1
|
Seth S, Louis B, Asano K, Van Roy T, Roeffaers MBJ, Debroye E, Scheblykin IG, Vacha M, Hofkens J. Unveiling the Local Fate of Charge Carriers in Halide Perovskite Thin Films via Correlation Clustering Imaging. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:244-252. [PMID: 40313532 PMCID: PMC12042016 DOI: 10.1021/cbmi.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 05/03/2025]
Abstract
As the field of metal halide perovskites matures, a range of compositionally different perovskite films has found a place in efficient optoelectronic devices. These films feature variable local structural stability, carrier diffusion, and recombination, while there is still a lack of easy-to-implement generic protocols for high-throughput characterization of these variable properties. Correlation clustering imaging (CLIM) is a recently developed tool that resolves peculiarities of local photophysics by assessing the dynamics of photoluminescence detected by wide-field optical microscopy. We demonstrate the capability of CLIM as a high-throughput characterization tool of perovskite films using MAPbI3 (MAPI) and triple cation mixed halide (TCMH) perovskites as examples where it resolves the interplay of carrier diffusion, recombination, and defect dynamics. We found significant differences in the appearance of metastable defect states in these two films. Despite a better surface quality and larger grain size, MAPI films showed more pronounced effects of fluctuating defect states than did TCMH films. As CLIM shows a significant difference between materials known to lead to different solar cell efficiencies, it can be considered a tool for quality control of thin films for perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Sudipta Seth
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3001, Belgium
| | - Boris Louis
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3001, Belgium
| | - Koki Asano
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Toon Van Roy
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3001, Belgium
| | - Maarten B. J. Roeffaers
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3001, Belgium
| | - Elke Debroye
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3001, Belgium
| | - Ivan G. Scheblykin
- Division
of Chemical Physics and NanoLund, Lund University, PO Box 124, Lund 22100, Sweden
| | - Martin Vacha
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Johan Hofkens
- Laboratory
for Photochemistry and Spectroscopy, Division for Molecular Imaging
and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Leuven 3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
2
|
Dubach RA, Dubach JM. Autocorrelation analysis of a phenotypic screen reveals hidden drug activity. Sci Rep 2024; 14:10046. [PMID: 38698021 PMCID: PMC11066105 DOI: 10.1038/s41598-024-60654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Phenotype based screening is a powerful tool to evaluate cellular drug response. Through high content fluorescence imaging of simple fluorescent labels and complex image analysis phenotypic measurements can identify subtle compound-induced cellular changes unique to compound mechanisms of action (MoA). Recently, a screen of 1008 compounds in three cell lines was reported where analysis detected changes in cellular phenotypes and accurately identified compound MoA for roughly half the compounds. However, we were surprised that DNA alkylating agents and other compounds known to induce or impact the DNA damage response produced no measured activity in cells with fluorescently labeled 53BP1-a canonical DNA damage marker. We hypothesized that phenotype analysis is not sensitive enough to detect small changes in 53BP1 distribution and analyzed the screen images with autocorrelation image analysis. We found that autocorrelation analysis, which quantifies fluorescently-labeled protein clustering, identified higher compound activity for compounds and MoAs known to impact the DNA damage response, suggesting altered 53BP1 recruitment to damaged DNA sites. We then performed experiments under more ideal imaging settings and found autocorrelation analysis to be a robust measure of changes to 53BP1 clustering in the DNA damage response. These results demonstrate the capacity of autocorrelation to detect otherwise undetectable compound activity and suggest that autocorrelation analysis of specific proteins could serve as a powerful screening tool.
Collapse
Affiliation(s)
| | - J Matthew Dubach
- Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
3
|
Sankaran J, Wohland T. Current capabilities and future perspectives of FCS: super-resolution microscopy, machine learning, and in vivo applications. Commun Biol 2023; 6:699. [PMID: 37419967 PMCID: PMC10328937 DOI: 10.1038/s42003-023-05069-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a single molecule sensitive tool for the quantitative measurement of biomolecular dynamics and interactions. Improvements in biology, computation, and detection technology enable real-time FCS experiments with multiplexed detection even in vivo. These new imaging modalities of FCS generate data at the rate of hundreds of MB/s requiring efficient data processing tools to extract information. Here, we briefly review FCS's capabilities and limitations before discussing recent directions that address these limitations with a focus on imaging modalities of FCS, their combinations with super-resolution microscopy, new evaluation strategies, especially machine learning, and applications in vivo.
Collapse
Affiliation(s)
- Jagadish Sankaran
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138632, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
4
|
Deng C, Reinhard S, Hennlein L, Eilts J, Sachs S, Doose S, Jablonka S, Sauer M, Moradi M, Sendtner M. Impaired dynamic interaction of axonal endoplasmic reticulum and ribosomes contributes to defective stimulus-response in spinal muscular atrophy. Transl Neurodegener 2022; 11:31. [PMID: 35650592 PMCID: PMC9161492 DOI: 10.1186/s40035-022-00304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA. Methods Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation. Results We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli. Conclusions These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-022-00304-2.
Collapse
Affiliation(s)
- Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Stefan Sachs
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany
| | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
| |
Collapse
|
5
|
Pelicci S, Furia L, Scanarini M, Pelicci PG, Lanzanò L, Faretta M. Novel Tools to Measure Single Molecules Colocalization in Fluorescence Nanoscopy by Image Cross Correlation Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:686. [PMID: 35215014 PMCID: PMC8875509 DOI: 10.3390/nano12040686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Super Resolution Microscopy revolutionized the approach to the study of molecular interactions by providing new quantitative tools to describe the scale below 100 nanometers. Single Molecule Localization Microscopy (SMLM) reaches a spatial resolution less than 50 nm with a precision in calculating molecule coordinates between 10 and 20 nanometers. However new procedures are required to analyze data from the list of molecular coordinates created by SMLM. We propose new tools based on Image Cross Correlation Spectroscopy (ICCS) to quantify the colocalization of fluorescent signals at single molecule level. These analysis procedures have been inserted into an experimental pipeline to optimize the produced results. We show that Fluorescent NanoDiamonds targeted to an intracellular compartment can be employed (i) to correct spatial drift to maximize the localization precision and (ii) to register confocal and SMLM images in correlative multiresolution, multimodal imaging. We validated the ICCS based approach on defined biological control samples and showed its ability to quantitatively map area of interactions inside the cell. The produced results show that the ICCS analysis is an efficient tool to measure relative spatial distribution of different molecular species at the nanoscale.
Collapse
Affiliation(s)
- Simone Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| | - Laura Furia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| | - Mirco Scanarini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| |
Collapse
|
6
|
Leroux M, Soubry N, Reyes-Lamothe R. Dynamics of Proteins and Macromolecular Machines in Escherichia coli. EcoSal Plus 2021; 9:eESP00112020. [PMID: 34060908 PMCID: PMC11163846 DOI: 10.1128/ecosalplus.esp-0011-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022]
Abstract
Proteins are major contributors to the composition and the functions in the cell. They often assemble into larger structures, macromolecular machines, to carry out intricate essential functions. Although huge progress in understanding how macromolecular machines function has been made by reconstituting them in vitro, the role of the intracellular environment is still emerging. The development of fluorescence microscopy techniques in the last 2 decades has allowed us to obtain an increased understanding of proteins and macromolecular machines in cells. Here, we describe how proteins move by diffusion, how they search for their targets, and how they are affected by the intracellular environment. We also describe how proteins assemble into macromolecular machines and provide examples of how frequent subunit turnover is used for them to function and to respond to changes in the intracellular conditions. This review emphasizes the constant movement of molecules in cells, the stochastic nature of reactions, and the dynamic nature of macromolecular machines.
Collapse
Affiliation(s)
- Maxime Leroux
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Nicolas Soubry
- Department of Biology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
7
|
Deng C, Moradi M, Reinhard S, Ji C, Jablonka S, Hennlein L, Lüningschrör P, Doose S, Sauer M, Sendtner M. Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons. J Cell Sci 2021; 134:272552. [PMID: 34668554 DOI: 10.1242/jcs.258785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/14/2021] [Indexed: 12/23/2022] Open
Abstract
In neurons, the endoplasmic reticulum (ER) forms a highly dynamic network that enters axons and presynaptic terminals and plays a central role in Ca2+ homeostasis and synapse maintenance; however, the underlying mechanisms involved in regulation of its dynamic remodeling as well as its function in axon development and presynaptic differentiation remain elusive. Here, we used high-resolution microscopy and live-cell imaging to investigate rapid movements of the ER and ribosomes in axons of cultured motoneurons after stimulation with brain-derived neurotrophic factor. Our results indicate that the ER extends into axonal growth cone filopodia, where its integrity and dynamic remodeling are regulated mainly by actin and the actin-based motor protein myosin VI (encoded by Myo6). Additionally, we found that in axonal growth cones, ribosomes assemble into 80S subunits within seconds and associate with the ER in response to extracellular stimuli, which describes a novel function of axonal ER in dynamic regulation of local translation. This article has an associated First Person interview with Chunchu Deng, joint first author of the paper.
Collapse
Affiliation(s)
- Chunchu Deng
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Mehri Moradi
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Changhe Ji
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
8
|
Cerutti E, D'Amico M, Cainero I, Dellino GI, Faretta M, Vicidomini G, Pelicci PG, Bianchini P, Diaspro A, Lanzanò L. Evaluation of sted super-resolution image quality by image correlation spectroscopy (QuICS). Sci Rep 2021; 11:20782. [PMID: 34675304 PMCID: PMC8531054 DOI: 10.1038/s41598-021-00301-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Quantifying the imaging performances in an unbiased way is of outmost importance in super-resolution microscopy. Here, we describe an algorithm based on image correlation spectroscopy (ICS) that can be used to assess the quality of super-resolution images. The algorithm is based on the calculation of an autocorrelation function and provides three different parameters: the width of the autocorrelation function, related to the spatial resolution; the brightness, related to the image contrast; the relative noise variance, related to the signal-to-noise ratio of the image. We use this algorithm to evaluate the quality of stimulated emission depletion (STED) images of DNA replication foci in U937 cells acquired under different imaging conditions. Increasing the STED depletion power improves the resolution but may reduce the image contrast. Increasing the number of line averages improves the signal-to-noise ratio but facilitates the onset of photobleaching and subsequent reduction of the image contrast. Finally, we evaluate the performances of two different separation of photons by lifetime tuning (SPLIT) approaches: the method of tunable STED depletion power and the commercially available Leica Tau-STED. We find that SPLIT provides an efficient way to improve the resolution and contrast in STED microscopy.
Collapse
Affiliation(s)
- Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy.,Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy
| | - Isotta Cainero
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.,DIFILAB, Department of Physics, University of Genoa, via Dodecaneso 33, 16143, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy. .,Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
| |
Collapse
|
9
|
Fluorescence Fluctuation Spectroscopy enables quantification of potassium channel subunit dynamics and stoichiometry. Sci Rep 2021; 11:10719. [PMID: 34021177 PMCID: PMC8140153 DOI: 10.1038/s41598-021-90002-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/15/2021] [Indexed: 11/08/2022] Open
Abstract
Voltage-gated potassium (Kv) channels are a family of membrane proteins that facilitate K+ ion diffusion across the plasma membrane, regulating both resting and action potentials. Kv channels comprise four pore-forming α subunits, each with a voltage sensing domain, and they are regulated by interaction with β subunits such as those belonging to the KCNE family. Here we conducted a comprehensive biophysical characterization of stoichiometry and protein diffusion across the plasma membrane of the epithelial KCNQ1-KCNE2 complex, combining total internal reflection fluorescence (TIRF) microscopy and a series of complementary Fluorescence Fluctuation Spectroscopy (FFS) techniques. Using this approach, we found that KCNQ1-KCNE2 has a predominant 4:4 stoichiometry, while non-bound KCNE2 subunits are mostly present as dimers in the plasma membrane. At the same time, we identified unique spatio-temporal diffusion modalities and nano-environment organization for each channel subunit. These findings improve our understanding of KCNQ1-KCNE2 channel function and suggest strategies for elucidating the subunit stoichiometry and forces directing localization and diffusion of ion channel complexes in general.
Collapse
|
10
|
Internalization of α-synuclein oligomers into SH-SY5Y cells. Biophys J 2021; 120:877-885. [PMID: 33515601 DOI: 10.1016/j.bpj.2020.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
Aggregates of misfolded α-synuclein are a distinctive feature of Parkinson's disease. Small oligomers of α-synuclein are thought to be an important neurotoxic agent, and α-synuclein aggregates exhibit prion-like behavior, propagating misfolding between cells. α-Synuclein is internalized by both passive diffusion and active uptake mechanisms, but how uptake varies with the size of the oligomer is less clear. We explored how α-synuclein internalization into live SH-SY5Y cells varied with oligomer size by comparing the uptake of fluorescently labeled monomers to that of engineered tandem dimers and tetramers. We found that these α-synuclein constructs were internalized primarily through endocytosis. Oligomer size had little effect on their internalization pathway, whether they were added individually or together. Measurements of co-localization of the α-synuclein constructs with fluorescent markers for early endosomes and lysosomes showed that most of the α-synuclein entered endocytic compartments, in which they were probably degraded. Treatment of the cells with the Pitstop inhibitor suggested that most of the oligomers were internalized by the clathrin-mediated pathway.
Collapse
|
11
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
12
|
Oneto M, Scipioni L, Sarmento MJ, Cainero I, Pelicci S, Furia L, Pelicci PG, Dellino GI, Bianchini P, Faretta M, Gratton E, Diaspro A, Lanzanò L. Nanoscale Distribution of Nuclear Sites by Super-Resolved Image Cross-Correlation Spectroscopy. Biophys J 2019; 117:2054-2065. [PMID: 31732142 PMCID: PMC6895719 DOI: 10.1016/j.bpj.2019.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Deciphering the spatiotemporal coordination between nuclear functions is important to understand its role in the maintenance of human genome. In this context, super-resolution microscopy has gained considerable interest because it can be used to probe the spatial organization of functional sites in intact single-cell nuclei in the 20-250 nm range. Among the methods that quantify colocalization from multicolor images, image cross-correlation spectroscopy (ICCS) offers several advantages, namely it does not require a presegmentation of the image into objects and can be used to detect dynamic interactions. However, the combination of ICCS with super-resolution microscopy has not been explored yet. Here, we combine dual-color stimulated emission depletion (STED) nanoscopy with ICCS (STED-ICCS) to quantify the nanoscale distribution of functional nuclear sites. We show that super-resolved ICCS provides not only a value of the colocalized fraction but also the characteristic distances associated to correlated nuclear sites. As a validation, we quantify the nanoscale spatial distribution of three different pairs of functional nuclear sites in MCF10A cells. As expected, transcription foci and a transcriptionally repressive histone marker (H3K9me3) are not correlated. Conversely, nascent DNA replication foci and the proliferating cell nuclear antigen(PCNA) protein have a high level of proximity and are correlated at a nanometer distance scale that is close to the limit of our experimental approach. Finally, transcription foci are found at a distance of 130 nm from replication foci, indicating a spatial segregation at the nanoscale. Overall, our data demonstrate that STED-ICCS can be a powerful tool for the analysis of the nanoscale distribution of functional sites in the nucleus.
Collapse
Affiliation(s)
- Michele Oneto
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Lorenzo Scipioni
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
| | - Maria J Sarmento
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Isotta Cainero
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy
| | - Simone Pelicci
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy
| | - Laura Furia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier G Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gaetano I Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy.
| | - Luca Lanzanò
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
13
|
Fluorescence fluctuation spectroscopy: an invaluable microscopy tool for uncovering the biophysical rules for navigating the nuclear landscape. Biochem Soc Trans 2019; 47:1117-1129. [DOI: 10.1042/bst20180604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Nuclear architecture is fundamental to the manner by which molecules traverse the nucleus. The nucleoplasm is a crowded environment where dynamic rearrangements in local chromatin compaction locally redefine the space accessible toward nuclear protein diffusion. Here, we review a suite of methods based on fluorescence fluctuation spectroscopy (FFS) and how they have been employed to interrogate chromatin organization, as well as the impact this structural framework has on nuclear protein target search. From first focusing on a set of studies that apply FFS to an inert fluorescent tracer diffusing inside the nucleus of a living cell, we demonstrate the capacity of this technology to measure the accessibility of the nucleoplasm. Then with a baseline understanding of the exploration volume available to nuclear proteins during target search, we review direct applications of FFS to fluorescently labeled transcription factors (TFs). FFS can detect changes in TF mobility due to DNA binding, as well as the formation of TF complexes via changes in brightness due to oligomerization. Collectively, we find that FFS-based methods can uncover how nuclear proteins in general navigate the nuclear landscape.
Collapse
|
14
|
Moreno DF, Aldea M. Coincidence Analysis of Molecular Dynamics by Raster Image Correlation Spectroscopy. Methods Mol Biol 2019; 2040:375-384. [PMID: 31432488 DOI: 10.1007/978-1-4939-9686-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The dynamics of cellular processes is a crucial aspect to consider when trying to understand cell function, particularly with regard to the coordination of complex mechanisms involving extensive molecular networks in different cell compartments. Thus, there is an urgent demand of methodologies able to obtain accurate spatiotemporal information on molecular dynamics in live cells. Different variants based on fluorescence correlation spectroscopy have been used successfully in the analysis of protein diffusion and complex or aggregation status. However, the available approaches are limited when simultaneous spatial and temporal resolutions are required to analyze fast processes. Here we describe the use of raster image correlation spectroscopy to analyze the spatiotemporal coincidence of collaborating proteins in highly dynamic molecular mechanisms.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona, IBMB-CSIC, Barcelona, Catalonia, Spain.
- Department of Basic Sciences, Universitat Internacional de Catalunya, Barcelona, Spain.
| |
Collapse
|
15
|
Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A, Więckowski MR. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. Int J Mol Sci 2017; 18:ijms18071576. [PMID: 28726733 PMCID: PMC5536064 DOI: 10.3390/ijms18071576] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca2+ handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Jędrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Justyna Janikiewicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Bernadeta Michalska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariasole Perrone
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Wiesław Ziółkowski
- Department of Bioenergetics and Nutrition, Gdańsk University of Physical Education and Sport, 80-336 Gdańsk, Poland.
| | - Jerzy Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| | - Agnieszka Dobrzyń
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| | - Mariusz R Więckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland.
| |
Collapse
|
16
|
Scipioni L, Gratton E, Diaspro A, Lanzanò L. Phasor Analysis of Local ICS Detects Heterogeneity in Size and Number of Intracellular Vesicles. Biophys J 2017; 111:619-629. [PMID: 27508445 PMCID: PMC4982927 DOI: 10.1016/j.bpj.2016.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/09/2016] [Accepted: 06/22/2016] [Indexed: 01/28/2023] Open
Abstract
Organelles represent the scale of organization immediately below that of the cell itself, and their composition, size, and number are tailored to their function. Monitoring the size and number of organelles in live cells is relevant for many applications but can be challenging due to their highly heterogeneous properties. Image correlation spectroscopy is a well-established analysis method capable of extracting the average size and number of particles in images. However, when image correlation spectroscopy is applied to a highly heterogeneous system, it can fail to retrieve, from a single correlation function, the characteristic size and the relative amount associated to each subspecies. Here, we describe a fast, unbiased, and fit-free algorithm based on the phasor analysis of multiple local image correlation functions, capable of mapping the sizes of elements contained in a heterogeneous system. The method correctly provides the size and number of separate subspecies, which otherwise would be hidden in the average properties of a single correlation function. We apply the method to quantify the spatial and temporal heterogeneity in the size and number of intracellular vesicles formed after endocytosis in live cells.
Collapse
Affiliation(s)
- Lorenzo Scipioni
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| | - Alberto Diaspro
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy; Nikon Imaging Center, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy
| | - Luca Lanzanò
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
17
|
Staaf E, Bagawath-Singh S, Johansson S. Molecular Diffusion in Plasma Membranes of Primary Lymphocytes Measured by Fluorescence Correlation Spectroscopy. J Vis Exp 2017. [PMID: 28190071 DOI: 10.3791/54756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful technique for studying the diffusion of molecules within biological membranes with high spatial and temporal resolution. FCS can quantify the molecular concentration and diffusion coefficient of fluorescently labeled molecules in the cell membrane. This technique has the ability to explore the molecular diffusion characteristics of molecules in the plasma membrane of immune cells in steady state (i.e., without processes affecting the result during the actual measurement time). FCS is suitable for studying the diffusion of proteins that are expressed at levels typical for most endogenous proteins. Here, a straightforward and robust method to determine the diffusion rate of cell membrane proteins on primary lymphocytes is demonstrated. An effective way to perform measurements on antibody-stained live cells and commonly occurring observations after acquisition are described. The recent advancements in the development of photo-stable fluorescent dyes can be utilized by conjugating the antibodies of interest to appropriate dyes that do not bleach extensively during the measurements. Additionally, this allows for the detection of slowly diffusing entities, which is a common feature of proteins expressed in cell membranes. The analysis procedure to extract molecular concentration and diffusion parameters from the generated autocorrelation curves is highlighted. In summary, a basic protocol for FCS measurements is provided; it can be followed by immunologists with an understanding of confocal microscopy but with no other previous experience of techniques for measuring dynamic parameters, such as molecular diffusion rates.
Collapse
Affiliation(s)
- Elina Staaf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
| | | | - Sofia Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet;
| |
Collapse
|
18
|
Affiliation(s)
- Rick Horwitz
- Allen Institute for Cell Science, Seattle, Washington.
| |
Collapse
|
19
|
Sakin V, Paci G, Lemke EA, Müller B. Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett 2016; 590:1896-914. [PMID: 26987299 DOI: 10.1002/1873-3468.12131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/31/2022]
Abstract
In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging.
Collapse
Affiliation(s)
- Volkan Sakin
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| | - Giulia Paci
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Germany
| |
Collapse
|
20
|
Nepal M, Oyler-Yaniv A, Krichevsky O. Scanning fluorescence correlation spectroscopy as a versatile tool to measure static and dynamic properties of soft matter systems. SOFT MATTER 2015; 11:8939-8947. [PMID: 26406382 DOI: 10.1039/c5sm01582k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present the formalism and experimental implementation of scanning fluorescence correlation spectroscopy (SFCS) for the measurements of soft matter system structure and dynamics. We relate the SFCS function Fourier transform to the system intermediate scattering function and demonstrate how SFCS can be combined with specific labelling to measure the desired statistical and kinetic features of the system. Using DNA as a model polymer, we demonstrate the application of SFCS to measure (1) the static structure factor of the system, (2) polymer end-to-end distance distribution, and (3) polymer segmental dynamics in dilute and in dense solutions. The measured DNA end-to-end distance distributions are close to Gaussian. Implementing SFCS we obtain reliable data on segmental mean-square displacement kinetics in dense solutions, where the static FCS approach fails because of dye photobleaching. For moderate concentrations in the semidilute regime (at ∼7 overlap concentrations) segmental dynamics exhibit only weak entanglements. Both of these experimental findings are consistent with theoretical predictions of the weakness of excluded interactions in semiflexible polymers.
Collapse
Affiliation(s)
- Manish Nepal
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Alon Oyler-Yaniv
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Oleg Krichevsky
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel. and Ilse Kats Centre for Nanoscience, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|