1
|
Roselli C, Ramaswami M, Aranha MM. Semi-Automated Assessment of Long-Term Olfactory Habituation in Drosophila melanogaster Using the Olfactory Arena. Bio Protoc 2024; 14:e5102. [PMID: 39525971 PMCID: PMC11543785 DOI: 10.21769/bioprotoc.5102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
Long-lasting memories are a core aspect of an animal's life. Such memories are characterized by unique molecular mechanisms and often unique circuitry, neither of which are completely understood in vivo. The deep knowledge of the identity and connectivity of neurons of the fruit fly Drosophila melanogaster, as well as the sophisticated genetic tools that allow in vivo perturbations and physiology monitoring, make it a remarkably useful organism in which to investigate the molecular mechanisms of long-term memories. In this protocol, we focus on habituation, a non-associative form of learning, and describe a reliable, semi-automated technique to induce and assess long-term olfactory habituation (LTH) in Drosophila using the olfactory arena, thus providing a method aligned with recent technological progress in behavioral measurement. Prior work has shown that LTH is induced by a 4-day exposure to an odorant and is characterized by a long-lasting (> 24 h) reduction in behavioral response to the exposed odorant, measured using a manual and skill-intensive Y-maze assay. Here, we present a semi-automated protocol for obtaining quantifiable measures of LTH, at the level of detail required for other investigators in the field. Unlike previously described methods, the protocol presented here provides quantitative and detailed behavioral measurements obtained by video recording that can be shared with the scientific community and allows sophisticated forms of offline analysis. We suggest that this procedure has the potential to advance our understanding of molecular and circuit mechanisms of olfactory habituation, its control via neuromodulation, and its interactions with other forms of memory. Key features • A protocol to induce olfactory aversive long-term habituation in Drosophila melanogaster. • Video recording and analysis of Drosophila in an olfactory arena.
Collapse
Affiliation(s)
- Camilla Roselli
- School of Genetics and Microbiology, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Mani Ramaswami
- School of Genetics and Microbiology, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- National Center of Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Marcia M. Aranha
- School of Genetics and Microbiology, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Zerva MC, Triantafylloudis C, Paspaliaris V, Skoulakis EMC, Papanikolopoulou K. Choline Metabolites Reverse Differentially the Habituation Deficit and Elevated Memory of Tau Null Drosophila. Cells 2024; 13:746. [PMID: 38727282 PMCID: PMC11083674 DOI: 10.3390/cells13090746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Impaired neuronal plasticity and cognitive decline are cardinal features of Alzheimer's disease and related Tauopathies. Aberrantly modified Tau protein and neurotransmitter imbalance, predominantly involving acetylcholine, have been linked to these symptoms. In Drosophila, we have shown that dTau loss specifically enhances associative long-term olfactory memory, impairs foot shock habituation, and deregulates proteins involved in the regulation of neurotransmitter levels, particularly acetylcholine. Interestingly, upon choline treatment, the habituation and memory performance of mutants are restored to that of control flies. Based on these surprising results, we decided to use our well-established genetic model to understand how habituation deficits and memory performance correlate with different aspects of choline physiology as an essential component of the neurotransmitter acetylcholine, the lipid phosphatidylcholine, and the osmoregulator betaine. The results revealed that the two observed phenotypes are reversed by different choline metabolites, implying that they are governed by different underlying mechanisms. This work can contribute to a broader knowledge about the physiologic function of Tau, which may be translated into understanding the mechanisms of Tauopathies.
Collapse
Affiliation(s)
- Maria-Christina Zerva
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
- Athens International Master’s Program in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Christos Triantafylloudis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
- Master’s Program in Molecular Biomedicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vassilis Paspaliaris
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
- Laboratory of Experimental Physiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, 16672 Vari, Greece (V.P.)
| |
Collapse
|
3
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
4
|
Foka K, Georganta EM, Semelidou O, Skoulakis EMC. Loss of the Schizophrenia-Linked Furin Protein from Drosophila Mushroom Body Neurons Results in Antipsychotic-Reversible Habituation Deficits. J Neurosci 2022; 42:7496-7511. [PMID: 36028314 PMCID: PMC9525163 DOI: 10.1523/jneurosci.1055-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/21/2022] Open
Abstract
Habituation is a conserved adaptive process essential for incoming information assessment, which drives the behavioral response decrement to recurrent inconsequential stimuli and does not involve sensory adaptation or fatigue. Although the molecular mechanisms underlying the process are not well understood, habituation has been reported to be defective in a number of disorders including schizophrenia. We demonstrate that loss of furin1, the Drosophila homolog of a gene whose transcriptional downregulation has been linked to schizophrenia, results in defective habituation to recurrent footshocks in mixed sex populations. The deficit is reversible by transgenic expression of the Drosophila or human Furin in adult α'/β' mushroom body neurons and by acute oral delivery of the typical antipsychotic haloperidol and the atypical clozapine, which are commonly used to treat schizophrenic patients. The results validate the proposed contribution of Furin downregulation in schizophrenia and suggest that defective footshock habituation is a Drosophila protophenotype of the human disorder.SIGNIFICANCE STATEMENT Genome-wide association studies have revealed a number of loci linked to schizophrenia, but most have not been verified experimentally in a relevant behavioral task. Habituation deficits constitute a schizophrenia endophenotype. Drosophila with attenuated expression of the schizophrenia-linked highly conserved Furin gene present delayed habituation reversible with acute exposure to antipsychotics. This strongly suggests that footshock habituation defects constitute a schizophrenia protophenotype in Drosophila Furthermore, determination of the neurons whose regulated activity is required for footshock habituation provides a facile metazoan system to expediently validate putative schizophrenia genes and variants in a well understood simple brain.
Collapse
Affiliation(s)
- Kyriaki Foka
- Institute for Fundamental Biomedical Research, Biomedical Science Research Centre "Alexander Fleming," 16672 Vari, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Science Research Centre "Alexander Fleming," 16672 Vari, Greece
| | - Ourania Semelidou
- Institute for Fundamental Biomedical Research, Biomedical Science Research Centre "Alexander Fleming," 16672 Vari, Greece
| | - Efthimios M C Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Science Research Centre "Alexander Fleming," 16672 Vari, Greece
| |
Collapse
|
5
|
Prifti E, Tsakiri EN, Vourkou E, Stamatakis G, Samiotaki M, Skoulakis EMC, Papanikolopoulou K. Mical modulates Tau toxicity via cysteine oxidation in vivo. Acta Neuropathol Commun 2022; 10:44. [PMID: 35379354 PMCID: PMC8981811 DOI: 10.1186/s40478-022-01348-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tau accumulation is clearly linked to pathogenesis in Alzheimer’s disease and other Tauopathies. However, processes leading to Tau fibrillization and reasons for its pathogenicity remain largely elusive. Mical emerged as a novel interacting protein of human Tau expressed in Drosophila brains. Mical is characterized by the presence of a flavoprotein monooxygenase domain that generates redox potential with which it can oxidize target proteins. In the well-established Drosophila Tauopathy model, we use genetic interactions to show that Mical alters Tau interactions with microtubules and the Actin cytoskeleton and greatly affects Tau aggregation propensity and Tau-associated toxicity and dysfunction. Exploration of the mechanism was pursued using a Mical inhibitor, a mutation in Mical that selectively disrupts its monooxygenase domain, Tau transgenes mutated at cysteine residues targeted by Mical and mass spectrometry analysis to quantify cysteine oxidation. The collective evidence strongly indicates that Mical’s redox activity mediates the effects on Tau via oxidation of Cys322. Importantly, we also validate results from the fly model in human Tauopathy samples by showing that MICAL1 is up-regulated in patient brains and co-localizes with Tau in Pick bodies. Our work provides mechanistic insights into the role of the Tau cysteine residues as redox-switches regulating the process of Tau self-assembly into inclusions in vivo, its function as a cytoskeletal protein and its effect on neuronal toxicity and dysfunction.
Collapse
|
6
|
The Two Cysteines of Tau Protein Are Functionally Distinct and Contribute Differentially to Its Pathogenicity in Vivo. J Neurosci 2020; 41:797-810. [PMID: 33334867 DOI: 10.1523/jneurosci.1920-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
Although Tau accumulation is clearly linked to pathogenesis in Alzheimer's disease and other Tauopathies, the mechanism that initiates the aggregation of this highly soluble protein in vivo remains largely unanswered. Interestingly, in vitro Tau can be induced to form fibrillar filaments by oxidation of its two cysteine residues, generating an intermolecular disulfide bond that promotes dimerization and fibrillization. The recently solved structures of Tau filaments revealed that the two cysteine residues are not structurally equivalent since Cys-322 is incorporated into the core of the fibril, whereas Cys-291 projects away from the core to form the fuzzy coat. Here, we examined whether mutation of these cysteines to alanine affects differentially Tau mediated toxicity and dysfunction in the well-established Drosophila Tauopathy model. Experiments were conducted with both sexes, or with either sex. Each cysteine residue contributes differentially to Tau stability, phosphorylation status, aggregation propensity, resistance to stress, learning, and memory. Importantly, our work uncovers a critical role of Cys-322 in determining Tau toxicity and dysfunction.SIGNIFICANCE STATEMENT Cysteine-291 and Cysteine-322, the only two cysteine residues of Tau present in only 4-Repeat or all isoforms, respectively, have competing functions: as the key residues in the catalytic center, they enable Tau auto-acetylation; and as residues within the microtubule-binding repeat region are important not only for Tau function but also instrumental in the initiation of Tau aggregation. In this study, we present the first in vivo evidence that their substitution leads to differential consequences on Tau's physiological and pathophysiological functions. These differences raise the possibility that cysteine residues play a potential role in determining the functional diversity between isoforms.
Collapse
|
7
|
Drosophila Bruton's Tyrosine Kinase Regulates Habituation Latency and Facilitation in Distinct Mushroom Body Neurons. J Neurosci 2019; 39:8730-8743. [PMID: 31530645 DOI: 10.1523/jneurosci.0633-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/21/2022] Open
Abstract
Habituation is the adaptive behavioral outcome of processes engaged in timely devaluation of non-reinforced repetitive stimuli, but the neuronal circuits and molecular mechanisms that underlie them are not well understood. To gain insights into these processes we developed and characterized a habituation assay to repetitive footshocks in mixed sex Drosophila groups and demonstrated that acute neurotransmission from adult α/β mushroom body (MB) neurons prevents premature stimulus devaluation. Herein we demonstrate that activity of the non-receptor tyrosine kinase dBtk protein is required within these neurons to prevent premature habituation. Significantly, we also demonstrate that the complementary process of timely habituation to the repetitive stimulation is facilitated by α'/β' MB neurons and also requires dBtk activity. Hence our results provide initial insights into molecular mechanisms engaged in footshock habituation within distinct MB neurons. Importantly, dBtk attenuation specifically within α'/β' neurons leads to defective habituation, which is readily reversible by administration of the antipsychotics clozapine and risperidone suggesting that the loss of the kinase may dysregulate monoamine receptors within these neurons, whose activity underlies the failure to habituate.SIGNIFICANCE STATEMENT Habituation refers to processes underlying decisions to attend or ignore stimuli, which are pivotal to brain function as they underlie selective attention and learning, but the circuits involved and the molecular mechanisms engaged by the process therein are poorly understood. We demonstrate that habituation to repetitive footshock involves two phases mediated by distinct neurons of the Drosophila mushroom bodies and require the function of the dBtk non-receptor tyrosine kinase. Moreover, habituation failure upon dBtk abrogation in neurons where it is required to facilitate the process is readily reversible by antipsychotics, providing conceptual links to particular symptoms of schizophrenia in humans, also characterized by habituation defects and ameliorated by these pharmaceuticals.
Collapse
|
8
|
Drosophila Tau Negatively Regulates Translation and Olfactory Long-Term Memory, But Facilitates Footshock Habituation and Cytoskeletal Homeostasis. J Neurosci 2019; 39:8315-8329. [PMID: 31488613 DOI: 10.1523/jneurosci.0391-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Although the involvement of pathological tau in neurodegenerative dementias is indisputable, its physiological roles have remained elusive in part because its abrogation has been reported without overt phenotypes in mice and Drosophila This was addressed using the recently described Drosophila tauKO and Mi{MIC} mutants and focused on molecular and behavioral analyses. Initially, we show that Drosophila tau (dTau) loss precipitates dynamic cytoskeletal changes in the adult Drosophila CNS and translation upregulation. Significantly, we demonstrate for the first time distinct roles for dTau in adult mushroom body (MB)-dependent neuroplasticity as its downregulation within α'β'neurons impairs habituation. In accord with its negative regulation of translation, dTau loss specifically enhances protein synthesis-dependent long-term memory (PSD-LTM), but not anesthesia-resistant memory. In contrast, elevation of the protein in the MBs yielded premature habituation and depressed PSD-LTM. Therefore, tau loss in Drosophila dynamically alters brain cytoskeletal dynamics and profoundly affects neuronal proteostasis and plasticity.SIGNIFICANCE STATEMENT We demonstrate that despite modest sequence divergence, the Drosophila tau (dTau) is a true vertebrate tau ortholog as it interacts with the neuronal microtubule and actin cytoskeleton. Novel physiological roles for dTau in regulation of translation, long-term memory, and footshock habituation are also revealed. These emerging insights on tau physiological functions are invaluable for understanding the molecular pathways and processes perturbed in tauopathies.
Collapse
|
9
|
Fenckova M, Blok LER, Asztalos L, Goodman DP, Cizek P, Singgih EL, Glennon JC, IntHout J, Zweier C, Eichler EE, von Reyn CR, Bernier RA, Asztalos Z, Schenck A. Habituation Learning Is a Widely Affected Mechanism in Drosophila Models of Intellectual Disability and Autism Spectrum Disorders. Biol Psychiatry 2019; 86:294-305. [PMID: 31272685 PMCID: PMC7053436 DOI: 10.1016/j.biopsych.2019.04.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Although habituation is one of the most ancient and fundamental forms of learning, its regulators and its relevance for human disease are poorly understood. METHODS We manipulated the orthologs of 286 genes implicated in intellectual disability (ID) with or without comorbid autism spectrum disorder (ASD) specifically in Drosophila neurons, and we tested these models in light-off jump habituation. We dissected neuronal substrates underlying the identified habituation deficits and integrated genotype-phenotype annotations, gene ontologies, and interaction networks to determine the clinical features and molecular processes that are associated with habituation deficits. RESULTS We identified >100 genes required for habituation learning. For 93 of these genes, a role in habituation learning was previously unknown. These genes characterize ID disorders with macrocephaly and/or overgrowth and comorbid ASD. Moreover, individuals with ASD from the Simons Simplex Collection carrying damaging de novo mutations in these genes exhibit increased aberrant behaviors associated with inappropriate, stereotypic speech. At the molecular level, ID genes required for normal habituation are enriched in synaptic function and converge on Ras/mitogen-activated protein kinase (Ras/MAPK) signaling. Both increased Ras/MAPK signaling in gamma-aminobutyric acidergic (GABAergic) neurons and decreased Ras/MAPK signaling in cholinergic neurons specifically inhibit the adaptive habituation response. CONCLUSIONS Our work supports the relevance of habituation learning to ASD, identifies an unprecedented number of novel habituation players, supports an emerging role for inhibitory neurons in habituation, and reveals an opposing, circuit-level-based mechanism for Ras/MAPK signaling. These findings establish habituation as a possible, widely applicable functional readout and target for pharmacologic intervention in ID/ASD.
Collapse
Affiliation(s)
- Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura E R Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lenke Asztalos
- Aktogen Limited, Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Aktogen Hungary Limited, Bay Zoltán Nonprofit Limited for Applied Research, Institute for Biotechnology, Szeged, Hungary
| | - David P Goodman
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Pavel Cizek
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeffrey C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington; Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Catherine R von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Zoltan Asztalos
- Aktogen Limited, Department of Genetics, University of Cambridge, Cambridge, United Kingdom; Aktogen Hungary Limited, Bay Zoltán Nonprofit Limited for Applied Research, Institute for Biotechnology, Szeged, Hungary; Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Woo YJ, Kanellopoulos AK, Hemati P, Kirschen J, Nebel RA, Wang T, Bagni C, Abrahams BS. Domain-Specific Cognitive Impairments in Humans and Flies With Reduced CYFIP1 Dosage. Biol Psychiatry 2019; 86:306-314. [PMID: 31202490 PMCID: PMC6679746 DOI: 10.1016/j.biopsych.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Deletions encompassing a four-gene region on chromosome 15 (BP1-BP2 at 15q11.2), seen at a population frequency of 1 in 500, are associated with increased risk for schizophrenia, epilepsy, and other common neurodevelopmental disorders. However, little is known in terms of how these common deletions impact cognition. METHODS We used a Web-based tool to characterize cognitive function in a novel cohort of adult carriers and their noncarrier family members. Results from 31 carrier and 38 noncarrier parents from 40 families were compared with control data from 6530 individuals who self-registered on the Lumosity platform and opted in to participate in research. We then examined aspects of sensory and cognitive function in flies harboring a mutation in Cyfip, the homologue of one of the genes within the deletion. For the fly studies, 10 or more groups of 50 individuals per genotype were included. RESULTS Our human studies revealed profound deficits in grammatical reasoning, arithmetic reasoning, and working memory in BP1-BP2 deletion carriers. No such deficits were observed in noncarrier spouses. Our fly studies revealed deficits in associative and nonassociative learning despite intact sensory perception. CONCLUSIONS Our results provide new insights into outcomes associated with BP1-BP2 deletions and call for a discussion on how to appropriately communicate these findings to unaffected carriers. Findings also highlight the utility of an online tool in characterizing cognitive function in a geographically distributed population.
Collapse
Affiliation(s)
- Young Jae Woo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Parisa Hemati
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Human Genetics Program, Sarah Lawrence College, Yonkers, New York
| | - Jill Kirschen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Rebecca A Nebel
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Brett S Abrahams
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
11
|
Coll-Tané M, Krebbers A, Castells-Nobau A, Zweier C, Schenck A. Intellectual disability and autism spectrum disorders 'on the fly': insights from Drosophila. Dis Model Mech 2019; 12:dmm039180. [PMID: 31088981 PMCID: PMC6550041 DOI: 10.1242/dmm.039180] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
12
|
Semelidou O, Acevedo SF, Skoulakis EM. Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in Drosophila. eLife 2018; 7:39569. [PMID: 30576281 PMCID: PMC6303106 DOI: 10.7554/elife.39569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
Habituation is the process that enables salience filtering, precipitating perceptual changes that alter the value of environmental stimuli. To discern the neuronal circuits underlying habituation to brief inconsequential stimuli, we developed a novel olfactory habituation paradigm, identifying two distinct phases of the response that engage distinct neuronal circuits. Responsiveness to the continuous odor stimulus is maintained initially, a phase we term habituation latency and requires Rutabaga Adenylyl-Cyclase-depended neurotransmission from GABAergic Antennal Lobe Interneurons and activation of excitatory Projection Neurons (PNs) and the Mushroom Bodies. In contrast, habituation depends on the inhibitory PNs of the middle Antenno-Cerebral Track, requires inner Antenno-Cerebral Track PN activation and defines a temporally distinct phase. Collectively, our data support the involvement of Lateral Horn excitatory and inhibitory stimulation in habituation. These results provide essential cellular substrates for future analyses of the molecular mechanisms that govern the duration and transition between these distinct temporal habituation phases. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Ourania Semelidou
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece.,School of Medicine, University of Crete, Heraklion, Greece
| | - Summer F Acevedo
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| | - Efthimios Mc Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| |
Collapse
|
13
|
Song W, Zhao L, Tao Y, Guo X, Jia J, He L, Huang Y, Zhu Y, Chen P, Qin H. The interruptive effect of electric shock on odor response requires mushroom bodies in Drosophila melanogaster. GENES BRAIN AND BEHAVIOR 2018; 18:e12488. [PMID: 29808570 DOI: 10.1111/gbb.12488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 11/28/2022]
Abstract
Nociceptive stimulus involuntarily interrupts concurrent activities. This interruptive effect is related to the protective function of nociception that is believed to be under stringent evolutionary pressure. To determine whether such interruptive effect is conserved in invertebrate and potentially uncover underlying neural circuits, we examined Drosophila melanogaster. Electric shock (ES) is a commonly used nociceptive stimulus for nociception related research in Drosophila. Here, we showed that background noxious ES dramatically interrupted odor response behaviors in a T-maze, which is termed blocking odor response by electric shock (BOBE). The interruptive effect is not odor specific. ES could interrupt both odor avoidance and odor approach. To identify involved brain areas, we focused on the odor avoidance to 3-OCT. By spatially abolishing neurotransmission with temperature sensitive ShibireTS1 , we found that mushroom bodies (MBs) are necessary for BOBE. Among the 3 major MB Kenyon cell (KCs) subtypes, α/β neurons and γ neurons but not α'/β' neurons are required for normal BOBE. Specifically, abolishing the neurotransmission of either α/β surface (α/βs ), α/β core (α/βc ) or γ dorsal (γd ) neurons alone is sufficient to abrogate BOBE. This pattern of MB subset requirement is distinct from that of aversive olfactory learning, indicating a specialized BOBE pathway. Consistent with this idea, BOBE was not diminished in several associative memory mutants and noxious ES interrupted both innate and learned odor avoidance. Overall, our results suggest that MB α/β and γ neurons are parts of a previously unappreciated central neural circuit that processes the interruptive effect of nociception.
Collapse
Affiliation(s)
- W Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - L Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Y Tao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - X Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - J Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - L He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| | - Y Huang
- College of Electrical Engineering, Guangxi University, Nanning, China
| | - Y Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - P Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - H Qin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
14
|
Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning. Proc Natl Acad Sci U S A 2017; 115:E448-E457. [PMID: 29284750 DOI: 10.1073/pnas.1709037115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Learning and memory rely on dopamine and downstream cAMP-dependent plasticity across diverse organisms. Despite the central role of cAMP signaling, it is not known how cAMP-dependent plasticity drives coherent changes in neuronal physiology that encode the memory trace, or engram. In Drosophila, the mushroom body (MB) is critically involved in olfactory classical conditioning, and cAMP signaling molecules are necessary and sufficient for normal memory in intrinsic MB neurons. To evaluate the role of cAMP-dependent plasticity in learning, we examined how cAMP manipulations and olfactory classical conditioning modulate olfactory responses in the MB with in vivo imaging. Elevating cAMP pharmacologically or optogenetically produced plasticity in MB neurons, altering their responses to odorants. Odor-evoked Ca2+ responses showed net facilitation across anatomical regions. At the single-cell level, neurons exhibited heterogeneous responses to cAMP elevation, suggesting that cAMP drives plasticity to discrete subsets of MB neurons. Olfactory appetitive conditioning enhanced MB odor responses, mimicking the cAMP-dependent plasticity in directionality and magnitude. Elevating cAMP to equivalent levels as appetitive conditioning also produced plasticity, suggesting that the cAMP generated during conditioning affects odor-evoked responses in the MB. Finally, we found that this plasticity was dependent on the Rutabaga type I adenylyl cyclase, linking cAMP-dependent plasticity to behavioral modification. Overall, these data demonstrate that learning produces robust cAMP-dependent plasticity in intrinsic MB neurons, which is biased toward naturalistic reward learning. This suggests that cAMP signaling may serve to modulate intrinsic MB responses toward salient stimuli.
Collapse
|
15
|
Vibrational Detection of Odorant Functional Groups by Drosophila melanogaster. eNeuro 2017; 4:eN-NWR-0049-17. [PMID: 29094064 PMCID: PMC5663008 DOI: 10.1523/eneuro.0049-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
A remarkable feature of olfaction, and perhaps the hardest one to explain by shape-based molecular recognition, is the ability to detect the presence of functional groups in odorants, irrespective of molecular context. We previously showed that Drosophila trained to avoid deuterated odorants could respond to a molecule bearing a nitrile group, which shares the vibrational stretch frequency with the CD bond. Here, we reproduce and extend this finding by showing analogous olfactory responses of Drosophila to the chemically vastly different functional groups, thiols and boranes, that nevertheless possess a common vibration at 2600 cm−1. Furthermore, we show that Drosophila do not respond to a cyanohydrin structure that renders nitrile groups invisible to IR spectroscopy. We argue that the response of Drosophila to these odorants which parallels their perception in humans, supports the hypothesis that odor character is encoded in odorant molecular vibrations, not in the specific shape-based activation pattern of receptors.
Collapse
|
16
|
Babin A, Kolly S, Kawecki TJ. Virulent bacterial infection improves aversive learning performance in Drosophila melanogaster. Brain Behav Immun 2014; 41:152-61. [PMID: 24863366 DOI: 10.1016/j.bbi.2014.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022] Open
Abstract
Virulent infections are expected to impair learning ability, either as a direct consequence of stressed physiological state or as an adaptive response that minimizes diversion of energy from immune defense. This prediction has been well supported for mammals and bees. Here, we report an opposite result in Drosophila melanogaster. Using an odor-mechanical shock conditioning paradigm, we found that intestinal infection with bacterial pathogens Pseudomonas entomophila or Erwinia c. carotovora improved flies' learning performance after a 1h retention interval. Infection with P. entomophila (but not E. c. carotovora) also improved learning performance after 5 min retention. No effect on learning performance was detected for intestinal infections with an avirulent GacA mutant of P. entomophila or for virulent systemic (hemocoel) infection with E. c. carotovora. Assays of unconditioned responses to odorants and shock do not support a major role for changes in general responsiveness to stimuli in explaining the changes in learning performance, although differences in their specific salience for learning cannot be excluded. Our results demonstrate that the effects of pathogens on learning performance in insects are less predictable than suggested by previous studies, and support the notion that immune stress can sometimes boost cognitive abilities.
Collapse
Affiliation(s)
- Aurélie Babin
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Sylvain Kolly
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Cevik MÖ. Habituation, sensitization, and Pavlovian conditioning. Front Integr Neurosci 2014; 8:13. [PMID: 24574983 PMCID: PMC3920081 DOI: 10.3389/fnint.2014.00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/23/2014] [Indexed: 11/13/2022] Open
Abstract
In this brief review, I argue that the impact of a stimulus on behavioral control increase as the distance of the stimulus to the body decreases. Habituation, i.e., decrement in response intensity repetition of the triggering stimulus, is the default state for sensory processing, and the likelihood of habituation is higher for distal stimuli. Sensitization, i.e., increment in response intensity upon stimulus repetition, occurs in a state dependent manner for proximal stimuli that make direct contact with the body. In Pavlovian conditioning paradigms, the unconditioned stimulus (US) is always a more proximal stimulus than the conditioned stimulus (CS). The mechanisms of associative and non-associative learning are not independent. CS-US pairings lead to formation of associations if sensitizing modulation from a proximal US prevents the habituation for a distal anticipatory CS.
Collapse
|
18
|
Perry CJ, Barron AB, Cheng K. Invertebrate learning and cognition: relating phenomena to neural substrate. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:561-582. [PMID: 26304245 DOI: 10.1002/wcs.1248] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/28/2013] [Accepted: 07/06/2013] [Indexed: 02/04/2023]
Abstract
Diverse invertebrate species have been used for studies of learning and comparative cognition. Although we have gained invaluable information from this, in this study we argue that our approach to comparative learning research is rather deficient. Generally invertebrate learning research has focused mainly on arthropods, and most of that within the Hymenoptera and Diptera. Any true comparative analysis of the distribution of comparative cognitive abilities across phyla is hampered by this bias, and more fundamentally by a reporting bias toward positive results. To understand the limits of learning and cognition for a species, knowing what animals cannot do is at least as important as reporting what they can. Finally, much more effort needs to be focused on the neurobiological analysis of different types of learning to truly understand the differences and similarities of learning types. In this review, we first give a brief overview of the various forms of learning in invertebrates. We also suggest areas where further study is needed for a more comparative understanding of learning. Finally, using what is known of learning in honeybees and the well-studied honeybee brain, we present a model of how various complex forms of learning may be accounted for with the same neural circuitry required for so-called simple learning types. At the neurobiological level, different learning phenomena are unlikely to be independent, and without considering this it is very difficult to correctly interpret the phylogenetic distribution of learning and cognitive abilities. WIREs Cogn Sci 2013, 4:561-582. doi: 10.1002/wcs.1248 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clint J Perry
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
19
|
Cyr A, Boukadoum M. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation. BIOINSPIRATION & BIOMIMETICS 2013; 8:016007. [PMID: 23385344 DOI: 10.1088/1748-3182/8/1/016007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information.
Collapse
Affiliation(s)
- André Cyr
- Computer Science Department, Université du Québec à Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
20
|
Eddison M, Belay AT, Sokolowski MB, Heberlein U. A genetic screen for olfactory habituation mutations in Drosophila: analysis of novel foraging alleles and an underlying neural circuit. PLoS One 2012; 7:e51684. [PMID: 23284741 PMCID: PMC3524188 DOI: 10.1371/journal.pone.0051684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/05/2012] [Indexed: 02/07/2023] Open
Abstract
Habituation is a form of non-associative learning that enables animals to reduce their reaction to repeated harmless stimuli. When exposed to ethanol vapor, Drosophila show an olfactory-mediated startle response characterized by a transient increase in locomotor activity. Upon repeated exposures, this olfactory startle attenuates with the characteristics of habituation. Here we describe the results of a genetic screen to identify olfactory startle habituation (OSH) mutants. One mutation is a transcript specific allele of foraging (for) encoding a cGMP-dependent kinase. We show this allele of for reduces expression of a for-T1 isoform expressed in the head and functions normally to inhibit OSH. We localize for-T1 function to a limited set of neurons that include olfactory receptor neurons (ORNs) and the mushroom body (MB). Overexpression of for-T1 in ORNs inhibits OSH, an effect also seen upon synaptic silencing of the ORNs; for-T1 may therefore function in ORNs to decrease synaptic release upon repeated exposure to ethanol vapor. Overall, this work contributes to our understanding of the genes and neurons underlying olfactory habituation in Drosophila.
Collapse
Affiliation(s)
- Mark Eddison
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
21
|
Paranjpe P, Rodrigues V, VijayRaghavan K, Ramaswami M. Gustatory habituation in Drosophila relies on rutabaga (adenylate cyclase)-dependent plasticity of GABAergic inhibitory neurons. Learn Mem 2012; 19:627-35. [DOI: 10.1101/lm.026641.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cevik MÖ, Erden A. The course of habituation of the proboscis extension reflex can be predicted by sucrose responsiveness in Drosophila. PLoS One 2012; 7:e39863. [PMID: 22761915 PMCID: PMC3384023 DOI: 10.1371/journal.pone.0039863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
The proboscis extension reflex (PER) is triggered when insects’ gustatory receptors contact appetitive stimuli, so it provides a behavioral readout for perceptual encoding of tastants. Research on the experience dependent modulation of PER in Drosophila has been hindered by the difficulty of obtaining reliable measures of memory-driven change in PER probability in the background of larger changes induced by physiological state. In this study, we showed that the course of PER habituation can be predicted by the degree of sucrose responsiveness in Drosophila. We assessed early response parameters, including the number of proboscis extensions and labellar movements in the first five trials, the trial to start responding, and the trial to make the first stop to quantify responsiveness, which predicted the upcoming pattern of both the short-term and 1 hour memory of PER habituation for individual flies. The cAMP signaling pathway mutant rutabaga displayed deficits in attunement of perceptual salience of sucrose to physiological demands and stimulus-driven sensitization.
Collapse
|
23
|
Farris SM. Are mushroom bodies cerebellum-like structures? ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:368-79. [PMID: 21371566 DOI: 10.1016/j.asd.2011.02.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/08/2011] [Accepted: 02/19/2011] [Indexed: 05/20/2023]
Abstract
The mushroom bodies are distinctive neuropils in the protocerebral brain segments of many protostomes. A defining feature of mushroom bodies is their intrinsic neurons, masses of cytoplasm-poor globuli cells that form a system of lobes with their densely-packed, parallel-projecting axon-like processes. In insects, the role of the mushroom bodies in olfactory processing and associative learning and memory has been studied in depth, but several lines of evidence suggest that the function of these higher brain centers cannot be restricted to these roles. The present account considers whether insight into an underlying function of mushroom bodies may be provided by cerebellum-like structures in vertebrates, which are similarly defined by the presence of masses of tiny granule cells that emit thin parallel fibers forming a dense molecular layer. In vertebrates, the shared neuroarchitecture of cerebellum-like structures has been suggested to underlie a common functional role as adaptive filters for the removal of predictable sensory elements, such as those arising from reafference, from the total sensory input. Cerebellum-like structures include the vertebrate cerebellum, the electrosensory lateral line lobe, dorsal and medial octavolateral nuclei of fish, and the dorsal cochlear nucleus of mammals. The many architectural and physiological features that the insect mushroom bodies share with cerebellum-like structures suggest that it might be fruitful to consider mushroom body function in light of a possible role as adaptive sensory filters. The present account thus presents a detailed comparison of the insect mushroom bodies with vertebrate cerebellum-like structures.
Collapse
Affiliation(s)
- Sarah M Farris
- Department of Biology, West Virginia University, 3139 Life Sciences Building, 53 Campus Drive, Morgantown, WV 26505, USA.
| |
Collapse
|
24
|
Sorribes A, Armendariz BG, Lopez-Pigozzi D, Murga C, de Polavieja GG. The origin of behavioral bursts in decision-making circuitry. PLoS Comput Biol 2011; 7:e1002075. [PMID: 21731478 PMCID: PMC3121695 DOI: 10.1371/journal.pcbi.1002075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 04/15/2011] [Indexed: 01/18/2023] Open
Abstract
From ants to humans, the timing of many animal behaviors comes in bursts of activity separated by long periods of inactivity. Recently, mathematical modeling has shown that simple algorithms of priority-driven behavioral choice can result in bursty behavior. To experimentally test this link between decision-making circuitry and bursty dynamics, we have turned to Drosophila melanogaster. We have found that the statistics of intervals between activity periods in endogenous activity-rest switches of wild-type Drosophila are very well described by the Weibull distribution, a common distribution of bursty dynamics in complex systems. The bursty dynamics of wild-type Drosophila walking activity are shown to be determined by this inter-event distribution alone and not by memory effects, thus resembling human dynamics. Further, using mutant flies that disrupt dopaminergic signaling or the mushroom body, circuitry implicated in decision-making, we show that the degree of behavioral burstiness can be modified. These results are thus consistent with the proposed link between decision-making circuitry and bursty dynamics, and highlight the importance of using simple experimental systems to test general theoretical models of behavior. The findings further suggest that analysis of bursts could prove useful for the study and evaluation of decision-making circuitry.
Collapse
Affiliation(s)
- Amanda Sorribes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Theoretical Physics and Instituto “Nicolás Cabrera” de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz G. Armendariz
- Department of Theoretical Physics and Instituto “Nicolás Cabrera” de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diego Lopez-Pigozzi
- Department of Theoretical Physics and Instituto “Nicolás Cabrera” de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gonzalo G. de Polavieja
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Department of Theoretical Physics and Instituto “Nicolás Cabrera” de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Szyszka P, Demmler C, Oemisch M, Sommer L, Biergans S, Birnbach B, Silbering AF, Galizia CG. Mind the gap: olfactory trace conditioning in honeybees. J Neurosci 2011; 31:7229-39. [PMID: 21593307 PMCID: PMC6622586 DOI: 10.1523/jneurosci.6668-10.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/21/2011] [Accepted: 03/17/2011] [Indexed: 11/21/2022] Open
Abstract
Trace conditioning is a form of classical conditioning, where a neutral stimulus (conditioned stimulus, CS) is associated with a following appetitive or aversive stimulus (unconditioned stimulus, US). Unlike classical delay conditioning, in trace conditioning there is a stimulus-free gap between CS and US, and thus a poststimulus neural representation (trace) of the CS is required to bridge the gap until its association with the US. The properties of such stimulus traces are not well understood, nor are their underlying physiological mechanisms. Using behavioral and physiological approaches, we studied appetitive olfactory trace conditioning in honeybees. We found that single-odor presentation created a trace containing information about odor identity. This trace conveyed odor information about the initial stimulus and was robust against interference by other odors. Memory acquisition decreased with increasing CS-US gap length. The maximum learnable CS-US gap length could be extended by previous trace-conditioning experience. Furthermore, acquisition improved when an additional odor was presented during the CS-US gap. Using calcium imaging, we tested whether projection neurons in the primary olfactory brain area, the antennal lobe, contain a CS trace. We found odor-specific persistent responses after stimulus offset. These post-odor responses, however, did not encode the CS trace, and perceived odor quality could be predicted by the initial but not by the post-odor response. Our data suggest that olfactory trace conditioning is a less reflexive form of learning than classical delay conditioning, indicating that odor traces might involve higher-level cognitive processes.
Collapse
Affiliation(s)
- Paul Szyszka
- University of Konstanz, Department of Biology-Neurobiology, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Schnaitmann C, Vogt K, Triphan T, Tanimoto H. Appetitive and aversive visual learning in freely moving Drosophila. Front Behav Neurosci 2010; 4:10. [PMID: 20300462 PMCID: PMC2839846 DOI: 10.3389/fnbeh.2010.00010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 02/08/2010] [Indexed: 12/02/2022] Open
Abstract
To compare appetitive and aversive visual memories of the fruit fly Drosophila melanogaster, we developed a new paradigm for classical conditioning. Adult flies are trained en masse to differentially associate one of two visual conditioned stimuli (CS) (blue and green light as CS) with an appetitive or aversive chemical substance (unconditioned stimulus or US). In a test phase, flies are given a choice between the paired and the unpaired visual stimuli. Associative memory is measured based on altered visual preference in the test. If a group of flies has, for example, received a sugar reward with green light in the training, they show a significantly higher preference for the green stimulus during the test than another group of flies having received the same reward with blue light. We demonstrate critical parameters for the formation of visual appetitive memory, such as training repetition, order of reinforcement, starvation, and individual conditioning. Furthermore, we show that formic acid can act as an aversive chemical reinforcer, yielding weak, yet significant, aversive memory. These results provide a basis for future investigations into the cellular and molecular mechanisms underlying visual memory and perception in Drosophila.
Collapse
|
27
|
Automated measurement of Drosophila jump reflex habituation and its use for mutant screening. J Neurosci Methods 2009; 182:43-8. [PMID: 19520114 DOI: 10.1016/j.jneumeth.2009.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 05/07/2009] [Accepted: 05/27/2009] [Indexed: 12/21/2022]
Abstract
In habituation the probability of a behavioral response decreases with repeated presentations of a stimulus. This is a simple kind of learning since it involves an adaptive change in behavior due to experience. The present study describes a high-throughput semi-automated system to track movement of individual flies and score their jump response to repeated presentations of an odor. We find a decreased response on repeated presentations of odor, which a number of criteria suggest to be habituation. Tracking of up to sixteen flies simultaneously allows analysis of large numbers of flies for mutant screens. We demonstrate the use of the Autojump system for large-scale screens by conducting a pilot-scale screen of 150 P insert lines for habituation mutants.
Collapse
|
28
|
Abstract
Participation of RAS, RAF, and mitogen-activated protein kinase (MAPK) in learning and memory has been demonstrated in a number of studies, but the molecular events requisite for cascade activation and regulation have not been explored. We demonstrate that the adapter protein DRK (downstream of receptor kinase) which is essential for signaling to RAS in developmental contexts, is preferentially distributed in the adult mushroom bodies, centers for olfactory learning and memory. We demonstrate that drk mutant heterozygotes exhibit deficits in olfactory learning and memory, apparent under limited training conditions, but are not impaired in sensory responses requisite for the association of the stimuli, or brain neuroanatomy. Furthermore, we demonstrate that the protein is required acutely within mushroom body neurons to mediate efficient learning, a process that requires RAF activation. Importantly, 90 min memory remained impaired, even after differential training yielding equivalent learning in animals with compromised DRK levels and controls and did not require RAF. Sustained MAPK activation is compromised in drk mutants and surprisingly is negatively regulated by constitutive RAF activity. The data establish a role for DRK in Drosophila behavioral neuroplasticity and suggest a dual role for the protein, first in RAF activation-dependent learning and additionally in RAF-inhibition dependent sustained MAPK activation essential for memory formation or stability.
Collapse
|
29
|
Aso Y, Grübel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 2009; 23:156-72. [PMID: 19140035 DOI: 10.1080/01677060802471718] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mushroom body is required for a variety of behaviors of Drosophila melanogaster. Different types of intrinsic and extrinsic mushroom body neurons might underlie its functional diversity. There have been many GAL4 driver lines identified that prominently label the mushroom body intrinsic neurons, which are known as "Kenyon cells." Under one constant experimental condition, we analyzed and compared the the expression patterns of 25 GAL4 drivers labeling the mushroom body. As an internet resource, we established a digital catalog indexing representative confocal data of them. Further more, we counted the number of GAL4-positive Kenyon cells in each line. We found that approximately 2,000 Kenyon cells can be genetically labeled in total. Three major Kenyon cell subtypes, the gamma, alpha'/beta', and alpha/beta neurons, respectively, contribute to 33, 18, and 49% of 2,000 Kenyon cells. Taken together, this study lays groundwork for functional dissection of the mushroom body.
Collapse
Affiliation(s)
- Yoshinori Aso
- Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Endogenous biological clocks are widespread regulators of behavior and physiology, allowing for a more efficient allocation of efforts and resources over the course of a day. The extent that different processes are regulated by circadian oscillators, however, is not fully understood. We investigated the role of the circadian clock on short-term associative memory formation using a negatively reinforced olfactory-learning paradigm in Drosophila melanogaster. We found that memory formation was regulated in a circadian manner. The peak performance in short-term memory (STM) occurred during the early subjective night with a twofold performance amplitude after a single pairing of conditioned and unconditioned stimuli. This rhythm in memory is eliminated in both timeless and period mutants and is absent during constant light conditions. Circadian gating of sensory perception does not appear to underlie the rhythm in short-term memory as evidenced by the nonrhythmic shock avoidance and olfactory avoidance behaviors. Moreover, central brain oscillators appear to be responsible for the modulation as cryptochrome mutants, in which the antennal circadian oscillators are nonfunctional, demonstrate robust circadian rhythms in short-term memory. Together these data suggest that central, rather than peripheral, circadian oscillators modulate the formation of short-term associative memory and not the perception of the stimuli.
Collapse
Affiliation(s)
- Lisa C Lyons
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, USA.
| | | |
Collapse
|
31
|
Iliadi KG. The genetic basis of emotional behavior: has the time come for a Drosophila model? J Neurogenet 2008; 23:136-46. [PMID: 19107631 DOI: 10.1080/01677060802471650] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aim of this review was to summarize the studies potentially relevant to whether Drosophila can be used as a genetically tractable model to study the genetic and molecular basis of emotional behavior. Can these studies contribute to a better understanding of neural substrates of abnormal emotional states and specific neuropsychiatric illnesses, such as depression and anxiety?
Collapse
Affiliation(s)
- Konstantin G Iliadi
- Research Institute, Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Engel JE, Wu CF. Neurogenetic approaches to habituation and dishabituation in Drosophila. Neurobiol Learn Mem 2008; 92:166-75. [PMID: 18765288 DOI: 10.1016/j.nlm.2008.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 08/03/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
Abstract
We review work in the major model systems for habituation in Drosophila melanogaster, encompassing several sensory modalities and behavioral contexts: visual (giant fiber escape response, landing response); chemical (proboscis extension reflex, olfactory jump response, locomotory startle response, odor-induced leg response, experience-dependent courtship modification); electric (shock avoidance); and mechanical (leg resistance reflex, cleaning reflex). Each model system shows several of Thompson and Spencer's [Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 16-43] parametric criteria for habituation: spontaneous recovery and dishabituation have been described in almost all of them and dependence of habituation upon stimulus frequency and stimulus intensity in the majority. Stimulus generalization (and conversely, the delineation of stimulus specificity) has given insights into the localization of habituation or the neural architecture underlying sensory processing. The strength of Drosophila for studying habituation is the range of genetic approaches available. Mutations have been used to modify specific neuroanatomical structures, ion channels, elements of synaptic transmission, and second-messenger pathways. rutabaga and dunce, genes of the cAMP signal pathway that have been studied most often in the reviewed experiments, have also been implicated in synaptic plasticity and associative conditioning in Drosophila and other species including mammals. The use of the Gal4/UAS system for targeting gene expression has enabled genetic perturbation of defined sets of neurons. One clear lesson is that a gene may affect habituation differently in different behaviors, depending on the expression, processing, and localization of the gene product in specific circuits. Mutations of specific genes not only provide links between physiology and behavior in the same circuit, but also reveal common mechanisms in different paradigms of behavioral plasticity. The rich repertoire of models for habituation in the fly is an asset for combining a genetic approach with behavioral, anatomical and physiological methods with the promise of a more complete understanding.
Collapse
Affiliation(s)
- Jeff E Engel
- Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA.
| | | |
Collapse
|
33
|
Neckameyer WS, Matsuo H. Distinct neural circuits reflect sex, sexual maturity, and reproductive status in response to stress in Drosophila melanogaster. Neuroscience 2008; 156:841-56. [PMID: 18790015 DOI: 10.1016/j.neuroscience.2008.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/01/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
Abstract
Studies in mammalian systems have shown an array of changes in transmitter signaling in diverse brain regions in response to stress, which differ depending on the age and genetic makeup of the animal, as well as the type of stress. Here, we exploit the genetic tractability of the fruit fly, Drosophila melanogaster, a comparatively simple but useful model in which to elucidate conserved components of stress response pathways. We show that structures within the mushroom bodies and central complex, two distinct anatomical regions within the Drosophila brain, modulate behavioral responses to two different environmental stressors. Modification of behavioral output after exposure to these stressors was dependent on the sex, sexual maturity, and reproductive status of the animal. These parameters also affected whether a mutant Drosophila strain carrying specific defects within the mushroom bodies and/or central complex modified its response to stress relative to wild-type flies. Our results suggest that for each population, unique subsets of neurons are recruited into the stress response circuitry and differentially affect locomotor behavior and cardiac function. These data also provide evidence for neural plasticity in the adult insect brain.
Collapse
Affiliation(s)
- W S Neckameyer
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO 63104, USA.
| | | |
Collapse
|