1
|
Tian Y, Zong Y, Pang Y, Zheng Z, Ma Y, Zhang C, Gao J. Platelets and diseases: signal transduction and advances in targeted therapy. Signal Transduct Target Ther 2025; 10:159. [PMID: 40374650 DOI: 10.1038/s41392-025-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/18/2024] [Accepted: 02/24/2025] [Indexed: 05/17/2025] Open
Abstract
Platelets are essential anucleate blood cells that play pivotal roles in hemostasis, tissue repair, and immune modulation. Originating from megakaryocytes in the bone marrow, platelets are small in size but possess a highly specialized structure that enables them to execute a wide range of physiological functions. The platelet cytoplasm is enriched with functional proteins, organelles, and granules that facilitate their activation and participation in tissue repair processes. Platelet membranes are densely populated with a variety of receptors, which, upon activation, initiate complex intracellular signaling cascades. These signaling pathways govern platelet activation, aggregation, and the release of bioactive molecules, including growth factors, cytokines, and chemokines. Through these mechanisms, platelets are integral to critical physiological processes such as thrombosis, wound healing, and immune surveillance. However, dysregulated platelet function can contribute to pathological conditions, including cancer metastasis, atherosclerosis, and chronic inflammation. Due to their central involvement in both normal physiology and disease, platelets have become prominent targets for therapeutic intervention. Current treatments primarily aim to modulate platelet signaling to prevent thrombosis in cardiovascular diseases or to reduce excessive platelet aggregation in other pathological conditions. Antiplatelet therapies are widely employed in clinical practice to mitigate clot formation in high-risk patients. As platelet biology continues to evolve, emerging therapeutic strategies focus on refining platelet modulation to enhance clinical outcomes and prevent complications associated with platelet dysfunction. This review explores the structure, signaling pathways, biological functions, and therapeutic potential of platelets, highlighting their roles in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chelliah MV, Eagen K, Guo Z, Chackalamannil S, Xia Y, Tsai H, Greenlee WJ, Ahn HS, Kurowski S, Boykow G, Hsieh Y, Chintala M. Himbacine-derived thrombin receptor antagonists: c7-spirocyclic analogues of vorapaxar. ACS Med Chem Lett 2014; 5:561-5. [PMID: 24900880 PMCID: PMC4027741 DOI: 10.1021/ml500008w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/11/2014] [Indexed: 01/24/2023] Open
Abstract
We have synthesized several C7-spirocyclic analogues of vorapaxar and evaluated their in vitro activities against PAR-1 receptor. Some of these analogues showed activities and rat plasma levels comparable to vorapaxar. Compound 5c from this series showed excellent PAR-1 activity (K i = 5.1 nM). We also present a model of these spirocyclic compounds docked to the PAR-1 receptor based on the X-ray crystal structure of vorapaxar bound to PAR-1 receptor. This model explains some of the structure-activity relationships in this series.
Collapse
Affiliation(s)
- Mariappan V. Chelliah
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Keith Eagen
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Zhuyan Guo
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | | | | | - Hsingan Tsai
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | | | - Ho-Sam Ahn
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Stan Kurowski
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - George Boykow
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Yunsheng Hsieh
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Madhu Chintala
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| |
Collapse
|
3
|
Chelliah MV, Chackalamannil S, Xia Y, Greenlee WJ, Ahn HS, Kurowski S, Boykow G, Hsieh Y, Chintala M. Himbacine-derived thrombin receptor antagonists: c7-aminomethyl and c9a-hydroxy analogues of vorapaxar. ACS Med Chem Lett 2014; 5:183-7. [PMID: 24900795 DOI: 10.1021/ml400452v] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022] Open
Abstract
We have synthesized several C7-aminomethyl analogues of vorapaxar that are potent PAR-1 antagonists. Many of these analogues showed excellent in vitro binding affinity and pharmacokinetics profile in rats. Compound 6a from this series showed excellent PAR-1 activity (K i = 5 nM). We have also synthesized a C9a-hydroxy analogue of vorapaxar, which showed very good PAR-1 affinity (K i = 19.5 nM) along with excellent rat pharmacokinetic profile and ex vivo efficacy in the cynomolgus monkey.
Collapse
Affiliation(s)
- Mariappan V. Chelliah
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Samuel Chackalamannil
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Yan Xia
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - William J. Greenlee
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Ho-Sam Ahn
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Stan Kurowski
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - George Boykow
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Yunsheng Hsieh
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| | - Madhu Chintala
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-1300, United States
| |
Collapse
|
4
|
Chelliah MV, Chackalamannil S, Xia Y, Eagen K, Greenlee WJ, Ahn HS, Agans-Fantuzzi J, Boykow G, Hsieh Y, Bryant M, Chan TM, Chintala M. Discovery of nor-seco himbacine analogs as thrombin receptor antagonists. Bioorg Med Chem Lett 2012; 22:2544-9. [DOI: 10.1016/j.bmcl.2012.01.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/31/2012] [Indexed: 12/22/2022]
|
5
|
Klenke S, Siffert W. SNPs in genes encoding G proteins in pharmacogenetics. Pharmacogenomics 2011; 12:633-54. [DOI: 10.2217/pgs.10.203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heterotrimeric guanine-binding proteins (G proteins) transmit signals from the cell surface to intracellular signal cascades and are involved in various physiological and pathophysiological processes. Polymorphisms in the genes GNB3 (encoding the Gβ3 subunit), GNAS (encoding the Gαs subunit) and GNAQ (encoding the Gαq subunit) have been the primary focus of investigation. Polymorphisms in these genes could be associated with different complex phenotypes underlining that alterations in G-protein signaling can cause multiple disorders. G proteins present a point of convergence or ‘bottleneck’ between various receptors and effectors, thus making them a sensible tool for pharmacogenetic studies. The pharmacogenetic studies performed to date mostly demonstrate an association between G-protein polymorphisms and response to therapy or occurrence of adverse drug effects. Therefore, polymorphisms in genes encoding G-protein subunits may help to individualize drug treatment in various diseases with regard to both efficacy and safety.
Collapse
Affiliation(s)
| | - Winfried Siffert
- Institut für Pharmakogenetik, Universität Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
6
|
Godoy JAP, Block DB, Tollefsen DM, Werneck CC, Vicente CP. Dermatan sulfate and bone marrow mononuclear cells used as a new therapeutic strategy after arterial injury in mice. Cytotherapy 2011; 13:695-704. [PMID: 21250866 DOI: 10.3109/14653249.2010.548378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AIMS Previously, we have demonstrated that administration of dermatan sulfate (DS) suppresses neointima formation in the mouse carotid artery by activating heparin co-factor II. A similar suppressive effect was observed by increasing the number of progenitor cells in circulation. In this study, we investigated the combination of DS and bone marrow mononuclear cells (MNC), which includes potential endothelial progenitors, in neointima formation after arterial injury. METHODS Arterial injury was induced by mechanical dilation of the left common carotid artery. We analyzed the extension of endothelial lesion, thrombus formation, P-selectin expression and CD45(+) cell accumulation 1 and 3 days post-injury, and neointima formation 21 days post-injury. Animals were injected with MNC with or without DS during the first 48 h after injury. RESULTS The extension of endothelial lesion was similar in all groups 1 day after surgery; however, in injured animals treated with MNC and DS the endothelium recovery seemed to be more efficient 21 days after lesion. Treatment with DS inhibited thrombosis, decreased CD45(+) cell accumulation and P-selectin expression at the site of injury, and reduced the neointimal area by 56%. Treatment with MNC reduced the neointimal area by 54%. The combination of DS and MNC reduced neointima formation by more than 91%. In addition, DS promoted a greater accumulation of MNC at the site of injury. CONCLUSIONS DS inhibits the initial thrombotic and inflammatory processes after arterial injury and promotes migration of MNC to the site of the lesion, where they may assist in the recovery of the injured endothelium.
Collapse
Affiliation(s)
- Juliana A P Godoy
- Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
7
|
Rana T, Misra S, Mittal MK, Farrow AL, Wilson KT, Linton MF, Fazio S, Willis IM, Chaudhuri G. Mechanism of down-regulation of RNA polymerase III-transcribed non-coding RNA genes in macrophages by Leishmania. J Biol Chem 2010; 286:6614-26. [PMID: 21149457 DOI: 10.1074/jbc.m110.181735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The parasitic protozoan Leishmania invades mammalian macrophages to establish infection. We reported previously that Leishmania manipulates the expression of several non-coding RNA genes (e.g. Alu RNA, B1 RNA, and signal recognition particle RNA) in macrophages to favor the establishment of their infection in the phagolysosomes of these cells (Ueda, Y., and Chaudhuri, G. (2000) J. Biol. Chem. 275, 19428-19432; Misra, S., Tripathi, M. K., and Chaudhuri, G. (2005) J. Biol. Chem. 280, 29364-29373). We report here the mechanism of this down-regulation. We found that the non-coding RNA (ncRNA) genes that are repressed by Leishmania infection in macrophages contain a "B-box" in their promoters and thus require the polymerase III transcription factor TFIIIC for their expression. We also found that Leishmania promastigotes through their surface protease (leishmanolysin or gp63) activate the thrombin receptor PAR1 in the macrophages. This activation of PAR1 raised the cytosolic concentration of Ca(2+) into the micromolar range, thereby activating the Ca(2+)-dependent protease μ-calpain. μ-Calpain then degraded TFIIIC110 to inhibit the expression of the selected ncRNA genes. Avirulent stocks of Leishmania not expressing surface gp63 failed to down-regulate ncRNAs in the exposed macrophages. Inhibition of PAR1 or calpain 1 in macrophages made them resistant to Leishmania infection. These data suggest that macrophage PAR1 and calpain 1 are potential drug targets against leishmaniasis.
Collapse
Affiliation(s)
- Tanu Rana
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee 37208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Makarova AM, Gorbacheva LR, Savinkova IV, Mikhailova AG, Rumsh LD, Pinelis VG, Strukova SM. Effect of enteropeptidase on survival of cultured hippocampal neurons under conditions of glutamate toxicity. BIOCHEMISTRY (MOSCOW) 2010; 75:1153-9. [PMID: 21077835 DOI: 10.1134/s0006297910090099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of full-size bovine enteropeptidase (BEK) and of human recombinant light chain enteropeptidase (L-HEP) on survival of cultured hippocampal neurons were studied under conditions of glutamate excitotoxicity. Low concentrations of L-HEP or BEK (0.1-1 and 0.1-0.5 nM, respectively) protected hippocampal neurons against the death caused by 100 µM glutamate. Using the PAR1 (proteinase-activated receptor) antagonist SCH 79797, we revealed a PAR1-dependent mechanism of neuroprotective action of low concentrations of enteropeptidase. The protective effect of full-size enteropeptidase was not observed at the concentrations of 1 and 10 nM; moreover, 10 nM of BEK caused death of 88.9% of the neurons, which significantly exceeded the cell death caused by glutamate (31.9%). Under conditions of glutamate cytotoxicity the survival of neurons was 26.8% higher even in the presence of 10 nM of L-HEP than in the presence of 10 nM BEK. Pretreatment of cells with 10 nM of either form of enteropeptidase abolished the protective effect of 10 nM thrombin under glutamate cytotoxicity. High concentrations of BEK and L-HEP caused the death of neurons mainly through necrosis.
Collapse
Affiliation(s)
- A M Makarova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
9
|
Tollefsen DM. Vascular dermatan sulfate and heparin cofactor II. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:351-72. [PMID: 20807652 DOI: 10.1016/s1877-1173(10)93015-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heparin cofactor II (HCII) is a plasma protease inhibitor of the serpin family that inactivates thrombin by forming a covalent 1:1 complex. The rate of complex formation increases more than 1000-fold in the presence of dermatan sulfate (DS). Endothelial injury allows circulating HCII to enter the vessel wall, where it binds to DS and presumably becomes activated. Mice that lack HCII develop carotid artery thrombosis more rapidly than wild-type mice after oxidative damage to the endothelium. These mice also have increased arterial neointima formation following mechanical injury and develop more extensive atherosclerotic lesions when made hypercholesterolemic. Similarly, low plasma HCII levels appear to be a risk factor for atherosclerosis and in-stent restenosis in human subjects. These observations suggest that a major function of the HCII-DS system is to regulate the physiologic response to arterial injury.
Collapse
|
10
|
Differential regulation of threonine and tyrosine phosphorylations on protein kinase Cdelta by G-protein-mediated pathways in platelets. Biochem J 2009; 417:113-20. [PMID: 18652571 DOI: 10.1042/bj20080235] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphorylation of activation loop threonine (Thr(505)) and regulatory domain tyrosine (Tyr(311)) residues are key regulators of PKC (protein kinase C) delta function in platelets. In the present study, we show that G(q) and G(12/13) pathways regulate the Thr(505) and Tyr(311) phosphorylation on PKCdelta in an interdependent manner. DiC8 (1,2-dioctanoylglycerol), a synthetic analogue of DAG (diacylglycerol), caused Thr(505), but not Tyr(311), phosphorylation on PKCdelta, whereas selective activation of G(12/13) pathways by the YFLLRNP peptide failed to cause phosphorylation of either residue. However, simultaneous activation by DiC8 and YFLLRNP resulted in Thr(505) and Tyr(311) phosphorylation on PKCdelta. In addition, we found that the activation of SFKs (Src family tyrosine kinases) is essential for G(12/13)-mediated Tyr(311) phosphorylation of PKCdelta. These results were confirmed using G(q)-deficient mouse platelets. Finally, we investigated whether Thr(505) phosphorylation is required for Tyr(311) phosphorylation. A T505A PKCdelta mutant failed to be phosphorylated at Tyr(311), even upon stimulation of both G(q) and G(12/13) pathways. We conclude that (i) PKCdelta binding to DAG, downstream of G(q) pathways, and its translocation results in Thr(505) phosphorylation, (ii) G(12/13) pathways activate SFKs required for the phosphorylation of Tyr(311) on Thr(505)-phosphorylated PKCdelta, and (iii) Thr(505) phosphorylation is a prerequisite for Tyr(311) phosphorylation on PKCdelta.
Collapse
|
11
|
PKCdelta mediates thrombin-augmented fibroblast-mediated collagen gel contraction. Biochem Biophys Res Commun 2008; 369:1199-203. [PMID: 18342628 DOI: 10.1016/j.bbrc.2008.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 11/21/2022]
Abstract
Fibroblast-mediated collagen gel contraction has been used as an in vitro model of tissue remodeling. Thrombin is one of the mediators present in the milieu of airway inflammation and may be involved in airway tissue remodeling. We have previously reported that thrombin stimulates fibroblast-mediated collagen gel contraction partially through the PAR1/PKCepsilon signaling pathway [Q. Fang, X. Liu, S. Abe, T. Kobayashi, X.Q. Wang, T. Kohyama, M. Hashimoto, T. Wyatt, S.I. Rennard, Thrombin induces collagen gel contraction partially through PAR1 activation and PKC-epsilon, Eur. Respir. J. 24 (2004) 918-924]. Here, we further report that the delta-isoform of PKC (PKCdelta) is also activated by thrombin and involved in the thrombin-mediated augmentation of collagen gel contraction. Thrombin (10nM) significantly increased PKCdelta activity (over 5-fold increase after 15-30min stimulation) and stimulated phosphorylation of PKCdelta. Rottlerin, a PKCdelta inhibitor, completely inhibited activation of PKCdelta and partially blocked collagen gel contraction stimulated by thrombin. Similarly, PKCdelta-specific siRNA significantly inhibited PKCdelta activation without affecting PKCepsilon expression and activation. Furthermore, suppression of PKCdelta by siRNA resulted in partial blockade of thrombin-augmented collagen gel contraction. These results suggest that thrombin contributes to the tissue remodeling in inflammatory airways and lung diseases at least partially through both PKCdelta and PKCepsilon signaling.
Collapse
|
12
|
Vicente CP, He L, Tollefsen DM. Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood 2007; 110:4261-7. [PMID: 17878401 PMCID: PMC2234791 DOI: 10.1182/blood-2007-04-086611] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin cofactor II (HCII) is a plasma protein that inhibits thrombin when bound to dermatan sulfate or heparin. HCII-deficient mice are viable and fertile but rapidly develop thrombosis of the carotid artery after endothelial injury. We now report the effects of HCII deficiency on atherogenesis and neointima formation. HCII-null or wild-type mice, both on an apolipoprotein E-null background, were fed an atherogenic diet for 12 weeks. HCII-null mice developed plaque areas in the aortic arch approximately 64% larger than wild-type mice despite having similar plasma lipid and glucose levels. Neointima formation was induced by mechanical dilation of the common carotid artery. Thrombin activity, determined by hirudin binding or chromogenic substrate hydrolysis within 1 hour after injury, was higher in the arterial walls of HCII-null mice than in wild-type mice. After 3 weeks, the median neointimal area was 2- to 3-fold greater in HCII-null than in wild-type mice. Dermatan sulfate administered intravenously within 48 hours after injury inhibited neointima formation in wild-type mice but had no effect in HCII-null mice. Heparin did not inhibit neointima formation. We conclude that HCII deficiency promotes atherogenesis and neointima formation and that treatment with dermatan sulfate reduces neointima formation in an HCII-dependent manner.
Collapse
Affiliation(s)
- Cristina P Vicente
- Department of Cellular Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas-São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Strande JL, Hsu A, Su J, Fu X, Gross GJ, Baker JE. SCH 79797, a selective PAR1 antagonist, limits myocardial ischemia/reperfusion injury in rat hearts. Basic Res Cardiol 2007; 102:350-8. [PMID: 17468933 PMCID: PMC3942648 DOI: 10.1007/s00395-007-0653-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 03/09/2007] [Accepted: 03/28/2007] [Indexed: 01/19/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is partly mediated by thrombin. In support, the functional inhibition of thrombin has been shown to decrease infarct size after I/R. Several cellular responses to thrombin are mediated by a G-protein coupled protease-activated receptor 1 (PAR1).However, the role of PAR1 in myocardial I/R injury has not been well characterized. Therefore, we hypothesized that PAR1 inhibition will reduce the amount of myocardial I/R injury. After we detected the presence of PAR1 mRNA and protein in the rat heart by RT-PCR and immunoblot analysis,we assessed the potential protective role of SCH 79797, a selective PAR1 antagonist, in two rat models of myocardial I/R injury. SCH 79797 treatment immediately before or during ischemia reduced myocardial necrosis following I/R in the intact rat heart. This response was dose-dependent with the optimal dose being 25 microg/kg IV. Likewise, SCH 79797 treatment before ischemia in the isolated heart model reduced infarct size and increased ventricular recovery following I/R in the isolated heart model with an optimal concentration of 1 microM. This reduction was abolished by a PAR1 selective agonist. SCH 79797-induced resistance to myocardial ischemia was abolished by wortmannin, an inhibitor of PI3 kinase; L-NMA, a NOS inhibitor; and glibenclamide, a nonselective K(ATP) channel blocker. PAR1 activating peptide,wortmannin, L-NMA and glibenclamide alone had no effect on functional recovery or infarct size. A single treatment of SCH 79797 administered prior to or during ischemia confers immediate cardioprotection suggesting a potential therapeutic role of PAR1 antagonist in the treatment of injury resulting from myocardial ischemia and reperfusion.
Collapse
Affiliation(s)
- Jennifer L Strande
- Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Himbacine derived thrombin receptor antagonists: discovery of a new tricyclic core. Bioorg Med Chem Lett 2007; 17:3647-51. [PMID: 17490877 DOI: 10.1016/j.bmcl.2007.04.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 04/06/2007] [Accepted: 04/16/2007] [Indexed: 11/16/2022]
Abstract
The synthesis and biological activity of a novel series of thrombin receptor antagonists is described. This series of compounds showed excellent in vitro and in vivo potency. The most potent compound 40 had an IC(50) of 7.6 nM and showed robust inhibition of platelet aggregation in a cynomolgus monkey model after oral administration.
Collapse
|
15
|
Ritchie E, Saka M, MacKenzie C, Drummond R, Wheeler-Jones C, Kanke T, Plevin R. Cytokine upregulation of proteinase-activated-receptors 2 and 4 expression mediated by p38 MAP kinase and inhibitory kappa B kinase beta in human endothelial cells. Br J Pharmacol 2007; 150:1044-54. [PMID: 17339845 PMCID: PMC2013917 DOI: 10.1038/sj.bjp.0707150] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/07/2006] [Accepted: 11/20/2006] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Up-regulation of proteinase-activated receptor-2 (PAR2) is a factor in a number of disease states and we have therefore examined the signalling pathways involved in the expression of the receptor. EXPERIMENTAL APPROACH We investigated the effects of tumour necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), trypsin and the PAR2 activating peptide, 2-furoyl(2f)-LIGKV-OH on both mRNA and functional expression of PAR2 in human umbilical vein endothelial cells (HUVECs). The effect of specific chemical inhibitors and dominant negative adenovirus constructs of the mitogen-activated protein kinase (MAPK) cascade and the nuclear factor kappa B (NF-kappaB) signalling pathway was assessed. Methods included semi-quantitative and quantitative RT-PCR, [(3)H]inositol phosphate (IP) accumulation and Ca(2+)-dependent fluorescence. KEY RESULTS The above agonists induced both mRNA and functional expression of PAR2; PAR4 mRNA, but not that for PAR1 or PAR-3, also increased following TNFalpha treatment. Inhibition of p38 MAP kinase reduced PAR2 and PAR4 expression, whilst inhibition of MEK1/ERK/JNK was without effect. A similar dependency upon p38 MAP kinase was observed for the expression of PAR4. TNFalpha -induced enhancement of PAR2 stimulated [(3)H]-inositol phosphate accumulation (IP) and Ca(2+) signalling was abolished following SB203580 pre-treatment. Infection with adenovirus encoding dominant-negative IKKbeta (Ad.IKKbeta(+/-)) and to a lesser extent dominant-negative IKKalpha (Ad.IKKalpha(+/-)), substantially reduced both control and IL-1beta- induced expression of both PAR2 and PAR4 mRNA and enhancement of PAR2-stimulated IP accumulation and Ca(2+) mobilisation. CONCLUSIONS AND IMPLICATIONS These data reveal for the first time the signalling events involved in the upregulation of both PAR2 and PAR4 during pro-inflammatory challenge.
Collapse
Affiliation(s)
- E Ritchie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - M Saka
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - C MacKenzie
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - R Drummond
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| | - C Wheeler-Jones
- Department of Veterinary Basic Sciences, Royal Veterinary College London, UK
| | - T Kanke
- Tokyo New Drug Research Laboratories, Kowa Company Limited Higashimurayama, Tokyo, Japan
| | - R Plevin
- The Department of Physiology and Pharmacology, The University of Strathclyde, Strathclyde Institute for Biomedical Sciences Glasgow, UK
| |
Collapse
|
16
|
Abstract
The G-protein-coupled receptor signaling system, consisting of a huge variety of receptors as well as of many G-proteins and effectors, operates in every cell and is involved in many physiological and pathological processes. The versatility of this system and the involvement of specific components makes G-protein-coupled receptors and their signaling pathways ideal targets for pharmacological interventions. Classical mouse knockout models have often provided important preliminary insights into the biological roles of individual receptors and signaling pathways and they are routinely used in the process of target validation. The recent development of efficient conditional mutagenesis techniques now allows a much more detailed analysis of G-protein-mediated signaling transduction processes. This review summarizes some of the areas in which progress has recently been made by applying conditional mutagenesis of genes coding for G-proteins and G-protein-coupled receptors.
Collapse
Affiliation(s)
- S Offermanns
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Abstract
Heparin cofactor II (HCII) has several biochemical properties that distinguish it from other serpins: (1) it specifically inhibits thrombin; (2) the mechanism of inhibition involves binding of an acidic domain in HCII to thrombin exosite I; and (3) the rate of inhibition increases dramatically in the presence of dermatan sulfate molecules having specific structures. Human studies suggest that high plasma HCII levels are protective against in-stent restenosis and atherosclerosis. Studies with HCII knockout mice directly support the hypothesis that HCII interacts with dermatan sulfate in the arterial wall after endothelial injury and thereby exerts an antithrombotic effect. In addition, HCII deficiency appears to promote neointima formation and atherogenesis in mice. These results suggest that HCII plays a unique and important role in vascular homeostasis.
Collapse
Affiliation(s)
- Douglas M Tollefsen
- Division of Hematology, Campus Box 8125, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Clasby MC, Chackalamannil S, Czarniecki M, Doller D, Eagen K, Greenlee WJ, Lin Y, Tsai H, Xia Y, Ahn HS, Agans-Fantuzzi J, Boykow G, Chintala M, Foster C, Bryant M, Lau J. Discovery and synthesis of a novel series of quinoline-based thrombin receptor (PAR-1) antagonists. Bioorg Med Chem Lett 2005; 16:1544-8. [PMID: 16380251 DOI: 10.1016/j.bmcl.2005.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 12/05/2005] [Accepted: 12/09/2005] [Indexed: 11/26/2022]
Abstract
The design, synthesis, and SAR studies of a structurally novel series of highly potent thrombin receptor (PAR-1) antagonists are described. Compound 30 is a highly potent thrombin receptor antagonist (IC(50)=6.3 nM), a related compound 36 showing efficacy in a monkey ex vivo study.
Collapse
Affiliation(s)
- Martin C Clasby
- Central Nervous System and Cardiovascular Chemical Research, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
20
|
Levitin F, Stern O, Weiss M, Gil-Henn C, Ziv R, Prokocimer Z, Smorodinsky NI, Rubinstein DB, Wreschner DH. The MUC1 SEA Module Is a Self-cleaving Domain. J Biol Chem 2005; 280:33374-86. [PMID: 15987679 DOI: 10.1074/jbc.m506047200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MUC1, a glycoprotein overexpressed by a variety of human adenocarcinomas, is a type I transmembrane protein (MUC1/TM) that soon after its synthesis undergoes proteolytic cleavage in its extracellular domain. This cleavage generates two subunits, alpha and beta, that specifically recognize each other and bind together in a strong noncovalent interaction. Proteolysis occurs within the SEA module, a 120-amino acid domain that is highly conserved in a number of heavily glycosylated mucin-like proteins. Post-translational cleavage of the SEA module occurs at a site similar to that in MUC1 in the glycoproteins IgHepta and MUC3. However, as in the case of other proteins containing the cleaved SEA module, the mechanism of MUC1 proteolysis has not been elucidated. Alternative splicing generates two transmembrane MUC1 isoforms, designated MUC1/Y and MUC1/X. We demonstrated here that MUC1/X, whose extracellular domain is comprised solely of the SEA module in addition to 30 MUC1 N-terminal amino acids, undergoes proteolytic cleavage at the same site as the MUC1/TM protein. In contrast, the MUC1/Y isoform, composed of an N-terminally truncated SEA module, is not cleaved. Cysteine or threonine mutations of the MUC1/X serine residue (Ser-63) immediately C-terminal to the cleavage site generated cleaved proteins, whereas mutation of the Ser-63 residue of MUC1/X to any other of 17 amino acids did not result in cleavage. In vitro incubation of highly purified precursor MUC1/X protein resulted in self-cleavage. Furthermore, addition of hydroxylamine, a strong nucleophile, markedly enhanced cleavage. Both these features are signature characteristics of self-cleaving proteins, and we concluded that MUC1 undergoes autoproteolysis mediated by an N --> O-acyl rearrangement at the cleavage site followed by hydrolytic resolution of the unstable ester and concomitant cleavage. It is likely that all cleaved SEA module-containing proteins follow a similar route.
Collapse
Affiliation(s)
- Fiana Levitin
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khan TA, Bianchi C, Voisine P, Sandmeyer J, Feng J, Sellke FW. Aprotinin Inhibits Protease-Dependent Platelet Aggregation and Thrombosis. Ann Thorac Surg 2005; 79:1545-50. [PMID: 15854931 DOI: 10.1016/j.athoracsur.2004.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2004] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hemostatic effects of the protease inhibitor aprotinin in cardiac surgery are well described, and recent evidence suggests an antithrombotic mechanism of aprotinin through inhibition of thrombin-mediated platelet activation. We hypothesized that aprotinin provides hemostasis while reducing vascular thrombosis by attenuating protease-dependent platelet function. METHODS Rabbits (3 to 4 kg) underwent carotid artery thrombosis induced by electrical current. Treatment animals (n = 8) received aprotinin by a 100,000-KIU bolus followed by a continuous infusion (25,000 KIU/h). Control animals (n = 8) received crystalloid solution. Thrombus weight and time to thrombotic occlusion were determined. Platelet aggregation was examined in response to protease-dependent (thrombin) and protease-independent (adenosine diphosphate, ADP) platelet agonists. Platelet thrombin protease-activated receptor (PAR) expression was analyzed by Western blot. Ear bleeding time and abdominal incisional bleeding were measured at baseline and serially. RESULTS Thrombus weight was decreased by aprotinin (6.1 +/- 1.1 mg versus 10.8 +/- 1.5 mg, aprotinin versus control, p < 0.05). Time to thrombotic occlusion was prolonged in the aprotinin group (17.4 +/- 1.0 minutes versus 8.3 +/- 1.3 minutes, p < 0.001). Rabbit platelet expression of thrombin PARs was demonstrated by Western blot analysis, and was not altered by aprotinin therapy. Platelet aggregation due to thrombin was decreased by aprotinin therapy (59.2% +/- 3.0% versus 95.8% +/- 1.5%, p < 0.001), whereas protease-independent, ADP-induced platelet aggregation was unchanged with aprotinin. Incisional bleeding was not different between groups. In the aprotinin group, bleeding time was unchanged at baseline and then reduced for the duration of the experiment (35.0 +/- 4.7 seconds versus 76.8 +/- 6.4 seconds, p < 0.05). CONCLUSIONS While providing hemostatic effects, aprotinin attenuates vascular thrombosis in part by inhibition of PAR activation, resulting in the prevention of thrombin-induced platelet aggregation.
Collapse
Affiliation(s)
- Tanveer A Khan
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
22
|
Tovar AMF, de Mattos DA, Stelling MP, Sarcinelli-Luz BSL, Nazareth RA, Mourão PAS. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: implications for a possible physiological function of heparin cofactor II. Biochim Biophys Acta Mol Basis Dis 2005; 1740:45-53. [PMID: 15878740 DOI: 10.1016/j.bbadis.2005.02.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/17/2005] [Accepted: 02/23/2005] [Indexed: 11/24/2022]
Abstract
The role of different glycosaminoglycan species from the vessel walls as physiological antithrombotic agents remains controversial. To further investigate this aspect we extracted glycosaminoglycans from human thoracic aorta and saphenous vein. The different species were highly purified and their anticoagulant and antithrombotic activities tested by in vitro and in vivo assays. We observed that dermatan sulfate is the major anticoagulant and antithrombotic among the vessel wall glycosaminoglycans while the bulk of heparan sulfate is a poorly sulfated glycosaminoglycan, devoid of anticoagulant and antithrombotic activities. Minor amounts of particular a heparan sulfate (< 5% of the total arterial glycosaminoglycans) with high anticoagulant activity were also observed, as assessed by its retention on an antithrombin-affinity column. Possibly, this anticoagulant heparan sulfate originates from the endothelial cells and may exert a significant physiological role due to its location in the interface between the vessel wall and the blood. In view of these results we discuss a possible balance between the two glycosaminoglycan-dependent anticoagulant pathways present in the vascular wall. One is based on antithrombin activation by the heparan sulfate expressed by the endothelial cells. The other, which may assume special relevance after vascular endothelial injury, is based on heparin cofactor II activation by the dermatan sulfate proteoglycans synthesized by cells from the subendothelial layer.
Collapse
Affiliation(s)
- Ana M F Tovar
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Caixa Postal 68041, Rio de Janeiro, RJ, 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Insights into hemostasis and thrombosis have historically benefited from the astute diagnosis of human bleeding and thrombotic disorders followed by decades of careful biochemical characterization. This work has set the stage for the development of a number of mouse models of hemostasis and thrombosis generated by gene targeting strategies in the mouse genome. The utility of these models is the in depth analysis that can be performed on the precise molecular interactions that support hemostasis and thrombosis along with efficacy testing of various therapeutic strategies. Already the mouse has proven to be an excellent model of the processes that support hemostasis and thrombosis in the human vasculature. A brief summary of the salient phenotypes from knockout mice missing key platelet receptors is presented, including the glycoprotein (GP) Ib-IX-V and GP IIb/IIIa (alphaIIb/beta3) receptors; the collagen receptors, GP VI and alpha2/beta1; the protease activated receptors (PARs); and the purinergic receptors, P2Y(1) and P2Y(12). A few differences exist between mouse and human platelets and where appropriate those will be highlighted in this review. Concluding remarks focus on the importance of understanding the power and limitations of various in vitro, ex vivo and in vivo models currently being used and the impact of the mouse strain on the described platelet phenotype.
Collapse
Affiliation(s)
- Jerry Ware
- The Room Research Center for Arteriosclerosis and Thrombosis, Division of Experimental Hemostasis and Thrombosis, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Douglas M Tollefsen
- Hematology Division, Department of Medicine, Washington University Medical School, 660 South Euclid Ave, St Louis, MO 63110, USA.
| |
Collapse
|
25
|
Moers A, Wettschureck N, Grüner S, Nieswandt B, Offermanns S. Unresponsiveness of Platelets Lacking Both Gαq and Gα13. J Biol Chem 2004; 279:45354-9. [PMID: 15326177 DOI: 10.1074/jbc.m408962200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diffusible platelet stimuli ADP and thromboxane A(2) activate multiple G protein-mediated signaling pathways and function as important secondary mediators of platelet activation as they are released from activated platelets. Because they can also increase their own formation and release, their effects are amplified; eventually, all major G protein-mediated signaling pathways are activated. The multiple positive feedback mechanisms operating during platelet activation have obscured the exact analysis of the roles individual G protein-mediated signaling pathways play during the platelet activation process. In this report, we show that platelets lacking G(q) and G(13) are completely unresponsive to diffusible stimuli such as ADP, thromboxane A(2), or thrombin, even when applied at very high concentrations in combination, whereas all stimuli are able to induce platelet aggregation, shape change, and RhoA activation in platelets lacking only one Galpha subunit. This shows that G(q) or G(13) is required to induce some platelet activation, whereas the activation of G(i)-mediated signaling alone is not sufficient to induceactivation of mouse platelets. In addition, platelets lacking Galpha(q) and Galpha(13) adhered normally to collagen under high shearbut did not aggregate any more in response to collagen, indicating that collagen-induced platelet activation but not platelet adhesion requires intact G protein-mediated signaling pathways.
Collapse
Affiliation(s)
- Alexandra Moers
- Pharmakologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
26
|
Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor–related protein. J Clin Invest 2003. [DOI: 10.1172/jci200319212] [Citation(s) in RCA: 371] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 2003; 112:1533-40. [PMID: 14617754 PMCID: PMC259131 DOI: 10.1172/jci19212] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 09/30/2003] [Indexed: 01/11/2023] Open
Abstract
The regulation of cerebrovascular permeability is critical for normal brain homeostasis, and the "breakdown" of the blood-brain barrier (BBB) is associated with the development of vasogenic edema and intracranial hypertension in a number of neurological disorders. In this study we demonstrate that an increase in endogenous tissue-type plasminogen activator (tPA) activity in the perivascular tissue following cerebral ischemia induces opening of the BBB via a mechanism that is independent of both plasminogen (Plg) and MMP-9. We also show that injection of tPA into the cerebrospinal fluid in the absence of ischemia results in a rapid dose-dependent increase in vascular permeability. This activity is not seen with urokinase-type Plg activator (uPA) but is induced in Plg-/- mice, confirming that the effect is Plg-independent. However, the activity is blocked by antibodies to the LDL receptor-related protein (LRP) and by the LRP antagonist, receptor-associated protein (RAP), suggesting a receptor-mediated process. Together these studies demonstrate that tPA is both necessary and sufficient to directly increase vascular permeability in the early stages of BBB opening, and suggest that this occurs through a receptor-mediated cell signaling event and not through generalized degradation of the vascular basement membrane.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Vascular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | | | |
Collapse
|