1
|
Park Y, Cha Y, Kim H, Kim Y, Woo JH, Cho H, Mashour GA, Xu T, Lee U, Hong SJ, Honey CJ, Moon JY. Sub-Second Fluctuation between Top-Down and Bottom-Up Modes Distinguishes Diverse Human Brain States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642768. [PMID: 40161811 PMCID: PMC11952419 DOI: 10.1101/2025.03.12.642768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Information continuously flows between regions of the human brain, exhibiting distinct patterns that dynamically shift across states of consciousness, cognitive modes, and neuropsychiatric conditions. In this study, we introduce Relative Phase Analysis (RPA), a method that leverages phase-lead/lag relationships to reveal the real-time dynamics of dominant directional patterns and their rapid transitions. We demonstrate that the human brain switches on a sub-second timescale between a top-down mode-where anterior regions drive posterior activity-and a bottom-up mode, characterized by reverse directionality. These dynamics are most pronounced during full consciousness and gradually become less distinct as awareness diminishes. Furthermore, we find from simultaneous EEG-fMRI recordings that the top-down mode is expressed when higher-order cognitive networks are more active while the bottom-up mode is expressed when sensory systems are more active. Moreover, comparisons of an attention deficit hyperactivity disorder (ADHD) inattentive cohort with typically developing individuals reveal distinct imbalances in these transition dynamics, highlighting the potential of RPA as a diagnostic biomarker. Complementing our empirical findings, a coupled-oscillator model of the structural brain network recapitulates these emergent patterns, suggesting that such directional modes and transitions may arise naturally from inter-regional neural interactions. Altogether, this study provides a framework for understanding whole-brain dynamics in real-time and identifies sub-second fluctuations in top-down versus bottom-up directionality as a fundamental mechanism underlying human information processing.
Collapse
Affiliation(s)
- Youngjai Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
- Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Younghwa Cha
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
- Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute of Slowave Inc., Seoul, 06160, Republic of Korea
| | - Hyoungkyu Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
- Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Institute of Slowave Inc., Seoul, 06160, Republic of Korea
| | - Yukyung Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
- Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Hyung Woo
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, 03755, NH, USA
| | - Hanbyul Cho
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
- Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
| | - Uncheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, 48109, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
- Center for the Developing Brain, Child Mind Institute, New York, 10022, NY, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Christopher J. Honey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, 21218, MD, USA
| | - Joon-Young Moon
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea
- Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Coventry BS, Luu CP, Bartlett EL. Focal Infrared Neural Stimulation Propagates Dynamical Transformations in Auditory Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642906. [PMID: 40161605 PMCID: PMC11952546 DOI: 10.1101/2025.03.12.642906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Significance Infrared neural stimulation (INS) has emerged as a potent neuromodulation technology, offering safe and focal stimulation with superior spatial recruitment profiles compared to conventional electrical methods. However, the neural dynamics induced by INS stimulation remain poorly understood. Elucidating these dynamics will help develop new INS stimulation paradigms and advance its clinical application. Aim In this study, we assessed the local network dynamics of INS entrainment in the auditory thalamocortical circuit using the chronically implanted rat model; our approach focused on measuring INS energy-based local field potential (LFP) recruitment induced by focal thalamocortical stimulation. We further characterized linear and nonlinear oscillatory LFP activity in response to single-pulse and periodic INS and performed spectral decomposition to uncover specific LFP band entrainment to INS. Finally, we examined spike-field transformations across the thalamocortical synapse using spike-LFP coherence coupling. Results We found that INS significantly increases LFP amplitude as a log-linear function of INS energy per pulse, primarily entraining to LFP β and γ bands with synchrony extending to 200 Hz in some cases. A subset of neurons demonstrated nonlinear, chaotic oscillations linked to information transfer across cortical circuits. Finally, we utilized spike-field coherences to correlate spike coupling to LFP frequency band activity and suggest an energy-dependent model of network activation resulting from INS stimulation. Conclusions We show that INS reliably drives robust network activity and can potently modulate cortical field potentials across a wide range of frequencies in a stimulus parameter-dependent manner. Based on these results, we propose design principles for developing full coverage, all-optical thalamocortical auditory neuroprostheses.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
| | - Cuong P Luu
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53907 USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907 USA
- Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907 USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
3
|
Liang J, Yang Z, Zhou C. Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. Neuroscientist 2025; 31:31-46. [PMID: 38291889 DOI: 10.1177/10738584231221766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Zhuda Yang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
4
|
Zendrikov D, Paraskevov A. The vitals for steady nucleation maps of spontaneous spiking coherence in autonomous two-dimensional neuronal networks. Neural Netw 2024; 180:106589. [PMID: 39217864 DOI: 10.1016/j.neunet.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Thin pancake-like neuronal networks cultured on top of a planar microelectrode array have been extensively tried out in neuroengineering, as a substrate for the mobile robot's control unit, i.e., as a cyborg's brain. Most of these attempts failed due to intricate self-organizing dynamics in the neuronal systems. In particular, the networks may exhibit an emergent spatial map of steady nucleation sites ("n-sites") of spontaneous population spikes. Being unpredictable and independent of the surface electrode locations, the n-sites drastically change local ability of the network to generate spikes. Here, using a spiking neuronal network model with generative spatially-embedded connectome, we systematically show in simulations that the number, location, and relative activity of spontaneously formed n-sites ("the vitals") crucially depend on the samplings of three distributions: (1) the network distribution of neuronal excitability, (2) the distribution of connections between neurons of the network, and (3) the distribution of maximal amplitudes of a single synaptic current pulse. Moreover, blocking the dynamics of a small fraction (about 4%) of non-pacemaker neurons having the highest excitability was enough to completely suppress the occurrence of population spikes and their n-sites. This key result is explained theoretically. Remarkably, the n-sites occur taking into account only short-term synaptic plasticity, i.e., without a Hebbian-type plasticity. As the spiking network model used in this study is strictly deterministic, all simulation results can be accurately reproduced. The model, which has already demonstrated a very high richness-to-complexity ratio, can also be directly extended into the three-dimensional case, e.g., for targeting peculiarities of spiking dynamics in cerebral (or brain) organoids. We recommend the model as an excellent illustrative tool for teaching network-level computational neuroscience, complementing a few benchmark models.
Collapse
Affiliation(s)
- Dmitrii Zendrikov
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| | | |
Collapse
|
5
|
McGregor JN, Farris CA, Ensley S, Schneider A, Fosque LJ, Wang C, Tilden EI, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Failure in a population: Tauopathy disrupts homeostatic set-points in emergent dynamics despite stability in the constituent neurons. Neuron 2024; 112:3567-3584.e5. [PMID: 39241778 PMCID: PMC11560743 DOI: 10.1016/j.neuron.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Homeostatic regulation of neuronal activity is essential for robust computation; set-points, such as firing rate, are actively stabilized to compensate for perturbations. The disruption of brain function central to neurodegenerative disease likely arises from impairments of computationally essential set-points. Here, we systematically investigated the effects of tau-mediated neurodegeneration on all known set-points in neuronal activity. We continuously tracked hippocampal neuronal activity across the lifetime of a mouse model of tauopathy. We were unable to detect effects of disease in measures of single-neuron firing activity. By contrast, as tauopathy progressed, there was disruption of network-level neuronal activity, quantified by measuring neuronal pairwise interactions and criticality, a homeostatically controlled, ideal computational regime. Deviations in criticality correlated with symptoms, predicted underlying anatomical pathology, occurred in a sleep-wake-dependent manner, and could be used to reliably classify an animal's genotype. This work illustrates how neurodegeneration may disrupt the computational capacity of neurobiological systems.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Leandro J Fosque
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China
| | - Elizabeth I Tilden
- Department of Neuroscience, Washington University in Saint Louis, St. Louis, MO, USA
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Roman M, L'Heureux I, Powanwe A, Longtin A. Threshold crossing time theory for quasicycles with application to brain rhythms. Phys Rev E 2024; 110:044313. [PMID: 39562869 DOI: 10.1103/physreve.110.044313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/06/2024] [Indexed: 11/21/2024]
Abstract
The amplitude of a two-dimensional Ornstein-Uhlenbeck colored noise process evolves according to the one-dimensional Rayleigh process. This is a general model for the random amplitude fluctuations of a quasicycle, i.e., of a noise-induced oscillation around an equilibrium with complex eigenvalues in physical and biological systems. We consider the probability density of time intervals during which the amplitude is either below or above a fixed threshold. The statistics of such first return times (FRTs) are of particular interest in neuroscience to characterize brain rhythm power excursions known as bursts, as well as avalanches and other branching processes. In contrast with the density of first passage times computed using Fokker-Planck theory between a start point and a different endpoint, the density of FRTs is non-normalizable. A recently proposed technique reframes the problem using an expansion of the Fokker-Planck eigenfunctions along with a correction to the normalization. Analytical expressions for the FRT density for the Rayleigh process are shown to be in good agreement with those computed from numerical realizations over a wide range of parameters, both for trajectories above and below threshold. Special care is required to evaluate the theory above threshold due to the crowded roots of the Tricomi confluent hypergeometric function. The results provide insight into the statistics of threshold crossing times in quasicycles generally, and in the stochastic Wilson-Cowan neural equations in particular. Surprisingly, FRTs are governed by a single meta-parameter Δ given by the ratio of the noise strength and the linear stability coefficient. We find the universal property that the mean FRT is invariant to the ratio of threshold to sqrt[Δ]. The FRT density further exhibits exponential behavior over medium to long timescales, and mixtures of exponentials at shorter FRTs, thereby establishing the absence of strict power-law scaling in these threshold-crossing statistics.
Collapse
|
7
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. Sci Rep 2024; 14:19329. [PMID: 39164334 PMCID: PMC11335857 DOI: 10.1038/s41598-024-70014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2, reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2, even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Serafim F, Carvalho TTA, Copelli M, Carelli PV. Maximum-entropy-based metrics for quantifying critical dynamics in spiking neuron data. Phys Rev E 2024; 110:024401. [PMID: 39294971 DOI: 10.1103/physreve.110.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/08/2024] [Indexed: 09/21/2024]
Abstract
An important working hypothesis to investigate brain activity is whether it operates in a critical regime. Recently, maximum-entropy phenomenological models have emerged as an alternative way of identifying critical behavior in neuronal data sets. In the present paper, we investigate the signatures of criticality from a firing rate-based maximum-entropy approach on data sets generated by computational models, and we compare them to experimental results. We found that the maximum entropy approach consistently identifies critical behavior around the phase transition in models and rules out criticality in models without phase transition. The maximum-entropy-model results are compatible with results for cortical data from urethane-anesthetized rats data, providing further support for criticality in the brain.
Collapse
Affiliation(s)
| | - Tawan T A Carvalho
- Departamento de Física, Centro de Ciência Exatas e da Natureza, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimares, Portugal
| | | | | |
Collapse
|
9
|
Tsubo Y, Shinomoto S. Nondifferentiable activity in the brain. PNAS NEXUS 2024; 3:pgae261. [PMID: 38994500 PMCID: PMC11238849 DOI: 10.1093/pnasnexus/pgae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Spike raster plots of numerous neurons show vertical stripes, indicating that neurons exhibit synchronous activity in the brain. We seek to determine whether these coherent dynamics are caused by smooth brainwave activity or by something else. By analyzing biological data, we find that their cross-correlograms exhibit not only slow undulation but also a cusp at the origin, in addition to possible signs of monosynaptic connectivity. Here we show that undulation emerges if neurons are subject to smooth brainwave oscillations while a cusp results from nondifferentiable fluctuations. While modern analysis methods have achieved good connectivity estimation by adapting the models to slow undulation, they still make false inferences due to the cusp. We devise a new analysis method that may solve both problems. We also demonstrate that oscillations and nondifferentiable fluctuations may emerge in simulations of large-scale neural networks.
Collapse
Affiliation(s)
- Yasuhiro Tsubo
- College of Information Science and Engineering, Ritsumeikan University, Osaka 567-8570, Japan
| | - Shigeru Shinomoto
- Research Organization of Open Innovation and Collaboration, Ritsumeikan University, Osaka 567-8570, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582056. [PMID: 38464324 PMCID: PMC10925085 DOI: 10.1101/2024.02.26.582056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2 , reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2 , even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Tiago L. Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Morrell MC, Nemenman I, Sederberg A. Neural criticality from effective latent variables. eLife 2024; 12:RP89337. [PMID: 38470471 PMCID: PMC10957169 DOI: 10.7554/elife.89337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Observations of power laws in neural activity data have raised the intriguing notion that brains may operate in a critical state. One example of this critical state is 'avalanche criticality', which has been observed in various systems, including cultured neurons, zebrafish, rodent cortex, and human EEG. More recently, power laws were also observed in neural populations in the mouse under an activity coarse-graining procedure, and they were explained as a consequence of the neural activity being coupled to multiple latent dynamical variables. An intriguing possibility is that avalanche criticality emerges due to a similar mechanism. Here, we determine the conditions under which latent dynamical variables give rise to avalanche criticality. We find that populations coupled to multiple latent variables produce critical behavior across a broader parameter range than those coupled to a single, quasi-static latent variable, but in both cases, avalanche criticality is observed without fine-tuning of model parameters. We identify two regimes of avalanches, both critical but differing in the amount of information carried about the latent variable. Our results suggest that avalanche criticality arises in neural systems in which activity is effectively modeled as a population driven by a few dynamical variables and these variables can be inferred from the population activity.
Collapse
Affiliation(s)
- Mia C Morrell
- Department of Physics, New York UniversityNew YorkUnited States
| | - Ilya Nemenman
- Department of Physics, Department of Biology, Initiative in Theory and Modeling of Living Systems, Emory UniversityAtlantaUnited States
| | - Audrey Sederberg
- Department of Neuroscience, University of Minnesota Medical SchoolMinneapolisUnited States
| |
Collapse
|
12
|
Xu Y, Schneider A, Wessel R, Hengen KB. Sleep restores an optimal computational regime in cortical networks. Nat Neurosci 2024; 27:328-338. [PMID: 38182837 PMCID: PMC11272063 DOI: 10.1038/s41593-023-01536-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Sleep is assumed to subserve homeostatic processes in the brain; however, the set point around which sleep tunes circuit computations is unknown. Slow-wave activity (SWA) is commonly used to reflect the homeostatic aspect of sleep; although it can indicate sleep pressure, it does not explain why animals need sleep. This study aimed to assess whether criticality may be the computational set point of sleep. By recording cortical neuron activity continuously for 10-14 d in freely behaving rats, we show that normal waking experience progressively disrupts criticality and that sleep functions to restore critical dynamics. Criticality is perturbed in a context-dependent manner, and waking experience is causal in driving these effects. The degree of deviation from criticality predicts future sleep/wake behavior more accurately than SWA, behavioral history or other neural measures. Our results demonstrate that perturbation and recovery of criticality is a network homeostatic mechanism consistent with the core, restorative function of sleep.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in St. Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
13
|
Bai X, Yu C, Zhai J. Topological data analysis of the firings of a network of stochastic spiking neurons. Front Neural Circuits 2024; 17:1308629. [PMID: 38239606 PMCID: PMC10794443 DOI: 10.3389/fncir.2023.1308629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024] Open
Abstract
Topological data analysis is becoming more and more popular in recent years. It has found various applications in many different fields, for its convenience in analyzing and understanding the structure and dynamic of complex systems. We used topological data analysis to analyze the firings of a network of stochastic spiking neurons, which can be in a sub-critical, critical, or super-critical state depending on the value of the control parameter. We calculated several topological features regarding Betti curves and then analyzed the behaviors of these features, using them as inputs for machine learning to discriminate the three states of the network.
Collapse
Affiliation(s)
| | - Chaojun Yu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
14
|
Ikonnikova SA, Koltsova EA. [Connectome in stroke patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:46-50. [PMID: 39831362 DOI: 10.17116/jnevro202412412246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Stroke is the main cause of disability among neurological diseases. There are questions of the accuracy of topical diagnosis and rehabilitation prognosis in clinical practice. Answers to these questions may be given by an approach to the study of the nervous system as a dynamic network consisting of a set of brain regions with anatomical and functional connections between them. Active study of the connectome in neurological patients in recent years became possible due to the availability of noninvasive neuroimaging methods. This review covers types of connectome and most accessible methods of obtaining research data for their construction in a neurological hospital. The review also describes resting-state networks that reflect basic brain activity in the absence of tasks. Resting-state connectivity can be used for the diagnosis of patients with severe neurological deficits. Also, changes in resting-state connectivity may indicate recovery after a stroke. The connectome analysis uses graph theory, representing the nervous system as a set of nodes and connections between them, and providing a mathematical framework allowing to study it, and methods of algebraic topology that expand the possibilities of analyzing neuroimaging data beyond graph theory. Attention is paid to the concept of self-organized criticality, which describes the brain as a system located near the critical point, where the transmission of information is most optimized. Also presented are data from studies of self-organized criticality in relation to the dynamics of recovery of patients after stroke.
Collapse
Affiliation(s)
- S A Ikonnikova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| | - E A Koltsova
- Pirogov Russian National Research Medical University (Pirogov University), Moscow, Russia
| |
Collapse
|
15
|
Rabus A, Curic D, Ivan VE, Esteves IM, Gruber AJ, Davidsen J. Changes in functional connectivity preserve scale-free neuronal and behavioral dynamics. Phys Rev E 2023; 108:L052301. [PMID: 38115411 DOI: 10.1103/physreve.108.l052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 12/21/2023]
Abstract
Does the brain optimize itself for storage and transmission of information, and if so, how? The critical brain hypothesis is based in statistical physics and posits that the brain self-tunes its dynamics to a critical point or regime to maximize the repertoire of neuronal responses. Yet, the robustness of this regime, especially with respect to changes in the functional connectivity, remains an unsolved fundamental challenge. Here, we show that both scale-free neuronal dynamics and self-similar features of behavioral dynamics persist following significant changes in functional connectivity. Specifically, we find that the psychedelic compound ibogaine that is associated with an altered state of consciousness fundamentally alters the functional connectivity in the retrosplenial cortex of mice. Yet, the scale-free statistics of movement and of neuronal avalanches among behaviorally related neurons remain largely unaltered. This indicates that the propagation of information within biological neural networks is robust to changes in functional organization of subpopulations of neurons, opening up a new perspective on how the adaptive nature of functional networks may lead to optimality of information transmission in the brain.
Collapse
Affiliation(s)
- Anja Rabus
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Davor Curic
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Victorita E Ivan
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ingrid M Esteves
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Aaron J Gruber
- Canadian Centre for Behavioral Neuroscience University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
16
|
Kiselev EI, Pflug F, von Haeseler A. Critical Growth of Cerebral Tissue in Organoids: Theory and Experiments. PHYSICAL REVIEW LETTERS 2023; 131:178402. [PMID: 37955473 DOI: 10.1103/physrevlett.131.178402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/30/2023] [Indexed: 11/14/2023]
Abstract
We develop a Fokker-Planck theory of tissue growth with three types of cells (symmetrically dividing, asymmetrically dividing, and nondividing) as main agents to study the growth dynamics of human cerebral organoids. Fitting the theory to lineage tracing data obtained in next generation sequencing experiments, we show that the growth of cerebral organoids is a critical process. We derive analytical expressions describing the time evolution of clonal lineage sizes and show how power-law distributions arise in the limit of long times due to the vanishing of a characteristic growth scale. We discuss that the independence of critical growth on initial conditions could be biologically advantageous.
Collapse
Affiliation(s)
- Egor I Kiselev
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Physics Department, Technion, 320003 Haifa, Israel
| | - Florian Pflug
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna Bio Center (VBC), 1030 Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Costa AC, Vergassola M. Fluctuating landscapes and heavy tails in animal behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522580. [PMID: 36747746 PMCID: PMC9900741 DOI: 10.1101/2023.01.03.522580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales. This immense variability hampers quantitative reasoning and renders the identification of universal principles elusive. Through data analysis and theory, we here show that slow non-ergodic drives generally give rise to heavy-tailed statistics in behaving animals. We leverage high-resolution recordings of C. elegans locomotion to extract a self-consistent reduced order model for an inferred reaction coordinate, bridging from sub-second chaotic dynamics to long-lived stochastic transitions among metastable states. The slow mode dynamics exhibits heavy-tailed first passage time distributions and correlation functions, and we show that such heavy tails can be explained by dynamics on a time-dependent potential landscape. Inspired by these results, we introduce a generic model in which we separate faster mixing modes that evolve on a quasi-stationary potential, from slower non-ergodic modes that drive the potential landscape, and reflect slowly varying internal states. We show that, even for simple potential landscapes, heavy tails emerge when barrier heights fluctuate slowly and strongly enough. In particular, the distribution of first passage times and the correlation function can asymptote to a power law, with related exponents that depend on the strength and nature of the fluctuations. We support our theoretical findings through direct numerical simulations.
Collapse
Affiliation(s)
- Antonio Carlos Costa
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Massimo Vergassola
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
18
|
Stier AJ, Cardenas-Iniguez C, Kardan O, Moore TM, Meyer FAC, Rosenberg MD, Kaczkurkin AN, Lahey BB, Berman MG. A pattern of cognitive resource disruptions in childhood psychopathology. Netw Neurosci 2023; 7:1153-1180. [PMID: 37781141 PMCID: PMC10473262 DOI: 10.1162/netn_a_00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/01/2023] [Indexed: 10/03/2023] Open
Abstract
The Hurst exponent (H) isolated in fractal analyses of neuroimaging time series is implicated broadly in cognition. Within this literature, H is associated with multiple mental disorders, suggesting that H is transdimensionally associated with psychopathology. Here, we unify these results and demonstrate a pattern of decreased H with increased general psychopathology and attention-deficit/hyperactivity factor scores during a working memory task in 1,839 children. This pattern predicts current and future cognitive performance in children and some psychopathology in 703 adults. This pattern also defines psychological and functional axes associating psychopathology with an imbalance in resource allocation between fronto-parietal and sensorimotor regions, driven by reduced resource allocation to fronto-parietal regions. This suggests the hypothesis that impaired working memory function in psychopathology follows from a reduced cognitive resource pool and a reduction in resources allocated to the task at hand.
Collapse
Affiliation(s)
| | | | - Omid Kardan
- Department of Psychology, University of Chicago
| | | | | | - Monica D. Rosenberg
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| | | | | | - Marc G. Berman
- Department of Psychology, University of Chicago
- The Neuroscience Institute, University of Chicago
| |
Collapse
|
19
|
McGregor JN, Farris CA, Ensley S, Schneider A, Wang C, Liu Y, Tu J, Elmore H, Ronayne KD, Wessel R, Dyer EL, Bhaskaran-Nair K, Holtzman DM, Hengen KB. Tauopathy severely disrupts homeostatic set-points in emergent neural dynamics but not in the activity of individual neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555947. [PMID: 37732214 PMCID: PMC10508737 DOI: 10.1101/2023.09.01.555947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The homeostatic regulation of neuronal activity is essential for robust computation; key set-points, such as firing rate, are actively stabilized to compensate for perturbations. From this perspective, the disruption of brain function central to neurodegenerative disease should reflect impairments of computationally essential set-points. Despite connecting neurodegeneration to functional outcomes, the impact of disease on set-points in neuronal activity is unknown. Here we present a comprehensive, theory-driven investigation of the effects of tau-mediated neurodegeneration on homeostatic set-points in neuronal activity. In a mouse model of tauopathy, we examine 27,000 hours of hippocampal recordings during free behavior throughout disease progression. Contrary to our initial hypothesis that tauopathy would impact set-points in spike rate and variance, we found that cell-level set-points are resilient to even the latest stages of disease. Instead, we find that tauopathy disrupts neuronal activity at the network-level, which we quantify using both pairwise measures of neuron interactions as well as measurement of the network's nearness to criticality, an ideal computational regime that is known to be a homeostatic set-point. We find that shifts in network criticality 1) track with symptoms, 2) predict underlying anatomical and molecular pathology, 3) occur in a sleep/wake dependent manner, and 4) can be used to reliably classify an animal's genotype. Our data suggest that the critical set-point is intact, but that homeostatic machinery is progressively incapable of stabilizing hippocampal networks, particularly during waking. This work illustrates how neurodegenerative processes can impact the computational capacity of neurobiological systems, and suggest an important connection between molecular pathology, circuit function, and animal behavior.
Collapse
Affiliation(s)
- James N McGregor
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Clayton A Farris
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sahara Ensley
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Aidan Schneider
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
- Institute for Brain Science and Disease, Chongqing Medical University, 400016, Chongqing, China
| | - Yuqi Liu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jianhong Tu
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Halla Elmore
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keenan D Ronayne
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| | - Ralf Wessel
- Department of Physics, Washington University in Saint Louis, St. Louis, MO, USA
| | - Eva L Dyer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA
| |
Collapse
|
20
|
Klein W, Gould H, Matin S. Cluster scaling and critical points: A cautionary tale. Phys Rev E 2023; 108:034119. [PMID: 37849133 DOI: 10.1103/physreve.108.034119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/21/2023] [Indexed: 10/19/2023]
Abstract
Many systems in nature are conjectured to exist at a critical point, including the brain and earthquake faults. The primary reason for this conjecture is that the distribution of clusters (avalanches of firing neurons in the brain or regions of slip in earthquake faults) can be described by a power law. Because there are other mechanisms such as 1/f noise that can produce power laws, other criteria that the cluster critical exponents must satisfy can be used to conclude whether or not the observed power-law behavior indicates an underlying critical point rather than an alternate mechanism. We show how a possible misinterpretation of the cluster scaling data can lead one to incorrectly conclude that the measured critical exponents do not satisfy these criteria. Examples of the possible misinterpretation of the data for one-dimensional random site percolation and the one-dimensional Ising model are presented. We stress that the interpretation of a power-law cluster distribution indicating the presence of a critical point is subtle and its misinterpretation might lead to the abandonment of a promising area of research.
Collapse
Affiliation(s)
- W Klein
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA and Center for Computational Science, Boston University, Boston, Massachusetts 02215, USA
| | - Harvey Gould
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA and Department of Physics, Clark University, Worcester, Massachusetts 01610, USA
| | - Sakib Matin
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, USA; and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87546, USA
| |
Collapse
|
21
|
Habibollahi F, Kagan BJ, Burkitt AN, French C. Critical dynamics arise during structured information presentation within embodied in vitro neuronal networks. Nat Commun 2023; 14:5287. [PMID: 37648737 PMCID: PMC10469171 DOI: 10.1038/s41467-023-41020-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Understanding how brains process information is an incredibly difficult task. Amongst the metrics characterising information processing in the brain, observations of dynamic near-critical states have generated significant interest. However, theoretical and experimental limitations associated with human and animal models have precluded a definite answer about when and why neural criticality arises with links from attention, to cognition, and even to consciousness. To explore this topic, we used an in vitro neural network of cortical neurons that was trained to play a simplified game of 'Pong' to demonstrate Synthetic Biological Intelligence (SBI). We demonstrate that critical dynamics emerge when neural networks receive task-related structured sensory input, reorganizing the system to a near-critical state. Additionally, better task performance correlated with proximity to critical dynamics. However, criticality alone is insufficient for a neuronal network to demonstrate learning in the absence of additional information regarding the consequences of previous actions. These findings offer compelling support that neural criticality arises as a base feature of incoming structured information processing without the need for higher order cognition.
Collapse
Affiliation(s)
- Forough Habibollahi
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Brett J Kagan
- Cortical Labs Pty Ltd, Melbourne, 3056, VIC, Australia.
| | - Anthony N Burkitt
- Biomedical Engineering Department, University of Melbourne, Parkville, 3010, VIC, Australia
| | - Chris French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Parkville, 3010, VIC, Australia
- Neurology Department, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
22
|
Meyer CT, Kralj JM. Cell-autonomous diversification in bacteria arises from calcium dynamics self-organizing at a critical point. SCIENCE ADVANCES 2023; 9:eadg3028. [PMID: 37540744 PMCID: PMC10403213 DOI: 10.1126/sciadv.adg3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
How dynamic bacterial calcium is regulated, with kinetics faster than typical mechanisms of cellular adaptation, is unknown. We discover bacterial calcium fluctuations are temporal-fractals resulting from a property known as self-organized criticality (SOC). SOC processes are poised at a phase transition separating ordered and chaotic dynamical regimes and are observed in many natural and anthropogenic systems. SOC in bacterial calcium emerges due to calcium channel coupling mediated via membrane voltage. Environmental or genetic perturbations modify calcium dynamics and the critical exponent suggesting a continuum of critical attractors. Moving along this continuum alters the collective information capacity of bacterial populations. We find that the stochastic transition from motile to sessile lifestyle is partially mediated by SOC-governed calcium fluctuations through the regulation of c-di-GMP. In summary, bacteria co-opt the physics of phase transitions to maintain dynamic calcium equilibrium, and this enables cell-autonomous population diversification during surface colonization by leveraging the stochasticity inherent at a boundary between phases.
Collapse
|
23
|
Galinsky VL, Frank LR. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves? FRONTIERS OF PHYSICS 2023; 18:45301. [PMID: 37008280 PMCID: PMC10062440 DOI: 10.1007/s11467-023-1273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental "neuronal avalanche" data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
Collapse
Affiliation(s)
- Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA
- Center for Functional MRI, University of California at San Diego, La Jolla, CA 92037-0677, USA
| |
Collapse
|
24
|
Capek E, Ribeiro TL, Kells P, Srinivasan K, Miller SR, Geist E, Victor M, Vakili A, Pajevic S, Chialvo DR, Plenz D. Parabolic avalanche scaling in the synchronization of cortical cell assemblies. Nat Commun 2023; 14:2555. [PMID: 37137888 PMCID: PMC10156782 DOI: 10.1038/s41467-023-37976-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Neurons in the cerebral cortex fire coincident action potentials during ongoing activity and in response to sensory inputs. These synchronized cell assemblies are fundamental to cortex function, yet basic dynamical aspects of their size and duration are largely unknown. Using 2-photon imaging of neurons in the superficial cortex of awake mice, we show that synchronized cell assemblies organize as scale-invariant avalanches that quadratically grow with duration. The quadratic avalanche scaling was only found for correlated neurons, required temporal coarse-graining to compensate for spatial subsampling of the imaged cortex, and suggested cortical dynamics to be critical as demonstrated in simulations of balanced E/I-networks. The corresponding time course of an inverted parabola with exponent of χ = 2 described cortical avalanches of coincident firing for up to 5 s duration over an area of 1 mm2. These parabolic avalanches maximized temporal complexity in the ongoing activity of prefrontal and somatosensory cortex and in visual responses of primary visual cortex. Our results identify a scale-invariant temporal order in the synchronization of highly diverse cortical cell assemblies in the form of parabolic avalanches.
Collapse
Affiliation(s)
- Elliott Capek
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Stephanie R Miller
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Elias Geist
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Mitchell Victor
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Ali Vakili
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Sinisa Pajevic
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Dante R Chialvo
- CEMSC3, Escuela de Ciencia y Tecnologia, UNSAM, San Martín, P. Buenos Aires, Argentina
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Burrows DRW, Diana G, Pimpel B, Moeller F, Richardson MP, Bassett DS, Meyer MP, Rosch RE. Microscale Neuronal Activity Collectively Drives Chaotic and Inflexible Dynamics at the Macroscale in Seizures. J Neurosci 2023; 43:3259-3283. [PMID: 37019622 PMCID: PMC7614507 DOI: 10.1523/jneurosci.0171-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 04/07/2023] Open
Abstract
Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.
Collapse
Affiliation(s)
- Dominic R W Burrows
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Giovanni Diana
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Birgit Pimpel
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Great Ormond Street-University College London Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
| | - Mark P Richardson
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Neurology, and Psychiatry University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Santa Fe Institute, Santa Fe NM 87501, New Mexico
| | - Martin P Meyer
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Richard E Rosch
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
| |
Collapse
|
26
|
Nanda A, Johnson GW, Mu Y, Ahrens MB, Chang C, Englot DJ, Breakspear M, Rubinov M. Time-resolved correlation of distributed brain activity tracks E-I balance and accounts for diverse scale-free phenomena. Cell Rep 2023; 42:112254. [PMID: 36966391 PMCID: PMC10518034 DOI: 10.1016/j.celrep.2023.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/27/2023] Open
Abstract
Much of systems neuroscience posits the functional importance of brain activity patterns that lack natural scales of sizes, durations, or frequencies. The field has developed prominent, and sometimes competing, explanations for the nature of this scale-free activity. Here, we reconcile these explanations across species and modalities. First, we link estimates of excitation-inhibition (E-I) balance with time-resolved correlation of distributed brain activity. Second, we develop an unbiased method for sampling time series constrained by this time-resolved correlation. Third, we use this method to show that estimates of E-I balance account for diverse scale-free phenomena without need to attribute additional function or importance to these phenomena. Collectively, our results simplify existing explanations of scale-free brain activity and provide stringent tests on future theories that seek to transcend these explanations.
Collapse
Affiliation(s)
- Aditya Nanda
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yu Mu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Breakspear
- School of Psychology, University of Newcastle, Callaghan, NSW 2308, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mikail Rubinov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
27
|
Grosu GF, Hopp AV, Moca VV, Bârzan H, Ciuparu A, Ercsey-Ravasz M, Winkel M, Linde H, Mureșan RC. The fractal brain: scale-invariance in structure and dynamics. Cereb Cortex 2023; 33:4574-4605. [PMID: 36156074 PMCID: PMC10110456 DOI: 10.1093/cercor/bhac363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
The past 40 years have witnessed extensive research on fractal structure and scale-free dynamics in the brain. Although considerable progress has been made, a comprehensive picture has yet to emerge, and needs further linking to a mechanistic account of brain function. Here, we review these concepts, connecting observations across different levels of organization, from both a structural and functional perspective. We argue that, paradoxically, the level of cortical circuits is the least understood from a structural point of view and perhaps the best studied from a dynamical one. We further link observations about scale-freeness and fractality with evidence that the environment provides constraints that may explain the usefulness of fractal structure and scale-free dynamics in the brain. Moreover, we discuss evidence that behavior exhibits scale-free properties, likely emerging from similarly organized brain dynamics, enabling an organism to thrive in an environment that shares the same organizational principles. Finally, we review the sparse evidence for and try to speculate on the functional consequences of fractality and scale-freeness for brain computation. These properties may endow the brain with computational capabilities that transcend current models of neural computation and could hold the key to unraveling how the brain constructs percepts and generates behavior.
Collapse
Affiliation(s)
- George F Grosu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | | | - Vasile V Moca
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| | - Harald Bârzan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Andrei Ciuparu
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Electronics, Telecommunications and Information Technology, Technical University of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca, Romania
| | - Maria Ercsey-Ravasz
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, Str. Mihail Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Mathias Winkel
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Helmut Linde
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Str. Ploiesti 33, 400157 Cluj-Napoca, Romania
| |
Collapse
|
28
|
Abstract
Analytical expressions for scaling of brain wave spectra derived from the general non-linear wave Hamiltonian form show excellent agreement with experimental "neuronal avalanche" data. The theory of the weakly evanescent non-linear brain wave dynamics reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different non-linear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order non-linear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
Collapse
Affiliation(s)
- Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, CA, United States
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California, San Diego, San Diego, CA, United States
- Center for Functional MRI, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
29
|
Trejo EJA, Martin DA, De Zoysa D, Bowen Z, Grigera TS, Cannas SA, Losert W, Chialvo DR. Finite-size correlation behavior near a critical point: A simple metric for monitoring the state of a neural network. Phys Rev E 2022; 106:054313. [PMID: 36559402 DOI: 10.1103/physreve.106.054313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
In this article, a correlation metric κ_{c} is proposed for the inference of the dynamical state of neuronal networks. κ_{C} is computed from the scaling of the correlation length with the size of the observation region, which shows qualitatively different behavior near and away from the critical point of a continuous phase transition. The implementation is first studied on a neuronal network model, where the results of this new metric coincide with those obtained from neuronal avalanche analysis, thus well characterizing the critical state of the network. The approach is further tested with brain optogenetic recordings in behaving mice from a publicly available database. Potential applications and limitations for its use with currently available optical imaging techniques are discussed.
Collapse
Affiliation(s)
- Eyisto J Aguilar Trejo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Daniel A Martin
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Dulara De Zoysa
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Zac Bowen
- Fraunhofer USA Center Mid-Atlantic, Riverdale, Maryland 20737, USA
| | - Tomas S Grigera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB-CONICET) Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Sergio A Cannas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Wolfgang Losert
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Dante R Chialvo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| |
Collapse
|
30
|
Tian Y, Tan Z, Hou H, Li G, Cheng A, Qiu Y, Weng K, Chen C, Sun P. Theoretical foundations of studying criticality in the brain. Netw Neurosci 2022; 6:1148-1185. [PMID: 38800464 PMCID: PMC11117095 DOI: 10.1162/netn_a_00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 05/29/2024] Open
Abstract
Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information-processing capacities in the brain. While considerable evidence generally supports this hypothesis, nonnegligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the nontriviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, that is, ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistical techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
- Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China
| | - Zeren Tan
- Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China
| | - Hedong Hou
- UFR de Mathématiques, Université de Paris, Paris, France
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Aohua Cheng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yike Qiu
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Kangyu Weng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Chun Chen
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Pei Sun
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Yu C, Zhai J. Scale-free avalanche dynamics possibly generated by randomly jumping among many stable states. CHAOS (WOODBURY, N.Y.) 2022; 32:103116. [PMID: 36319307 DOI: 10.1063/5.0104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
A large amount of research has used the scale-free statistics of neuronal avalanches as a signature of the criticality of neural systems, which bears criticisms. For instance, the work of Touboul and Destexhe demonstrated that non-critical systems could also display such scale-free dynamics, which passed their rigorous statistical analyses. In this paper, we show that a fully connected stochastic neural network may also generate scale-free dynamics simply by jumping among many stable states.
Collapse
Affiliation(s)
- Chaojun Yu
- School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Zhai
- School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
32
|
Beggs JM. Addressing skepticism of the critical brain hypothesis. Front Comput Neurosci 2022; 16:703865. [PMID: 36185712 PMCID: PMC9520604 DOI: 10.3389/fncom.2022.703865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothesis that living neural networks operate near a critical phase transition point has received substantial discussion. This “criticality hypothesis” is potentially important because experiments and theory show that optimal information processing and health are associated with operating near the critical point. Despite the promise of this idea, there have been several objections to it. While earlier objections have been addressed already, the more recent critiques of Touboul and Destexhe have not yet been fully met. The purpose of this paper is to describe their objections and offer responses. Their first objection is that the well-known Brunel model for cortical networks does not display a peak in mutual information near its phase transition, in apparent contradiction to the criticality hypothesis. In response I show that it does have such a peak near the phase transition point, provided it is not strongly driven by random inputs. Their second objection is that even simple models like a coin flip can satisfy multiple criteria of criticality. This suggests that the emergent criticality claimed to exist in cortical networks is just the consequence of a random walk put through a threshold. In response I show that while such processes can produce many signatures criticality, these signatures (1) do not emerge from collective interactions, (2) do not support information processing, and (3) do not have long-range temporal correlations. Because experiments show these three features are consistently present in living neural networks, such random walk models are inadequate. Nevertheless, I conclude that these objections have been valuable for refining research questions and should always be welcomed as a part of the scientific process.
Collapse
Affiliation(s)
- John M. Beggs
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
- *Correspondence: John M. Beggs,
| |
Collapse
|
33
|
Kelty-Stephen DG, Mangalam M. Turing's cascade instability supports the coordination of the mind, brain, and behavior. Neurosci Biobehav Rev 2022; 141:104810. [PMID: 35932950 DOI: 10.1016/j.neubiorev.2022.104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Turing inspired a computer metaphor of the mind and brain that has been handy and has spawned decades of empirical investigation, but he did much more and offered behavioral and cognitive sciences another metaphor-that of the cascade. The time has come to confront Turing's cascading instability, which suggests a geometrical framework driven by power laws and can be studied using multifractal formalism and multiscale probability density function analysis. Here, we review a rapidly growing body of scientific investigations revealing signatures of cascade instability and their consequences for a perceiving, acting, and thinking organism. We review work related to executive functioning (planning to act), postural control (bodily poise for turning plans into action), and effortful perception (action to gather information in a single modality and action to blend multimodal information). We also review findings on neuronal avalanches in the brain, specifically about neural participation in body-wide cascades. Turing's cascade instability blends the mind, brain, and behavior across space and time scales and provides an alternative to the dominant computer metaphor.
Collapse
Affiliation(s)
- Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, USA.
| | - Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
34
|
Nandi MK, Sarracino A, Herrmann HJ, de Arcangelis L. Scaling of avalanche shape and activity power spectrum in neuronal networks. Phys Rev E 2022; 106:024304. [PMID: 36109993 DOI: 10.1103/physreve.106.024304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 05/21/2023]
Abstract
Many systems in nature exhibit avalanche dynamics with scale-free features. A general scaling theory has been proposed for critical avalanche profiles in crackling noise, predicting the collapse onto a universal avalanche shape, as well as the scaling behavior of the activity power spectrum as Brown noise. Recently, much attention has been given to the profile of neuronal avalanches, measured in neuronal systems in vitro and in vivo. Although a universal profile was evidenced, confirming the validity of the general scaling theory, the parallel study of the power spectrum scaling under the same conditions was not performed. The puzzling observation is that in the majority of healthy neuronal systems the power spectrum exhibits a behavior close to 1/f, rather than Brown, noise. Here we perform a numerical study of the scaling behavior of the avalanche shape and the power spectrum for a model of integrate and fire neurons with a short-term plasticity parameter able to tune the system to criticality. We confirm that, at criticality, the average avalanche size and the avalanche profile fulfill the general avalanche scaling theory. However, the power spectrum consistently exhibits Brown noise behavior, for both fully excitatory networks and systems with 30% inhibitory networks. Conversely, a behavior closer to 1/f noise is observed in systems slightly off criticality. Results suggest that the power spectrum is a good indicator to determine how close neuronal activity is to criticality.
Collapse
Affiliation(s)
- Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Alessandro Sarracino
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Hans J Herrmann
- PMMH, ESPCI, 7 Quai Saint Bernard, Paris 75005, France
- Departamento de Fisica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
| | - Lucilla de Arcangelis
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| |
Collapse
|
35
|
Walter N, Hinterberger T. Self-organized criticality as a framework for consciousness: A review study. Front Psychol 2022; 13:911620. [PMID: 35911009 PMCID: PMC9336647 DOI: 10.3389/fpsyg.2022.911620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Objective No current model of consciousness is univocally accepted on either theoretical or empirical grounds, and the need for a solid unifying framework is evident. Special attention has been given to the premise that self-organized criticality (SOC) is a fundamental property of neural system. SOC provides a competitive model to describe the physical mechanisms underlying spontaneous brain activity, and thus, critical dynamics were proposed as general gauges of information processing representing a strong candidate for a surrogate measure of consciousness. As SOC could be a neurodynamical framework, which may be able to bring together existing theories and experimental evidence, the purpose of this work was to provide a comprehensive overview of progress of research on SOC in association with consciousness. Methods A comprehensive search of publications on consciousness and SOC published between 1998 and 2021 was conducted. The Web of Science database was searched, and annual number of publications and citations, type of articles, and applied methods were determined. Results A total of 71 publications were identified. The annual number of citations steadily increased over the years. Original articles comprised 50.7% and reviews/theoretical articles 43.6%. Sixteen studies reported on human data and in seven studies data were recorded in animals. Computational models were utilized in n = 12 studies. EcoG data were assessed in n = 4 articles, fMRI in n = 4 studies, and EEG/MEG in n = 10 studies. Notably, different analytical tools were applied in the EEG/MEG studies to assess a surrogate measure of criticality such as the detrended fluctuation analysis, the pair correlation function, parameters from the neuronal avalanche analysis and the spectral exponent. Conclusion Recent studies pointed out agreements of critical dynamics with the current most influencing theories in the field of consciousness research, the global workspace theory and the integrated information theory. Thus, the framework of SOC as a neurodynamical parameter for consciousness seems promising. However, identified experimental work was small in numbers, and a heterogeneity of applied analytical tools as a surrogate measure of criticality was observable, which limits the generalizability of findings.
Collapse
|
36
|
Muñoz RN, Frazer L, Yuan G, Mulvaney P, Pollock FA, Modi K. Memory in quantum dot blinking. Phys Rev E 2022; 106:014127. [PMID: 35974537 DOI: 10.1103/physreve.106.014127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The photoluminescence intermittency (blinking) of quantum dots is interesting because it is an easily measured quantum process whose transition statistics cannot be explained by Fermi's golden rule. Commonly, the transition statistics are power-law distributed, implying that quantum dots possess at least trivial memories. By investigating the temporal correlations in the blinking data, we demonstrate with high statistical confidence that there is nontrivial memory between the on and off brightness duration data of blinking quantum dots. We define nontrivial memory to be statistical complexity greater than one. We show that this memory cannot be discovered using the transition distribution. We show by simulation that this memory does not arise from standard data manipulations. Finally, we conclude that at least three physical mechanisms can explain the measured nontrivial memory: (1) storage of state information in the chemical structure of a quantum dot; (2) the existence of more than two intensity levels in a quantum dot; and (3) the overlap in the intensity distributions of the quantum dot states, which arises from fundamental photon statistics.
Collapse
Affiliation(s)
- Roberto N Muñoz
- ARC Centre of Excellence in Exciton Science and School of Physics & Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Laszlo Frazer
- ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Gangcheng Yuan
- ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Felix A Pollock
- School of Physics & Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Kavan Modi
- ARC Centre of Excellence in Exciton Science and School of Physics & Astronomy, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
37
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Vassanelli S, Suweis S. Disentangling the critical signatures of neural activity. Sci Rep 2022; 12:10770. [PMID: 35750684 PMCID: PMC9232560 DOI: 10.1038/s41598-022-13686-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
The critical brain hypothesis has emerged as an attractive framework to understand neuronal activity, but it is still widely debated. In this work, we analyze data from a multi-electrodes array in the rat's cortex and we find that power-law neuronal avalanches satisfying the crackling-noise relation coexist with spatial correlations that display typical features of critical systems. In order to shed a light on the underlying mechanisms at the origin of these signatures of criticality, we introduce a paradigmatic framework with a common stochastic modulation and pairwise linear interactions inferred from our data. We show that in such models power-law avalanches that satisfy the crackling-noise relation emerge as a consequence of the extrinsic modulation, whereas scale-free correlations are solely determined by internal interactions. Moreover, this disentangling is fully captured by the mutual information in the system. Finally, we show that analogous power-law avalanches are found in more realistic models of neural activity as well, suggesting that extrinsic modulation might be a broad mechanism for their generation.
Collapse
Affiliation(s)
| | - Giorgio Nicoletti
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy
| | - Marta Bisio
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padua, Italy.
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| | - Samir Suweis
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
38
|
Hancock F, Rosas FE, Mediano PAM, Luppi AI, Cabral J, Dipasquale O, Turkheimer FE. May the 4C's be with you: an overview of complexity-inspired frameworks for analysing resting-state neuroimaging data. J R Soc Interface 2022; 19:20220214. [PMID: 35765805 PMCID: PMC9240685 DOI: 10.1098/rsif.2022.0214] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022] Open
Abstract
Competing and complementary models of resting-state brain dynamics contribute to our phenomenological and mechanistic understanding of whole-brain coordination and communication, and provide potential evidence for differential brain functioning associated with normal and pathological behaviour. These neuroscientific theories stem from the perspectives of physics, engineering, mathematics and psychology and create a complicated landscape of domain-specific terminology and meaning, which, when used outside of that domain, may lead to incorrect assumptions and conclusions within the neuroscience community. Here, we review and clarify the key concepts of connectivity, computation, criticality and coherence-the 4C's-and outline a potential role for metastability as a common denominator across these propositions. We analyse and synthesize whole-brain neuroimaging research, examined through functional magnetic imaging, to demonstrate that complexity science offers a principled and integrated approach to describe, and potentially understand, macroscale spontaneous brain functioning.
Collapse
Affiliation(s)
- Fran Hancock
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Department of Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- Alan Turing Institute, London, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
39
|
Magnasco MO. Robustness and Flexibility of Neural Function through Dynamical Criticality. ENTROPY (BASEL, SWITZERLAND) 2022; 24:591. [PMID: 35626476 PMCID: PMC9141846 DOI: 10.3390/e24050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023]
Abstract
In theoretical biology, robustness refers to the ability of a biological system to function properly even under perturbation of basic parameters (e.g., temperature or pH), which in mathematical models is reflected in not needing to fine-tune basic parameter constants; flexibility refers to the ability of a system to switch functions or behaviors easily and effortlessly. While there are extensive explorations of the concept of robustness and what it requires mathematically, understanding flexibility has proven more elusive, as well as also elucidating the apparent opposition between what is required mathematically for models to implement either. In this paper we address a number of arguments in theoretical neuroscience showing that both robustness and flexibility can be attained by systems that poise themselves at the onset of a large number of dynamical bifurcations, or dynamical criticality, and how such poising can have a profound influence on integration of information processing and function. Finally, we examine critical map lattices, which are coupled map lattices where the coupling is dynamically critical in the sense of having purely imaginary eigenvalues. We show that these map lattices provide an explicit connection between dynamical criticality in the sense we have used and "edge of chaos" criticality.
Collapse
Affiliation(s)
- Marcelo O Magnasco
- Laboratory of Integrative Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
40
|
The Analysis of Mammalian Hearing Systems Supports the Hypothesis That Criticality Favors Neuronal Information Representation but Not Computation. ENTROPY 2022; 24:e24040540. [PMID: 35455203 PMCID: PMC9029204 DOI: 10.3390/e24040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022]
Abstract
In the neighborhood of critical states, distinct materials exhibit the same physical behavior, expressed by common simple laws among measurable observables, hence rendering a more detailed analysis of the individual systems obsolete. It is a widespread view that critical states are fundamental to neuroscience and directly favor computation. We argue here that from an evolutionary point of view, critical points seem indeed to be a natural phenomenon. Using mammalian hearing as our example, we show, however, explicitly that criticality does not describe the proper computational process and thus is only indirectly related to the computation in neural systems.
Collapse
|
41
|
Lee S, Jo J. Scale-invariant representation of machine learning. Phys Rev E 2022; 105:044306. [PMID: 35590591 DOI: 10.1103/physreve.105.044306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
The success of machine learning has resulted from its structured representation of data. Similar data have close internal representations as compressed codes for classification or emerged labels for clustering. We observe that the frequency of internal codes or labels follows power laws in both supervised and unsupervised learning models. This scale-invariant distribution implies that machine learning largely compresses frequent typical data, and simultaneously, differentiates many atypical data as outliers. In this study, we derive the process by which these power laws can naturally arise in machine learning. In terms of information theory, the scale-invariant representation corresponds to a maximally uncertain data grouping among possible representations that guarantee a given learning accuracy.
Collapse
Affiliation(s)
- Sungyeop Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Junghyo Jo
- Department of Physics Education and Center for Theoretical Physics and Artificial Intelligence Institute, Seoul National University, Seoul 08826, Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
42
|
Juanico DEO. Neuronal Population Transitions Across a Quiescent-to-Active Frontier and Bifurcation. Front Physiol 2022; 13:840546. [PMID: 35222095 PMCID: PMC8867020 DOI: 10.3389/fphys.2022.840546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanistic understanding of why neuronal population activity hovers on criticality remains unresolved despite the availability of experimental results. Without a coherent mathematical framework, the presence of power-law scaling is not straightforward to reconcile with findings implying epileptiform activity. Although multiple pictures have been proposed to relate the power-law scaling of avalanche statistics to phase transitions, the existence of a phase boundary in parameter space is until now an assumption. Herein, a framework based on differential inclusions, which departs from approaches constructed from differential equations, is shown to offer an adequate consolidation of evidences apparently connected to criticality and those linked to hyperexcitability. Through this framework, the phase boundary is elucidated in a parameter space spanned by variables representing levels of excitation and inhibition in a neuronal network. The interpretation of neuronal populations based on this approach offers insights on the role of pharmacological and endocrinal signaling in the homeostatic regulation of neuronal population activity.
Collapse
Affiliation(s)
- Drandreb Earl O. Juanico
- DataSc/ense TechnoCoRe, Technological Institute of the Philippines, Quezon City, Philippines
- NICER Program, Center for Advanced Batteries, Quezon City, Philippines
| |
Collapse
|
43
|
Safron A, Klimaj V, Hipólito I. On the Importance of Being Flexible: Dynamic Brain Networks and Their Potential Functional Significances. Front Syst Neurosci 2022; 15:688424. [PMID: 35126062 PMCID: PMC8814434 DOI: 10.3389/fnsys.2021.688424] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
In this theoretical review, we begin by discussing brains and minds from a dynamical systems perspective, and then go on to describe methods for characterizing the flexibility of dynamic networks. We discuss how varying degrees and kinds of flexibility may be adaptive (or maladaptive) in different contexts, specifically focusing on measures related to either more disjoint or cohesive dynamics. While disjointed flexibility may be useful for assessing neural entropy, cohesive flexibility may potentially serve as a proxy for self-organized criticality as a fundamental property enabling adaptive behavior in complex systems. Particular attention is given to recent studies in which flexibility methods have been used to investigate neurological and cognitive maturation, as well as the breakdown of conscious processing under varying levels of anesthesia. We further discuss how these findings and methods might be contextualized within the Free Energy Principle with respect to the fundamentals of brain organization and biological functioning more generally, and describe potential methodological advances from this paradigm. Finally, with relevance to computational psychiatry, we propose a research program for obtaining a better understanding of ways that dynamic networks may relate to different forms of psychological flexibility, which may be the single most important factor for ensuring human flourishing.
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kinsey Institute, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Victoria Klimaj
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Complex Networks and Systems, Informatics Department, Indiana University, Bloomington, IN, United States
| | - Inês Hipólito
- Department of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
44
|
Convertino M, Reddy A, Liu Y, Munoz-Zanzi C. Eco-epidemiological scaling of Leptospirosis: Vulnerability mapping and early warning forecasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149102. [PMID: 34388889 DOI: 10.1016/j.scitotenv.2021.149102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Infectious disease epidemics are plaguing the world and a lot of research is focused on the development of models to reproduce disease dynamics for eco-environmental and biological investigation, and disease management. Leptospirosis is an example of a neglected zoonosis strongly mediated by ecohydrological dynamics with emerging endemic and epidemic patterns worldwide in both animal and human populations. By accounting for large heterogeneities of affected areas we show how exponential endemics and scale-free epidemics are largely predictable and linked to common socio-environmental features via scaling laws with different exponents that inform about vulnerability factors. This led to the development of a novel pattern-oriented integrated model that can be used as an early-warning signal (EWS) tool for endemic-epidemic regime classification, risk determinant attribution, and near real-time forecast of outbreaks. Forecasts are grounded on expected outbreak recurrence time dependent on exceedance probabilities and statistical EWS that sense outbreak onset. A stochastic spatially-explicit model is shown to comprehensively predict outbreak dynamics (early sensing, timing, magnitude, decay, and eco-environmental determinants) and derive a spreading factor characterizing endemics and epidemics, where average over maximum rainfall is the critical factor characterizing disease transitions. Dynamically, case cross-correlation considering neighboring communities senses 2-weeks in advance outbreaks. Eco-environmental scaling relationships highlight how predicted host suitability and topographic index can be used as epidemiological footprints to effectively distinguish and control Leptospirosis regimes and areas dependent on hydro-climatological dynamics as the main trigger. The spatio-temporal scale-invariance of epidemics - underpinning persistent criticality and neutrality or independence among areas - is emphasized by the high accuracy in reproducing sequence and magnitude of cases via reliable surveillance. Further investigations of robustness and universality of eco-environmental determinants are required; nonetheless a comprehensive and computationally simple EWS method for the full characterization of Leptospirosis is provided. The tool is extendable to other climate-sensitive zoonoses to define vulnerability factors and predict outbreaks useful for optimal disease risk prevention and control.
Collapse
Affiliation(s)
- M Convertino
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School (Tsinghua SIGS), Tsinghua University, Shenzhen, China.
| | - A Reddy
- UnitedHealth Group, Minneapolis, MN, USA
| | - Y Liu
- Centre for the Mathematical Modelling of Infectious Diseases (CMMID), London School of Hygiene and Tropical Medicine, UK
| | - C Munoz-Zanzi
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota Twin-Cities, Minneapolis, MN, USA
| |
Collapse
|
45
|
Nicoletti G, Busiello DM. Mutual Information Disentangles Interactions from Changing Environments. PHYSICAL REVIEW LETTERS 2021; 127:228301. [PMID: 34889638 DOI: 10.1103/physrevlett.127.228301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Real-world systems are characterized by complex interactions of their internal degrees of freedom, while living in ever-changing environments whose net effect is to act as additional couplings. Here, we introduce a paradigmatic interacting model in a switching, but unobserved, environment. We show that the limiting properties of the mutual information of the system allow for a disentangling of these two sources of couplings. Further, our approach might stand as a general method to discriminate complex internal interactions from equally complex changing environments.
Collapse
Affiliation(s)
- Giorgio Nicoletti
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy "G. Galilei", University of Padova, 35121 Padova, Italy
| | - Daniel Maria Busiello
- Institute of Physics, École Polytechnique Fédérale de Lausanne-EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Oboe R, Leparulo A, Suweis S, Vassanelli S. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation. Front Syst Neurosci 2021; 15:709677. [PMID: 34526881 PMCID: PMC8435673 DOI: 10.3389/fnsys.2021.709677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.
Collapse
Affiliation(s)
- Benedetta Mariani
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giorgio Nicoletti
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Roberto Oboe
- Department of Management and Engineering, University of Padova, Padova, Italy
| | | | - Samir Suweis
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
47
|
Morales GB, Muñoz MA. Optimal Input Representation in Neural Systems at the Edge of Chaos. BIOLOGY 2021; 10:biology10080702. [PMID: 34439935 PMCID: PMC8389338 DOI: 10.3390/biology10080702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Shedding light on how biological systems represent, process and store information in noisy environments is a key and challenging goal. A stimulating, though controversial, hypothesis poses that operating in dynamical regimes near the edge of a phase transition, i.e., at criticality or the "edge of chaos", can provide information-processing living systems with important operational advantages, creating, e.g., an optimal trade-off between robustness and flexibility. Here, we elaborate on a recent theoretical result, which establishes that the spectrum of covariance matrices of neural networks representing complex inputs in a robust way needs to decay as a power-law of the rank, with an exponent close to unity, a result that has been indeed experimentally verified in neurons of the mouse visual cortex. Aimed at understanding and mimicking these results, we construct an artificial neural network and train it to classify images. We find that the best performance in such a task is obtained when the network operates near the critical point, at which the eigenspectrum of the covariance matrix follows the very same statistics as actual neurons do. Thus, we conclude that operating near criticality can also have-besides the usually alleged virtues-the advantage of allowing for flexible, robust and efficient input representations.
Collapse
|
48
|
Hochstetter J, Zhu R, Loeffler A, Diaz-Alvarez A, Nakayama T, Kuncic Z. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat Commun 2021; 12:4008. [PMID: 34188085 PMCID: PMC8242064 DOI: 10.1038/s41467-021-24260-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
The brain's efficient information processing is enabled by the interplay between its neuro-synaptic elements and complex network structure. This work reports on the neuromorphic dynamics of nanowire networks (NWNs), a unique brain-inspired system with synapse-like memristive junctions embedded within a recurrent neural network-like structure. Simulation and experiment elucidate how collective memristive switching gives rise to long-range transport pathways, drastically altering the network's global state via a discontinuous phase transition. The spatio-temporal properties of switching dynamics are found to be consistent with avalanches displaying power-law size and life-time distributions, with exponents obeying the crackling noise relationship, thus satisfying criteria for criticality, as observed in cortical neuronal cultures. Furthermore, NWNs adaptively respond to time varying stimuli, exhibiting diverse dynamics tunable from order to chaos. Dynamical states at the edge-of-chaos are found to optimise information processing for increasingly complex learning tasks. Overall, these results reveal a rich repertoire of emergent, collective neural-like dynamics in NWNs, thus demonstrating the potential for a neuromorphic advantage in information processing.
Collapse
Affiliation(s)
- Joel Hochstetter
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| | - Ruomin Zhu
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Alon Loeffler
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Adrian Diaz-Alvarez
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Tomonobu Nakayama
- School of Physics, University of Sydney, Sydney, NSW, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zdenka Kuncic
- School of Physics, University of Sydney, Sydney, NSW, Australia.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
- The University of Sydney Nano Institute, Sydney, NSW, Australia.
| |
Collapse
|
49
|
Lotfi N, Fontenele AJ, Feliciano T, Aguiar LAA, de Vasconcelos NAP, Soares-Cunha C, Coimbra B, Rodrigues AJ, Sousa N, Copelli M, Carelli PV. Signatures of brain criticality unveiled by maximum entropy analysis across cortical states. Phys Rev E 2021; 102:012408. [PMID: 32795006 DOI: 10.1103/physreve.102.012408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
It has recently been reported that statistical signatures of brain criticality, obtained from distributions of neuronal avalanches, can depend on the cortical state. We revisit these claims with a completely different and independent approach, employing a maximum entropy model to test whether signatures of criticality appear in urethane-anesthetized rats. To account for the spontaneous variation of cortical states, we parse the time series and perform the maximum entropy analysis as a function of the variability of the population spiking activity. To compare data sets with different numbers of neurons, we define a normalized distance to criticality that takes into account the peak and width of the specific heat curve. We found a universal collapse of the normalized distance to criticality dependence on the cortical state, on an animal by animal basis. This indicates a universal dynamics and a critical point at an intermediate value of spiking variability.
Collapse
Affiliation(s)
- Nastaran Lotfi
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Antonio J Fontenele
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Thaís Feliciano
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Leandro A A Aguiar
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Nivaldo A P de Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| |
Collapse
|
50
|
Gu L, Wu R. Robust cortical criticality and diverse dynamics resulting from functional specification. Phys Rev E 2021; 103:042407. [PMID: 34005915 DOI: 10.1103/physreve.103.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Despite the recognition of the layered structure and evident criticality in the cortex, how the specification of input, output, and computational layers affects the self-organized criticality has not been much explored. By constructing heterogeneous structures with a well-accepted model of leaky neurons, we find that the specification can lead to robust criticality rather insensitive to the strength of external stimuli. This naturally unifies the adaptation to strong inputs without extra synaptic plasticity mechanisms. Low degree of recurrence constitutes an alternative explanation to subcriticality other than the high-frequency inputs. Unlike fully recurrent networks where external stimuli always render subcriticality, the dynamics of networks with sufficient feedforward connections can be driven to criticality and supercriticality. These findings indicate that functional and structural specification and their interplay with external stimuli are of crucial importance for the network dynamics. The robust criticality puts forward networks of the leaky neurons as promising platforms for realizing artificial neural networks that work in the vicinity of critical points.
Collapse
Affiliation(s)
- Lei Gu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|