1
|
Gazerani P. The neuroplastic brain: current breakthroughs and emerging frontiers. Brain Res 2025; 1858:149643. [PMID: 40280532 DOI: 10.1016/j.brainres.2025.149643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Neuroplasticity, the brain's capacity to reorganize itself by forming new neural connections, is central to modern neuroscience. Once believed to occur only during early development, research now shows that plasticity continues throughout the lifespan, supporting learning, memory, and recovery from injury or disease. Substantial progress has been made in understanding the mechanisms underlying neuroplasticity and their therapeutic applications. This overview article examines synaptic plasticity, structural remodeling, neurogenesis, and functional reorganization, highlighting both adaptive (beneficial) and maladaptive (harmful) processes across different life stages. Recent strategies to harness neuroplasticity, ranging from pharmacological agents and lifestyle interventions to cutting-edge technologies like brain-computer interfaces (BCIs) and targeted neuromodulation are evaluated in light of current empirical evidence. Contradictory findings in the literature are addressed, and methodological limitations that hamper widespread clinical adoption are discussed. The ethical and societal implications of deploying novel neuroplasticity-based interventions, including issues of equitable access, data privacy, and the blurred line between treatment and enhancement, are then explored in a structured manner. By integrating mechanistic insights, empirical data, and ethical considerations, the aim is to provide a comprehensive and balanced perspective for researchers, clinicians, and policymakers working to optimize brain health across diverse populations.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Pilestredet 50, 0167 Oslo, Norway.
| |
Collapse
|
2
|
Chueh SY, Chen Y, Subramanian N, Goolsby B, Navarro P, Oweiss K. Metaplasticity and continual learning: mechanisms subserving brain computer interface proficiency. J Neural Eng 2025; 22:036020. [PMID: 40315903 PMCID: PMC12101542 DOI: 10.1088/1741-2552/add37b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 04/09/2025] [Accepted: 05/01/2025] [Indexed: 05/04/2025]
Abstract
Objective.Brain computer interfaces (BCIs) require substantial cognitive flexibility to optimize control performance. Remarkably, learning this control is rapid, suggesting it might be mediated by neuroplasticity mechanisms operating on very short time scales. Here, we propose a meta plasticity model of BCI learning and skill consolidation at the single cell and population levels comprised of three elements: (a) behavioral time scale synaptic plasticity (BTSP), (b) intrinsic plasticity (IP) and (c) synaptic scaling (SS) operating at time scales from seconds to minutes to hours and days. Notably, the model is able to explainrepresentational drift-a frequent and widespread phenomenon that adversely affects BCI control and continued use.Approach.We developed an all-optical approach to characterize IP, BTSP and SS with single cell resolution in awake mice using fluorescent two photon (2P) GCaMP7s imaging and optogenetic stimulation of the soma targeted ChRmineKv2.1. We further trained mice on a one-dimensional BCI control task and systematically characterized within session (seconds to minutes) learning as well as across sessions (days and weeks) with different neural ensembles.Main results.On the time scale of seconds, substantial BTSP could be induced and was followed by significant IP over minutes. Over the time scale of days and weeks, these changes could predict BCI control proficiency, suggesting that BTSP and IP might be complemented by SS to stabilize and consolidate BCI control.Significance.Our results provide early experimental support for a meta plasticity model of continual BCI learning and skill consolidation. The model predictions may be used to design and calibrate neural decoders with complete autonomy while considering the temporal and spatial scales of plasticity mechanisms. With the power of modern-day machine learning and artificial Intelligence, fully autonomous neural decoding and adaptation in BCIs might be achieved with minimal to no human intervention.
Collapse
Affiliation(s)
- Shuo-Yen Chueh
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
| | - Yuanxin Chen
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
| | - Narayan Subramanian
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
| | - Benjamin Goolsby
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Phillip Navarro
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
| | - Karim Oweiss
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States of America
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
- Department of Neuroscience, University of Florida, Gainesville, FL, United States of America
- Department of Neurology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
3
|
Ma C, Li Y, Gao Y, Lin X, Hou Y, He W, Zhu Y, Jiang J, Xie Y, Fang P. Impact of working memory training on brain network integration and neurotransmitter systems: a resting-state fMRI. Cereb Cortex 2025; 35:bhaf081. [PMID: 40319377 DOI: 10.1093/cercor/bhaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 05/07/2025] Open
Abstract
Working memory training (WMT) has been demonstrated to enhance cognitive performance, yet the underlying neural mechanisms remain insufficiently understood. Brain network connectivity, particularly as measured by the participation coefficient (PC), offers a valuable framework for elucidating these neural changes. This study investigated the effects of WMT on brain network connectivity, utilizing PC as a primary assessment of network integration and segregation. The relationship between WMT-induced changes in PC and the density of specific neurotransmitter receptors was examined. Seventy-six healthy participants were randomly assigned to either a WMT group or a control group. After 8 wks of training, the WMT group exhibited significant cognitive improvements, especially in near and far transfer tasks. These behavioral improvements were accompanied by specific changes in brain connectivity, including a reduction in PC within the sensorimotor network and node-specific alterations in the left prefrontal cortex, temporo-occipital-parietal junction, and parietal operculum. Moreover, changes in PC were significantly correlated with the density of dopamine D2 receptors, mu-opioid receptors, and metabotropic glutamate receptor 5. These findings enhance our understanding of how WMT influences cognitive function and brain network connectivity, highlighting the potential for targeting specific networks and neurotransmitter systems in cognitive training interventions.
Collapse
Affiliation(s)
- Chaozong Ma
- Military Medical Psychology School, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Yijun Li
- Military Medical Psychology School, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Yuntao Gao
- Military Medical Psychology School, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Xinxin Lin
- Military Medical Psychology School, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Yilin Hou
- Military Medical Psychology School, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Wei He
- Department of Radiation Protection Medicine, Department of Military Preventive Medicine, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Yuanqiang Zhu
- Department of Radiology, Xijing Hospital, The Fourth Military Medical University, No. 127 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Jun Jiang
- The Youth Innovation Team of Shaanxi University, Equipment Management and Unmanned Aerial Vehicle Engineering School, Air Force Engineering University (AFEU), No. 1, East Changle Road, Xi'an 710038, Shaanxi Province, China
| | - Yuanjun Xie
- Military Medical Psychology School, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| | - Peng Fang
- Military Medical Psychology School, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
- The Youth Innovation Team of Shaanxi University, Equipment Management and Unmanned Aerial Vehicle Engineering School, Air Force Engineering University (AFEU), No. 1, East Changle Road, Xi'an 710038, Shaanxi Province, China
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
- Military Medical Innovation Center, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
- School of Biomedical Engineering, The Fourth Military Medical University, No. 169 Changle West Road, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
4
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Cortical Plasticity. Neuroscientist 2025; 31:47-64. [PMID: 38497585 DOI: 10.1177/10738584241236773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
5
|
Liu Z, Wang Y, Zhang Y, Sun S, Zhang T, Zeng YJ, Hu L, Zhuge F, Lu B, Pan X, Ye Z. Harnessing Defects in SnSe Film via Photo-Induced Doping for Fully Light-Controlled Artificial Synapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410783. [PMID: 39648576 DOI: 10.1002/adma.202410783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 12/10/2024]
Abstract
2D-layered materials are recognized as up-and-coming candidates to overcome the intrinsic physical limitation of silicon-based devices. Herein, the coexistence of positive persistent photoconductivity (PPPC) and negative persistent photoconductivity (NPPC) in SnSe thin films prepared by pulsed laser deposition provides an excellent avenue for engineering novel devices. It is determined that surface oxygen is co-regulated by physisorption and chemisorption, and the NPPC is attributed to the photo-controllable oxygen desorption behavior. The dominant behavior of chemisorption induces high stability, while physisorption provides room for adjusting NPPC. A simple fully light-modulated artificial synaptic device based on SnSe film is constructed to operate various synaptic plasticity and reversible modulation of conductance by applying 430 and 255 nm illuminations. A three-layer artificial neural network structure with a high accuracy of 95.33% to recognize handwritten digital images is implemented based on the device. Furthermore, the pressure-related cognition response of humans while climbing and the foraging and recognition behaviors of anemonefish are mimicked. This work demonstrates the potential of 2D-layered materials for developing neuromorphic computing and simulating biological behaviors without additional treatment. Furthermore, the one-step method for preparation is highly adaptable and expected to realize large-area growth and integration of SnSe-based devices.
Collapse
Affiliation(s)
- Zihui Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yao Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yumin Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuyi Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tao Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Kunming Institute of Physics, Kunming, Yunnan Province, 650223, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lingxiang Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Fei Zhuge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Bin Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhua Pan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| |
Collapse
|
6
|
Mariani F, Decataldo F, Bonafè F, Tessarolo M, Cramer T, Gualandi I, Fraboni B, Scavetta E. High-Endurance Long-Term Potentiation in Neuromorphic Organic Electrochemical Transistors by PEDOT:PSS Electrochemical Polymerization on the Gate Electrode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61446-61456. [PMID: 37966461 PMCID: PMC11565569 DOI: 10.1021/acsami.3c10576] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
The brain exhibits extraordinary information processing capabilities thanks to neural networks that can operate in parallel with minimal energy consumption. Memory and learning require the creation of new neural networks through the long-term modification of the structure of the synapses, a phenomenon called long-term plasticity. Here, we use an organic electrochemical transistor to simulate long-term potentiation and depotentiation processes. Similarly to what happens in a synapse, the polymerization of the 3,4-ethylenedioxythiophene (EDOT) on the gate electrode modifies the structure of the device and boosts the ability of the gate potential to modify the conductivity of the channel. Operando AFM measurements were carried out to demonstrate the correlation between neuromorphic behavior and modification of the gate electrode. Long-term enhancement depends on both the number of pulses used and the gate potential, which generates long-term potentiation when a threshold of +0.7 V is overcome. Long-term depotentiation occurs by applying a +3.0 V potential and exploits the overoxidation of the deposited PEDOT:PSS. The induced states are stable for at least 2 months. The developed device shows very interesting characteristics in the field of neuromorphic electronics.
Collapse
Affiliation(s)
- Federica Mariani
- Department
of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum - University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Decataldo
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Filippo Bonafè
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Marta Tessarolo
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Tobias Cramer
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Isacco Gualandi
- Department
of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum - University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Beatrice Fraboni
- Department
of Physics and Astronomy, Alma Mater Studiorum
- University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Erika Scavetta
- Department
of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum - University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
7
|
Herstel LJ, Wierenga CJ. Distinct Modulation of I h by Synaptic Potentiation in Excitatory and Inhibitory Neurons. eNeuro 2024; 11:ENEURO.0185-24.2024. [PMID: 39406481 PMCID: PMC11574699 DOI: 10.1523/eneuro.0185-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
Selective modifications in the expression or function of dendritic ion channels regulate the propagation of synaptic inputs and determine the intrinsic excitability of a neuron. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open upon membrane hyperpolarization and conduct a depolarizing inward current (I h). HCN channels are enriched in the dendrites of hippocampal pyramidal neurons where they regulate the integration of synaptic inputs. Synaptic plasticity can bidirectionally modify dendritic HCN channels in excitatory neurons depending on the strength of synaptic potentiation. In inhibitory neurons, however, the dendritic expression and modulation of HCN channels are largely unknown. In this study, we systematically compared the modulation of I h by synaptic potentiation in hippocampal CA1 pyramidal neurons and stratum radiatum (sRad) interneurons in mouse organotypic cultures. I h properties were similar in inhibitory and excitatory neurons and contributed to resting membrane potential and action potential firing. We found that in sRad interneurons, HCN channels were downregulated after synaptic plasticity, irrespective of the strength of synaptic potentiation. This suggests differential regulation of I h in excitatory and inhibitory neurons, possibly signifying their distinct role in network activity.
Collapse
Affiliation(s)
- Lotte J Herstel
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen 6525 AJ, the Netherlands
| |
Collapse
|
8
|
Kuo HI, Nitsche MA, Wu YT, Chang JC, Yang LK. Acute aerobic exercise modulates cognition and cortical excitability in adults with attention-deficit hyperactivity disorder (ADHD) and healthy controls. Psychiatry Res 2024; 340:116108. [PMID: 39116688 DOI: 10.1016/j.psychres.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Evidence suggests aerobic exercise has beneficial effects on cognitive performance in adults with attention-deficit hyperactivity disorder (ADHD). The underlying mechanisms might depend on mechanisms of exercise-mediated brain physiology. The study aims to investigate the effects of acute aerobic exercise on cortical excitability and cognitive performance, and the correlation between these phenomena in adults with ADHD. Twenty-six drug-naïve ADHD adults, and twenty-six age-, and gender-matched healthy controls were assessed with respect to cortical excitability and cognitive performance before and after acute aerobic exercise (a single session for 30 min) or a control intervention. The results show significantly enhanced intracortical facilitation (ICF) and decreased short intracortical inhibition (SICI) after aerobic exercise in healthy subjects. In contrast, SICI was significantly enhanced following acute aerobic exercise in ADHD. In ADHD, furthermore inhibitory control and motor learning were significantly improved after the acute aerobic exercise intervention. Alterations of SICI induced by aerobic exercise, and inhibitory control and motor learning improvement were significantly positively correlated in the ADHD group. Aerobic exercise had partially antagonistic effects in healthy controls, and ADHD patients. Furthermore, aerobic exercise-induced cognition-enhancing effects in ADHD depend on specific alterations of brain physiology, which differ from healthy humans.
Collapse
Affiliation(s)
- Hsiao-I Kuo
- School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei 10055, Taiwan.
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, 44139 Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, 33615 Bielefeld, Germany
| | - Yen-Tzu Wu
- School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei 10055, Taiwan
| | - Jung-Chi Chang
- Department of Psychiatry, National Taiwan University Hospital, Taipei 10055, Taiwan
| | - Li-Kuang Yang
- Department of Psychiatry, National Taiwan University Hospital, Taipei 10055, Taiwan
| |
Collapse
|
9
|
McKiernan EC, Herrera-Valdez MA, Marrone DF. A biophysical minimal model to investigate age-related changes in CA1 pyramidal cell electrical activity. PLoS One 2024; 19:e0308809. [PMID: 39231135 PMCID: PMC11373847 DOI: 10.1371/journal.pone.0308809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aging is a physiological process that is still poorly understood, especially with respect to effects on the brain. There are open questions about aging that are difficult to answer with an experimental approach. Underlying challenges include the difficulty of recording in vivo single cell and network activity simultaneously with submillisecond resolution, and brain compensatory mechanisms triggered by genetic, pharmacologic, or behavioral manipulations. Mathematical modeling can help address some of these questions by allowing us to fix parameters that cannot be controlled experimentally and investigate neural activity under different conditions. We present a biophysical minimal model of CA1 pyramidal cells (PCs) based on general expressions for transmembrane ion transport derived from thermodynamical principles. The model allows directly varying the contribution of ion channels by changing their number. By analyzing the dynamics of the model, we find parameter ranges that reproduce the variability in electrical activity seen in PCs. In addition, increasing the L-type Ca2+ channel expression in the model reproduces age-related changes in electrical activity that are qualitatively and quantitatively similar to those observed in PCs from aged animals. We also make predictions about age-related changes in PC bursting activity that, to our knowledge, have not been reported previously. We conclude that the model's biophysical nature, flexibility, and computational simplicity make it a potentially powerful complement to experimental studies of aging.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Marco A Herrera-Valdez
- Laboratorio de Dinámica, Biofísica y Fisiología de Sistemas, Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
- McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
10
|
Guo X, Li X, Wang R, Zhu W, Wang L, Zhang L. Building a depletion-region width modulation model and realizing memory characteristics in PN heterostructure devices. NANOSCALE 2024; 16:15722-15729. [PMID: 39104187 DOI: 10.1039/d4nr01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Memristive systems have potential applications in nonvolatile memories and even unexplored functionalities in electronics. However, progress has been delayed by difficulties in the controllability of memory behaviors and the dependence on material conductivity. Considering this, a new depletion-region width modulation model is proposed to realize and explain memory characteristics. The coexistence of memristive and memcapacitive behaviors is demonstrated in p-CuAlO2/n-ZnO, p+-Si/n-ZnO and p-NiO/n-ZnO heterostructure devices. A high external electric field induces the migration of oxygen ions and electrons/holes between the p-type and n-type semiconductor layers. It can regulate the oxygen vacancy concentration of the n-type side and cation vacancy concentration of the p-type side, changing the depletion-region width and modulating device conductivity and capacitance. Several essential synaptic functions were accurately imitated, including spike-timing-dependent plasticity (STDP) and "learning-experience" behaviors. This work provides new opportunities in fabricating a memristor and memcapacitor based on a PN heterostructure for synaptic simulation.
Collapse
Affiliation(s)
- Xing Guo
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410000, China.
| | - Xinmiao Li
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410000, China.
| | - Ruixiao Wang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410000, China.
| | - Wenhui Zhu
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410000, China.
| | - Liancheng Wang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410000, China.
| | - Lei Zhang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410000, China.
| |
Collapse
|
11
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
12
|
Hansel C, Yuste R. Neural ensembles: role of intrinsic excitability and its plasticity. Front Cell Neurosci 2024; 18:1440588. [PMID: 39144154 PMCID: PMC11322048 DOI: 10.3389/fncel.2024.1440588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Synaptic connectivity defines groups of neurons that engage in correlated activity during specific functional tasks. These co-active groups of neurons form ensembles, the operational units involved in, for example, sensory perception, motor coordination and memory (then called an engram). Traditionally, ensemble formation has been thought to occur via strengthening of synaptic connections via long-term potentiation (LTP) as a plasticity mechanism. This synaptic theory of memory arises from the learning rules formulated by Hebb and is consistent with many experimental observations. Here, we propose, as an alternative, that the intrinsic excitability of neurons and its plasticity constitute a second, non-synaptic mechanism that could be important for the initial formation of ensembles. Indeed, enhanced neural excitability is widely observed in multiple brain areas subsequent to behavioral learning. In cortical structures and the amygdala, excitability changes are often reported as transient, even though they can last tens of minutes to a few days. Perhaps it is for this reason that they have been traditionally considered as modulatory, merely supporting ensemble formation by facilitating LTP induction, without further involvement in memory function (memory allocation hypothesis). We here suggest-based on two lines of evidence-that beyond modulating LTP allocation, enhanced excitability plays a more fundamental role in learning. First, enhanced excitability constitutes a signature of active ensembles and, due to it, subthreshold synaptic connections become suprathreshold in the absence of synaptic plasticity (iceberg model). Second, enhanced excitability promotes the propagation of dendritic potentials toward the soma and allows for enhanced coupling of EPSP amplitude (LTP) to the spike output (and thus ensemble participation). This permissive gate model describes a need for permanently increased excitability, which seems at odds with its traditional consideration as a short-lived mechanism. We propose that longer modifications in excitability are made possible by a low threshold for intrinsic plasticity induction, suggesting that excitability might be on/off-modulated at short intervals. Consistent with this, in cerebellar Purkinje cells, excitability lasts days to weeks, which shows that in some circuits the duration of the phenomenon is not a limiting factor in the first place. In our model, synaptic plasticity defines the information content received by neurons through the connectivity network that they are embedded in. However, the plasticity of cell-autonomous excitability could dynamically regulate the ensemble participation of individual neurons as well as the overall activity state of an ensemble.
Collapse
Affiliation(s)
- Christian Hansel
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Shallow MC, Tian L, Lin H, Lefton KB, Chen S, Dougherty JD, Culver JP, Lambo ME, Hengen KB. At the onset of active whisking, the input layer of barrel cortex exhibits a 24 h window of increased excitability that depends on prior experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597353. [PMID: 38895408 PMCID: PMC11185658 DOI: 10.1101/2024.06.04.597353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The development of motor control over sensory organs is a critical milestone in sensory processing, enabling active exploration and shaping of the sensory environment. However, whether the onset of sensory organ motor control directly influences the development of corresponding sensory cortices remains unknown. Here, we exploit the late onset of whisking behavior in mice to address this question in the somatosensory system. Using ex vivo electrophysiology, we discovered a transient increase in the intrinsic excitability of excitatory neurons in layer IV of the barrel cortex, which processes whisker input, precisely coinciding with the onset of active whisking at postnatal day 14 (P14). This increase in neuronal gain was specific to layer IV, independent of changes in synaptic strength, and required prior sensory experience. Strikingly, the effect was not observed in layer II/III of the barrel cortex or in the visual cortex upon eye opening, suggesting a unique interaction between the development of active sensing and the thalamocortical input layer in the somatosensory system. Predictive modeling indicated that changes in active membrane conductances alone could reliably distinguish P14 neurons in control but not whisker-deprived hemispheres. Our findings demonstrate an experience-dependent, lamina-specific refinement of neuronal excitability tightly linked to the emergence of active whisking. This transient increase in the gain of the thalamic input layer coincides with a critical period for synaptic plasticity in downstream layers, suggesting a role in facilitating cortical maturation and sensory processing. Together, our results provide evidence for a direct interaction between the development of motor control and sensory cortex, offering new insights into the experience-dependent development and refinement of sensory systems. These findings have broad implications for understanding the interplay between motor and sensory development, and how the mechanisms of perception cooperate with behavior.
Collapse
Affiliation(s)
| | - Lucy Tian
- Department of Biology, Washington University in Saint Louis
| | - Hudson Lin
- Department of Biology, Washington University in Saint Louis
| | - Katheryn B Lefton
- Department of Biology, Washington University in Saint Louis
- Department of Neuroscience, Washington University in Saint Louis
| | - Siyu Chen
- Department of Genetics, Washington University in Saint Louis
| | | | - Joe P Culver
- Department of Radiology, Washington University in Saint Louis
| | - Mary E Lambo
- Department of Biology, Washington University in Saint Louis
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis
| |
Collapse
|
14
|
Pali E, D’Angelo E, Prestori F. Understanding Cerebellar Input Stage through Computational and Plasticity Rules. BIOLOGY 2024; 13:403. [PMID: 38927283 PMCID: PMC11200477 DOI: 10.3390/biology13060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
A central hypothesis concerning brain functioning is that plasticity regulates the signal transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, the granular layer has been shown to control the gain of signals transmitted through the mossy fiber pathway. Until now, the impact of plasticity on incoming activity patterns has been analyzed by combining electrophysiological recordings in acute cerebellar slices and computational modeling, unraveling a broad spectrum of different forms of synaptic plasticity in the granular layer, often accompanied by forms of intrinsic excitability changes. Here, we attempt to provide a brief overview of the most prominent forms of plasticity at the excitatory synapses formed by mossy fibers onto primary neuronal components (granule cells, Golgi cells and unipolar brush cells) in the granular layer. Specifically, we highlight the current understanding of the mechanisms and their functional implications for synaptic and intrinsic plasticity, providing valuable insights into how inputs are processed and reconfigured at the cerebellar input stage.
Collapse
Affiliation(s)
- Eleonora Pali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
- Digital Neuroscience Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (E.P.)
| |
Collapse
|
15
|
Khanjanianpak M, Azimi-Tafreshi N, Valizadeh A. Emergence of complex oscillatory dynamics in the neuronal networks with long activity time of inhibitory synapses. iScience 2024; 27:109401. [PMID: 38532887 PMCID: PMC10963234 DOI: 10.1016/j.isci.2024.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The brain displays complex dynamics, including collective oscillations, and extensive research has been conducted to understand their generation. However, our understanding of how biological constraints influence these oscillations is incomplete. This study investigates the essential properties of neuronal networks needed to generate oscillations resembling those in the brain. A simple discrete-time model of interconnected excitable elements is developed, capable of closely resembling the complex oscillations observed in biological neural networks. In the model, synaptic connections remain active for a duration exceeding individual neuron activity. We show that the inhibitory synapses must exhibit longer activity than excitatory synapses to produce a diverse range of the dynamical states, including biologically plausible oscillations. Upon meeting this condition, the transition between different dynamical states can be controlled by external stochastic input to the neurons. The study provides a comprehensive explanation for the emergence of distinct dynamical states in neural networks based on specific parameters.
Collapse
Affiliation(s)
- Mozhgan Khanjanianpak
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 1991633357, Iran
| | - Nahid Azimi-Tafreshi
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Alireza Valizadeh
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 1991633357, Iran
| |
Collapse
|
16
|
Kanigowski D, Urban-Ciecko J. Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex. Cereb Cortex 2024; 34:bhae109. [PMID: 38572735 PMCID: PMC10993172 DOI: 10.1093/cercor/bhae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Many studies indicate a broad role of various classes of GABAergic interneurons in the processes related to learning. However, little is known about how the learning process affects intrinsic excitability of specific classes of interneurons in the neocortex. To determine this, we employed a simple model of conditional learning in mice where vibrissae stimulation was used as a conditioned stimulus and a tail shock as an unconditioned one. In vitro whole-cell patch-clamp recordings showed an increase in intrinsic excitability of low-threshold spiking somatostatin-expressing interneurons (SST-INs) in layer 4 (L4) of the somatosensory (barrel) cortex after the conditioning paradigm. In contrast, pseudoconditioning reduced intrinsic excitability of SST-LTS, parvalbumin-expressing interneurons (PV-INs), and vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) with accommodating pattern in L4 of the barrel cortex. In general, increased intrinsic excitability was accompanied by narrowing of action potentials (APs), whereas decreased intrinsic excitability coincided with AP broadening. Altogether, these results show that both conditioning and pseudoconditioning lead to plastic changes in intrinsic excitability of GABAergic interneurons in a cell-specific manner. In this way, changes in intrinsic excitability can be perceived as a common mechanism of learning-induced plasticity in the GABAergic system.
Collapse
Affiliation(s)
- Dominik Kanigowski
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology PAS, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
17
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
18
|
Khodaie B, Edelmann E, Leßmann V. Distinct GABAergic modulation of timing-dependent LTP in CA1 pyramidal neurons along the longitudinal axis of the mouse hippocampus. iScience 2024; 27:109320. [PMID: 38487018 PMCID: PMC10937841 DOI: 10.1016/j.isci.2024.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Synaptic plasticity in the hippocampus underlies episodic memory formation, with dorsal hippocampus being instrumental for spatial memory whereas ventral hippocampus is crucial for emotional learning. Here, we studied how GABAergic inhibition regulates physiologically relevant low repeat spike timing-dependent LTP (t-LTP) at Schaffer collateral-CA1 synapses along the dorsoventral hippocampal axis. We used two t-LTP protocols relying on only 6 repeats of paired spike-firing in pre- and postsynaptic cells within 10 s that differ in postsynaptic firing patterns. GABAA receptor mechanisms played a greater role in blocking 6× 1:1 t-LTP that recruits single postsynaptic action potentials. 6× 1:4 t-LTP that depends on postsynaptic burst-firing unexpectedly required intact GABAB receptor signaling. The magnitude of both t-LTP-forms decreased along the dorsoventral axis, despite increasing excitability and basal synaptic strength in this direction. This suggests that GABAergic inhibition contributes to the distinct roles of dorsal and ventral hippocampus in memory formation.
Collapse
Affiliation(s)
- Babak Khodaie
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
| | - Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39104 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
| | - Volkmar Leßmann
- Institut für Physiologie, Otto-von-Guericke-Universität (OVGU), Medizinische Fakultät, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39104 Magdeburg, Germany
- OVGU International ESF-funded Graduate School ABINEP, 39104 Magdeburg, Germany
- DZPG (German Center of Mental Health), partner site Halle/Jena/Magdeburg (CIRC), Magdeburg, Germany
| |
Collapse
|
19
|
Wang J, Ilyas N, Ren Y, Ji Y, Li S, Li C, Liu F, Gu D, Ang KW. Technology and Integration Roadmap for Optoelectronic Memristor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307393. [PMID: 37739413 DOI: 10.1002/adma.202307393] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Optoelectronic memristors (OMs) have emerged as a promising optoelectronic Neuromorphic computing paradigm, opening up new opportunities for neurosynaptic devices and optoelectronic systems. These OMs possess a range of desirable features including minimal crosstalk, high bandwidth, low power consumption, zero latency, and the ability to replicate crucial neurological functions such as vision and optical memory. By incorporating large-scale parallel synaptic structures, OMs are anticipated to greatly enhance high-performance and low-power in-memory computing, effectively overcoming the limitations of the von Neumann bottleneck. However, progress in this field necessitates a comprehensive understanding of suitable structures and techniques for integrating low-dimensional materials into optoelectronic integrated circuit platforms. This review aims to offer a comprehensive overview of the fundamental performance, mechanisms, design of structures, applications, and integration roadmap of optoelectronic synaptic memristors. By establishing connections between materials, multilayer optoelectronic memristor units, and monolithic optoelectronic integrated circuits, this review seeks to provide insights into emerging technologies and future prospects that are expected to drive innovation and widespread adoption in the near future.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yun Ji
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Changcun Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Deen Gu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
20
|
Friedenberger Z, Harkin E, Tóth K, Naud R. Silences, spikes and bursts: Three-part knot of the neural code. J Physiol 2023; 601:5165-5193. [PMID: 37889516 DOI: 10.1113/jp281510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Collapse
Affiliation(s)
- Zachary Friedenberger
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| | - Emerson Harkin
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katalin Tóth
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Naud
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| |
Collapse
|
21
|
Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron 2023; 111:3414-3434.e15. [PMID: 37734381 PMCID: PMC10843525 DOI: 10.1016/j.neuron.2023.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/19/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a tremendous burden for afflicted individuals and society. Although opioids effectively relieve pain, significant adverse outcomes limit their utility and efficacy. To investigate alternate pain control mechanisms, we explored cholinergic signaling in the ventrolateral periaqueductal gray (vlPAG), a critical nexus for descending pain modulation. Biosensor assays revealed that pain states decreased acetylcholine release in vlPAG. Activation of cholinergic projections from the pedunculopontine tegmentum to vlPAG relieved pain, even in opioid-tolerant conditions, through ⍺7 nicotinic acetylcholine receptors (nAChRs). Activating ⍺7 nAChRs with agonists or stimulating endogenous acetylcholine inhibited vlPAG neuronal activity through Ca2+ and peroxisome proliferator-activated receptor α (PPAR⍺)-dependent signaling. In vivo 2-photon imaging revealed that chronic pain induces aberrant excitability of vlPAG neuronal ensembles and that ⍺7 nAChR-mediated inhibition of these cells relieves pain, even after opioid tolerance. Finally, pain relief through these cholinergic mechanisms was not associated with tolerance, reward, or withdrawal symptoms, highlighting its potential clinical relevance.
Collapse
Affiliation(s)
- Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Alissa Kunczt
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Chen L, Christenson Wick Z, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg PA, Soler I, Feng Y, Cai DJ, Shuman T. Progressive Excitability Changes in the Medial Entorhinal Cortex in the 3xTg Mouse Model of Alzheimer's Disease Pathology. J Neurosci 2023; 43:7441-7454. [PMID: 37714705 PMCID: PMC10621765 DOI: 10.1523/jneurosci.1204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in hippocampus, but less is known about changes in medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at 3 and 10 months of age in the 3xTg mouse model of AD pathology, using male and female mice. At 3 months of age, before the onset of memory impairments, we found early hyperexcitability in intrinsic properties of MECII stellate and pyramidal cells, but this was balanced by a relative reduction in synaptic excitation (E) compared with inhibition (I; E/I ratio), suggesting intact homeostatic mechanisms regulating MECII activity. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable, and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsic and synaptic hyperexcitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this postsymptomatic time point, which may contribute to the emergence of memory deficits in AD.SIGNIFICANCE STATEMENT AD causes cognitive deficits, but the specific neural circuits that are damaged to drive changes in memory remain unknown. Using a mouse model of AD pathology that expresses both amyloid and tau transgenes, we found that neurons in the MEC have altered excitability. Before the onset of memory impairments, neurons in layer 2 of MEC had increased intrinsic excitability, but this was balanced by reduced inputs onto the cell. However, after the onset of memory impairments, stellate cells in MEC became further hyperexcitable, with increased excitability exacerbated by increased synaptic inputs. Thus, it appears that MEC stellate cells are uniquely disrupted during the progression of memory deficits and may contribute to cognitive deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Zoé Christenson Wick
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lauren M Vetere
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nick Vaughan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Albert Jurkowski
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Hunter College, City University of New York, New York, New York 10065
| | - Angelina Galas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- New York University, New York, New York 10012
| | - Keziah S Diego
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Paul A Philipsberg
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ivan Soler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yu Feng
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Denise J Cai
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Tristan Shuman
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
23
|
Lu Y, Sciaccotta F, Kiely L, Bellanger B, Erisir A, Meliza CD. Rapid, Activity-Dependent Intrinsic Plasticity in the Developing Zebra Finch Auditory Cortex. J Neurosci 2023; 43:6872-6883. [PMID: 37648449 PMCID: PMC10573762 DOI: 10.1523/jneurosci.0354-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
The acoustic environment an animal experiences early in life shapes the structure and function of its auditory system. This process of experience-dependent development is thought to be primarily orchestrated by potentiation and depression of synapses, but plasticity of intrinsic voltage dynamics may also contribute. Here, we show that in juvenile male and female zebra finches, neurons in a cortical-level auditory area, the caudal mesopallium (CM), can rapidly change their firing dynamics. This plasticity was only observed in birds that were reared in a complex acoustic and social environment, which also caused increased expression of the low-threshold potassium channel Kv1.1 in the plasma membrane and endoplasmic reticulum (ER). Intrinsic plasticity depended on activity, was reversed by blocking low-threshold potassium currents, and was prevented by blocking intracellular calcium signaling. Taken together, these results suggest that Kv1.1 is rapidly mobilized to the plasma membrane by activity-dependent elevation of intracellular calcium. This produces a shift in the excitability and temporal integration of CM neurons that may be permissive for auditory learning in complex acoustic environments during a crucial period for the development of vocal perception and production.SIGNIFICANCE STATEMENT Neurons can change not only the strength of their connections to other neurons, but also how they integrate synaptic currents to produce patterns of action potentials. In contrast to synaptic plasticity, the mechanisms and functional roles of intrinisic plasticity remain poorly understood. We found that neurons in the zebra finch auditory cortex can rapidly shift their spiking dynamics within a few minutes in response to intracellular stimulation. This plasticity involves increased conductance of a low-threshold potassium current associated with the Kv1.1 channel, but it only occurs in birds reared in a rich acoustic environment. Thus, auditory experience regulates a mechanism of neural plasticity that allows neurons to rapidly adapt their firing dynamics to stimulation.
Collapse
Affiliation(s)
| | | | | | | | - Alev Erisir
- Psychology Department
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904
| | - C Daniel Meliza
- Psychology Department
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
24
|
Khani F, Pourmotabbed A, Hosseinmardi N, Alaee E, Fathollahi Y, Azizi H. Acute adolescent morphine exposure improves dark avoidance memory and enhances long-term potentiation of ventral hippocampal CA1 during adulthood in rats. Addict Biol 2023; 28:e13308. [PMID: 37500490 DOI: 10.1111/adb.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023]
Abstract
Adolescence represents a distinctive vulnerable period when exposure to stressful situations including opioid exposure can entail lasting effects on brain and can change neural mechanisms involved in memory formation for drug-associated cues, possibly increasing vulnerability of adolescents to addiction. Herein, the effects of acute adolescent morphine exposure (AAME, two injections of 2.5 mg/kg SC morphine on PND 31) were therefore investigated 6 weeks later (adulthood) on avoidance memory and hippocampal long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in transvers slices from the ventral hippocampus in adult male rats using field recordings technique. Animal body weight was measured from PND 31 throughout PND 40 and also in four time points with 1 week intervals from adolescence to adulthood (PNDs 48, 55, 62 and 69) to evaluate the effect of AAME on the weight gain. We showed that there were no effects on body weight, anxiety-like behaviour and locomotor activity, even until adulthood. There was an improved dark avoidance memory during adulthood. Finally, AAME had no effects on baseline synaptic responses and resulted in a decrease in the mean values of the field excitatory postsynaptic potential slopes required to evoke the half-maximal population spike amplitude and an enhancement of LTP magnitude (%) in the ventral CA1 during adulthood. Briefly, our results suggest long-lasting effects of acute adolescent morphine exposure on the ventral hippocampus, which begin the enhancing of synaptic plasticity and the improving of emotional memory in adulthood.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Alaee
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Hennig MH. The sloppy relationship between neural circuit structure and function. J Physiol 2023; 601:3025-3035. [PMID: 35876720 DOI: 10.1113/jp282757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
Investigating and describing the relationships between the structure of a circuit and its function has a long tradition in neuroscience. Since neural circuits acquire their structure through sophisticated developmental programmes, and memories and experiences are maintained through synaptic modification, it is to be expected that structure is closely linked to function. Recent findings challenge this hypothesis from three different angles: function does not strongly constrain circuit parameters, many parameters in neural circuits are irrelevant and contribute little to function, and circuit parameters are unstable and subject to constant random drift. At the same time, however, recent work also showed that dynamics in neural circuit activity that is related to function are robust over time and across individuals. Here this apparent contradiction is addressed by considering the properties of neural manifolds that restrict circuit activity to functionally relevant subspaces, and it will be suggested that degenerate, anisotropic and unstable parameter spaces are closely related to the structure and implementation of functionally relevant neural manifolds.
Collapse
Affiliation(s)
- Matthias H Hennig
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
26
|
González Olmo BM, Bettes MN, DeMarsh JW, Zhao F, Askwith C, Barrientos RM. Short-term high-fat diet consumption impairs synaptic plasticity in the aged hippocampus via IL-1 signaling. NPJ Sci Food 2023; 7:35. [PMID: 37460765 DOI: 10.1038/s41538-023-00211-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
More Americans are consuming diets higher in saturated fats and refined sugars than ever before. These trends could have serious consequences for the older population because high-fat diet (HFD) consumption, known to induce neuroinflammation, has been shown to accelerate and aggravate memory declines. We have previously demonstrated that short-term HFD consumption, which does not evoke obesity-related comorbidities, produced profound impairments to hippocampal-dependent memory in aged rats. These impairments were precipitated by increases in proinflammatory cytokines, primarily interleukin-1 beta (IL-1β). Here, we explored the extent to which short-term HFD consumption disrupts hippocampal synaptic plasticity, as measured by long-term potentiation (LTP), in young adult and aged rats. We demonstrated that (1) HFD disrupted late-phase LTP in the hippocampus of aged, but not young adult rats, (2) HFD did not disrupt early-phase LTP, and (3) blockade of the IL-1 receptor rescued L-LTP in aged HFD-fed rats. These findings suggest that hippocampal memory impairments in aged rats following HFD consumption occur through the deterioration of synaptic plasticity and that IL-1β is a critical driver of that deterioration.
Collapse
Affiliation(s)
- Brigitte M González Olmo
- Department of Biomedical Education & Anatomy, Ohio State University, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - James W DeMarsh
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
27
|
Jang DC, Chung G, Kim SK, Kim SJ. Dynamic alteration of intrinsic properties of the cerebellar Purkinje cell during the motor memory consolidation. Mol Brain 2023; 16:58. [PMID: 37430311 DOI: 10.1186/s13041-023-01043-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Intrinsic plasticity of the cerebellar Purkinje cell (PC) plays a critical role in motor memory consolidation. However, detailed changes in their intrinsic properties during memory consolidation are not well understood. Here, we report alterations in various properties involved in intrinsic excitability, such as the action potential (AP) threshold, AP width, afterhyperpolarization (AHP), and sag voltage, which are associated with the long-term depression of intrinsic excitability following the motor memory consolidation process. We analyzed data recorded from PCs before and 1, 4, and 24 h after cerebellum-dependent motor learning and found that these properties underwent dynamic changes during the consolidation process. We further analyzed data from PC-specific STIM1 knockout (STIM1PKO) mice, which show memory consolidation deficits, and derived intrinsic properties showing distinct change patterns compared with those of wild-type littermates. The levels of memory retention in the STIM1PKO mice were significantly different compared to wild-type mice between 1 and 4 h after training, and AP width, fast- and medium-AHP, and sag voltage showed different change patterns during this period. Our results provide information regarding alterations in intrinsic properties during a particular period that are critical for memory consolidation.
Collapse
Affiliation(s)
- Dong Cheol Jang
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
| |
Collapse
|
28
|
Chen L, Wick ZC, Vetere LM, Vaughan N, Jurkowski A, Galas A, Diego KS, Philipsberg P, Cai DJ, Shuman T. Progressive excitability changes in the medial entorhinal cortex in the 3xTg mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542838. [PMID: 37398359 PMCID: PMC10312508 DOI: 10.1101/2023.05.30.542838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by memory loss and progressive cognitive impairments. In mouse models of AD pathology, studies have found neuronal and synaptic deficits in the hippocampus, but less is known about what happens in the medial entorhinal cortex (MEC), which is the primary spatial input to the hippocampus and an early site of AD pathology. Here, we measured the neuronal intrinsic excitability and synaptic activity in MEC layer II (MECII) stellate cells, MECII pyramidal cells, and MEC layer III (MECIII) excitatory neurons at early (3 months) and late (10 months) time points in the 3xTg mouse model of AD pathology. At 3 months of age, prior to the onset of memory impairments, we found early hyperexcitability in MECII stellate and pyramidal cells' intrinsic properties, but this was balanced by a relative reduction in synaptic excitation (E) compared to inhibition (I), suggesting intact homeostatic mechanisms regulating activity in MECII. Conversely, MECIII neurons had reduced intrinsic excitability at this early time point with no change in the synaptic E/I ratio. By 10 months of age, after the onset of memory deficits, neuronal excitability of MECII pyramidal cells and MECIII excitatory neurons was largely normalized in 3xTg mice. However, MECII stellate cells remained hyperexcitable and this was further exacerbated by an increased synaptic E/I ratio. This observed combination of increased intrinsically and synaptically generated excitability suggests a breakdown in homeostatic mechanisms specifically in MECII stellate cells at this post-symptomatic time point. Together, these data suggest that the breakdown in homeostatic excitability mechanisms in MECII stellate cells may contribute to the emergence of memory deficits in AD.
Collapse
Affiliation(s)
- Lingxuan Chen
- Icahn School of Medicine at Mount Sinai, New York NY
- University of California Irvine, Irvine CA
| | | | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York NY
| | - Albert Jurkowski
- Icahn School of Medicine at Mount Sinai, New York NY
- CUNY Hunter College, New York NY
| | - Angelina Galas
- Icahn School of Medicine at Mount Sinai, New York NY
- New York University, New York NY
| | | | | | - Denise J. Cai
- Icahn School of Medicine at Mount Sinai, New York NY
| | | |
Collapse
|
29
|
Chen L, Francisco TR, Baggetta AM, Zaki Y, Ramirez S, Clem RL, Shuman T, Cai DJ. Ensemble-specific deficit in neuronal intrinsic excitability in aged mice. Neurobiol Aging 2023; 123:92-97. [PMID: 36652783 PMCID: PMC9892234 DOI: 10.1016/j.neurobiolaging.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
With the prevalence of age-related cognitive deficits on the rise, it is essential to identify cellular and circuit alterations that contribute to age-related memory impairment. Increased intrinsic neuronal excitability after learning is important for memory consolidation, and changes to this process could underlie memory impairment in old age. Some studies find age-related deficits in hippocampal neuronal excitability that correlate with memory impairment but others do not, possibly due to selective changes only in activated neural ensembles. Thus, we tagged CA1 neurons activated during learning and recorded their intrinsic excitability 5 hours or 7 days post-training. Adult mice exhibited increased neuronal excitability 5 hours after learning, specifically in ensemble (learning-activated) CA1 neurons. As expected, ensemble excitability returned to baseline 7 days post-training. In aged mice, there was no ensemble-specific excitability increase after learning, which was associated with impaired hippocampal memory performance. These results suggest that CA1 may be susceptible to age-related impairments in post-learning ensemble excitability and underscore the need to selectively measure ensemble-specific changes in the brain.
Collapse
Affiliation(s)
- Lingxuan Chen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Taylor R Francisco
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Austin M Baggetta
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yosif Zaki
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Roger L Clem
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tristan Shuman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Denise J Cai
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Zeng J, Chen X, Liu S, Chen Q, Liu G. Organic Memristor with Synaptic Plasticity for Neuromorphic Computing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:803. [PMID: 36903681 PMCID: PMC10005145 DOI: 10.3390/nano13050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Memristors have been considered to be more efficient than traditional Complementary Metal Oxide Semiconductor (CMOS) devices in implementing artificial synapses, which are fundamental yet very critical components of neurons as well as neural networks. Compared with inorganic counterparts, organic memristors have many advantages, including low-cost, easy manufacture, high mechanical flexibility, and biocompatibility, making them applicable in more scenarios. Here, we present an organic memristor based on an ethyl viologen diperchlorate [EV(ClO4)]2/triphenylamine-containing polymer (BTPA-F) redox system. The device with bilayer structure organic materials as the resistive switching layer (RSL) exhibits memristive behaviors and excellent long-term synaptic plasticity. Additionally, the device's conductance states can be precisely modulated by consecutively applying voltage pulses between the top and bottom electrodes. A three-layer perception neural network with in situ computing enabled was then constructed utilizing the proposed memristor and trained on the basis of the device's synaptic plasticity characteristics and conductance modulation rules. Recognition accuracies of 97.3% and 90% were achieved, respectively, for the raw and 20% noisy handwritten digits images from the Modified National Institute of Standards and Technology (MNIST) dataset, demonstrating the feasibility and applicability of implementing neuromorphic computing applications utilizing the proposed organic memristor.
Collapse
Affiliation(s)
- Jianmin Zeng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinhui Chen
- College of Information Engineering, Jinhua Polytechnic, Jinhua 321017, China
| | - Shuzhi Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qilai Chen
- AEROSPACE SCIENCE & INDUSTRY SHENZHEN (GROUP) CO., LTD., Shenzhen 518000, China
| | - Gang Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
31
|
McFarlan AR, Chou CYC, Watanabe A, Cherepacha N, Haddad M, Owens H, Sjöström PJ. The plasticitome of cortical interneurons. Nat Rev Neurosci 2023; 24:80-97. [PMID: 36585520 DOI: 10.1038/s41583-022-00663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Hebb postulated that, to store information in the brain, assemblies of excitatory neurons coding for a percept are bound together via associative long-term synaptic plasticity. In this view, it is unclear what role, if any, is carried out by inhibitory interneurons. Indeed, some have argued that inhibitory interneurons are not plastic. Yet numerous recent studies have demonstrated that, similar to excitatory neurons, inhibitory interneurons also undergo long-term plasticity. Here, we discuss the many diverse forms of long-term plasticity that are found at inputs to and outputs from several types of cortical inhibitory interneuron, including their plasticity of intrinsic excitability and their homeostatic plasticity. We explain key plasticity terminology, highlight key interneuron plasticity mechanisms, extract overarching principles and point out implications for healthy brain functionality as well as for neuropathology. We introduce the concept of the plasticitome - the synaptic plasticity counterpart to the genome or the connectome - as well as nomenclature and definitions for dealing with this rich diversity of plasticity. We argue that the great diversity of interneuron plasticity rules is best understood at the circuit level, for example as a way of elucidating how the credit-assignment problem is solved in deep biological neural networks.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Nicole Cherepacha
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Maria Haddad
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
32
|
Changes in the Electrical Characteristics of Premotor Interneurons and Serotonin-Containing Modulator Snail Neurons upon Developing a Contextual Conditioned Reflex and Its Reconsolidation. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Kida H, Kawakami R, Sakai K, Otaku H, Imamura K, Han TZ, Sakimoto Y, Mitsushima D. Motor training promotes both synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. J Physiol 2023; 601:335-353. [PMID: 36515167 DOI: 10.1113/jp283755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Layer V neurons in the primary motor cortex (M1) are important for motor skill learning. Since pretreatment of either CNQX or APV in rat M1 layer V impaired rotor rod learning, we analysed training-induced synaptic plasticity by whole-cell patch-clamp technique in acute brain slices. Rats trained for 1 day showed a decrease in small inhibitory postsynaptic current (mIPSC) frequency and an increase in the paired-pulse ratio of evoked IPSCs, suggesting a transient decrease in presynaptic GABA release in the early phase. Rats trained for 2 days showed an increase in miniature excitatory postsynaptic current (mEPSC) amplitudes/frequency and elevated AMPA/NMDA ratios, suggesting a long-term strengthening of AMPA receptor-mediated excitatory synapses. Importantly, rotor rod performance in trained rats was correlated with the mean mEPSC amplitude and the frequency obtained from that animal. In current-clamp analysis, 1-day-trained rats transiently decreased the current-induced firing rate, while 2-day-trained rats returned to pre-training levels, suggesting dynamic changes in intrinsic properties. Furthermore, western blot analysis of layer V detected decreased phosphorylation of Ser408-409 in GABAA receptor β3 subunits in 1-day-trained rats, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in 2-day-trained rats. Finally, live-imaging analysis of Thy1-YFP transgenic mice showed that the training rapidly recruited a substantial number of spines for long-term plasticity in M1 layer V neurons. Taken together, these results indicate that motor training induces complex and diverse plasticity in M1 layer V pyramidal neurons. KEY POINTS: Here we examined motor training-induced synaptic and intrinsic plasticity of layer V pyramidal neurons in the primary motor cortex. The training reduced presynaptic GABA release in the early phase, but strengthened AMPA receptor-mediated excitatory synapses in the later phase: acquired motor performance after training correlated with the strength of excitatory synapses rather than inhibitory synapses. As to the intrinsic property, the training transiently decreased the firing rate in the early phase, but returned to pre-training levels in the later phase. Western blot analysis detected decreased phosphorylation of Ser408-409 in GABAA receptor β3 subunits in the acute phase, and increased phosphorylation of Ser831 in AMPA receptor GluA1 subunits in the later phase. Live-imaging analysis of Thy1-YFP transgenic mice showed rapid and long-term spine plasticity in M1 layer V neurons, suggesting training-induced increases in self-entropy per spine.
Collapse
Affiliation(s)
- H Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - R Kawakami
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - K Sakai
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - H Otaku
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - K Imamura
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Thiri-Zin Han
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Y Sakimoto
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,The Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
34
|
A single bout of aerobic exercise modulates motor learning performance and cortical excitability in humans. Int J Clin Health Psychol 2023; 23:100333. [PMID: 36168600 PMCID: PMC9483626 DOI: 10.1016/j.ijchp.2022.100333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/06/2022] [Indexed: 11/22/2022] Open
|
35
|
Han X, Matsuda N, Ishibashi Y, Odawara A, Takahashi S, Tooi N, Kinoshita K, Suzuki I. A functional neuron maturation device provides convenient application on microelectrode array for neural network measurement. Biomater Res 2022; 26:84. [PMID: 36539898 PMCID: PMC9768978 DOI: 10.1186/s40824-022-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microelectrode array (MEA) systems are valuable for in vitro assessment of neurotoxicity and drug efficiency. However, several difficulties such as protracted functional maturation and high experimental costs hinder the use of MEA analysis requiring human induced pluripotent stem cells (hiPSCs). Neural network functional parameters are also needed for in vitro to in vivo extrapolation. METHODS In the present study, we produced a cost effective nanofiber culture platform, the SCAD device, for long-term culture of hiPSC-derived neurons and primary peripheral neurons. The notable advantage of SCAD device is convenient application on multiple MEA systems for neuron functional analysis. RESULTS We showed that the SCAD device could promote functional maturation of cultured hiPSC-derived neurons, and neurons responded appropriately to convulsant agents. Furthermore, we successfully analyzed parameters for in vitro to in vivo extrapolation, i.e., low-frequency components and synaptic propagation velocity of the signal, potentially reflecting neural network functions from neurons cultured on SCAD device. Finally, we measured the axonal conduction velocity of peripheral neurons. CONCLUSIONS Neurons cultured on SCAD devices might constitute a reliable in vitro platform to investigate neuron functions, drug efficacy and toxicity, and neuropathological mechanisms by MEA.
Collapse
Affiliation(s)
- Xiaobo Han
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Naoki Matsuda
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Yuto Ishibashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Aoi Odawara
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Sayuri Takahashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Norie Tooi
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Koshi Kinoshita
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Ikuro Suzuki
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| |
Collapse
|
36
|
Yu M, Zhu QQ, Niu ML, Li N, Ren BQ, Yu TB, Zhou ZS, Guo JD, Zhou Y. Ghrelin infusion into the basolateral amygdala suppresses CTA memory formation in rats via the PI3K/Akt/mTOR and PLC/PKC signaling pathways. Acta Pharmacol Sin 2022; 43:2242-2252. [PMID: 35169271 PMCID: PMC9433413 DOI: 10.1038/s41401-022-00859-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Ghrelin is a circulating orexigenic hormone that promotes feeding behavior and regulates metabolism in humans and rodents. We previously reported that local infusion of ghrelin into the basolateral amygdala (BLA) blocked memory acquisition for conditioned taste aversion (CTA) by activating growth hormone secretagogue receptor 1a. In this study, we further explored the underlying mechanism and signaling pathways mediating ghrelin modulation of CTA memory in rats. Pharmacological agents targeting distinct signaling pathways were infused into the BLA during conditioning. We showed that preadministration of the PI3K inhibitor LY294002 abolished the repressive effect of ghrelin on CTA memory. Moreover, LY294002 pretreatment prevented ghrelin from inhibiting Arc and zif268 mRNA expression in the BLA triggered by CTA memory retrieval. Preadministration of rapamycin eliminated the repressive effect of ghrelin, while Gsk3 inhibitors failed to mimic ghrelin's effect. In addition, PLC and PKC inhibitors microinfused in the BLA blocked ghrelin's repression of CTA acquisition. These results demonstrate that ghrelin signaling in the BLA shapes CTA memory via the PI3K/Akt/mTOR and PLC/PKC pathways. We conducted in vivo multichannel recordings from mouse BLA neurons and found that microinjection of ghrelin (20 µM) suppressed intrinsic excitability. By means of whole-cell recordings from rat brain slices, we showed that bath application of ghrelin (200 nM) had no effect on basal synaptic transmission or synaptic plasticity of BLA pyramidal neurons. Together, this study reveals the mechanism underlying ghrelin-induced interference with CTA memory acquisition in rats, i.e., suppression of intrinsic excitability of BLA principal neurons via the PI3K/Akt/mTOR and PLC/PKC pathways.
Collapse
Affiliation(s)
- Ming Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Qian-Qian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Ming-Lu Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Bai-Qing Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China
| | - Teng-Bo Yu
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Zhi-Shang Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China.
- Department of rehabilitation medicine, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
37
|
Qiao Q, Wu C, Ma L, Zhang H, Li M, Wu X, Gan WB. Motor learning-induced new dendritic spines are preferentially involved in the learned task than existing spines. Cell Rep 2022; 40:111229. [PMID: 35977515 DOI: 10.1016/j.celrep.2022.111229] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Learning induces the formation of new synapses in addition to changes of existing synapse strength. However, it remains unclear whether new synapses serve different functions from existing synapses. By performing two-photon structural and Ca2+ imaging of postsynaptic dendritic spines in layer 2/3 pyramidal neurons, we show that new spine formation increases in the mouse motor cortex 8-24 h after motor training. New spines, not existing spine populations, are preferentially active when mice perform the learned task rather than a new task. New spine activity is also more synchronized with dendritic/somatic activity when the learned task, not a new task, is carried out. Furthermore, new spines are formed to increase the task specificity in a subset of neurons, and their survival is not affected when a new task is learned. These findings suggest that newly formed synapses preferentially increase the task specificity of neurons over existing synapses at the retention stage of motor learning.
Collapse
Affiliation(s)
- Qian Qiao
- Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chunling Wu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lei Ma
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hua Zhang
- Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Miao Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xujun Wu
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wen-Biao Gan
- Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
38
|
Guardiola-Ripoll M, Almodóvar-Payá C, Lubeiro A, Salvador R, Salgado-Pineda P, Gomar JJ, Guerrero-Pedraza A, Sarró S, Maristany T, Fernández-Linsenbarth I, Hernández-García M, Papiol S, Molina V, Pomarol-Clotet E, Fatjó-Vilas M. New insights of the role of the KCNH2 gene in schizophrenia: An fMRI case-control study. Eur Neuropsychopharmacol 2022; 60:38-47. [PMID: 35635995 DOI: 10.1016/j.euroneuro.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
The KCNH2 gene, encoding for a subunit of a voltage-gated potassium channel, has been identified as a key element of neuronal excitability and a promising novel therapeutic target for schizophrenia (SZ). Nonetheless, evidence highlighting the role of KCNH2 on cognitive and brain activity phenotypes comes mainly from studies based on healthy controls (HC). Therefore, we aimed to study the role of KCNH2 on the brain functional differences between patients with SZ and HC. The fMRI sample comprised 78 HC and 79 patients with SZ (matched for age, sex and premorbid IQ). We studied the effect of the polymorphism KCNH2-rs3800779 on attention and working memory-related brain activity, evaluated through the N-back task, in regions with detected diagnostic differences (regression model, controlled for age, sex and premorbid IQ, FEAT-FSL). We report a significant diagnosis x KCNH2 interaction on brain activity (1-back vs baseline contrast) at the medial superior prefrontal cortex (Zmax=3.55, p = 0.00861). In this region, patients with SZ carrying the risk genotype (AA) show a deactivation failure, while HC depict the opposite pattern towards deactivation. The brain region with significant diagnosis x KCNH2 interaction has been previously associated with SZ. The results of this study, in which the role of KCNH2 on fMRI response is analysed for the first time in patients, suggest that KCNH2 variability contributes to inefficient brain activity modulation during the N-back task in affected subjects. These data may pave the way to further understand how KCNH2 genetic variability is related to the pathophysiological mechanisms underlying schizophrenia.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Pilar Salgado-Pineda
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Jesús J Gomar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; The Litwin-Zucker Alzheimer's Research Center, NY, United States
| | - Amalia Guerrero-Pedraza
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Benito Menni-CASM, Sant Boi de Llobregat, Barcelona, Spain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain
| | - Teresa Maristany
- Diagnostic Imaging Department, Hospital Sant Joan de Déu Research Foundation, Barcelona, Spain
| | | | - Marta Hernández-García
- Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| | - Sergi Papiol
- CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Psychiatry, University Hospital, Ludwig Maximilian University, Munich Germany
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Valladolid, Spain; Neurosciences Institute of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Psychiatry Service, University Hospital of Valladolid, Valladolid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain.
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM (Biomedical Research Network in Mental Health, Instituto de Salud Carlos III), Madrid, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona; Barcelona, Spain.
| |
Collapse
|
39
|
Anxiety and hippocampal neuronal activity: Relationship and potential mechanisms. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:431-449. [PMID: 34873665 DOI: 10.3758/s13415-021-00973-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
The hippocampus has been implicated in modulating anxiety. It interacts with a variety of brain regions, both cortical and subcortical areas regulating emotion and stress responses, including prefrontal cortex, amygdala, hypothalamus, and the nucleus accumbens, to adjust anxiety levels in response to a variety of stressful conditions. Growing evidence indicates that anxiety is associated with increased neuronal excitability in the hippocampus, and alterations in local regulation of hippocampal excitability have been suggested to underlie behavioral disruptions characteristic of certain anxiety disorders. Furthermore, studies have shown that some anxiolytics can treat anxiety by altering the excitability and plasticity of hippocampal neurons. Hence, identifying cellular and molecular mechanisms and neural circuits that regulate hippocampal excitability in anxiety may be beneficial for developing targeted interventions for treatment of anxiety disorders particularly for the treatment-resistant cases. We first briefly review a role of the hippocampus in fear. We then review the evidence indicating a relationship between the hippocampal activity and fear/anxiety and discuss some possible mechanisms underlying stress-induced hippocampal excitability and anxiety-related behavior.
Collapse
|
40
|
Iranmehr E, Shouraki SB, Faraji M. Developing a structural-based local learning rule for classification tasks using ionic liquid space-based reservoir. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Eom K, Lee HR, Hyun JH, An H, Lee YS, Ho WK, Lee SH. Gradual decorrelation of CA3 ensembles associated with contextual discrimination learning is impaired by Kv1.2 insufficiency. Hippocampus 2022; 32:193-216. [PMID: 34964210 DOI: 10.1002/hipo.23400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022]
Abstract
The associative network of hippocampal CA3 is thought to contribute to rapid formation of contextual memory from one-trial learning, but the network mechanisms underlying decorrelation of neuronal ensembles in CA3 is largely unknown. Kv1.2 expressions in rodent CA3 pyramidal cells (CA3-PCs) are polarized to distal apical dendrites, and its downregulation specifically enhances dendritic responses to perforant pathway (PP) synaptic inputs. We found that haploinsufficiency of Kv1.2 (Kcna2+/-) in CA3-PCs, but not Kv1.1 (Kcna1+/-), lowers the threshold for long-term potentiation (LTP) at PP-CA3 synapses, and that the Kcna2+/- mice are normal in discrimination of distinct contexts but impaired in discrimination of similar but slightly distinct contexts. We further examined the neuronal ensembles in CA3 and dentate gyrus (DG), which represent the two similar contexts using in situ hybridization of immediate early genes, Homer1a and Arc. The size and overlap of CA3 ensembles activated by the first visit to the similar contexts were not different between wild type and Kcna2+/- mice, but these ensemble parameters diverged over training days between genotypes, suggesting that abnormal plastic changes at PP-CA3 synapses of Kcna2+/- mice is responsible for the impaired pattern separation. Unlike CA3, DG ensembles were not different between two genotype mice. The DG ensembles were already separated on the first day, and their overlap did not further evolve. Eventually, the Kcna2+/- mice exhibited larger CA3 ensemble size and overlap upon retrieval of two contexts, compared to wild type or Kcna1+/- mice. These results suggest that sparse LTP at PP-CA3 synapse probably supervised by mossy fiber inputs is essential for gradual decorrelation of CA3 ensembles.
Collapse
Affiliation(s)
- Kisang Eom
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyoung Ro Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Hyun
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunhoe An
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Yong-Seok Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Kyung Ho
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
42
|
Yamawaki Y, Wada Y, Matsui S, Ohtsuki G. Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100028. [DOI: 10.1016/j.crneur.2022.100028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/16/2022] Open
|
43
|
Li N, Xiao K, Mi X, Li N, Guo L, Wang X, Sun Y, Li GD, Zhou Y. Ghrelin signaling in dCA1 suppresses neuronal excitability and impairs memory acquisition via PI3K/Akt/GSK-3β cascades. Neuropharmacology 2022; 203:108871. [PMID: 34742928 DOI: 10.1016/j.neuropharm.2021.108871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Ghrelin is a circulating peptide hormone that promotes feeding and regulates metabolism in humans and rodents. The action of ghrelin is mediated by the growth hormone secretagogue receptor type 1a (GHSR-1a) that is widely distributed in the brain, including the hippocampus. Studies have demonstrated the critical role of hippocampal ghrelin/GHS-R1a signaling in synaptic physiology and memory. However, those findings are controversial, and the mechanism underlying ghrelin modulation of learning and memory is uncertain. Here, we report that micro-infusion of ghrelin in the CA1 region of the dorsal hippocampus during training specifically impairs memory acquisition. The activation of GHS-R1a and the subsequent PI3K/Akt/GSK3β signaling cascades are involved in this process. Moreover, we report that bath application of ghrelin suppresses the intrinsic excitability of dCA1 pyramidal neurons through activating GHS-R1a, and PI3K inhibitor LY294002 blocks ghrelin's effect. However, LY294002 fails to rescue ghrelin-induced LTP impairment. Our findings support an adverse effect of ghrelin-dependent activation of GHS-R1a on memory acquisition, and suggest that PI3K/Akt/GSK3β signaling-dependent repression of neuronal intrinsic excitability is an important novel mechanism underlying memory inhibition of ghrelin in the hippocampus.
Collapse
Affiliation(s)
- Nan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Kewei Xiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xue Mi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Na Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Li Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaorong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, United States
| | - Guo-Dong Li
- Department of Surgery, Valley Presbyterian Hospital, Van Nuys, CA, 91405, United States
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao, Shandong, 266071, China; Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao, Shandong, 266071, China; Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shangdong, 266000, China.
| |
Collapse
|
44
|
Fokker E, Zong X, Treur J. A second-order adaptive network model for emotion regulation in addictive social media behaviour. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Ferro M, Lamanna J, Spadini S, Nespoli A, Sulpizio S, Malgaroli A. Synaptic plasticity mechanisms behind TMS efficacy: insights from its application to animal models. J Neural Transm (Vienna) 2021; 129:25-36. [PMID: 34783902 DOI: 10.1007/s00702-021-02436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/27/2021] [Indexed: 01/15/2023]
Abstract
Neural plasticity is defined as a reshape of communication paths among neurons, expressed through changes in the number and weights of synaptic contacts. During this process, which occurs massively during early brain development but continues also in adulthood, specific brain functions are modified by activity-dependent processes, triggered by external as well as internal stimuli. Since transcranial magnetic stimulation (TMS) produces a non-invasive form of brain cells activation, many different TMS protocols have been developed to treat neurological and psychiatric conditions and proved to be beneficial. Although neural plasticity induction by TMS has been widely assessed on human subjects, we still lack compelling evidence about the actual biological and molecular mechanisms. To support a better comprehension of the involved phenomena, the main focus of this review is to summarize what has been found through the application of TMS to animal models. The hope is that such integrated view will shed light on why and how TMS so effectively works on human subjects, thus supporting a more efficient development of new protocols in the future.
Collapse
Affiliation(s)
- Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy. .,Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy. .,Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Alessio Nespoli
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Simone Sulpizio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Antonio Malgaroli
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy. .,Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
46
|
Duménieu M, Marquèze-Pouey B, Russier M, Debanne D. Mechanisms of Plasticity in Subcortical Visual Areas. Cells 2021; 10:3162. [PMID: 34831385 PMCID: PMC8621502 DOI: 10.3390/cells10113162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023] Open
Abstract
Visual plasticity is classically considered to occur essentially in the primary and secondary cortical areas. Subcortical visual areas such as the dorsal lateral geniculate nucleus (dLGN) or the superior colliculus (SC) have long been held as basic structures responsible for a stable and defined function. In this model, the dLGN was considered as a relay of visual information travelling from the retina to cortical areas and the SC as a sensory integrator orienting body movements towards visual targets. However, recent findings suggest that both dLGN and SC neurons express functional plasticity, adding unexplored layers of complexity to their previously attributed functions. The existence of neuronal plasticity at the level of visual subcortical areas redefines our approach of the visual system. The aim of this paper is therefore to review the cellular and molecular mechanisms for activity-dependent plasticity of both synaptic transmission and cellular properties in subcortical visual areas.
Collapse
Affiliation(s)
| | | | | | - Dominique Debanne
- INSERM, Aix-Marseille Université, UNIS, 13015 Marseille, France; (M.D.); (B.M.-P.); (M.R.)
| |
Collapse
|
47
|
Inglebert Y, Debanne D. Calcium and Spike Timing-Dependent Plasticity. Front Cell Neurosci 2021; 15:727336. [PMID: 34616278 PMCID: PMC8488271 DOI: 10.3389/fncel.2021.727336] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Since its discovery, spike timing-dependent synaptic plasticity (STDP) has been thought to be a primary mechanism underlying the brain's ability to learn and to form new memories. However, despite the enormous interest in both the experimental and theoretical neuroscience communities in activity-dependent plasticity, it is still unclear whether plasticity rules inferred from in vitro experiments apply to in vivo conditions. Among the multiple reasons why plasticity rules in vivo might differ significantly from in vitro studies is that extracellular calcium concentration use in most studies is higher than concentrations estimated in vivo. STDP, like many forms of long-term synaptic plasticity, strongly depends on intracellular calcium influx for its induction. Here, we discuss the importance of considering physiological levels of extracellular calcium concentration to study functional plasticity.
Collapse
Affiliation(s)
- Yanis Inglebert
- UNIS, UMR1072, INSERM, Aix-Marseille University, Marseille, France.,Department of Pharmacology and Therapeutics and Cell Information Systems, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
48
|
Anterior cingulate cortex is necessary for spontaneous opioid withdrawal and withdrawal-induced hyperalgesia in male mice. Neuropsychopharmacology 2021; 46:1990-1999. [PMID: 34341495 PMCID: PMC8429582 DOI: 10.1038/s41386-021-01118-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 02/05/2023]
Abstract
The anterior cingulate cortex (ACC) is implicated in many pathologies, including depression, anxiety, substance-use disorders, and pain. There is also evidence from brain imaging that the ACC is hyperactive during periods of opioid withdrawal. However, there are limited data contributing to our understanding of ACC function at the cellular level during opioid withdrawal. Here, we address this issue by performing ex vivo electrophysiological analysis of thick-tufted, putative dopamine D2 receptor expressing, layer V pyramidal neurons in the ACC (ACC L5 PyNs) in a mouse model of spontaneous opioid withdrawal. We found that escalating doses of morphine (20, 40, 60, 80, and 100 mg/kg, i.p. on days 1-5, respectively) injected twice daily into male C57BL/6 mice evoked withdrawal behaviors and an associated withdrawal-induced mechanical hypersensitivity. Brain slices prepared 24 h following the last morphine injection showed increases in ACC L5 thick-tufted PyN-intrinsic membrane excitability, increases in membrane resistance, reductions in the rheobase, and reductions in HCN channel-mediated currents (IH). We did not observe changes in intrinsic or synaptic properties on thin-tufted, dopamine D1-receptor-expressing ACC L5 PyNs recorded from male Drd1a-tdTomato transgenic mice. In addition, we found that chemogenetic inhibition of the ACC blocked opioid-induced withdrawal and withdrawal-induced mechanical hypersensitivity. These results demonstrate that spontaneous opioid withdrawal alters neuronal properties within the ACC and that ACC activity is necessary to control behaviors associated with opioid withdrawal and withdrawal-induced mechanical hypersensitivity. The ability of the ACC to regulate both withdrawal behaviors and withdrawal-induced mechanical hypersensitivity suggests overlapping mechanisms between two seemingly distinguishable behaviors. This commonality potentially suggests that the ACC is a locus for multiple withdrawal symptoms.
Collapse
|
49
|
Romero-Sosa JL, Motanis H, Buonomano DV. Differential Excitability of PV and SST Neurons Results in Distinct Functional Roles in Inhibition Stabilization of Up States. J Neurosci 2021; 41:7182-7196. [PMID: 34253625 PMCID: PMC8387123 DOI: 10.1523/jneurosci.2830-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022] Open
Abstract
Up states are the best studied example of an emergent neural dynamic regime. Computational models based on a single class of inhibitory neurons indicate that Up states reflect bistable dynamic systems in which positive feedback is stabilized by strong inhibition and predict a paradoxical effect in which increased drive to inhibitory neurons results in decreased inhibitory activity. To date, however, computational models have not incorporated empirically defined properties of parvalbumin (PV) and somatostatin (SST) neurons. Here we first experimentally characterized the frequency-current (F-I) curves of pyramidal (Pyr), PV, and SST neurons from mice of either sex, and confirmed a sharp difference between the threshold and slopes of PV and SST neurons. The empirically defined F-I curves were incorporated into a three-population computational model that simulated the empirically derived firing rates of pyramidal, PV, and SST neurons. Simulations revealed that the intrinsic properties were sufficient to predict that PV neurons are primarily responsible for generating the nontrivial fixed points representing Up states. Simulations and analytical methods demonstrated that while the paradoxical effect is not obligatory in a model with two classes of inhibitory neurons, it is present in most regimes. Finally, experimental tests validated predictions of the model that the Pyr ↔ PV inhibitory loop is stronger than the Pyr ↔ SST loop.SIGNIFICANCE STATEMENT Many cortical computations, such as working memory, rely on the local recurrent excitatory connections that define cortical circuit motifs. Up states are among the best studied examples of neural dynamic regimes that rely on recurrent excitatory excitation. However, this positive feedback must be held in check by inhibition. To address the relative contribution of PV and SST neurons, we characterized the intrinsic input-output differences between these classes of inhibitory neurons and, using experimental and theoretical methods, show that the higher threshold and gain of PV leads to a dominant role in network stabilization.
Collapse
Affiliation(s)
- Juan L Romero-Sosa
- Department of Neurobiology, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California 90095
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| | - Helen Motanis
- Department of Neurobiology, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California 90095
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California 90095
| | - Dean V Buonomano
- Department of Neurobiology, Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, California 90095
- Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
50
|
Santos-Mayo A, Moratti S, de Echegaray J, Susi G. A Model of the Early Visual System Based on Parallel Spike-Sequence Detection, Showing Orientation Selectivity. BIOLOGY 2021; 10:biology10080801. [PMID: 34440033 PMCID: PMC8389551 DOI: 10.3390/biology10080801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary A computational model of primates’ early visual processing, showing orientation selectivity, is presented. The system importantly integrates two key elements: (1) a neuromorphic spike-decoding structure that considerably resembles the circuitry between layers IV and II/III of the primary visual cortex, both in topology and operation; (2) the plasticity of intrinsic excitability, to embed recent findings about the operation of the same area. The model is proposed as a tool for the analysis and reproduction of the orientation selectivity phenomenon, whose underlying neuronal-level computational mechanisms are today the subject of intense scrutiny. In response to rotated Gabor patches the model is able to exhibit realistic orientation tuning curves and to reproduce responses similar to those found in neurophysiological recordings from the primary visual cortex obtained under the same task, considering different stages of the network. This demonstrates its aptness to capture the mechanisms underlying the evoked response in the primary visual cortex. Our tool is available online, and can be expanded to other experiments using a dedicated software library developed by the authors, to elucidate the computational mechanisms underlying orientation selectivity. Abstract Since the first half of the twentieth century, numerous studies have been conducted on how the visual cortex encodes basic image features. One of the hallmarks of basic feature extraction is the phenomenon of orientation selectivity, of which the underlying neuronal-level computational mechanisms remain partially unclear despite being intensively investigated. In this work we present a reduced visual system model (RVSM) of the first level of scene analysis, involving the retina, the lateral geniculate nucleus and the primary visual cortex (V1), showing orientation selectivity. The detection core of the RVSM is the neuromorphic spike-decoding structure MNSD, which is able to learn and recognize parallel spike sequences and considerably resembles the neuronal microcircuits of V1 in both topology and operation. This structure is equipped with plasticity of intrinsic excitability to embed recent findings about V1 operation. The RVSM, which embeds 81 groups of MNSD arranged in 4 oriented columns, is tested using sets of rotated Gabor patches as input. Finally, synthetic visual evoked activity generated by the RVSM is compared with real neurophysiological signal from V1 area: (1) postsynaptic activity of human subjects obtained by magnetoencephalography and (2) spiking activity of macaques obtained by multi-tetrode arrays. The system is implemented using the NEST simulator. The results attest to a good level of resemblance between the model response and real neurophysiological recordings. As the RVSM is available online, and the model parameters can be customized by the user, we propose it as a tool to elucidate the computational mechanisms underlying orientation selectivity.
Collapse
Affiliation(s)
- Alejandro Santos-Mayo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stephan Moratti
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
- Laboratory of Clinical Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain
| | - Javier de Echegaray
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Gianluca Susi
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Technical University of Madrid, 28040 Madrid, Spain; (A.S.-M.); (S.M.); (J.d.E.)
- Department of Experimental Psychology, Faculty of Psychology, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Civil Engineering and Computer Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +34-(61)-86893399-79317
| |
Collapse
|