1
|
Fu W, Liu Z, Li D, Pan B. Chemistry for water treatment under nanoconfinement. WATER RESEARCH 2025; 275:123173. [PMID: 39864357 DOI: 10.1016/j.watres.2025.123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
The global freshwater crisis, exacerbated by escalating pollution, poses a significant threat to human health. Addressing this challenge required innovative strategies to develop highly efficient and process-adaptable materials for water decontamination. In this regard, nanomaterials with confinement structures have emerged as a promising solution, outperforming traditional nanomaterials in terms of efficiency, selectivity, stability, and process adaptability, thereby serving as an ideal platform for designing novel functional materials for sustainable water treatment. This Review focuses on recent advancements and employment of nanoconfinement effects in various water treatment processes, emphasizing the fundamental chemistry underlying nanoconfinement effects. Also, the existing knowledge gaps related to nanoconfinement effects and future prospects for expanding their applications in diverse water treatment scenarios are discussed.
Collapse
Affiliation(s)
- Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ziyao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Fong KD, Grey CP, Michaelides A. On the Physical Origins of Reduced Ionic Conductivity in Nanoconfined Electrolytes. ACS NANO 2025; 19:13191-13201. [PMID: 40130707 PMCID: PMC11984311 DOI: 10.1021/acsnano.4c18956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Ion transport through nanoscale pores is at the heart of numerous energy storage and separation technologies. Despite significant efforts to uncover the complex interplay of ion-ion, ion-water, and ion-pore interactions that give rise to these transport processes, the atomistic mechanisms of ion motion in confined electrolytes remain poorly understood. In this work, we use machine learning-based molecular dynamics simulations to characterize ion transport with first-principles-level accuracy in aqueous NaCl confined to graphene slit pores. We find that ionic conductivity decreases as the degree of confinement increases, a trend governed by changes in both ion self-diffusion and dynamic ion-ion correlations. We show that the self-diffusion coefficients of our confined ions are strongly influenced by the overall electrolyte density, which changes nonmonotonically with slit height based on the layering of water molecules within the pore. We further observe a shift in the ions' diffusion mechanism toward more vehicular motion as the degree of confinement increases. Despite the ubiquity of ideal solution (Nernst-Einstein) assumptions in the field, we find that nonideal contributions to transport become more pronounced under confinement. This increase in nonideal ion correlations arises not simply from an increase in the fraction of associated ions, as is commonly assumed, but from an increase in ion pair lifetimes. By building a mechanistic understanding of confined electrolyte transport, this work provides insights that could guide the design of nanoporous materials optimized for efficient and selective ion transport.
Collapse
Affiliation(s)
- Kara D. Fong
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Clare P. Grey
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Angelos Michaelides
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Li C, Yao Y, Pan D. Unveiling hidden reaction kinetics of carbon dioxide in supercritical aqueous solutions. Proc Natl Acad Sci U S A 2025; 122:e2406356121. [PMID: 39793071 PMCID: PMC11725894 DOI: 10.1073/pnas.2406356121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Dissolution of CO2 in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO2 in supercritical water both in the bulk and nanoconfined states. The integration of unsupervised learning with first-principles data allows us to identify complex reaction coordinates and pathways automatically instead of a priori human speculation. Interestingly, our unbiased modeling found an unknown pathway of dissolving CO2(aq) under graphene nanoconfinement, involving the pyrocarbonate anion [C2O[Formula: see text](aq)] as an intermediate state. The pyrocarbonate anion was previously hypothesized to have a fleeting existence in water; however, our study reveals that it is a crucial reaction intermediate and stable carbon species in the nanoconfined solutions. We even observed the formation of pyrocarbonic acid [H2C2O5(aq)], which was unknown in water, in our AIMD simulations. The unexpected appearance of pyrocarbonates is related to the superionic behavior of the confined solutions. We also found that carbonation reactions involve collective proton transfer along transient water wires, which exhibits concerted behavior in the bulk solution but proceeds stepwise under nanoconfinement. The first-principles Markov state models show substantial promise for elucidating complex reaction kinetics in aqueous solutions. Our study highlights the importance of large oxocarbons in aqueous carbon reactions, with great implications for the deep carbon cycle and the sequestration of CO2.
Collapse
Affiliation(s)
- Chu Li
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuan Yao
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ding Pan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
4
|
Ami T, Oka K, Kitajima S, Tohnai N. Highly Fluorinated Nanospace in Porous Organic Salts with High Water Stability/Capability and Proton Conductivity. Angew Chem Int Ed Engl 2024; 63:e202407484. [PMID: 38899387 DOI: 10.1002/anie.202407484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Water in hydrophobic nanospaces shows specific dynamic properties different from bulk water. The investigation of these properties is important in various research fields, including materials science, chemistry, and biology. The elucidation of the correlation between properties of water and hydrophobic nanospaces requires nanospaces covered only with simple hydrophobic group (e.g., fluorine) without impurities such as metals. This work successfully fabricated all-organic diamondoid porous organic salts (d-POSs) with highly fluorinated nanospaces, wherein hydrophobic fluorine atoms are densely exposed on the void surfaces, by combining fluorine substituted triphenylmethylamine (TPMA) derivatives with tetrahedral tetrasulfonic acid. This d-POSs with a highly fluorinated nanospace significantly improved their water stability, retaining their crystal structure even when immersed in water over one week. Moreover, this highly hydrophobic and fluorinated nanospace adsorbs 160 mL(STP)/g of water vapor at Pe/P0=0.90; this is the first hydrophobic nanospace, which water molecules can enter, in an all-organic porous material. Furthermore, this highly fluorinated nanospace exhibits very high proton conductivity (1.34×10-2 S/cm) at 90 °C and 95 % RH. POSs with tailorable nanospaces may significantly advance the elucidation of the properties of specific "water" in pure hydrophobic environments.
Collapse
Affiliation(s)
- Takahiro Ami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Showa Kitajima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Wang R, Tiwary P. Atomic scale insights into NaCl nucleation in nanoconfined environments. Chem Sci 2024:d4sc04042b. [PMID: 39234215 PMCID: PMC11367593 DOI: 10.1039/d4sc04042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
In this work we examine the nucleation from NaCl aqueous solutions within nano-confined environments, employing enhanced sampling molecular dynamics simulations integrated with machine learning-derived reaction coordinates. Through our simulations, we successfully induce phase transitions between solid, liquid, and a hydrated phase, typically observed at lower temperatures in bulk environments. Interestingly, while generally speaking nano-confinement serves to stabilize the solid phase and elevate melting points, there are subtle variations in the thermodynamics of competing phases with the precise extent of confinement. Our simulations explain these findings by underscoring the significant role of water, alongside ion aggregation and subtle, anisotropic dielectric behavior, in driving nucleation within nano-confined environments. This report thus provides a framework for sampling, analyzing and understanding nucleation processes under nano-confinement.
Collapse
Affiliation(s)
- Ruiyu Wang
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
- University of Maryland Institute for Health Computing Bethesda Maryland 20852 USA
| |
Collapse
|
6
|
Baldo AP, Ilgen AG, Leung K. Deprotonation of formic, acetic acids and bicarbonate ion in slit silica nanopores at infinite dilution and in the presence of electrolytes. J Colloid Interface Sci 2024; 674:482-489. [PMID: 38941940 DOI: 10.1016/j.jcis.2024.05.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/30/2024]
Abstract
Dielectric effects and the coupled electrostatics between the nanoconfined and the internal/external aqueous media contribute to the observed deviations of chemistry within the nanoconfined environment when compared with unconfined systems. A systematic understanding has remained elusive, especially with respect to background salt concentration and boundary condition effects like the nanopore surface chemistry and the reference state used to calculate free energies. We utilize molecular dynamics simulations along with thermodynamic integration to determine the free energy difference associated with acid-base chemistry in 2 nm and 4 nm slit pores open to a bulk-like reservoir. pKa increases are predicted when confining acetic acid, formic acid, and bicarbonate in the slits at infinite dilution conditions. We find that confinement weakens the acids, and the modulation of outer pore surface dipole magnitudes can tune the pKa shift values, suggesting that purely "intrinsic" electrostatic effect on confinement may not exist. At sufficiently high salt concentrations, the dielectric/electrostatic effects on pKa values diminish due to charge screening effects. These discoveries enable future modifications of nanopore chemistries to achieve desirable properties for industrial applications.
Collapse
Affiliation(s)
- Anthony P Baldo
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA.
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Kevin Leung
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM 87123, USA
| |
Collapse
|
7
|
Cao Y, Zhou W, Shen C, Qiu H, Guo W. Proton Coulomb Blockade Effect Involving Covalent Oxygen-Hydrogen Bond Switching. PHYSICAL REVIEW LETTERS 2024; 132:188401. [PMID: 38759163 DOI: 10.1103/physrevlett.132.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/13/2024] [Indexed: 05/19/2024]
Abstract
Instead of the canonical Grotthuss mechanism, we show that a knock-on proton transport process is preferred between organic functional groups (e.g., -COOH and -OH) and adjacent water molecules in biological proton channel and synthetic nanopores through comprehensive quantum and classical molecular dynamics simulations. The knock-on process is accomplished by the switching of covalent O─H bonds of the functional group under externally applied electric fields. The proton transport through the synthetic nanopore exhibits nonlinear current-voltage characteristics, suggesting an unprecedented proton Coulomb blockade effect. These findings not only enhance the understanding of proton transport in nanoconfined systems but also pave the way for the design of a variety of proton-based nanofluidic devices.
Collapse
Affiliation(s)
- Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Wanqi Zhou
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chun Shen
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
8
|
Liu C, Zou X, Lv Y, Liu X, Ma C, Li K, Liu Y, Chai Y, Liao L, He J. Controllable van der Waals gaps by water adsorption. NATURE NANOTECHNOLOGY 2024; 19:448-454. [PMID: 38177277 DOI: 10.1038/s41565-023-01579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
Van der Waals (vdW) gaps with ångström-scale heights can confine molecules or ions to an ultimately small scale, providing an alternative way to tune material properties and explore microscopic phenomena. Modulation of the height of vdW gaps between two-dimensional (2D) materials is challenging due to the vdW interaction. Here we report a general approach to control the vdW gap by preadsorption of water molecules on the material surface. By controlling the saturation vapour pressure of water vapour, we can precisely control the adsorption level of water molecules and vary the height of the vdW gaps of MoS2 homojunctions from 5.5 Å to 53.6 Å. This technique can be further applied to other homo- and heterojunctions, constructing controlled vdW gaps in 2D artificial superlattices and in 2D/3D and 3D/3D heterojunctions. Engineering the vdW gap has great practical potential to modulate the device performance, as evidenced by the vdW-gap-dependent diode characteristics of the MoS2/gap/MoS2 junction. Our work introduces a general strategy of molecular preadsorption that can extend to various precursors, creating more tunability and variability in vdW material systems.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China.
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xingqiang Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Chao Ma
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Kenli Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yuan Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China.
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin, China.
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Hou R, Li C, Pan D. Raman and IR spectra of water under graphene nanoconfinement at ambient and extreme pressure-temperature conditions: a first-principles study. Faraday Discuss 2024; 249:181-194. [PMID: 37791622 DOI: 10.1039/d3fd00111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The nanoconfinement of water can result in dramatic differences in its physical and chemical properties compared to bulk water. However, a detailed molecular-level understanding of these properties is still lacking. Vibrational spectroscopy, such as Raman and infrared, is a popular experimental tool for studying the structure and dynamics of water, and is often complemented by atomistic simulations to interpret experimental spectra, but there have been few theoretical spectroscopy studies of nanoconfined water using first-principles methods at ambient conditions, let alone under extreme pressure-temperature conditions. Here, we compute the Raman and IR spectra of water nanoconfined by graphene at ambient and extreme pressure-temperature conditions using ab initio simulations. Our results revealed alterations in the Raman stretching and low-frequency bands due to the graphene confinement. We also found spectroscopic evidence indicating that nanoconfinement considerably changes the tetrahedral hydrogen bond network, which is typically found in bulk water. Furthermore, we observed an unusual bending band in the Raman spectrum at ∼10 GPa and 1000 K, which is attributed to the unique molecular structure of confined ionic water. Additionally, we found that at ∼20 GPa and 1000 K, confined water transformed into a superionic fluid, making it challenging to identify the IR stretching band. Finally, we computed the ionic conductivity of confined water in the ionic and superionic phases. Our results highlight the efficacy of Raman and IR spectroscopy in studying the structure and dynamics of nanoconfined water in a large pressure-temperature range. Our predicted Raman and IR spectra can serve as a valuable guide for future experiments.
Collapse
Affiliation(s)
- Rui Hou
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Chu Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| |
Collapse
|
10
|
de la Puente M, Laage D. How the Acidity of Water Droplets and Films Is Controlled by the Air-Water Interface. J Am Chem Soc 2023; 145:25186-25194. [PMID: 37938132 DOI: 10.1021/jacs.3c07506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Acidity is a key determinant of chemical reactivity in atmospheric aqueous aerosols and water microdroplets used for catalysis. However, many fundamental questions about these systems have remained elusive, including how their acidity differs from that of bulk solutions, the degree of heterogeneity between their core and surface, and how the acid-base properties are affected by their size. Here, we perform hybrid density functional theory (DFT)-quality neural network-based molecular simulations with explicit nuclear quantum effects and combine them with an analytic model to describe the pH and self-ion concentrations of droplets and films for sizes ranging from nm to μm. We determine how the acidity of water droplets and thin films is controlled by the properties of the air-water interface and by their surface-to-volume ratio. We show that while the pH is uniform in each system, hydronium and hydroxide ions exhibit concentration gradients that span the two outermost molecular layers, enriching the interface with hydronium cations and depleting it with hydroxide anions. Acidity depends strongly on the surface-to-volume ratio for system sizes below a few tens of nanometers, where the core becomes enriched in hydroxide ions and the pH increases as a result of hydronium stabilization at the interface. These results obtained for pure water systems have important implications for our understanding of chemical reactivity in atmospheric aerosols and for catalysis in aqueous microdroplets.
Collapse
Affiliation(s)
- Miguel de la Puente
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
11
|
Calegari Andrade M, Car R, Selloni A. Probing the self-ionization of liquid water with ab initio deep potential molecular dynamics. Proc Natl Acad Sci U S A 2023; 120:e2302468120. [PMID: 37931100 PMCID: PMC10655216 DOI: 10.1073/pnas.2302468120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023] Open
Abstract
The chemical equilibrium between self-ionized and molecular water dictates the acid-base chemistry in aqueous solutions, yet understanding the microscopic mechanisms of water self-ionization remains experimentally and computationally challenging. Herein, Density Functional Theory (DFT)-based deep neural network (DNN) potentials are combined with enhanced sampling techniques and a global acid-base collective variable to perform extensive atomistic simulations of water self-ionization for model systems of increasing size. The explicit inclusion of long-range electrostatic interactions in the DNN potential is found to be crucial to accurately reproduce the DFT free energy profile of solvated water ion pairs in small (64 and 128 H2O) cells. The reversible work to separate the hydroxide and hydronium to a distance [Formula: see text] is found to converge for simulation cells containing more than 500 H2O, and a distance of [Formula: see text] 8 Å is the threshold beyond which the work to further separate the two ions becomes approximately zero. The slow convergence of the potential of mean force with system size is related to a restructuring of water and an increase of the local order around the water ions. Calculation of the dissociation equilibrium constant illustrates the key role of long-range electrostatics and entropic effects in the water autoionization process.
Collapse
Affiliation(s)
- Marcos Calegari Andrade
- Chemistry Department, Princeton University, Princeton, NJ08544
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Roberto Car
- Chemistry Department, Princeton University, Princeton, NJ08544
| | | |
Collapse
|
12
|
Scalfi L, Becker MR, Netz RR, Bocquet ML. Enhanced interfacial water dissociation on a hydrated iron porphyrin single-atom catalyst in graphene. Commun Chem 2023; 6:236. [PMID: 37919471 PMCID: PMC10622426 DOI: 10.1038/s42004-023-01027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Single Atom Catalysis (SAC) is an expanding field of heterogeneous catalysis in which single metallic atoms embedded in different materials catalyze a chemical reaction, but these new catalytic materials still lack fundamental understanding when used in electrochemical environments. Recent characterizations of non-noble metals like Fe deposited on N-doped graphitic materials have evidenced two types of Fe-N4 fourfold coordination, either of pyridine type or of porphyrin type. Here, we study these defects embedded in a graphene sheet and immersed in an explicit aqueous medium at the quantum level. While the Fe-pyridine SAC model is clear cut and widely studied, it is not the case for the Fe-porphyrin SAC that remains ill-defined, because of the necessary embedding of odd-membered rings in graphene. We first propose an atomistic model for the Fe-porphyrin SAC. Using spin-polarized ab initio molecular dynamics, we show that both Fe SACs spontaneously adsorb two interfacial water molecules from the solvent on opposite sides. Interestingly, we unveil a different catalytic reactivity of the two hydrated SAC motives: while the Fe-porphyrin defect eventually dissociates an adsorbed water molecule under a moderate external electric field, the Fe-pyridine defect does not convey water dissociation.
Collapse
Affiliation(s)
- Laura Scalfi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Maximilian R Becker
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Marie-Laure Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
| |
Collapse
|
13
|
Ruiz-Barragan S, Forbert H, Marx D. Anisotropic pressure effects on nanoconfined water within narrow graphene slit pores. Phys Chem Chem Phys 2023; 25:28119-28129. [PMID: 37818616 DOI: 10.1039/d3cp01687k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
There is an increasing interest toward disclosing and explaining confinement effects on liquids, such as water or aqueous solutions, in slit pore setups. Particularly puzzling are the changes of physical and chemical properties in the nanoconfinement regime where no bulk-like water phase exists between the two interfacial water layers such that the density profile across the slit pore becomes highly stratified, ultimately leading to bilayer and monolayer water. These changes must be quantified with respect to some meaningful reference state of water, the most natural one being bulk water at the same pressure and temperature conditions. However, bulk water is a homogeneous liquid with isotropic properties, whereas water confined in slit pores is inhomogeneous, implying anisotropic properties as described by the perpendicular and parallel components of the respective tensors. In the case of pressure, the inhomogeneous nature of the setup results in a well-defined difference between the perpendicular and parallel pressure tensor components that is uniquely determined by the interfacial tension being a thermodynamic property. For bilayer water constrained in graphene slit pores that are only about 1 nm wide, we demonstrate that there exists a thermodynamic point where the pressure tensor of the inhomogeneous fluid, nanoconfined water, is effectively isotopic and the pressure is thus scalar as in the homogeneous fluid, bulk water. This specific point of vanishing effective interfacial tension is proposed to serve as a well-defined reference state to compare the properties of nanoconfined liquids to those of the corresponding bulk liquid at the same (isotropic) pressure and temperature conditions. In future work, this idea could be applied to assess confinement effects on chemical reactivity in aqueous solutions as well as to other nanoconfined liquids in other pores such as layered minerals.
Collapse
Affiliation(s)
- Sergi Ruiz-Barragan
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr - Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
14
|
Leung K. Finding Infinities in Nanoconfined Geothermal Electrolyte Static Dielectric Properties and Implications on Ion Adsorption/Pairing. NANO LETTERS 2023; 23:8868-8874. [PMID: 37531607 DOI: 10.1021/acs.nanolett.3c01865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Infinities should naturally occur in the dielectric responses of ionic solutions relevant to many geochemical, energy storage, and electrochemical applications at a strictly zero frequency. Using molecular dynamics simulations cross-referenced with coarse-grained Monte Carlo models, using nanoslit pore models at hydrothermal conditions, and treating confined mobile charges as polarization, we demonstrate the far reaching consequences. The dielectric permittivity profile perpendicular to the slit (ϵ⊥(z)) increases, not decreases, with ionic concentration, unlike in the more widely studied megahertz-to-gigahertz frequency range. In confined electrolytes, the divergences in ϵ⊥(z) correctly describe crossovers between bulk- and surface-dominated dielectric behavior. Nanoconfinement at low ionic concentrations changes monovalent ion energetics by 1-2 kJ/mol, but no dielectric property studied so far is universally correlated to ion adsorption or ion-ion interactions. We caution that infinities signal violation of the "electrical insulator" dielectric assumption.
Collapse
Affiliation(s)
- Kevin Leung
- Sandia National Laboratories, MS 0750, Albuquerque, New Mexico 87185, United States of America
| |
Collapse
|
15
|
Di Pino S, Perez Sirkin YA, Morzan UN, Sánchez VM, Hassanali A, Scherlis DA. Water Self-Dissociation is Insensitive to Nanoscale Environments. Angew Chem Int Ed Engl 2023; 62:e202306526. [PMID: 37379226 DOI: 10.1002/anie.202306526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Nanoconfinement effects on water dissociation and reactivity remain controversial, despite their importance to understand the aqueous chemistry at interfaces, pores, or aerosols. The pKw in confined environments has been assessed from experiments and simulations in a few specific cases, leading to dissimilar conclusions. Here, with the use of carefully designed ab initio simulations, we demonstrate that the energetics of bulk water dissociation is conserved intact to unexpectedly small length-scales, down to aggregates of only a dozen molecules or pores of widths below 2 nm. The reason is that most of the free-energy involved in water autoionization comes from breaking the O-H covalent bond, which has a comparable barrier in the bulk liquid, in a small droplet of nanometer size, or in a nanopore in the absence of strong interfacial interactions. Thus, dissociation free-energy profiles in nanoscopic aggregates or in 2D slabs of 1 nm width reproduce the behavior corresponding to the bulk liquid, regardless of whether the corresponding nanophase is delimited by a solid or a gas interface. The present work provides a definite and fundamental description of the mechanism and thermodynamics of water dissociation at different scales with broader implications on reactivity and self-ionization at the air-liquid interface.
Collapse
Affiliation(s)
- Solana Di Pino
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Yamila A Perez Sirkin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Uriel N Morzan
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Verónica M Sánchez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Damian A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| |
Collapse
|
16
|
Liu D, Wu J, Lu D. Transferability evaluation of the deep potential model for simulating water-graphene confined system. J Chem Phys 2023; 159:044712. [PMID: 37522409 DOI: 10.1063/5.0153196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Machine learning potentials (MLPs) are poised to combine the accuracy of ab initio predictions with the computational efficiency of classical molecular dynamics (MD) simulation. While great progress has been made over the last two decades in developing MLPs, there is still much to be done to evaluate their model transferability and facilitate their development. In this work, we construct two deep potential (DP) models for liquid water near graphene surfaces, Model S and Model F, with the latter having more training data. A concurrent learning algorithm (DP-GEN) is adopted to explore the configurational space beyond the scope of conventional ab initio MD simulation. By examining the performance of Model S, we find that an accurate prediction of atomic force does not imply an accurate prediction of system energy. The deviation from the relative atomic force alone is insufficient to assess the accuracy of the DP models. Based on the performance of Model F, we propose that the relative magnitude of the model deviation and the corresponding root-mean-square error of the original test dataset, including energy and atomic force, can serve as an indicator for evaluating the accuracy of the model prediction for a given structure, which is particularly applicable for large systems where density functional theory calculations are infeasible. In addition to the prediction accuracy of the model described above, we also briefly discuss simulation stability and its relationship to the former. Both are important aspects in assessing the transferability of the MLP model.
Collapse
Affiliation(s)
- Dongfei Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
17
|
Garofalini SH, Lentz J. Subpicosecond Molecular Rearrangements Affect Local Electric Fields and Auto-Dissociation in Water. J Phys Chem B 2023; 127:3392-3401. [PMID: 37036747 DOI: 10.1021/acs.jpcb.2c06490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Molecular simulations of auto-dissociation of water molecules in an 81,000 atom bulk water system show that the electric field variations caused by local bond length and angle variations enhance proton transfer within ∼600 fs prior to auto-dissociation. In this paper, auto-dissociation relates to the initial separation of a proton from a water molecule to another, forming the H33O+ and OH- ions. Only transfers for which a proton's initial nearest covalently bonded oxygen remained the same for at least 1 ps prior to the transfer and for which that proton's new nearest acceptor oxygen remained the same for at least 1 ps after the transfer were evaluated. Electric fields from solvent atoms within 6 Å of a transferring proton (H*) are dominant, with little contribution from farther molecules. However, exclusion of the accepting oxygen in such electric field calculations shows that the field on H* from the other solvent atoms weakens as the time to transfer becomes less than 600 fs, indicating the primary importance of the accepting oxygen on enabling auto-dissociation. All resultant OH- and H3O+ ion pairs recombined at times greater than 1 ps after auto-dissociation. A concentration of 8.01 × 1017 cm-3 for these ion pairs was observed. The simulations indicate that transient auto-dissociation in water is more common than that inferred from dc-conductivity experiments (10-5 vs 10-7) and is consistent with the results of calculations that include nuclear quantum effects. The conductivity experiments require the rearrangement of farther water molecules to form hydrogen-bonded "water wires" that afford long-range and measurable proton transport away from the reaction site. Nonetheless, the relatively large number of picosecond-lived auto-dissociation products might be engineered within 2D layers and oriented external fields to offer new energy-related systems.
Collapse
Affiliation(s)
- Stephen H Garofalini
- Department of Matserials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Jesse Lentz
- Department of Matserials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08855, United States
| |
Collapse
|
18
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
19
|
Dasgupta N, Ho TA, Rempe SB, Wang Y. Hydrophobic Nanoconfinement Enhances CO 2 Conversion to H 2CO 3. J Phys Chem Lett 2023; 14:1693-1701. [PMID: 36757174 DOI: 10.1021/acs.jpclett.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the formation of H2CO3 in water from CO2 is important in environmental and industrial processes. Although numerous investigations have studied this reaction, the conversion of CO2 to H2CO3 in nanopores, and how it differs from that in bulk water, has not been understood. We use ReaxFF metadynamics molecular simulations to demonstrate striking differences in the free energy of CO2 conversion to H2CO3 in bulk and nanoconfined aqueous environments. We find that nanoconfinement not only reduces the energy barrier but also reverses the reaction from endothermic in bulk water to exothermic in nanoconfined water. Also, charged intermediates are observed more often under nanoconfinement than in bulk water. Stronger solvation and more favorable proton transfer with increasing nanoconfinement enhance the thermodynamics and kinetics of the reaction. Our results provide a detailed mechanistic understanding of an important step in the carbonation process, which depends intricately on confinement, surface chemistry, and CO2 concentration.
Collapse
Affiliation(s)
- Nabankur Dasgupta
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tuan A Ho
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yifeng Wang
- Nuclear Waste Disposal Research and Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
20
|
Das B, Ruiz-Barragan S, Marx D. Deciphering the Properties of Nanoconfined Aqueous Solutions by Vibrational Sum Frequency Generation Spectroscopy. J Phys Chem Lett 2023; 14:1208-1213. [PMID: 36716226 PMCID: PMC9923734 DOI: 10.1021/acs.jpclett.2c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
When confined between walls at nanometer distances, water exhibits surprisingly different properties with reference to bare interfacial water. Based on computer simulations, we demonstrate how vibrational sum frequency generation (VSFG) spectroscopy can be used-even with very mild symmetry breaking-to discriminate multilayer water in wide slit pores from both bilayer and monolayer water confined within molecularly narrow pores. Applying the technique, the VSFG lineshapes of monolayer, bilayer, and multilayer water are found to differ in characteristic ways, which is explained by their distinct density stratifications giving rise to different H-bonding patterns in the respective solvation layers.
Collapse
Affiliation(s)
- Banshi Das
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780Bochum, Germany
| | - Sergi Ruiz-Barragan
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780Bochum, Germany
- Departament
de Fisica, Universitat Politecnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain
| | - Dominik Marx
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44780Bochum, Germany
| |
Collapse
|
21
|
Stolte N, Hou R, Pan D. Nanoconfinement facilitates reactions of carbon dioxide in supercritical water. Nat Commun 2022; 13:5932. [PMID: 36209274 PMCID: PMC9547913 DOI: 10.1038/s41467-022-33696-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
The reactions of CO2 in water under extreme pressure-temperature conditions are of great importance to the carbon storage and transport below Earth's surface, which substantially affect the carbon budget in the atmosphere. Previous studies focus on the CO2(aq) solutions in the bulk phase, but underground aqueous solutions are often confined to the nanoscale, and nanoconfinement and solid-liquid interfaces may substantially affect chemical speciation and reaction mechanisms, which are poorly known on the molecular scale. Here, we apply extensive ab initio molecular dynamics simulations to study aqueous carbon solutions nanoconfined by graphene and stishovite (SiO2) at 10 GPa and 1000 ~ 1400 K. We find that CO2(aq) reacts more in nanoconfinement than in bulk. The stishovite-water interface makes the solutions more acidic, which shifts the chemical equilibria, and the interface chemistry also significantly affects the reaction mechanisms. Our findings suggest that CO2(aq) in deep Earth is more active than previously thought, and confining CO2 and water in nanopores may enhance the efficiency of mineral carbonation.
Collapse
Affiliation(s)
- Nore Stolte
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Rui Hou
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China.
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
22
|
Loche P, Scalfi L, Ali Amu M, Schullian O, Bonthuis D, Rotenberg B, Netz RR. Effects of surface rigidity and metallicity on dielectric properties and ion interactions at aqueous hydrophobic interfaces. J Chem Phys 2022; 157:094707. [DOI: 10.1063/5.0101509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using classical molecular dynamics simulations we investigate the dielectric properties at interfaces of water with graphene, graphite, hexane and water vapor. For graphite we compare metallic and non-metallic versions. At the vapor-liquid water and hexane-water interfaces the laterally averaged dielectric profiles are significantly broadened due to interfacial roughness and only slightly anisotropic. In contrast, at the rigid graphene surface the dielectric profiles are strongly anisotropic and the perpendicular dielectric profile exhibits pronounced oscillations and sign changes. The interfacial dielectric excess, characterized by the shift of the dielectric-dividing-surface with respect to the Gibbs-dividing-surface, is positive for all surfaces, showing that water has an enhanced dielectric response at hydrophobic surfaces. The dielectric-dividing-surface positions vary significantly among the different surfaces, which points to pronounced surface-specific dielectric behavior. The interfacial repulsion of a chloride ion is shown to be dominated by electrostatic interactions for the soft fluid-fluid interfaces and by non-electrostatic Lennard-Jones interactions for the rigid graphene-water interface. A linear tensorial dielectric model for the ion-interface interaction with sharp dielectric interfaces located on the dielectric-dividing-surface positions works well for graphene but fails for vapor and hexane, because these interfaces are smeared out. The repulsion of chloride from the metallic and non-metallic graphite versions differs very little, which reflects the almost identical interfacial water structure and can be understood based on linear continuum dielectric theory. Interface flexibility shows up mostly in the non-linear Coulomb part of the ion-interface interaction, which changes significantly close to the interfaces and signals the breakdown of linear dielectric continuum theory.
Collapse
Affiliation(s)
| | - Laura Scalfi
- Freie Universitat Berlin Fachbereich Physik, Germany
| | | | - Otto Schullian
- Max Planck Institute of Colloids and Interfaces, Germany
| | - Douwe Bonthuis
- Institute of Theoretical and Computational Physics, Graz University of Technology Institute of Theoretical and Computational Physics, Austria
| | | | - Roland R. Netz
- Physics, Freie Universitat Berlin Fachbereich Physik, Germany
| |
Collapse
|
23
|
Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, Camisasca G, Elola MD, Franzese G, Gallo P, Hassanali A, Huang K, Laria D, Menéndez CA, de Oca JMM, Longinotti MP, Rodriguez J, Rovere M, Scherlis D, Szleifer I. Structure and dynamics of nanoconfined water and aqueous solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:136. [PMID: 34779954 DOI: 10.1140/epje/s10189-021-00136-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
This review is devoted to discussing recent progress on the structure, thermodynamic, reactivity, and dynamics of water and aqueous systems confined within different types of nanopores, synthetic and biological. Currently, this is a branch of water science that has attracted enormous attention of researchers from different fields interested to extend the understanding of the anomalous properties of bulk water to the nanoscopic domain. From a fundamental perspective, the interactions of water and solutes with a confining surface dramatically modify the liquid's structure and, consequently, both its thermodynamical and dynamical behaviors, breaking the validity of the classical thermodynamic and phenomenological description of the transport properties of aqueous systems. Additionally, man-made nanopores and porous materials have emerged as promising solutions to challenging problems such as water purification, biosensing, nanofluidic logic and gating, and energy storage and conversion, while aquaporin, ion channels, and nuclear pore complex nanopores regulate many biological functions such as the conduction of water, the generation of action potentials, and the storage of genetic material. In this work, the more recent experimental and molecular simulations advances in this exciting and rapidly evolving field will be reported and critically discussed.
Collapse
Affiliation(s)
- Horacio R Corti
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina.
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Marcia C Barbosa
- Institute of Physics, Federal University of Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - J Rafael Bordin
- Department of Physics, Institute of Physics and Mathematics, 96050-500, Pelotas, RS, Brazil
| | - Carles Calero
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - M Dolores Elola
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària - Departament de Física de la Matèria Condensada, Universitat de Barcelona & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Ali Hassanali
- Condensed Matter and Statistical Physics Section (CMSP), The International Center for Theoretical Physics (ICTP), Trieste, Italy
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Daniel Laria
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia A Menéndez
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - Joan M Montes de Oca
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, 8000, Bahía Blanca, Argentina
| | - M Paula Longinotti
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Rodriguez
- Departmento de Física de la Materia Condensada & Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, San Martín, Buenos Aires, Argentina
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, 00146, Roma, Italy
| | - Damián Scherlis
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Igal Szleifer
- Biomedical Engineering Department, Northwestern University, Evanston, USA
| |
Collapse
|
24
|
Wang D, Tian Y, Jiang L. Abnormal Properties of Low-Dimensional Confined Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100788. [PMID: 34176214 DOI: 10.1002/smll.202100788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/25/2021] [Indexed: 06/13/2023]
Abstract
Water molecules confined to low-dimensional spaces exhibit unusual properties compared to bulk water. For example, the alternating hydrophilic and hydrophobic nanodomains on flat silicon wafer can induce the abnormal spreading of water (contact angles near 0°) which is caused by the 2D capillary effect. Hence, exploring the physicochemical properties of confined water from the nanoscale is of great value for understanding the challenges in material science and promoting the applications of nanomaterials in the fields of mass transport, nanofluidic designing, and fuel cell. The knowledge framework of confined water can also help to better understand the complex functions of the hydration layer of biomolecules, and even trace the origin of life. In this review, the physical properties, abnormal behaviors, and functions of the confined water are mainly summarized through several common low-dimensional water formats in the fields of solid/air-water interface, nanochannel confinement, and biological hydration layer. These researches indicate that the unusual behaviors of the confined water depend strongly on the confinement size and the interaction between the molecules and confining surface. These diverse properties of confined water open a new door to materials science and may play an important role in the future development of biology.
Collapse
Affiliation(s)
- Dianyu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ye Tian
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Muñoz-Santiburcio D, Marx D. Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores. Chem Rev 2021; 121:6293-6320. [PMID: 34006106 DOI: 10.1021/acs.chemrev.0c01292] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this Focus Review, we put the spotlight on very recent insights into the fascinating world of wet chemistry in the realm offered by nanoconfinement of water in mechanically rather rigid and chemically inert planar slit pores wherein only monolayer and bilayer water lamellae can be hosted. We review the effect of confinement on different aspects such as hydrogen bonding, ion diffusion, and charge defect migration of H+(aq) and OH-(aq) in nanoconfined water depending on slit pore width. A particular focus is put on the strongly modulated local dielectric properties as quantified in terms of anisotropic polarization fluctuations across such extremely confined water films and their putative effects on chemical reactions therein. The stunning findings disclosed only recently extend wet chemistry in particular and solvation science in general toward extreme molecular confinement conditions.
Collapse
Affiliation(s)
- Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.,CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
26
|
Monet G, Bresme F, Kornyshev A, Berthoumieux H. Nonlocal Dielectric Response of Water in Nanoconfinement. PHYSICAL REVIEW LETTERS 2021; 126:216001. [PMID: 34114838 DOI: 10.1103/physrevlett.126.216001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Recent experiments reporting a very low dielectric permittivity for nanoconfined water have renewed the interest in the structure and dielectric properties of water in narrow gaps. Here, we describe such systems with a minimal Landau-Ginzburg field theory composed of a nonlocal bulk-determined term and a local water-surface interaction term. We show how the interplay between the boundary conditions and intrinsic bulk correlations encodes the dielectric properties of confined water. Our theoretical analysis is supported by molecular dynamics simulations and comparison with the experimental data.
Collapse
Affiliation(s)
- G Monet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
| | - F Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
| | - A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
| | - H Berthoumieux
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
| |
Collapse
|
27
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
28
|
Abstract
In order to develop a microscopic level understanding of the anomalous dielectric properties of nanoconfined water (NCW), we study and compare three different systems, namely, (i) NCW between parallel graphene sheets (NCW-GSs), (ii) NCW inside graphene covered nanosphere (NCW-Sph), and (iii) a collection of one- and two-dimensional constrained Ising spins with fixed orientations at the termini. We evaluate the dielectric constant and study the scaling of ε with size by using linear response theory and computer simulations. We find that the perpendicular component remains anomalously low at smaller inter-plate separations (d) over a relatively wide range of d. For NCW-Sph, we could evaluate the dielectric constant exactly and again find a low value and a slow convergence to the bulk. To obtain a measure of surface influence into the bulk, we introduce and calculate correlation lengths to find values of ∼9 nm for NCW-GS and ∼5 nm for NCW-Sph, which are surprisingly large, especially for water. We discover that the dipole moment autocorrelations exhibit an unexpected ultrafast decay. We observe the presence of a ubiquitous frequency of ∼1000 cm-1, associated only with the perpendicular component for NCW-GS. This (caging) frequency seems to play a pivotal role in controlling both static and dynamic dielectric responses in the perpendicular direction. It disappears with an increase in d in a manner that corroborates with the estimated correlation length. A similar observation is obtained for NCW-Sph. Interestingly, one- and two-dimensional Ising model systems that follow Glauber spin-flip dynamics reproduce the general characteristics.
Collapse
Affiliation(s)
- Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| |
Collapse
|
29
|
Mejri A, Herlem G, Picaud F. From Behavior of Water on Hydrophobic Graphene Surfaces to Ultra-Confinement of Water in Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:306. [PMID: 33504024 PMCID: PMC7911377 DOI: 10.3390/nano11020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
In recent years and with the achievement of nanotechnologies, the development of experiments based on carbon nanotubes has allowed to increase the ionic permeability and/or selectivity in nanodevices. However, this new technology opens the way to many questionable observations, to which theoretical work can answer using several approximations. One of them concerns the appearance of a negative charge on the carbon surface, when the latter is apparently neutral. Using first-principles density functional theory combined with molecular dynamics, we develop here several simulations on different systems in order to understand the reactivity of the carbon surface in low or ultra-high confinement. According to our calculations, there is high affinity of the carbon atom to the hydrogen ion in every situation, and to a lesser extent for the hydroxyl ion. The latter can only occur when the first hydrogen attack has been achieved. As a consequence, the functionalization of the carbon surface in the presence of an aqueous medium is activated by its protonation, then allowing the reactivity of the anion.
Collapse
Affiliation(s)
| | | | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA4662, UFR Sciences et Techniques, Centre Hospitalier Universitaire et Université de Bourgogne Franche Comté, 16 Route de Gray, 25030 Besançon, France; (A.M.); (G.H.)
| |
Collapse
|
30
|
Motevaselian MH, Aluru NR. Confinement-Induced Enhancement of Parallel Dielectric Permittivity: Super Permittivity Under Extreme Confinement. J Phys Chem Lett 2020; 11:10532-10537. [PMID: 33290076 DOI: 10.1021/acs.jpclett.0c03219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enhancement of parallel (x-y plane) dielectric permittivity of confined fluids has been shown previously. However, a theoretical model that explains this enhancement is lacking thus far. In this study, using statistical-mechanical theories and molecular dynamics simulations, we show an explicit relation between the parallel dielectric permittivity, density variations, and dipolar correlations for protic and aprotic fluids confined in slit-like channels. We analyze the importance of dipolar correlations on enhancement of parallel dielectric permittivity inside large channels and extreme confinements. In large channels, beyond the interfacial region, dipolar correlations exhibit bulk-like behavior. Under extreme confinement, the correlations become stronger to the extent that they give rise to a giant increase in the parallel dielectric permittivity. This sudden increase in dielectric permittivity can be a signature of a liquid transition into higher-ordered structures and has important consequences for understanding ion transport, molecular dissociation, and chemical reactions inside nanoconfined environments.
Collapse
Affiliation(s)
- Mohammad H Motevaselian
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Russell MJ, Ponce A. Six 'Must-Have' Minerals for Life's Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite. Life (Basel) 2020; 10:E291. [PMID: 33228029 PMCID: PMC7699418 DOI: 10.3390/life10110291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/25/2022] Open
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1-x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x-1)O12H2(7-3x)]2+·[(CO2-)·3H2O]2-) and mackinawite (Fe[Ni]S), are vital-comprising precipitate membranes-as initial "free energy" conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2-the staple of life-may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres.
Collapse
Affiliation(s)
- Michael J. Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| | - Adrian Ponce
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;
| |
Collapse
|
32
|
Motevaselian MH, Aluru NR. Universal Reduction in Dielectric Response of Confined Fluids. ACS NANO 2020; 14:12761-12770. [PMID: 32966055 DOI: 10.1021/acsnano.0c03173] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dielectric permittivity is central to many biological and physiochemical systems, as it affects the long-range electrostatic interactions. Similar to many fluid properties, confinement greatly alters the dielectric response of polar liquids. Many studies have focused on the reduction of the dielectric response of water under confinement. Here, using molecular dynamics simulations, statistical-mechanical theories, and multiscale methods, we study the out-of-plane (z-axis) dielectric response of protic and aprotic fluids confined inside slit-like graphene channels. We show that the reduction in perpendicular permittivity is universal for all the fluids and exhibits a Langevin-like behavior as a function of channel width. We show that this reduction is due to the favorable in-plane (x-y plane) dipole-dipole electrostatic interactions of the interfacial fluid layer. Furthermore, we observe an anomalously low dielectric response under an extreme confinement.
Collapse
Affiliation(s)
- Mohammad H Motevaselian
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Ghorbanfekr H, Behler J, Peeters FM. Insights into Water Permeation through hBN Nanocapillaries by Ab Initio Machine Learning Molecular Dynamics Simulations. J Phys Chem Lett 2020; 11:7363-7370. [PMID: 32787306 DOI: 10.1021/acs.jpclett.0c01739] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 Å confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 Å, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
Collapse
Affiliation(s)
- Hossein Ghorbanfekr
- Data Science Hub, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Departement Fysica, Universiteit Antwerpen,, Groenenborgerlaan 171, Antwerpen B-2020, Belgium
| | - Jörg Behler
- Institut für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - François M Peeters
- Departement Fysica, Universiteit Antwerpen,, Groenenborgerlaan 171, Antwerpen B-2020, Belgium
| |
Collapse
|
34
|
Imoto S, Marx D. How Can Protons Migrate in Extremely Compressed Liquid Water? PHYSICAL REVIEW LETTERS 2020; 125:086001. [PMID: 32909792 DOI: 10.1103/physrevlett.125.086001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Compression of liquid water up to multi-kbar pressures is known to perturb dramatically its local structure required for charge defects to migrate as topological defects in the hydrogen-bonded network. Our ab initio simulations show that the migration of excess protons is not much affected at 10 kbar, whereas that of proton holes is significantly reduced. Non-Markovian analyses show that this is not due to modifying the free energy barriers of both charge transfer and migration. It is rather pressure-induced modifications of the population of activated states, depending on interstitial water, which rules charge migration at extreme compression.
Collapse
Affiliation(s)
- Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
35
|
Qian J, Gao X, Pan B. Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8509-8526. [PMID: 32511915 DOI: 10.1021/acs.est.0c01065] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Safe and clean water is of pivotal importance to all living species and the ecosystem on earth. However, the accelerating economy and industrialization of mankind generate water pollutants with much larger quantity and higher complexity than ever before, challenging the efficacy of traditional water treatment technologies. The flourishing researches on nanomaterials and nanotechnologies in the past decade have generated new understandings on many fundamental processes and brought revolutionary upgrades to various traditional technologies in almost all areas, including water treatment. An indispensable step toward the real application of nanomaterials in water treatment is to confine them in large processable substrate to address various inherent issues, such as spontaneous aggregation, difficult operation and potential environmental risks. Strikingly, when the size of the spatial restriction provided by the substrate is on the order of only one or several nanometers, referred to as nanoconfinement, the phase behavior of matter and the energy diagram of a chemical reaction could be utterly changed. Nevertheless, the relationship between such changes under nanoconfinement and their implications for water treatment is rarely elucidated systematically. In this Critical Review, we will briefly summarize the current state-of-the-art of the nanomaterials, as well as the nanoconfined analogues (i.e., nanocomposites) developed for water treatment. Afterward, we will put emphasis on the effects of nanoconfinement from three aspects, that is, on the structure and behavior of water molecules, on the formation (e.g., crystallization) of confined nanomaterials, and on the nanoenabled chemical reactions. For each aspect, we will build the correlation between the nanoconfinement effects and the current studies for water treatment. More importantly, we will make proposals for future studies based on the missing links between some of the nanoconfinement effects and the water treatment technologies. Through this Critical Review, we aim to raise the research attention on using nanoconfinement as a fundamental guide or even tool to advance water treatment technologies.
Collapse
Affiliation(s)
- Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 China
| | - Xiang Gao
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023 China
| |
Collapse
|
36
|
Abstract
We unravel the combined effects of confinement and surface interactions by studying the position dependent, time-resolved dynamic response functions in nano-containers of different shapes. Spectroscopic signatures are additionally studied through solvation dynamics by placing ionic and dipolar probes at varying distances from the enclosing surface. We find that the confined water molecules exhibit exotic dynamical features and stark differences from that in the bulk liquid. We employ atomistic molecular dynamics simulation to obtain the solvation time correlation function, non-Gaussian parameter, and non-linear response function that reveal the existence of heterogeneous and non-exponential dynamics with a strong sensitivity to both the size and the shape of the enclosure. Importantly, the slower long-time decay constant exhibits a non-monotonic spatial dependence. The initial ultrafast component is reminiscent of the same in the bulk, but it is found to have a different origin in the present systems. We perform shell-wise analyses to understand the microscopic origin of these observations and the range of the propagation of the surface induced effects.
Collapse
Affiliation(s)
- Sayantan Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bengaluru, Karnataka, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science Bengaluru, Karnataka, India
| |
Collapse
|
37
|
Gavriil V, Chatzichristidi M, Christofilos D, Kourouklis GA, Kollia Z, Bakalis E, Cefalas AC, Sarantopoulou E. Entropy and Random Walk Trails Water Confinement and Non-Thermal Equilibrium in Photon-Induced Nanocavities. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1101. [PMID: 32498312 PMCID: PMC7353189 DOI: 10.3390/nano10061101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 01/18/2023]
Abstract
Molecules near surfaces are regularly trapped in small cavitations. Molecular confinement, especially water confinement, shows intriguing and unexpected behavior including surface entropy adjustment; nevertheless, observations of entropic variation during molecular confinement are scarce. An experimental assessment of the correlation between surface strain and entropy during molecular confinement in tiny crevices is difficult because strain variances fall in the nanometer scale. In this work, entropic variations during water confinement in 2D nano/micro cavitations were observed. Experimental results and random walk simulations of water molecules inside different size nanocavitations show that the mean escaping time of molecular water from nanocavities largely deviates from the mean collision time of water molecules near surfaces, crafted by 157 nm vacuum ultraviolet laser light on polyacrylamide matrixes. The mean escape time distribution of a few molecules indicates a non-thermal equilibrium state inside the cavity. The time differentiation inside and outside nanocavities reveals an additional state of ordered arrangements between nanocavities and molecular water ensembles of fixed molecular length near the surface. The configured number of microstates correctly counts for the experimental surface entropy deviation during molecular water confinement. The methodology has the potential to identify confined water molecules in nanocavities with life science importance.
Collapse
Affiliation(s)
- Vassilios Gavriil
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
- School of Chemical Engineering and Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.C.); (G.A.K.)
| | - Margarita Chatzichristidi
- Department of Chemistry, Laboratory of Industrial Chemistry, Panepistimiopolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Dimitrios Christofilos
- School of Chemical Engineering and Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.C.); (G.A.K.)
| | - Gerasimos A. Kourouklis
- School of Chemical Engineering and Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (D.C.); (G.A.K.)
| | - Zoe Kollia
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
| | - Evangelos Bakalis
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
- Dipartimento di Chimica “G. Giamician” University di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Alkiviadis-Constantinos Cefalas
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
| | - Evangelia Sarantopoulou
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (V.G.); (Z.K.); (E.B.); (A.-C.C.)
| |
Collapse
|
38
|
Turi L, Rodriguez J, Laria D. Combined Effects from Solvation and Nuclear Quantum Fluctuations on Autoionization Mechanisms in Aqueous Clusters. J Phys Chem B 2020; 124:2198-2208. [PMID: 32075372 DOI: 10.1021/acs.jpcb.9b11087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using path-integral molecular dynamics simulations, we examine isomerization paths involving collective proton transfers in [H2O]5 and [H2O]8 clusters under cryogenic conditions. We focused attention on combined effects derived from solvation and nuclear quantum fluctuations on the characteristics of free energy barriers and relative stabilities of reactants and products. In particular, we analyzed two different processes: the first one involves the exchange of donor-acceptor hydrogen bond roles along cyclic moieties, whereas the second one corresponds to charge separation leading to stable [H3O]+[OH]- ion pairs. In the first case, the explicit incorporation of quantum tunneling introduces important modifications in the classical free energy profile. The resulting quantum profile presents two main contributions, one corresponding to compressions of O-O distances and a second one ascribed to nuclear tunneling of the light protons. Solvation effects promote a moderate polarization of the cyclic structures and a partial loss of concertedness in the collective modes, most notably, at the onset of tunneling. Still, the latter effects are also sufficiently strong to promote the stabilization of ion pairs along the classical trajectories. In contrast, the explicit incorporation of nuclear quantum fluctuations leads to charge separated configurations that are marginally stable. As such, the latter states could also be regarded as short-lived intermediate states along the reactive exchange path.
Collapse
Affiliation(s)
- László Turi
- Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest, 112 H-1518, Hungary
| | - Javier Rodriguez
- Departamento de Fı́sica de la Materia Condensada, Comisión Nacional de Energı́a Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina.,ECyT, UNSAM, Martı́n de Irigoyen 3100, 1650 San Martı́n, Provincia de Buenos Aires, Argentina
| | - Daniel Laria
- Departamento de Fı́sica de la Materia Condensada, Comisión Nacional de Energı́a Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina.,Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica-Fı́sica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| |
Collapse
|
39
|
Palese LL. Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters. Biochim Biophys Acta Gen Subj 2020; 1864:129480. [DOI: 10.1016/j.bbagen.2019.129480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
|
40
|
Honegger P, Heid E, Schröder C, Steinhauser O. Dielectric spectroscopy and time dependent Stokes shift: two faces of the same coin? Phys Chem Chem Phys 2020; 22:18388-18399. [DOI: 10.1039/d0cp02840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different types of spectroscopy capture different aspects of dynamics and different ranges of intermolecular contributions.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Esther Heid
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| |
Collapse
|
41
|
Ruiz-Barragan S, Muñoz-Santiburcio D, Körning S, Marx D. Quantifying anisotropic dielectric response properties of nanoconfined water within graphene slit pores. Phys Chem Chem Phys 2020; 22:10833-10837. [DOI: 10.1039/d0cp00916d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water presents puzzling properties once it gets confined, in particular its dielectric response becomes highly anisotropic. Here, we analyze the dielectric response of water within graphene slit pores based on molecular dynamics simulations.
Collapse
Affiliation(s)
- Sergi Ruiz-Barragan
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum
- 44780 Bochum
- Germany
- CIC nanoGUNE BRTA
- Tolosa Hiribidea 76
| | - Saskia Körning
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
42
|
Abstract
Books with titles like 'The Call of the Wild' seemed to set a path for a life. Thus, I would be an explorer-a plan that did not work out so well, at least at first. On leaving school I got a job as a 'Works Chemist Improver', testing Ni catalysts for the hydrogenation of phenol to cyclohexanol. Taking night classes I passed enough exams to study geology at Queen Mary College, London. Armed thus I travelled to the Solomon Islands where geology is a 'happening'! Next was Canada to visit a mine sunk into a 1.5 billion year old Pb-Zn orebody precipitated from submarine hot springs. At last I reached the Yukon to prospect for silver. Thence to Ireland researching what I also took to be 'exhalative' (i.e. hot spring-related) Pb-Zn orebodies. While there in 1979, the discovery of 350°C metal-bearing acidic waters issuing from submarine Black Smoker chimneys in the Pacific sent us searching for fossil examples in the Irish mines. However, the chimneys we found were more like chemical gardens than Black Smokers, a finding that made us think about the emergence of life. After all, what better for life's emergence than to have a membrane comprising Fe minerals dosed with Ni in our chimneys to mediate the 'hydrogenation' of CO2-life's job anyway. Indeed, such a membrane would keep redox and pH disequilibria at bay, just like biological membranes. At the same time, my field research among Alpine ophiolites-ocean floor mafic rocks obducted to the Alps-indicated that alkaline waters bearing H2 and CH4 were a result of serpentinization, a process that must have operated in all ocean floors over all time. Thus it was that we could predict the Lost City hydrothermal field 10 years before its discovery in the North Atlantic in the year 2000. Lost City comprises a number of alkaline springs at up to 90°C that produce carbonate and brucite (Mg[OH]2) chimneys. We had surmised that Ni-enriched FeS chimneys would have precipitated at comparable alkaline springs issuing into a metal-rich carbonic ocean on the very early Earth (inducing membrane potentials comparable to those capable of succouring all life, and presumably, sufficient to drive life into being). However, our laboratory precipitates also revealed green rust, thought to be the precursor to the magnetite now comprising the Archaean Banded Iron Formations. We now look upon green rust, also known as fougèrite, as the tangible, base fractal of life.
Collapse
Affiliation(s)
- Michael J. Russell
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, CA, USA
- http://bip.cnrs-mrs.fr/bip09/AHVics.html
| |
Collapse
|
43
|
Dubouis N, Grimaud A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem Sci 2019; 10:9165-9181. [PMID: 32015799 PMCID: PMC6968730 DOI: 10.1039/c9sc03831k] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/07/2019] [Indexed: 12/24/2022] Open
Abstract
The production of sustainable hydrogen with water electrolyzers is envisaged as one of the most promising ways to match the continuously growing demand for renewable electricity storage. While so far regarded as fast when compared to the oxygen evolution reaction (OER), the hydrogen evolution reaction (HER) regained interest in the last few years owing to its poor kinetics in alkaline electrolytes. Indeed, this slow kinetics not only may hinder the foreseen development of the anionic exchange membrane water electrolyzer (AEMWE), but also raises fundamental questions regarding the parameters governing the reaction. In this perspective, we first briefly review the fundamentals of the HER, emphasizing how studies performed on model electrodes allowed for achieving a good understanding of its mechanism under acidic conditions. Then, we discuss how the use of physical descriptors capturing the sole properties of the catalyst is not sufficient to describe the HER kinetics under alkaline conditions, thus forcing the catalysis community to adopt a more complex picture taking into account the electrolyte structure at the electrochemical interface. This work also outlines new techniques, such as spectroscopies, molecular simulations, or chemical approaches that could be employed to tackle these new fundamental challenges, and potentially guide the future design of practical and cheap catalysts while also being useful to a wider community dealing with electrochemical energy storage devices using aqueous electrolytes.
Collapse
Affiliation(s)
- Nicolas Dubouis
- Chimie du Solide et de l'Energie , Collège de France , UMR 8260 , 75231 Paris Cedex 05 , France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , CNRS FR3459 , 33 rue Saint Leu , 80039 Amiens Cedex , France
- Sorbonne Université , Paris , France .
| | - Alexis Grimaud
- Chimie du Solide et de l'Energie , Collège de France , UMR 8260 , 75231 Paris Cedex 05 , France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E) , CNRS FR3459 , 33 rue Saint Leu , 80039 Amiens Cedex , France
- Sorbonne Université , Paris , France .
| |
Collapse
|
44
|
Tripathi R, Forbert H, Marx D. Settling the Long-Standing Debate on the Proton Storage Site of the Prototype Light-Driven Proton Pump Bacteriorhodopsin. J Phys Chem B 2019; 123:9598-9608. [DOI: 10.1021/acs.jpcb.9b09608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Mondal S, Bagchi B. Water in Carbon Nanotubes: Pronounced Anisotropy in Dielectric Dispersion and Its Microscopic Origin. J Phys Chem Lett 2019; 10:6287-6292. [PMID: 31556616 DOI: 10.1021/acs.jpclett.9b02586] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a remarkable anisotropy in the dielectric properties of water under cylindrical nanoconfinements in carbon nanotubes (CNTs). We employ linear response theory and use a new relation to define and calculate the two distinct eigenvalues of the dielectric tensor, namely, the axial (εz) and perpendicular (εx/y) components. We discover that not just the dielectric tensor but dielectric relaxation also exhibits strong anisotropy. The present study reveals that the parallel (εz) and the orthogonal (εx/y) components approach the bulk value in an opposite manner when the diameter of the CNT is increased. Rather unexpectedly, the polarization fluctuations remain quenched in the perpendicular direction even for the largest systems studied. The microscopic origin of the observed anisotropy is attributed to the propagation of surface effects into the confined liquid.
Collapse
Affiliation(s)
- Sayantan Mondal
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka 560 012 , India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka 560 012 , India
| |
Collapse
|
46
|
Giussani L, Tabacchi G, Coluccia S, Fois E. Confining a Protein-Containing Water Nanodroplet inside Silica Nanochannels. Int J Mol Sci 2019; 20:E2965. [PMID: 31216631 PMCID: PMC6627703 DOI: 10.3390/ijms20122965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
Incorporation of biological systems in water nanodroplets has recently emerged as a new frontier to investigate structural changes of biomolecules, with perspective applications in ultra-fast drug delivery. We report on the molecular dynamics of the digestive protein Pepsin subjected to a double confinement. The double confinement stemmed from embedding the protein inside a water nanodroplet, which in turn was caged in a nanochannel mimicking the mesoporous silica SBA-15. The nano-bio-droplet, whose size fits with the pore diameter, behaved differently depending on the protonation state of the pore surface silanols. Neutral channel sections allowed for the droplet to flow, while deprotonated sections acted as anchoring piers for the droplet. Inside the droplet, the protein, not directly bonded to the surface, showed a behavior similar to that reported for bulk water solutions, indicating that double confinement should not alter its catalytic activity. Our results suggest that nanobiodroplets, recently fabricated in volatile environments, can be encapsulated and stored in mesoporous silicas.
Collapse
Affiliation(s)
- Lara Giussani
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| | - Gloria Tabacchi
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| | - Salvatore Coluccia
- Dipartimento di Chimica, Turin University, Via P. Giuria 7, I-10125 Turin, Italy.
| | - Ettore Fois
- Dipartimento di Scienza e Alta Tecnologia and INSTM udr Como, Insubria University, Via Valleggio 9, I-22100 Como, Italy.
| |
Collapse
|
47
|
Abstract
We predict that graphane functionalized with hydroxyl groups, hydroxygraphane, can conduct protons in the complete absence of water, as shown from density functional theory calculations. Hydroxygraphane's anhydrous intrinsic proton conductivity results from the self-assembling two-dimensional network of hydrogen bonds on its surface. We show that the proton conduction occurs through a Grotthuss-like mechanism, as protons hop between neighboring hydroxyl groups, aided by their rotation. Our calculations predict that hydroxygraphane has a direct bandgap of 3.43 eV, a phonon dispersion spectrum with no instabilities, and a 2-D Young's modulus and Poisson's ratio stiffer than those for graphane-the parent material for hydroxygraphane. Hence, hydroxygraphane has the desired electronic and mechanical properties to make it a viable candidate for a proton exchange membrane material capable of operating under anhydrous or low-humidity conditions.
Collapse
Affiliation(s)
- Abhishek Bagusetty
- Computational Modeling & Simulation Program , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
- Department of Chemical & Petroleum Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - J Karl Johnson
- Department of Chemical & Petroleum Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
48
|
Ruiz-Barragan S, Muñoz-Santiburcio D, Marx D. Nanoconfined Water within Graphene Slit Pores Adopts Distinct Confinement-Dependent Regimes. J Phys Chem Lett 2019; 10:329-334. [PMID: 30571135 DOI: 10.1021/acs.jpclett.8b03530] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In view of the increasing importance of nanoconfined aqueous solutions for various technological applications, it has become necessary to understand how strong confinement affects the properties of water at the level of molecular and even electronic structure. By performing extensive ab initio simulations of two-dimensionally nanoconfined water lamellae between graphene sheets subject to different interlayer spacings, we find new regimes at interlayer distances of 10 Å and less where water can be described neither to behave like interfacial water nor to be bulklike at the level of its H-bonding characteristics and electronic structure properties. It is expected that this finding will offer new opportunities to tune both diffusive and reactive processes taking place in aqueous environments that are strongly confined by chemically inert hard walls.
Collapse
Affiliation(s)
- Sergi Ruiz-Barragan
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| | - Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
- CIC nanoGUNE , Tolosa Hiribidea 76 , E-20018 San Sebastián , Spain
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie , Ruhr-Universität Bochum , 44780 Bochum , Germany
| |
Collapse
|
49
|
Inagawa A, Fukuyama M, Hibara A, Harada M, Okada T. Zeta potential determination with a microchannel fabricated in solidified solvents. J Colloid Interface Sci 2018; 532:231-235. [DOI: 10.1016/j.jcis.2018.07.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
|
50
|
Sirkin YAP, Hassanali A, Scherlis DA. One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes. J Phys Chem Lett 2018; 9:5029-5033. [PMID: 30113846 DOI: 10.1021/acs.jpclett.8b02183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of nanoconfinement on the self-dissociation of water constitutes an open problem whose elucidation poses a serious challenge to experiments and simulations alike. In slit pores of width ≈1 nm, recent first-principles calculations have predicted that the dissociation constant of H2O increases by almost 2 orders of magnitude [ Muñoz-Santiburcio and Marx, Phys. Rev. Lett. 2017 , 119 , 056002 ]. In the present study, quantum mechanics-molecular mechanics simulations are employed to compute the dissociation free-energy profile of water in a (6,6) carbon nanotube. According to our results, the equilibrium constant Kw drops by 3 orders of magnitude with respect to the bulk phase value, at variance with the trend predicted for confinement in two dimensions. The higher barrier to dissociation can be ascribed to the undercoordination of the hydroxide and hydronium ions in the nanotube and underscores that chemical reactivity does not exhibit a monotonic behavior with respect to pore size but may vary substantially with the characteristic length scale and dimensionality of the confining media.
Collapse
Affiliation(s)
- Yamila A Perez Sirkin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Ciudad Universitaria , Buenos Aires C1428EHA , Argentina
| | - Ali Hassanali
- Condensed Matter and Statistical Physics , International Centre for Theoretical Physics , I-34151 Trieste , Italy
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Ciudad Universitaria , Buenos Aires C1428EHA , Argentina
| |
Collapse
|