb noncoding loci as well as a 160-kb genomic region surrounding the melanocortin-1 receptor (Mc1r), a gene that contributes to pigmentation differences, in beach and mainland populations. Using a genome-wide phylogenetic approach, we recovered a single monophyletic group comprised of beach mice, consistent with a single colonization event of the Gulf Coast. We also found evidence of a severe founder event, estimated to have occurred less than 3000 years ago. In this demographic context, we show that all beach subspecies share a single derived light Mc1r allele, which was likely selected from standing genetic variation that originated in the mainland. Surprisingly, we were unable to identify a clear signature of selection in the Mc1r region, despite independent evidence that this locus contributes to adaptive coloration. Nonetheless, these data allow us to reconstruct and compare the evolutionary history of populations and alleles to better understand how adaptive evolution, following the colonization of a novel habitat, proceeds in nature.
Collapse
Affiliation(s)
- Vera S Domingues
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Pauls S, Smith SF, Elgar G. Lens development depends on a pair of highly conserved Sox21 regulatory elements. Dev Biol 2012; 365:310-8. [PMID: 22387845 PMCID: PMC3480646 DOI: 10.1016/j.ydbio.2012.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/16/2012] [Accepted: 02/18/2012] [Indexed: 02/03/2023]
Abstract
Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.
Collapse
|
25
|
Zhang K, Xi H, Wang X, Guo Y, Huang S, Zheng Z, Zhang F, Gao X. A family-based association study of DIO2 and children mental retardation in the Qinba region of China. J Hum Genet 2012; 57:14-7. [PMID: 22048657 DOI: 10.1038/jhg.2011.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deiodinase enzyme II (DIO2) has an important role in individuals' thyroid hormones' level, the development of central and peripheral nervous systems and characterized by mental retardation (MR). The DIO2 gene was genotyped by using five haplotype-tagging single-nucleotide polymorphisms (SNPs) in 157 Chinese MR high-density family pedigrees, including 452 nuclear families and >1460 persons. The single marker and haplotype analyses were performed by Family-based Association Tests (FBAT). Three SNPs had P-values <0.05 in at least one inherited model survived with the correction. Several haplotypes composed of these SNPs were also associated with MR. The in silico analyses identified that one of the SNPs, rs1388378, may be a functional SNP. However, further in vitro studies of this SNP should be considered in elucidating its effect on gene expression and the possible role in MR susceptibility.
Collapse
Affiliation(s)
- Kejin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Institute of Population and Health, Northwest University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cenci A, Combes MC, Lashermes P. Genome evolution in diploid and tetraploid Coffea species as revealed by comparative analysis of orthologous genome segments. PLANT MOLECULAR BIOLOGY 2012; 78:135-45. [PMID: 22086332 DOI: 10.1007/s11103-011-9852-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 11/04/2011] [Indexed: 05/10/2023]
Abstract
Sequence comparison of orthologous regions enables estimation of the divergence between genomes, analysis of their evolution and detection of particular features of the genomes, such as sequence rearrangements and transposable elements. Despite the economic importance of Coffea species, little genomic information is currently available. Coffea is a relatively young genus that includes more than one hundred diploid species and a single tetraploid species. Three Coffea orthologous regions of 470-900 kb were analyzed and compared: both subgenomes of allotetraploid Coffea arabica (contributed by the diploid species Coffea eugenioides and Coffea canephora) and the genome of diploid C. canephora. Sequence divergence was calculated on global alignments or on coding and non-coding sequences separately. A search for transposable elements detected 43 retrotransposons and 198 transposons in the sequences analyzed. Comparative insertion analysis made it possible to locate 165 TE insertions in the phylogenetic tree of the three genomes/subgenomes. In the tetraploid C. arabica, a homoeologous non-reciprocal transposition (HNRT) was detected and characterized: a 50 kb region of the C. eugenioides derived subgenome replaced the C. canephora derived counterpart. Comparative sequence analysis on three Coffea genomes/subgenomes revealed almost perfect gene synteny, low sequence divergence and a high number of shared transposable elements. Compared to the results of similar analysis in other genera (Aegilops/Triticum and Oryza), Coffea genomes/subgenomes appeared to be dramatically less diverged, which is consistent with the relatively recent radiation of the Coffea genus. Based on nucleotide substitution frequency, the HNRT was dated at 10,000-50,000 years BP, which is also the most recent estimation of the origin of C. arabica.
Collapse
Affiliation(s)
- Alberto Cenci
- IRD-Institut de Recherche pour le Développement, UMR RPB (CIRAD, IRD, Université Montpellier II), BP 64501, Montpellier, France.
| | | | | |
Collapse
|
27
|
Schanze D, Ekici AB, Pfuhlmann B, Reis A, Stöber G. Evaluation of conserved and ultra-conserved non-genic sequences in chromosome 15q15-linked periodic catatonia. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:77-86. [PMID: 22162401 DOI: 10.1002/ajmg.b.32004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/03/2011] [Indexed: 01/14/2023]
Abstract
Conserved and ultra-conserved non-genic sequence elements (CNGs, UCEs) between human and other mammalian genomes seem to constitute a heterogeneous group of functional sequences which likely have important biological function. To determine whether variation in CNGs and UCEs contributes to risk for the schizophrenic subphenotype of periodic catatonia (according to K. Leonhard; OMIM 605419), we evaluated non-coding elements at a critical 7.35 Mb interval on chromosome 15q15 in 8 unrelated cases with periodic catatonia (derived from pedigrees compatible with linkage to chromosome 15q15) and 8 controls, followed by association studies in a cohort of 510 cases and controls. Among 65 CNGs (≥100 bp, 100% identity; human-mouse comparison), 7 CNGs matched criteria for UCE (≥200 bp, 100% identity). A hot spot of 62/65 CNGs (95%) appeared at the MEIS2 locus, which implicates functional importance of associated (ultra-)conserved elements to this early developmental gene, which is present in the human fetal neocortex and associated with metabolic side effects to antipsychotic drugs. Further CNGs were identified at the PLCB2 and DLL4 locus or located intergenic between TYRO3 and MAPKBP1. Automated sequencing revealed genetic variation in 12.3% of CNGs, but frequencies were low (MAF: 0.06-0.4) in cases. Three variants located inside CNGs/UCEs were found in cases only. In a case-control association study we could not confirm a significant association of these three CNG-variants with periodic catatonia. Our results suggest genetic variation in (ultra-)conserved non-genic sequence elements which might alter functional properties. The identified variants are genetically not associated with the phenotype of periodic catatonia.
Collapse
Affiliation(s)
- Denny Schanze
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
28
|
Technau M, Knispel M, Roth S. Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila. Dev Genes Evol 2011; 222:1-17. [PMID: 22198544 PMCID: PMC3291829 DOI: 10.1007/s00427-011-0384-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/29/2011] [Indexed: 01/28/2023]
Abstract
During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP.
Collapse
Affiliation(s)
- Martin Technau
- Institute for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | | | | |
Collapse
|
29
|
Mullen RD, Park S, Rhodes SJ. A distal modular enhancer complex acts to control pituitary- and nervous system-specific expression of the LHX3 regulatory gene. Mol Endocrinol 2011; 26:308-19. [PMID: 22194342 DOI: 10.1210/me.2011-1252] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency.
Collapse
Affiliation(s)
- Rachel D Mullen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
30
|
Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J DAIRY RES 2011; 79:66-75. [PMID: 22114848 DOI: 10.1017/s002202991100080x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genes in the sterol regulatory element-binding protein-1 (SREBP1) pathway play a central role in regulation of milk fat synthesis, especially the de-novo synthesis of saturated fatty acids. SCD, a SREBP-responsive gene, is the key enzyme in the synthesis of monounsaturated fatty acids in the mammary gland. In the present study, we discovered SNP in candidate genes associated with this signalling pathway and SCD to identify genetic markers that can be used for genetic and metabolically directed selection in cattle. We resequenced six candidate genes in the SREBP1 pathway (SREBP1, SCAP, INSIG1, INSIG2, MBTPS1, MBTPS2) and two genes for SCD (SCD1 and SCD5) and discovered 47 Tag SNP that were used in a marker-trait association study. Milk and blood samples were collected from Holstein cows in their 1st or 2nd parity at 100-150 days of lactation. Individual fatty acids from C4 to C20, saturated fatty acid (SFA) content, monounsaturated fatty acid content, polyunsaturated fatty acid content and desaturase indexes were measured and used to perform the asociation analysis. Polymorphisms in the SCD5 and INSIG2 genes were the most representative markers associated with SFA/unsaturated fatty acid (UFA) ratio in milk. The analysis of desaturation activity determined that markers in the SCD1 and SCD5 genes showed the most significant effects. DGAT1 K232A marker was included in the study to examine the effect of this marker on the variation of milk fatty acids in our Holstein population. The percentage of variance explained by DGAT1 in the analysis was only 6% of SFA/UFA ratio. Milk fat depression was observed in one of the dairy herds and in this particular dairy one SNP in the SREBP1 gene (rs41912290) accounted for 40% of the phenotypic variance. Our results provide detailed SNP information for key genes in the SREBP1 signalling pathway and SCD that can be used to change milk fat composition by marker-assisted breeding to meet consumer demands regarding human health, as well as furthering understanding of technological aspects of cows' milk.
Collapse
|
31
|
Abstract
RhoH is a member of the Rho family of small GTP-binding proteins that lacks GTPase activity. Since RhoH is constantly bound by GTP, it is thought to be constitutively active and controlled predominantly by changes in quantitative expression. RhoH is produced specifically in haematopoietic cells and aberrant expression has been linked to various forms of leukaemia. Transcription of the RHOH gene is the first level at which the quantitative levels of the RhoH protein are regulated. Previous studies have demonstrated that RHOH gene transcription is initiated by three distinct promoter regions designated P1, P2 and P3 that define the 5' end of exons 1, 2 and 4 respectively. In the present study we report that the P3 promoter is largely responsible for RHOH gene transcription in the B-lymphocytic cell line Raji. The P3 promoter contains a minimal promoter region and a repressor region extending from -236 to +67 and +68 to +245 respectively, relative to the 5' end of exon 4. Chromatin immunoprecipitation demonstrated that two AP1 (activator protein 1) sites in the minimal promoter region bind JunD. When JUND is overexpressed, the endogenous RHOH gene is repressed; however, when JUND is inhibited, expression of endogenous RHOH is induced both in the Raji cell line and AML (acute myeloid leukaemia) cells. In the HCL (hairy cell leukaemia) cell line JOK-1, induction of RHOH increases expression of the α isoform of protein kinase C. This downstream target of RHOH is also induced in AML cells by JUND inhibition. Collectively, these data indicate that JunD is an inhibitor of RHOH gene expression.
Collapse
|
32
|
Tong MH, Mitchell D, Evanoff R, Griswold MD. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol Reprod 2011; 85:189-97. [PMID: 21430230 PMCID: PMC3123386 DOI: 10.1095/biolreprod.110.089458] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/18/2010] [Accepted: 02/14/2011] [Indexed: 02/02/2023] Open
Abstract
Spermatogonial differentiation is orchestrated by the precise control of gene expression involving retinoic acid signaling. MicroRNAs have emerged as important regulators of spermatogenesis, and here we show that the Mirlet7 family miRNAs are expressed in mouse spermatogonia and spermatocytes. Retinoic acid significantly leads to the induction of Mirlet7 miRNAs through suppression of Lin28. We further confirmed both in vitro and in vivo that expressions of Mycn, Ccnd1, and Col1a2, which are targets of Mirlet7, were downregulated during spermatogonial differentiation. These results suggest that Mirlet7 family miRNAs play a role in retinoic acid-induced spermatogonial differentiation.
Collapse
Affiliation(s)
- Ming-Han Tong
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Debra Mitchell
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Ryan Evanoff
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Michael D. Griswold
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| |
Collapse
|
33
|
O'Quin KE, Smith D, Naseer Z, Schulte J, Engel SD, Loh YHE, Streelman JT, Boore JL, Carleton KL. Divergence in cis-regulatory sequences surrounding the opsin gene arrays of African cichlid fishes. BMC Evol Biol 2011; 11:120. [PMID: 21554730 PMCID: PMC3116502 DOI: 10.1186/1471-2148-11-120] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/09/2011] [Indexed: 11/17/2022] Open
Abstract
Background Divergence within cis-regulatory sequences may contribute to the adaptive evolution of gene expression, but functional alleles in these regions are difficult to identify without abundant genomic resources. Among African cichlid fishes, the differential expression of seven opsin genes has produced adaptive differences in visual sensitivity. Quantitative genetic analysis suggests that cis-regulatory alleles near the SWS2-LWS opsins may contribute to this variation. Here, we sequence BACs containing the opsin genes of two cichlids, Oreochromis niloticus and Metriaclima zebra. We use phylogenetic footprinting and shadowing to examine divergence in conserved non-coding elements, promoter sequences, and 3'-UTRs surrounding each opsin in search of candidate cis-regulatory sequences that influence cichlid opsin expression. Results We identified 20 conserved non-coding elements surrounding the opsins of cichlids and other teleosts, including one known enhancer and a retinal microRNA. Most conserved elements contained computationally-predicted binding sites that correspond to transcription factors that function in vertebrate opsin expression; O. niloticus and M. zebra were significantly divergent in two of these. Similarly, we found a large number of relevant transcription factor binding sites within each opsin's proximal promoter, and identified five opsins that were considerably divergent in both expression and the number of transcription factor binding sites shared between O. niloticus and M. zebra. We also found several microRNA target sites within the 3'-UTR of each opsin, including two 3'-UTRs that differ significantly between O. niloticus and M. zebra. Finally, we examined interspecific divergence among 18 phenotypically diverse cichlids from Lake Malawi for one conserved non-coding element, two 3'-UTRs, and five opsin proximal promoters. We found that all regions were highly conserved with some evidence of CRX transcription factor binding site turnover. We also found three SNPs within two opsin promoters and one non-coding element that had weak association with cichlid opsin expression. Conclusions This study is the first to systematically search the opsins of cichlids for putative cis-regulatory sequences. Although many putative regulatory regions are highly conserved across a large number of phenotypically diverse cichlids, we found at least nine divergent sequences that could contribute to opsin expression differences in cis and stand out as candidates for future functional analyses.
Collapse
Affiliation(s)
- Kelly E O'Quin
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wickramasinghe S, Rincon G, Medrano JF. Variants in the pregnancy-associated plasma protein-A2 gene on Bos taurus autosome 16 are associated with daughter calving ease and productive life in Holstein cattle. J Dairy Sci 2011; 94:1552-8. [PMID: 21338820 DOI: 10.3168/jds.2010-3237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 11/15/2010] [Indexed: 01/29/2023]
Abstract
Reproductive disorders in dairy herds have a negative effect on farm profitability and sustainability of milk production. Given the substantial evidence of the role of the pregnancy-associated plasma protein (PAPP) gene family in the regulation of reproduction in humans and mice, its role in insulin-like growth factor metabolism, quantitative trait loci effects in the mouse, and location of a calving ease QTL on bovine chromosome 16, the PAPP-A2 gene was chosen as a candidate gene to perform an association study for reproductive health in cattle. Single nucleotide polymorphisms (SNP) were identified in coding and conserved noncoding regions of the PAPP-A2 gene in 3 dairy breeds. A total of 7 tag SNP were genotyped in 662 Holstein bulls (UCD-bulls) to perform marker trait association analysis. Three SNP (SNP 13, 15, and 16) were in strong linkage disequilibrium in Holsteins, showing significant positive associations with daughter calving ease, productive life, milk yield, and protein yield. These results were validated by genotyping SNP15 in a larger population of 992 bulls from the cooperative dairy DNA repository (CDDR-bulls). Our results demonstrate that the PAPP-A2 gene is associated with reproductive health in Holstein cattle and that the identified SNP can be used as genetic markers in dairy breeding due to their positive association with reproductive and productive traits. Functional studies need to be conducted to identify the mechanisms for the association of SNP with these traits.
Collapse
Affiliation(s)
- S Wickramasinghe
- Department of Animal Science, University of California, Davis, California 95616-8521, USA
| | | | | |
Collapse
|
35
|
Coy S, Caamaño JH, Carvajal J, Cleary ML, Borycki AG. A novel Gli3 enhancer controls the Gli3 spatiotemporal expression pattern through a TALE homeodomain protein binding site. Mol Cell Biol 2011; 31:1432-43. [PMID: 21262763 PMCID: PMC3135294 DOI: 10.1128/mcb.00451-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 01/17/2011] [Indexed: 11/20/2022] Open
Abstract
The zinc finger transcription factor Gli3 is an essential mediator of hedgehog signaling. Gli3 has a dynamic expression pattern during embryonic development. In the neural tube, Gli3 transcripts are patterned along the anteroposterior and dorsoventral axes such that the initial broad expression in the posterior neural tube becomes dorsally restricted as neurogenesis takes place. Little is known about the molecular mechanisms that regulate this dynamic expression. Here, we report on a phylogenetic analysis of the Gli3 locus that uncovered a novel regulatory element, HCNE1. HCNE1 contains a compound Pbx/Meis binding site that binds Pbx and Meis/Prep proteins in vitro and in vivo. We show that HCNE1 recapitulates Gli3 expression in the developing neural tube and that mutations in the Pbx/Meis binding site affect the spatiotemporal control of HCNE1 transcriptional activity. Ectopic expression or loss of function of Pbx and Meis/Prep proteins in the chick and mouse embryo results in aberrant expression of endogenous Gli3 transcripts. We propose a novel role for TALE proteins in establishing the correct spatiotemporal expression pattern of Gli3 in the vertebrate spinal cord, thus implicating TALE transcription factors in early embryonic patterning events controlled by Sonic hedgehog signaling.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kindgom
| | - Jorge H. Caamaño
- IBR-MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | - Jaime Carvajal
- Section of Gene Function and Regulation, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305
| | - Anne-Gaëlle Borycki
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kindgom
| |
Collapse
|
36
|
Menconi G, Puliti A, Sbrana I, Conti V, Marangoni R. A top-down linguistic approach to the analysis of genomic sequences: The metabotropic glutamate receptors 1 and 5 in human and in mouse as a case study. J Theor Biol 2011; 270:134-42. [DOI: 10.1016/j.jtbi.2010.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/18/2010] [Accepted: 11/10/2010] [Indexed: 01/21/2023]
|
37
|
Mallya SM, Wu HI, Saria EA, Corrado KR, Arnold A. Tissue-specific regulatory regions of the PTH gene localized by novel chromosome 11 rearrangement breakpoints in a parathyroid adenoma. J Bone Miner Res 2010; 25:2606-12. [PMID: 20641034 PMCID: PMC3119366 DOI: 10.1002/jbmr.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 05/25/2010] [Accepted: 07/07/2010] [Indexed: 11/08/2022]
Abstract
Parathyroid adenomas can contain clonal rearrangements of chromosome 11 that activate the cyclin D1 oncogene through juxtaposition with the PTH gene. Here we describe such a chromosomal rearrangement whose novel features provide clues to locating elusive cis-regulatory elements in the PTH gene and also expand the physical spectrum of pathogenetic breakpoints in the cyclin D1 gene region. Southern blot analyses of the parathyroid adenoma revealed rearrangement in the PTH gene locus. Analysis of rearranged DNA clones that contained the breakpoint, obtained by screening a tumor genomic library, pinpointed the breakpoint in the PTH locus 3.3 kb upstream of the first exon. Accordingly, highly conserved distal elements of the PTH 5' regulatory region were rearranged at the breakpoint approximately 450 kb upstream of the cyclin D1 oncogene, resulting in overexpression of cyclin D1 mRNA. Thus, PTH-cyclin D1 gene rearrangement breakpoints in parathyroid tumors can be located far from those previously recognized. In addition to expanding the molecular spectrum of pathogenetic chromosomal lesions in this disease, features of this specific rearrangement reinforce the existence of one or more novel cis-enhancer/regulatory elements for PTH gene expression and narrow their location to a 1.7-kb DNA segment in the distal PTH promoter.
Collapse
Affiliation(s)
- Sanjay M Mallya
- Section of Oral and Maxillofacial Radiology, School of Dentistry, University of California, Los Angeles, CA, USA
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - H Irene Wu
- Department of Hematology/Oncology, Palo Alto Medical Foundation, Mountain View, CA, USA
| | - Elizabeth A Saria
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Kristin R Corrado
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Andrew Arnold
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
- Division of Endocrinology and Metabolism, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
38
|
Cánovas A, Rincon G, Islas-Trejo A, Wickramasinghe S, Medrano JF. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm Genome 2010; 21:592-8. [PMID: 21057797 PMCID: PMC3002166 DOI: 10.1007/s00335-010-9297-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/14/2010] [Indexed: 11/28/2022]
Abstract
High-throughput sequencing of RNA (RNA-Seq) was developed primarily to analyze global gene expression in different tissues. However, it also is an efficient way to discover coding SNPs. The objective of this study was to perform a SNP discovery analysis in the milk transcriptome using RNA-Seq. Seven milk samples from Holstein cows were analyzed by sequencing cDNAs using the Illumina Genome Analyzer system. We detected 19,175 genes expressed in milk samples corresponding to approximately 70% of the total number of genes analyzed. The SNP detection analysis revealed 100,734 SNPs in Holstein samples, and a large number of those corresponded to differences between the Holstein breed and the Hereford bovine genome assembly Btau4.0. The number of polymorphic SNPs within Holstein cows was 33,045. The accuracy of RNA-Seq SNP discovery was tested by comparing SNPs detected in a set of 42 candidate genes expressed in milk that had been resequenced earlier using Sanger sequencing technology. Seventy of 86 SNPs were detected using both RNA-Seq and Sanger sequencing technologies. The KASPar Genotyping System was used to validate unique SNPs found by RNA-Seq but not observed by Sanger technology. Our results confirm that analyzing the transcriptome using RNA-Seq technology is an efficient and cost-effective method to identify SNPs in transcribed regions. This study creates guidelines to maximize the accuracy of SNP discovery and prevention of false-positive SNP detection, and provides more than 33,000 SNPs located in coding regions of genes expressed during lactation that can be used to develop genotyping platforms to perform marker-trait association studies in Holstein cattle.
Collapse
Affiliation(s)
- Angela Cánovas
- IRTA, Genètica i Millora Animal, 191 Alcalde Rovira Roure Av, 25198, Lleida, Spain
| | | | | | | | | |
Collapse
|
39
|
Suda Y, Kokura K, Kimura J, Kajikawa E, Inoue F, Aizawa S. The same enhancer regulates the earliest Emx2 expression in caudal forebrain primordium, subsequent expression in dorsal telencephalon and later expression in the cortical ventricular zone. Development 2010; 137:2939-49. [PMID: 20667915 DOI: 10.1242/dev.048843] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.
Collapse
Affiliation(s)
- Yoko Suda
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Chuo-ku, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Xu Y, Zhang M, Wang Y, Kadambi P, Dave V, Lu LJ, Whitsett JA. A systems approach to mapping transcriptional networks controlling surfactant homeostasis. BMC Genomics 2010; 11:451. [PMID: 20659319 PMCID: PMC3091648 DOI: 10.1186/1471-2164-11-451] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 07/26/2010] [Indexed: 12/15/2022] Open
Abstract
Background Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. Results We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO) similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF) - target gene (TG) similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. Conclusions Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.
Collapse
Affiliation(s)
- Yan Xu
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Keshavan R, Virata M, Keshavan A, Zeller RW. Computational identification of Ciona intestinalis microRNAs. Zoolog Sci 2010; 27:162-70. [PMID: 20141421 DOI: 10.2108/zsj.27.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are conserved non-coding small RNAs with potent post-transcriptional gene regulatory functions. Recent computational approaches and sequencing of small RNAs had indicated the existence of about 80 Ciona intestinalis miRNAs, although it was not clear whether other miRNA genes were present in the genome. We undertook an alternative computational approach to look for Ciona miRNAs. Conserved non-coding sequences from the C. intestinalis genome were extracted and computationally folded to identify putative hairpin-like structures. After applying additional criteria, we obtained 458 miRNA candidates whose sequences were used to design a custom microarray. Over 100 of our predicted hairpins were identified in this array when probed with RNA from various Ciona stages. We also compared our predictions to recently deposited sequences of Ciona small RNAs and report that 170 of our predicted hairpins are represented in this data set. Altogether, about 250 of our 458 predicted miRNAs were represented in either our array data or the small-RNA sequence database. These results suggest that Ciona has a large number of genomically encoded miRNAs that play an important role in modulating gene activity in developing embryos and adults.
Collapse
Affiliation(s)
- Raja Keshavan
- Department of Biology, San Diego State University, CA 92182, USA
| | | | | | | |
Collapse
|
42
|
Nakato R, Gotoh O. Cgaln: fast and space-efficient whole-genome alignment. BMC Bioinformatics 2010; 11:224. [PMID: 20433723 PMCID: PMC2873541 DOI: 10.1186/1471-2105-11-224] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole-genome sequence alignment is an essential process for extracting valuable information about the functions, evolution, and peculiarities of genomes under investigation. As available genomic sequence data accumulate rapidly, there is great demand for tools that can compare whole-genome sequences within practical amounts of time and space. However, most existing genomic alignment tools can treat sequences that are only a few Mb long at once, and no state-of-the-art alignment program can align large sequences such as mammalian genomes directly on a conventional standalone computer. RESULTS We previously proposed the CGAT (Coarse-Grained AlignmenT) algorithm, which performs an alignment job in two steps: first at the block level and then at the nucleotide level. The former is "coarse-grained" alignment that can explore genomic rearrangements and reduce the sizes of the regions to be analyzed in the next step. The latter is detailed alignment within limited regions. In this paper, we present an update of the algorithm and the open-source program, Cgaln, that implements the algorithm. We compared the performance of Cgaln with those of other programs on whole genomic sequences of several bacteria and of some mammalian chromosome pairs. The results showed that Cgaln is several times faster and more memory-efficient than the best existing programs, while its sensitivity and accuracy are comparable to those of the best programs. Cgaln takes less than 13 hours to finish an alignment between the whole genomes of human and mouse in a single run on a conventional desktop computer with a single CPU and 2 GB memory. CONCLUSIONS Cgaln is not only fast and memory efficient but also effective in coping with genomic rearrangements. Our results show that Cgaln is very effective for comparison of large genomes, especially of intact chromosomal sequences. We believe that Cgaln provides novel viewpoint for reducing computational complexity and will contribute to various fields of genome science.
Collapse
Affiliation(s)
- Ryuichiro Nakato
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
| | | |
Collapse
|
43
|
AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood 2010; 116:254-66. [PMID: 20339092 DOI: 10.1182/blood-2009-11-254664] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2(V617F) mutation. Although NF-E2 levels correlate with JAK2(V671F) allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2(V617F) mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2(V617F). In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-beta significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients.
Collapse
|
44
|
Fanous A, Zhao Z, van den Oord E, Maher B, Thiselton D, Bergen S, Wormley B, Bigdeli T, Amdur R, O'Neill F, Walsh D, Kendler K, Riley B. Association study of SNAP25 and schizophrenia in Irish family and case-control samples. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:663-674. [PMID: 19806613 PMCID: PMC2859301 DOI: 10.1002/ajmg.b.31037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SNAP25 occurs on chromosome 20p12.2, which has been linked to schizophrenia in some samples, and recently linked to latent classes of psychotic illness in our sample. SNAP25 is crucial to synaptic functioning, may be involved in axonal growth and dendritic sprouting, and its expression may be decreased in schizophrenia. We genotyped 18 haplotype-tagging SNPs in SNAP25 in a sample of 270 Irish high-density families. Single marker and haplotype analyses were performed in FBAT and PDT. We adjusted for multiple testing by computing q values. Association was followed up in an independent sample of 657 cases and 411 controls. We tested for allelic effects on the clinical phenotype by using the method of sequential addition and 5 factor-derived scores of the OPCRIT. Nine of 18 SNPs had P values <0.05 in either FBAT or PDT for one or more definitions of illness. Several two-marker haplotypes were also associated. Subjects inheriting the risk alleles of the most significantly associated two-marker haplotype were likely to have higher levels of hallucinations and delusions. The most significantly associated marker, rs6039820, was observed to perturb 12 transcription-factor binding sites in in silico analyses. An attempt to replicate association findings in the case-control sample resulted in no SNPs being significantly associated. We observed robust association in both single marker and haplotype-based analyses between SNAP25 and schizophrenia in an Irish family sample. Although we failed to replicate this in an independent sample, this gene should be further tested in other samples.
Collapse
Affiliation(s)
- A.H. Fanous
- Washington VA Medical Center, Washington, District of Columbia,Georgetown University Medical Center, Virginia Commonwealth University, Richmond, Virginia,Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Correspondence to: Dr. A.H. Fanous, 50 Irving St. NW, Washington, DC 20422.
| | - Z. Zhao
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University, Nashville, Tennessee
| | - E.J.C.G. van den Oord
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Department of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - B.S. Maher
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - D.L. Thiselton
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - S.E. Bergen
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - B. Wormley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - T. Bigdeli
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - R.L. Amdur
- Washington VA Medical Center, Washington, District of Columbia,Georgetown University Medical Center, Virginia Commonwealth University, Richmond, Virginia
| | | | - D. Walsh
- Health Research Board, Dublin, Ireland
| | - K.S. Kendler
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - B.P. Riley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia,Department of Human Genetics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
45
|
Brown KK, Reiss JA, Crow K, Ferguson HL, Kelly C, Fritzsch B, Morton CC. Deletion of an enhancer near DLX5 and DLX6 in a family with hearing loss, craniofacial defects, and an inv(7)(q21.3q35). Hum Genet 2010; 127:19-31. [PMID: 19707792 PMCID: PMC2847447 DOI: 10.1007/s00439-009-0736-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 08/16/2009] [Indexed: 11/29/2022]
Abstract
Precisely regulated temporal and spatial patterns of gene expression are essential for proper human development. Cis-acting regulatory elements, some located at large distances from their corresponding genes, play a critical role in transcriptional control of key developmental genes and disruption of these regulatory elements can lead to disease. We report a three generation family with five affected members, all of whom have hearing loss, craniofacial defects, and a paracentric inversion of the long arm of chromosome 7, inv(7)(q21.3q35). High resolution mapping of the inversion showed that the 7q21.3 breakpoint is located 65 and 80 kb centromeric of DLX6 and DLX5, respectively. Further analysis revealed a 5,115 bp deletion at the 7q21.3 breakpoint. While the breakpoint does not disrupt either DLX5 or DLX6, the syndrome present in the family is similar to that observed in Dlx5 knockout mice and includes a subset of the features observed in individuals with DLX5 and DLX6 deletions, implicating dysregulation of DLX5 and DLX6 in the family's phenotype. Bioinformatic analysis indicates that the 5,115 bp deletion at the 7q21.3 breakpoint could contain regulatory elements necessary for DLX5 and DLX6 expression. Using a transgenic mouse reporter assay, we show that the deleted sequence can drive expression in the inner ear and developing bones of E12.5 embryos. Consequently, the observed familial syndrome is likely caused by dysregulation of DLX5 and/or DLX6 in specific tissues due to deletion of an enhancer and possibly separation from other regulatory elements by the chromosomal inversion.
Collapse
Affiliation(s)
- Kerry K Brown
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Parikh H, Deng Z, Yeager M, Boland J, Matthews C, Jia J, Collins I, White A, Burdett L, Hutchinson A, Qi L, Bacior JA, Lonsberry V, Rodesch MJ, Jeddeloh JA, Albert TJ, Halvensleben HA, Harkins TT, Ahn J, Berndt SI, Chatterjee N, Hoover R, Thomas G, Hunter DJ, Hayes RB, Chanock SJ, Amundadottir L. A comprehensive resequence analysis of the KLK15-KLK3-KLK2 locus on chromosome 19q13.33. Hum Genet 2010; 127:91-9. [PMID: 19823874 PMCID: PMC2793378 DOI: 10.1007/s00439-009-0751-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/27/2009] [Indexed: 12/23/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the KLK3 gene on chromosome 19q13.33 are associated with serum prostate-specific antigen (PSA) levels. Recent genome wide association studies of prostate cancer have yielded conflicting results for association of the same SNPs with prostate cancer risk. Since the KLK3 gene encodes the PSA protein that forms the basis for a widely used screening test for prostate cancer, it is critical to fully characterize genetic variation in this region and assess its relationship with the risk of prostate cancer. We have conducted a next-generation sequence analysis in 78 individuals of European ancestry to characterize common (minor allele frequency, MAF >1%) genetic variation in a 56 kb region on chromosome 19q13.33 centered on the KLK3 gene (chr19:56,019,829-56,076,043 bps). We identified 555 polymorphic loci in the process including 116 novel SNPs and 182 novel insertion/deletion polymorphisms (indels). Based on tagging analysis, 144 loci are necessary to tag the region at an r (2) threshold of 0.8 and MAF of 1% or higher, while 86 loci are required to tag the region at an r (2) threshold of 0.8 and MAF >5%. Our sequence data augments coverage by 35 and 78% as compared to variants in dbSNP and HapMap, respectively. We observed six non-synonymous amino acid or frame shift changes in the KLK3 gene and three changes in each of the neighboring genes, KLK15 and KLK2. Our study has generated a detailed map of common genetic variation in the genomic region surrounding the KLK3 gene, which should be useful for fine-mapping the association signal as well as determining the contribution of this locus to prostate cancer risk and/or regulation of PSA expression.
Collapse
Affiliation(s)
- Hemang Parikh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 8717 Grovemont Circle, Gaithersburg, MD 20877 USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zuoming Deng
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Joseph Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Casey Matthews
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 8717 Grovemont Circle, Gaithersburg, MD 20877 USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 8717 Grovemont Circle, Gaithersburg, MD 20877 USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ariel White
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 8717 Grovemont Circle, Gaithersburg, MD 20877 USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Laura Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Liqun Qi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Jennifer A. Bacior
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | - Victor Lonsberry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702 USA
| | | | | | | | | | | | - Jiyoung Ahn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Gilles Thomas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Synergie-Lyon-Cancer, INSERM U590, Centre Leon Berard, 69373 Lyon Cedex 08, France
| | - David J. Hunter
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115 USA
| | - Richard B. Hayes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
- Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016 USA
| | - Stephen J. Chanock
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 8717 Grovemont Circle, Gaithersburg, MD 20877 USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Laufey Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 8717 Grovemont Circle, Gaithersburg, MD 20877 USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
47
|
Merchan F, Boualem A, Crespi M, Frugier F. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biol 2009; 10:R136. [PMID: 19951405 PMCID: PMC2812943 DOI: 10.1186/gb-2009-10-12-r136] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/14/2009] [Accepted: 12/01/2009] [Indexed: 12/25/2022] Open
Abstract
Functional homologous and non-homologous clusters of MIR genes that co-regulate target mRNA transcripts have been identified in plants Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes.
Collapse
Affiliation(s)
- Francisco Merchan
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Avenue de la terrasse, 91198 Gif sur Yvette cedex, France.
| | | | | | | |
Collapse
|
48
|
Tchen CR, Martins JRS, Paktiawal N, Perelli R, Saklatvala J, Clark AR. Glucocorticoid regulation of mouse and human dual specificity phosphatase 1 (DUSP1) genes: unusual cis-acting elements and unexpected evolutionary divergence. J Biol Chem 2009; 285:2642-52. [PMID: 19940143 DOI: 10.1074/jbc.m109.037309] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Anti-inflammatory effects of glucocorticoids (GCs) are partly mediated by up-regulation of DUSP1 (dual specificity phosphatase 1), which dephosphorylates and inactivates mitogen-activated protein kinases. We identified putative GC-responsive regions containing GC receptor (GR) binding site consensus sequences that are well conserved between human and mouse DUSP1 loci in position, orientation, and sequence (at least 11 of 15 positions identical) and lie within regions of extended sequence conservation (minimum 65% identity over at least 100 bp). These were located approximately 29, 28, 24, 4.6, and 1.3 kb upstream of the DUSP1 transcription start site. The homology-based approach successfully identified four cis-acting regions that mediated transcriptional responses to dexamethasone. However, there was surprising interspecies divergence in site usage. This could not be explained by variations of the GR binding sites themselves. Instead, variations in flanking sequences appear to have driven the evolutionary divergence in mechanisms of regulation of mouse and human DUSP1 genes. There was a good correlation between the ability of cis-acting elements to respond to GC in transiently transfected reporter constructs and their ability to recruit GR in the context of intact chromatin. We propose that divergence of gene regulation has involved the loss or gain of binding sites for accessory transcription factors that assist in GR recruitment. Finally, a novel GC-responsive region of the human DUSP1 gene contains a highly unusual element, in which three closely spaced GR half-sites are required for potent transcriptional activation by GC.
Collapse
Affiliation(s)
- Carmen R Tchen
- Kennedy Institute of Rheumatology Division, Imperial College London, 65 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Desai S, Bolick SCE, Maurin M, Wright KL. PU.1 regulates positive regulatory domain I-binding factor 1/Blimp-1 transcription in lymphoma cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:5778-87. [PMID: 19828640 DOI: 10.4049/jimmunol.0901120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human positive regulatory domain I-binding factor 1 (PRDI-BF1) and its murine homolog Blimp-1 promote differentiation of mature B cells into Ab-secreting plasma cells. In contrast, ectopic expression of PRDI-BF1 in lymphoma cells can lead to inhibition of proliferation or apoptosis. However, little is currently known about the regulation of PRDM1, the gene encoding PRDI-BF1. This report establishes that in lymphoma cells stimulation through the BCR rapidly induces endogenous PRDM1 at the level of transcription with minor changes in mRNA stability. The induced PRDM1-encoded protein localizes to its target genes in vivo and suppresses their expression. In vivo genomic footprinting of the PRDM1 promoter in unstimulated lymphoma and myeloma cells reveals multiple common in vivo occupied elements throughout the promoter. Further functional and structural analysis of the promoter reveals that the promoter is preloaded and poised for activation in the B cell lines. The transcription factor PU.1 is shown to be required for the BCR-induced expression of PRDM1 in lymphoma cells and in PU.1-positive myeloma cells. Activation of PRDM1 is associated with loss of the corepressor transducin-like enhancer of split 4 from the PU.1 complex. These findings indicate that PRDM1 is poised for activation in lymphoma cells and therefore may be a potential therapeutic target to inhibit lymphoma cell proliferation and survival.
Collapse
Affiliation(s)
- Shruti Desai
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
50
|
Kronmiller BA, Wise RP. Computational finishing of large sequence contigs reveals interspersed nested repeats and gene islands in the rf1-associated region of maize. PLANT PHYSIOLOGY 2009; 151:483-495. [PMID: 19675151 PMCID: PMC2754626 DOI: 10.1104/pp.109.143370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/03/2009] [Indexed: 05/26/2023]
Abstract
The architecture of grass genomes varies on multiple levels. Large long terminal repeat retrotransposon clusters occupy significant portions of the intergenic regions, and islands of protein-encoding genes are interspersed among the repeat clusters. Hence, advanced assembly techniques are required to obtain completely finished genomes as well as to investigate gene and transposable element distributions. To characterize the organization and distribution of repeat clusters and gene islands across large grass genomes, we present 961- and 594-kb contiguous sequence contigs associated with the rf1 (for restorer of fertility1) locus in the near-centromeric region of maize (Zea mays) chromosome 3. We present two methods for computational finishing of highly repetitive bacterial artificial chromosome clones that have proved successful to close all sequence gaps caused by transposable element insertions. Sixteen repeat clusters were observed, ranging in length from 23 to 155 kb. These repeat clusters are almost exclusively long terminal repeat retrotransposons, of which the paleontology of insertion varies throughout the cluster. Gene islands contain from one to four predicted genes, resulting in a gene density of one gene per 16 kb in gene islands and one gene per 111 kb over the entire sequenced region. The two sequence contigs, when compared with the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes, retain gene colinearity of 50% and 71%, respectively, and 70% and 100%, respectively, for high-confidence gene models. Collinear genes on single gene islands show that while most expansion of the maize genome has occurred in the repeat clusters, gene islands are not immune and have experienced growth in both intragene and intergene locations.
Collapse
Affiliation(s)
- Brent A Kronmiller
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-1020, USA
| | | |
Collapse
|