1
|
Chowdhury MRH, Oladun C, Ahmed F, Ariyasingha NM, Abdurraheem A, Asif F, Gyesi J, Nikolaou P, Barlow MJ, Shcherbakov A, Rudman NA, Dmochowski IJ, Goodson BM, Chekmenev EY. Continuous Delivery of Hyperpolarized Xenon-129 Gas Using a "Stopped-Flow" Clinical-Scale Cryogen-Free Hyperpolarizer. Anal Chem 2025; 97:3387-3394. [PMID: 39903267 PMCID: PMC11969679 DOI: 10.1021/acs.analchem.4c05372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
In 2022, the FDA approved hyperpolarized (HP) 129Xe gas as an inhalable contrast agent for functional lung imaging. For clinical imaging, HP 129Xe is usually given as a bolus inhalation. However, for preclinical applications (e.g., pulmonary imaging in small rodents), the continuous delivery of HP 129Xe is greatly desired to enable MRI scanning under conditions of physiological continuous animal breathing patterns. Moreover, HP 129Xe gas can be utilized for other applications including materials science and bioanalytical chemistry, where a continuous flow of hyperpolarized gas through an NMR sample over several minutes is also desired for sensing of 129Xe inside an NMR spectrometer. 129Xe is often hyperpolarized using continuous-flow spin-exchange optical pumping, which employs a lean (1-2%) mixture of Xe and a carrier gas (e.g., He and N2). The low Xe concentration in the produced output reduces the NMR detection sensitivity, and thus, Xe cryo-collection is typically employed to achieve near-100% pure gas-phase Xe before administration to the sample or subject. However, the need for cryo-collection undermines a key advantage of continuous-flow production, i.e., the continuous flowing in a hyperpolarizer HP 129Xe gas is trapped inside the hyperpolarizer, and the produced HP 129Xe gas is released at once when the production cycle (30-60 min) is completed. An alternative HP 129Xe production technology employs a "stopped-flow" approach, where a batch of HP gas is hyperpolarized over time and quickly released from a hyperpolarizer. Here, a clinical-scale "stopped-flow" 129Xe hyperpolarizer was employed to hyperpolarize a 1.3 L-atm batch of 50:50 Xe:N2 gas mixture inside a glass cell with an ultralong lifetime of the HP 129Xe state (T1 > 2 h). The produced HP 129Xe gas was slowly delivered into a 5 mm NMR tube via PEEK tubing under a wide range of gas flow rates: 3-180 standard cubic centimeters per minute (sccm). The polarization of the gas ejected from the hyperpolarizer was quantified using in situ low-field NMR polarimetry and additionally verified using a 0.35 T clinical MRI scanner. Continuous-flow delivery of HP 129Xe was demonstrated for up to 15 min with a gas flow rate of 45-150 sccm over a 2.5-m length of PEEK tubing, suffering only small losses in 129Xe polarization. These observations are additionally supported by 129Xe relaxation measurements inside the PEEK tubing employed for gas delivery and the 5 mm NMR tube employed for polarimetry. 129Xe polarization of 16-19% was obtained in the delivered gas, starting with an "in-polarizer" 129Xe polarization of 19%. We envision that this method can be employed for on-demand cryogen-free delivery of hyperpolarized gas using "stopped-flow" 129Xe hyperpolarizers for a broad range of applications, from preclinical imaging to biosensors, and to spectroscopy of materials surfaces.
Collapse
Affiliation(s)
- Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Clementinah Oladun
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Firoz Ahmed
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Nuwandi M. Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Faisal Asif
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Joseph Gyesi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Anton Shcherbakov
- XeUS Technologies LTD, Nicosia 2312, Cyprus
- Custom Medical Systems (CMS) LTD, Nicosia 2312, Cyprus
| | - Nathan A. Rudman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Boyd M. Goodson
- School of Chemical & Biomolecular Sciences and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Wiström E, Hyacinthe JN, Lê TP, Gruetter R, Capozzi A. 129Xe Dynamic Nuclear Polarization Demystified: The Influence of the Glassing Matrix on the Radical Properties. J Phys Chem Lett 2024; 15:2957-2965. [PMID: 38453156 PMCID: PMC10961830 DOI: 10.1021/acs.jpclett.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
129Xe dissolution dynamic nuclear polarization (DNP) is a controversial topic. The gold standard technique for hyperpolarized xenon magnetic resonance imaging (MRI) is spin exchange optical pumping, which received FDA approval in 2022. Nevertheless, the versatility of DNP for enhancing the signal of any NMR active nucleus might provide new perspectives for hyperpolarized 129Xe NMR/MRI. Initial publications about 129Xe DNP underlined the increased complexity in the sample preparation and lower polarization levels when compared to more conventional 13C-labeled molecules, at same experimental conditions, despite very close gyromagnetic ratios. Herein, we introduce, using a Custom Fluid Path system, a user-friendly and very robust sample preparation method. Moreover, investigating the radical properties at real DNP conditions by means of LOngitudinal Detected Electron Spin Resonance, we discovered a dramatic shortening of the electron spin longitudinal relaxation time (T1e) of nitroxyl radicals in xenon DNP samples' matrices, with respect to more commonly used water:glycerol ones. Mitigating those challenges through microwave frequency modulation, we achieved over 20% 129Xe polarization without employing any deuterated solvent.
Collapse
Affiliation(s)
- Emma Wiström
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Thanh Phong Lê
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Rolf Gruetter
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Andrea Capozzi
- LIFMET,
Institute of Physics, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG,
Department of Health Technology, Technical
University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
3
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
4
|
Molway MJ, Bales-Shaffer L, Ranta K, Ball J, Sparling E, Prince M, Cocking D, Basler D, Murphy M, Kidd BE, Gafar AT, Porter J, Albin K, Rosen MS, Chekmenev EY, Michael Snow W, Barlow MJ, Goodson BM. Dramatic improvement in the "Bulk" hyperpolarization of 131Xe via spin exchange optical pumping probed using in situ low-field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107521. [PMID: 37487304 DOI: 10.1016/j.jmr.2023.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
We report on hyperpolarization of quadrupolar (I=3/2) 131Xe via spin-exchange optical pumping. Observations of the 131Xe polarization dynamics via in situ low-field NMR show that the estimated alkali-metal/131Xe spin-exchange rates can be large enough to compete with 131Xe spin relaxation. 131Xe polarization up to 7.6±1.5% was achieved in ∼8.5×1020 spins-a ∼100-fold improvement in the total spin angular momentum-potentially enabling various applications, including: measurement of spin-dependent neutron-131Xe s-wave scattering; sensitive searches for time-reversal violation in neutron-131Xe interactions beyond the Standard Model; and surface-sensitive pulmonary MRI.
Collapse
Affiliation(s)
- Michael J Molway
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Liana Bales-Shaffer
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Kaili Ranta
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - James Ball
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Eleanor Sparling
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Mia Prince
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Daniel Cocking
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Dustin Basler
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Megan Murphy
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Bryce E Kidd
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Abdulbasit Tobi Gafar
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Justin Porter
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Kierstyn Albin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston 02129, MA, USA; Department of Physics, Harvard University, Cambridge 02138, MA, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit 48202, MI, USA; Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - W Michael Snow
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Michael J Barlow
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA.
| |
Collapse
|
5
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
6
|
Investigating Rubidium Density and Temperature Distributions in a High-Throughput 129Xe-Rb Spin-Exchange Optical Pumping Polarizer. Molecules 2022; 28:molecules28010011. [PMID: 36615208 PMCID: PMC9822042 DOI: 10.3390/molecules28010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Accurate knowledge of the rubidium (Rb) vapor density, [Rb], is necessary to correctly model the spin dynamics of 129Xe-Rb spin-exchange optical pumping (SEOP). Here we present a systematic evaluation of [Rb] within a high-throughput 129Xe-Rb hyperpolarizer during continuous-flow SEOP. Near-infrared (52S1/2→52P1/2 (D1)/52P3/2 (D2)) and violet (52S1/2→62P1/2/62P3/2) atomic absorption spectroscopy was used to measure [Rb] within 3.5 L cylindrical SEOP cells containing different spatial distributions and amounts of Rb metal. We were able to quantify deviation from the Beer-Lambert law at high optical depth for D2 and 62P3/2 absorption by comparison with measurements of the D1 and 62P1/2 absorption lines, respectively. D2 absorption deviates from the Beer-Lambert law at [Rb]D2>4×1017 m−3 whilst 52S1/2→62P3/2 absorption deviates from the Beer-Lambert law at [Rb]6P3/2>(4.16±0.01)×1019 m−3. The measured [Rb] was used to estimate a 129Xe-Rb spin exchange cross section of γ′=(1.2±0.1)×10−21 m3 s−1, consistent with spin-exchange cross sections from the literature. Significant [Rb] heterogeneity was observed in a SEOP cell containing 1 g of Rb localized at the back of the cell. While [Rb] homogeneity was improved for a greater surface area of the Rb source distribution in the cell, or by using a Rb presaturator, the measured [Rb] was consistently lower than that predicted by saturation Rb vapor density curves. Efforts to optimize [Rb] and thermal management within spin polarizer systems are necessary to maximize potential future enhancements of this technology.
Collapse
|
7
|
Stäglich R, Kemnitzer TW, Harder MC, Schmutzler A, Meinhart M, Keenan CD, Rössler EA, Senker J. Portable Hyperpolarized Xe-129 Apparatus with Long-Time Stable Polarization Mediated by Adaptable Rb Vapor Density. J Phys Chem A 2022; 126:2578-2589. [PMID: 35420816 DOI: 10.1021/acs.jpca.2c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extraordinary sensitivity of 129Xe, hyperpolarized by spin-exchange optical pumping, is essential for magnetic resonance imaging and spectroscopy in life and materials sciences. However, fluctuations of the polarization over time still limit the reproducibility and quantification with which the interconnectivity of pore spaces can be analyzed. Here, we present a polarizer that not only produces a continuous stream of hyperpolarized 129Xe but also maintains stable polarization levels on the order of hours, independent of gas flow rates. The polarizer features excellent magnetization production rates of about 70 mL/h and 129Xe polarization values on the order of 40% at moderate system pressures. Key design features include a vertically oriented, large-capacity two-bodied pumping cell and a separate Rb presaturation chamber having its own temperature control, independent of the main pumping cell oven. The separate presaturation chamber allows for precise control of the Rb vapor density by restricting the Rb load and varying the temperature. The polarizer is both compact and transportable─making it easily storable─and adaptable for use in various sample environments. Time-evolved two-dimensional (2D) exchange spectra of 129Xe absorbed in the microporous metal-organic framework CAU-1-AmMe are presented to highlight the quantitative nature of the device.
Collapse
Affiliation(s)
- Robert Stäglich
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Tobias W Kemnitzer
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marie C Harder
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Adrian Schmutzler
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marcel Meinhart
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Caroline D Keenan
- Department of Chemistry and Biochemistry, Carson-Newman University, 1645 Russel Avenue, Jefferson City, Tennessee 37760, United States
| | - Ernst A Rössler
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Jürgen Senker
- Inorganic Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
8
|
Pilot Quality-Assurance Study of a Third-Generation Batch-Mode Clinical-Scale Automated Xenon-129 Hyperpolarizer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041327. [PMID: 35209116 PMCID: PMC8879294 DOI: 10.3390/molecules27041327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
We present a pilot quality assurance (QA) study of a clinical-scale, automated, third-generation (GEN-3) 129Xe hyperpolarizer employing batch-mode spin-exchange optical pumping (SEOP) with high-Xe densities (50% natural abundance Xe and 50% N2 in ~2.6 atm total pressure sourced from Nova Gas Technologies) and rapid temperature ramping enabled by an aluminum heating jacket surrounding the 0.5 L SEOP cell. 129Xe hyperpolarization was performed over the course of 700 gas loading cycles of the SEOP cell, simulating long-term hyperpolarized contrast agent production in a clinical lung imaging setting. High levels of 129Xe polarization (avg. %PXe = 51.0% with standard deviation σPXe = 3.0%) were recorded with fast 129Xe polarization build-up time constants (avg. Tb = 25.1 min with standard deviation σTb = 3.1 min) across the first 500 SEOP cell refills, using moderate temperatures of 75 °C. These results demonstrate a more than 2-fold increase in build-up rate relative to previously demonstrated results in a comparable QA study on a second-generation (GEN-2) 129Xe hyperpolarizer device, with only a minor reduction in maximum achievable %PXe and with greater consistency over a larger number of SEOP cell refill processes at a similar polarization lifetime duration (avg. T1 = 82.4 min, standard deviation σT1 = 10.8 min). Additionally, the effects of varying SEOP jacket temperatures, distribution of Rb metal, and preparation and operation of the fluid path are quantified in the context of device installation, performance optimization and maintenance to consistently produce high 129Xe polarization values, build-up rates (Tb as low as 6 min) and lifetimes over the course of a typical high-throughput 129Xe polarization SEOP cell life cycle. The results presented further demonstrate the significant potential for hyperpolarized 129Xe contrast agent in imaging and bio-sensing applications on a clinical scale.
Collapse
|
9
|
Lin K, TomHon P, Lehmkuhl S, Laasner R, Theis T, Blum V. Density Functional Theory Study of Reaction Equilibria in Signal Amplification by Reversible Exchange. Chemphyschem 2021; 22:1947-1957. [PMID: 34549869 DOI: 10.1002/cphc.202100204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/19/2021] [Indexed: 11/07/2022]
Abstract
An in-depth theoretical analysis of key chemical equilibria in Signal Amplification by Reversible Exchange (SABRE) is provided, employing density functional theory calculations to characterize the likely reaction network. For all reactions in the network, the potential energy surface is probed to identify minimum energy pathways. Energy barriers and transition states are calculated, and harmonic transition state theory is applied to calculate exchange rates that approximate experimental values. The reaction network energy surface can be modulated by chemical potentials that account for the dependence on concentration, temperature, and partial pressure of molecular constituents (hydrogen, methanol, pyridine) supplied to the experiment under equilibrium conditions. We show that, under typical experimental conditions, the Gibbs free energies of the two key states involved in pyridine-hydrogen exchange at the common Ir-IMes catalyst system in methanol are essentially the same, i. e., nearly optimal for SABRE. We also show that a methanol-containing intermediate is plausible as a transient species in the process.
Collapse
Affiliation(s)
- Kailai Lin
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Patrick TomHon
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
| | - Sören Lehmkuhl
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
| | - Raul Laasner
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA.,Joint Department of Biomedical Engineering, UNC, Chapel Hill, and NC State University, Raleigh, NC 27606, USA.,Department of Physics, North Carolina State University, Raleigh, NC 27606, USA
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, NC 27708, USA.,Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized 129 Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021; 60:22126-22147. [PMID: 34018297 PMCID: PMC8478785 DOI: 10.1002/anie.202015200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.
Collapse
Affiliation(s)
- Alixander S Khan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca L Harvey
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan R Birchall
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems, 45101 Warp Drive, Sterling, VA, 20166, USA
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
11
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized
129
Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alixander S. Khan
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Rebecca L. Harvey
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Jonathan R. Birchall
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
| | - Robert K. Irwin
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems 45101 Warp Drive Sterling VA 20166 USA
| | | | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
12
|
Birchall JR, Irwin RK, Chowdhury MRH, Nikolaou P, Goodson BM, Barlow MJ, Shcherbakov A, Chekmenev EY. Automated Low-Cost In Situ IR and NMR Spectroscopy Characterization of Clinical-Scale 129Xe Spin-Exchange Optical Pumping. Anal Chem 2021; 93:3883-3888. [PMID: 33591160 DOI: 10.1021/acs.analchem.0c04545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present on the utility of in situ nuclear magnetic resonance (NMR) and near-infrared (NIR) spectroscopic techniques for automated advanced analysis of the 129Xe hyperpolarization process during spin-exchange optical pumping (SEOP). The developed software protocol, written in the MATLAB programming language, facilitates detailed characterization of hyperpolarized contrast agent production efficiency based on determination of key performance indicators, including the maximum achievable 129Xe polarization, steady-state Rb-129Xe spin-exchange and 129Xe polarization build-up rates, 129Xe spin-relaxation rates, and estimates of steady-state Rb electron polarization. Mapping the dynamics of 129Xe polarization and relaxation as a function of SEOP temperature enables systematic optimization of the batch-mode SEOP process. The automated analysis of a typical experimental data set, encompassing ∼300 raw NMR and NIR spectra combined across six different SEOP temperatures, can be performed in under 5 min on a laptop computer. The protocol is designed to be robust in operation on any batch-mode SEOP hyperpolarizer device. In particular, we demonstrate the implementation of a combination of low-cost NIR and low-frequency NMR spectrometers (∼$1,100 and ∼$300 respectively, ca. 2020) for use in the described protocols. The demonstrated methodology will aid in the characterization of NMR hyperpolarization hardware in the context of SEOP and other hyperpolarization techniques for more robust and less expensive clinical production of HP 129Xe and other contrast agents.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Anton Shcherbakov
- Smart-A, Perm, Perm Region 614000, Russia.,Custom Medical Systems (CMS) LTD, Nicosia 2312, Cyprus
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
13
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
14
|
Inhaled Gas Magnetic Resonance Imaging: Advances, Applications, Limitations, and New Frontiers. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Ariyasingha NM, Joalland B, Younes HR, Salnikov OG, Chukanov NV, Kovtunov KV, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Gelovani JG, Chekmenev EY. Parahydrogen-Induced Polarization of Diethyl Ether Anesthetic. Chemistry 2020; 26:13621-13626. [PMID: 32667687 PMCID: PMC7722203 DOI: 10.1002/chem.202002528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/05/2020] [Indexed: 12/29/2022]
Abstract
The growing interest in magnetic resonance imaging (MRI) for assessing regional lung function relies on the use of nuclear spin hyperpolarized gas as a contrast agent. The long gas-phase lifetimes of hyperpolarized 129 Xe make this inhalable contrast agent acceptable for clinical research today despite limitations such as high cost, low throughput of production and challenges of 129 Xe imaging on clinical MRI scanners, which are normally equipped with proton detection only. We report on low-cost and high-throughput preparation of proton-hyperpolarized diethyl ether, which can be potentially employed for pulmonary imaging with a nontoxic, simple, and sensitive overall strategy using proton detection commonly available on all clinical MRI scanners. Diethyl ether is hyperpolarized by pairwise parahydrogen addition to vinyl ethyl ether and characterized by 1 H NMR spectroscopy. Proton polarization levels exceeding 8 % are achieved at near complete chemical conversion within seconds, causing the activation of radio amplification by stimulated emission radiation (RASER) throughout detection. Although gas-phase T1 relaxation of hyperpolarized diethyl ether (at partial pressure of 0.5 bar) is very efficient, with T1 of ca. 1.2 second, we demonstrate that, at low magnetic fields, the use of long-lived singlet states created via pairwise parahydrogen addition extends the relaxation decay by approximately threefold, paving the way to bioimaging applications and beyond.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Hassan R Younes
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Oleg G Salnikov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Larisa M Kovtunova
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
16
|
Birchall JR, Irwin RK, Nikolaou P, Coffey AM, Kidd BE, Murphy M, Molway M, Bales LB, Ranta K, Barlow MJ, Goodson BM, Rosen MS, Chekmenev EY. XeUS: A second-generation automated open-source batch-mode clinical-scale hyperpolarizer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106813. [PMID: 32932118 DOI: 10.1016/j.jmr.2020.106813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
We present a second-generation open-source automated batch-mode 129Xe hyperpolarizer (XeUS GEN-2), designed for clinical-scale hyperpolarized (HP) 129Xe production via spin-exchange optical pumping (SEOP) in the regimes of high Xe density (0.66-2.5 atm partial pressure) and resonant photon flux (~170 W, Δλ = 0.154 nm FWHM), without the need for cryo-collection typically employed by continuous-flow hyperpolarizers. An Arduino micro-controller was used for hyperpolarizer operation. Processing open-source software was employed to program a custom graphical user interface (GUI), capable of remote automation. The Arduino Integrated Development Environment (IDE) was used to design a variety of customized automation sequences such as temperature ramping, NMR signal acquisition, and SEOP cell refilling for increased reliability. A polycarbonate 3D-printed oven equipped with a thermo-electric cooler/heater provides thermal stability for SEOP for both binary (Xe/N2) and ternary (4He-containing) SEOP cell gas mixtures. Quantitative studies of the 129Xe hyperpolarization process demonstrate that near-unity polarization can be achieved in a 0.5 L SEOP cell. For example, %PXe of 93.2 ± 2.9% is achieved at 0.66 atm Xe pressure with polarization build-up rate constant γSEOP = 0.040 ± 0.005 min-1, giving a max dose equivalent ≈ 0.11 L/h 100% hyperpolarized, 100% enriched 129Xe; %PXe of 72.6 ± 1.4% is achieved at 1.75 atm Xe pressure with γSEOP of 0.041 ± 0.001 min-1, yielding a corresponding max dose equivalent of 0.27 L/h. Quality assurance studies on this device have demonstrated the potential to refill SEOP cells hundreds of times without significant losses in performance, with average %PXe = 71.7%, (standard deviation σP = 1.52%) and mean polarization lifetime T1 = 90.5 min, (standard deviation σT = 10.3 min) over the first ~200 gas mixture refills, with sufficient performance maintained across a further ~700 refills. These findings highlight numerous technological developments and have significant translational relevance for efficient production of gaseous HP 129Xe contrast agents for use in clinical imaging and bio-sensing techniques.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN 37232, United States
| | - Bryce E Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, United States
| | - Megan Murphy
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, United States
| | - Michael Molway
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, United States
| | - Liana B Bales
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, United States
| | - Kaili Ranta
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, United States
| | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, United States; Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, United States
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02129, United States; Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia.
| |
Collapse
|
17
|
Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function. Diagnostics (Basel) 2020; 10:diagnostics10090630. [PMID: 32854196 PMCID: PMC7554935 DOI: 10.3390/diagnostics10090630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Perfusion measurements can provide vital information about the homeostasis of an organ and can therefore be used as biomarkers to diagnose a variety of cardiovascular, renal, and neurological diseases. Currently, the most common techniques to measure perfusion are 15O positron emission tomography (PET), xenon-enhanced computed tomography (CT), single photon emission computed tomography (SPECT), dynamic contrast enhanced (DCE) MRI, and arterial spin labeling (ASL) MRI. Here, we show how regional perfusion can be quantitively measured with magnetic resonance imaging (MRI) using time-resolved depolarization of hyperpolarized (HP) xenon-129 (129Xe), and the application of this approach to detect changes in cerebral blood flow (CBF) due to a hemodynamic response in response to brain stimuli. The investigated HP 129Xe Time-of-Flight (TOF) technique produced perfusion images with an average signal-to-noise ratio (SNR) of 10.35. Furthermore, to our knowledge, the first hemodynamic response (HDR) map was acquired in healthy volunteers using the HP 129Xe TOF imaging. Responses to visual and motor stimuli were observed. The acquired HP TOF HDR maps correlated well with traditional proton blood oxygenation level-dependent functional MRI. Overall, this study expands the field of HP MRI with a novel dynamic imaging technique suitable for rapid and quantitative perfusion imaging.
Collapse
|
18
|
Nishimura K, Kouno H, Kawashima Y, Orihashi K, Fujiwara S, Tateishi K, Uesaka T, Kimizuka N, Yanai N. Materials chemistry of triplet dynamic nuclear polarization. Chem Commun (Camb) 2020; 56:7217-7232. [PMID: 32495753 DOI: 10.1039/d0cc02258f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynamic nuclear polarization with photo-excited triplet electrons (triplet-DNP) has the potential to enhance the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at a moderate temperature. While many efforts have been devoted to achieving a large nuclear polarization based on triplet-DNP, the application of triplet-DNP has been limited to nuclear physics experiments. The recent introduction of materials chemistry into the field of triplet-DNP has achieved air-stable and water-soluble polarizing agents as well as the hyperpolarization of nanomaterials with a large surface area such as nanoporous metal-organic frameworks (MOFs) and nanocrystal dispersion in water. This Feature Article overviews the recently-emerged materials chemistry of triplet-DNP that paves new paths towards unprecedented biological and medical applications.
Collapse
Affiliation(s)
- Koki Nishimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Hironori Kouno
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yusuke Kawashima
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kana Orihashi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Saiya Fujiwara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Birchall JR, Irwin RK, Nikolaou P, Pokochueva EV, Kovtunov KV, Koptyug IV, Barlow MJ, Goodson BM, Chekmenev EY. Pilot multi-site quality assurance study of batch-mode clinical-scale automated xenon-129 hyperpolarizers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 316:106755. [PMID: 32512397 DOI: 10.1016/j.jmr.2020.106755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
We present a pilot quality assurance (QA) study of spin-exchange optical pumping (SEOP) performed on two nearly identical second-generation (GEN-2) automated batch-mode clinical-scale 129Xe hyperpolarizers, each utilizing a convective forced air oven, high-power (~170 W) continuous pump laser irradiation, and xenon-rich gas mixtures (~1.30 atm partial pressure). In one study, the repeatability of SEOP in a 1000 Torr Xe/900 Torr N2/100 Torr 4He (2000 Torr total pressure) gas mixture is evaluated over the course of ~700 gas loading cycles, with negligible decrease in performance during the first ~200 cycles, and with high 129Xe polarization levels (avg. %PXe = 71.7% with standard deviation σPXe = 1.5%), build-up rates (avg. γSEOP = 0.019 min-1 with standard deviation σγ = 0.003 min-1) and polarization lifetimes (avg. T1 = 90.5 min with standard deviation σT = 10.3 min) reported at moderate oven temperature of ~70 °C. Although the SEOP cell in this study exhibited a detectable performance decrease after 400 cycles, the cell continued to produce potentially useable HP 129Xe with %PXe = 42.3 ± 0.6% even after nearly 700 refill cycles. The possibility of "regenerating" "dormant" (i.e., not used for an extended period of time) SEOP cells using repeated temperature cycling methods to recover %PXe is also demonstrated. The quality and consistency of results show significant promise for translation to clinical-scale production of hyperpolarized 129Xe contrast agents for imaging and bio-sensing applications.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States.
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | - Ekaterina V Pokochueva
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, United States; Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia.
| |
Collapse
|
20
|
Birchall JR, Nikolaou P, Irwin RK, Barlow MJ, Ranta K, Coffey AM, Goodson BM, Pokochueva EV, Kovtunov KV, Koptyug IV, Chekmenev EY. Helium-rich mixtures for improved batch-mode clinical-scale spin-exchange optical pumping of Xenon-129. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 315:106739. [PMID: 32408239 DOI: 10.1016/j.jmr.2020.106739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
We present studies of spin-exchange optical pumping (SEOP) using ternary xenon-nitrogen-helium gas mixtures at high xenon partial pressures (up to 1330 Torr partial pressure at loading, out of 2660 Torr total pressure) in a 500-mL volume SEOP cell, using two automated batch-mode clinical-scale 129Xe hyperpolarizers operating under continuous high-power (~170 W) pump laser irradiation. In this pilot study, we explore SEOP in gas mixtures with up to 45% 4He content under a wide range of experimental conditions. When an aluminum jacket cooling/heating design was employed (GEN-3 hyperpolarizer), 129Xe polarization (%PXe) of 55.9 ± 0.9% was observed with mono-exponential build-up rate γSEOP of 0.049 ± 0.001 min-1 for the 4He-rich mixture (1000 Torr Xe/900 Torr He, 100 Torr N2), compared to %PXe of 49.3 ± 3.3% at γSEOP of 0.035 ± 0.004 min-1 for the N2-rich gas mixture (1000 Torr Xe/100 Torr He, 900 Torr N2). When forced-air cooling/heating was used (GEN-2 hyperpolarizer), %PXe of 83.9 ± 2.7% was observed at γSEOP of 0.045 ± 0.005 min-1 for the 4He-rich mixture (1000 Torr Xe/900 Torr He, 100 Torr N2), compared to %PXe of 73.5 ± 1.3% at γSEOP of 0.028 ± 0.001 min-1 for the N2-rich gas mixture (1000 Torr Xe and 1000 Torr N2). Additionally, %PXe of 72.6 ± 1.4% was observed at a build-up rate γSEOP of 0.041 ± 0.003 min-1 for a super-high-density 4He-rich mixture (1330 Torr Xe/1200 Torr 4He/130 Torr N2), compared to %PXe = 56.6 ± 1.3% at a build-up rate of γSEOP of 0.034 ± 0.002 min-1 for an N2-rich mixture (1330 Torr Xe/1330 Torr N2) using forced air cooling/heating. The observed SEOP hyperpolarization performance under these conditions corresponds to %PXe improvement by a factor of 1.14 ± 0.04 at 1000 Torr Xe density and by up to a factor of 1.28 ± 0.04 at 1330 Torr Xe density at improved SEOP build-up rates by factors of 1.61 ± 0.18 and 1.21 ± 0.11 respectively. Record %PXe levels have been obtained here: 83.9 ± 2.7% at 1000 Torr Xe partial pressure and 72.6 ± 1.4% at 1330 Torr Xe partial pressure. In addition to improved thermal stability for SEOP, the use of 4He-rich gas mixtures also reduces the overall density of produced inhalable HP contrast agents; this property may be desirable for HP 129Xe inhalation by human subjects in clinical settings-especially in populations with heavily impaired lung function. The described approach should enjoy ready application in the production of inhalable 129Xe contrast agent with near-unity 129Xe nuclear spin polarization.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, MI 48202, United States
| | | | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kaili Ranta
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, United States
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), 1161 21st Ave South, Nashville, TN 37232, United States
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, United States; Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL 62901, United States
| | - Ekaterina V Pokochueva
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Ave, Detroit, MI 48202, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia.
| |
Collapse
|
21
|
Birchall JR, Nikolaou P, Coffey AM, Kidd BE, Murphy M, Molway M, Bales LB, Goodson BM, Irwin RK, Barlow MJ, Chekmenev EY. Batch-Mode Clinical-Scale Optical Hyperpolarization of Xenon-129 Using an Aluminum Jacket with Rapid Temperature Ramping. Anal Chem 2020; 92:4309-4316. [PMID: 32073251 DOI: 10.1021/acs.analchem.9b05051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We present spin-exchange optical pumping (SEOP) using a third-generation (GEN-3) automated batch-mode clinical-scale 129Xe hyperpolarizer utilizing continuous high-power (∼170 W) pump laser irradiation and a novel aluminum jacket design for rapid temperature ramping of xenon-rich gas mixtures (up to 2 atm partial pressure). The aluminum jacket design is capable of heating SEOP cells from ambient temperature (typically 25 °C) to 70 °C (temperature of the SEOP process) in 4 min, and perform cooling of the cell to the temperature at which the hyperpolarized gas mixture can be released from the hyperpolarizer (with negligible amounts of Rb metal leaving the cell) in approximately 4 min, substantially faster (by a factor of 6) than previous hyperpolarizer designs relying on air heat exchange. These reductions in temperature cycling time will likely be highly advantageous for the overall increase of production rates of batch-mode (i.e., stopped-flow) 129Xe hyperpolarizers, which is particularly beneficial for clinical applications. The additional advantage of the presented design is significantly improved thermal management of the SEOP cell. Accompanying the heating jacket design and performance, we also evaluate the repeatability of SEOP experiments conducted using this new architecture, and present typically achievable hyperpolarization levels exceeding 40% at exponential build-up rates on the order of 0.1 min-1.
Collapse
Affiliation(s)
- Jonathan R Birchall
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | | | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232, United States
| | | | | | | | | | | | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
22
|
Skinner JG, Ranta K, Whiting N, Coffey AM, Nikolaou P, Rosen MS, Chekmenev EY, Morris PG, Barlow MJ, Goodson BM. High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106686. [PMID: 32006793 PMCID: PMC7436892 DOI: 10.1016/j.jmr.2020.106686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 05/13/2023]
Abstract
Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the 'standard model' of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.
Collapse
Affiliation(s)
- Jason G Skinner
- Division of Respiratory Medicine, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Kaili Ranta
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| | - Nicholas Whiting
- Department of Physics & Astronomy and Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Vanderbilt-Ingram Cancer Center (VICC), Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia; Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, United States
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michael J Barlow
- Division of Respiratory Medicine, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| |
Collapse
|
23
|
Chen M, Doganay O, Matin T, McIntyre A, Rahman N, Bulte D, Gleeson F. Delayed ventilation assessment using fast dynamic hyperpolarised Xenon-129 magnetic resonance imaging. Eur Radiol 2020; 30:1145-1155. [PMID: 31485836 PMCID: PMC6957546 DOI: 10.1007/s00330-019-06415-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the use of a fast dynamic hyperpolarised 129Xe ventilation magnetic resonance imaging (DXeV-MRI) method for detecting and quantifying delayed ventilation in patients with chronic obstructive pulmonary disease (COPD). METHODS Three male participants (age range 31-43) with healthy lungs and 15 patients (M/F = 12:3, age range = 48-73) with COPD (stages II-IV) underwent spirometry tests, quantitative chest computed tomography (QCT), and DXeV-MRI at 1.5-Tesla. Regional delayed ventilation was captured by measuring the temporal signal change in each lung region of interest (ROI) in comparison to that in the trachea. In addition to its qualitative assessment through visual inspection by a clinical radiologist, delayed ventilation was quantitatively captured by calculating a covariance measurement of the lung ROI and trachea signals, and quantified using both the time delay, and the difference between the integrated areas covered by the signal-time curves of the two signals. RESULTS Regional temporal ventilation, consistent with the expected physiological changes across a free breathing cycle, was demonstrated with DXeV-MRI in all patients. Delayed ventilation was observed in 13 of the 15 COPD patients and involved variable lung ROIs. This was in contrast to the control group, where no delayed ventilation was demonstrated (p = 0.0173). CONCLUSIONS DXeV-MRI offers a non-invasive way of detecting and quantifying delayed ventilation in patients with COPD, and provides physiological information on regional pulmonary function during a full breathing cycle. KEY POINTS • Dynamic xenon MRI allows for the non-invasive detection and measurement of delayed ventilation in COPD patients. • Dynamic xenon MRI during a free breathing cycle can provide unique information about pulmonary physiology and pulmonary disease pathophysiology. • With further validation, dynamic xenon MRI could offer a non-invasive way of measuring collateral ventilation which can then be used to guide lung volume reduction therapy (LVRT) for certain COPD patients.
Collapse
Affiliation(s)
- Mitchell Chen
- The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK.
| | - Ozkan Doganay
- The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
- Department of Oncology, Oxford University, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Tahreema Matin
- The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Anthony McIntyre
- The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
| | - Najib Rahman
- The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, The Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| | - Daniel Bulte
- The Institute of Biomedical Engineering, Oxford University, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Fergus Gleeson
- The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LE, UK
- Department of Oncology, Oxford University, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Oxford NIHR Biomedical Research Centre, The Churchill Hospital, Old Road, Oxford, OX3 7LE, UK
| |
Collapse
|
24
|
Overview of the Cosmic Axion Spin Precession Experiment (CASPEr). MICROWAVE CAVITIES AND DETECTORS FOR AXION RESEARCH 2020. [DOI: 10.1007/978-3-030-43761-9_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Ariyasingha NM, Salnikov OG, Kovtunov KV, Kovtunova LM, Bukhtiyarov VI, Goodson BM, Rosen MS, Koptyug IV, Gelovani JG, Chekmenev EY. Relaxation Dynamics of Nuclear Long-Lived Spin States in Propane and Propane-d 6 Hyperpolarized by Parahydrogen. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:11734-11744. [PMID: 31798763 PMCID: PMC6890414 DOI: 10.1021/acs.jpcc.9b01538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a systematic study of relaxation dynamics of hyperpolarized (HP) propane and HP propane-d6 prepared by heterogeneous pairwise parahydrogen addition to propylene and propylene-d6 respectively. Long-lived spin states (LLS) created for these molecules at the low magnetic field of 0.0475 T were employed for this study. The parahydrogen-induced overpopulation of a HP propane LLS decays exponentially with time constant (TLLS) approximately 3-fold greater than the corresponding T1 values. Both TLLS and T1 increase linearly with propane pressure in the range from 1 atm (the most biomedically relevant conditions for pulmonary MRI) to 5 atm. The TLLS value of HP propane gas at 1 atm is ~3 s. Deuteration of the substrate (propylene-d6) yields hyperpolarized propane-d6 gas with TLLS values approximately 20% shorter than those of hyperpolarized fully protonated propane gas, indicating that deuteration does not benefit the lifetime of the LLS HP state. The use of pH2 or Xe/N2 buffering gas during heterogeneous hydrogenation reaction (leading to production of 100% HP propane (no buffering gas) versus 43% HP propane gas (with 57% buffering gas) composition mixtures) results in (i) no significant changes in T1, (ii) decrease of TLLS values (by 35±7% and 8±7% respectively); and (iii) an increase of the polarization levels of HP propane gas with a propane concentration decrease (by 1.6±0.1-fold and 1.4±0.1-fold respectively despite the decrease in TLLS, which leads to disproportionately greater polarization losses during HP gas transport). Moreover, we demonstrate the feasibility of HP propane cryo-collection (which can be potentially useful for preparing larger amounts of concentrated HP propane, when buffering gas is employed), and TLLS of liquefied HP propane reaches 14.7 seconds, which is greater than the TLLS value of HP propane gas at any pressure studied. Finally, we have explored the utility of using a partial Spin-Lock Induced Crossing (SLIC) radio frequency (RF) pulse sequence for converting the overpopulated LLS into observable 1H nuclear magnetization at low magnetic field. We find that (i) the bulk of the overpopulated LLS is retained even when the optimal or near-optimal values of SLIC pulse duration are employed, and (ii) the overpopulated LLS of propane is also relatively immune to strong RF pulses-thereby, indicating that LLS is highly suitable as a spin-polarization reservoir in the context of NMR/MRI detection applications. The presented findings may be useful for improving the levels of polarization of HP propane produced by HET-PHIP via the use of an inert buffer gas; increasing the lifetime of the HP state during preparation and storage; and developing efficient approaches for ultrafast MR imaging of HP propane in the context of biomedical applications of HP propane gas, including its potential use as an inhalable contrast agent.
Collapse
Affiliation(s)
- Nuwandi M. Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
| | - Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Larisa M. Kovtunova
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Valerii I. Bukhtiyarov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk, 630090, Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Matthew S. Rosen
- Massachusetts General Hospital/Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts 02129, United States
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Juri G. Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
26
|
Salnikov OG, Nikolaou P, Ariyasingha NM, Kovtunov KV, Koptyug IV, Chekmenev EY. Clinical-Scale Batch-Mode Production of Hyperpolarized Propane Gas for MRI. Anal Chem 2019; 91:4741-4746. [PMID: 30855132 DOI: 10.1021/acs.analchem.9b00259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NMR spectroscopy and imaging (MRI) are two of the most important methods to study structure, function, and dynamics from atom to organism scale. NMR approaches often suffer from an insufficient sensitivity, which, however, can be transiently boosted using hyperpolarization techniques. One of these techniques is parahydrogen-induced polarization, which has been used to produce catalyst-free hyperpolarized propane gas with proton polarization that is 3 orders of magnitude greater than equilibrium thermal polarization at a 1.5 T field of a clinical MRI scanner. Here we show that more than 0.3 L of hyperpolarized propane gas can be produced in 2 s. This production rate is more than an order of magnitude greater than that demonstrated previously, and the reported production rate is comparable to that employed for in-human MRI using HP noble gas (e.g., 129Xe) produced via a spin exchange optical pumping (SEOP) hyperpolarization technique. We show that high polarization values can be retained despite the significant increase in the production rate of hyperpolarized propane. The enhanced signals of produced hyperpolarized propane gas were revealed by stopped-flow MRI visualization at 4.7 T. Achieving this high production rate enables the future use of this compound (already approved for unlimited use in foods by the corresponding regulating agencies, e.g., FDA in the USA, and more broadly as an E944 food additive) as a new inhalable contrast agent for diagnostic detection via MRI.
Collapse
Affiliation(s)
- Oleg G Salnikov
- International Tomography Center, SB RAS , 3A Institutskaya St. , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova St. , Novosibirsk 630090 , Russia
| | - Panayiotis Nikolaou
- Department of Radiology , Vanderbilt University Institute of Imaging Science (VUIIS) , Nashville , Tennessee 37232-2310 , United States
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio) , Wayne State University, Karmanos Cancer Institute (KCI) , Detroit , Michigan 48202 , United States
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS , 3A Institutskaya St. , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova St. , Novosibirsk 630090 , Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS , 3A Institutskaya St. , Novosibirsk 630090 , Russia.,Novosibirsk State University , 2 Pirogova St. , Novosibirsk 630090 , Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio) , Wayne State University, Karmanos Cancer Institute (KCI) , Detroit , Michigan 48202 , United States.,Russian Academy of Sciences , Leninskiy Prospekt 14 , Moscow 119991 , Russia
| |
Collapse
|
27
|
Zhang B, Guo Q, Luo Q, Zhang X, Zeng Q, Zhao L, Yuan Y, Jiang W, Yang Y, Liu M, Ye C, Zhou X. An intracellular diamine oxidase triggered hyperpolarized 129Xe magnetic resonance biosensor. Chem Commun (Camb) 2018; 54:13654-13657. [PMID: 30398489 DOI: 10.1039/c8cc07822j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, a novel method was developed for suppressing 129Xe signals in cucurbit[6]uril (CB6) until the trigger is activated by a specific enzyme. Due to its noncovalent interactions with amino-groups and CB6, putrescine dihydrochloride (Put) was chosen for blocking interactions between 129Xe and CB6. Upon adding diamine oxidase (DAO), Put was released from CB6 and a 129Xe@CB6 Hyper-CEST signal emerged. This proposed 129Xe biosensor was then tested in small intestinal villus epithelial cells.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430071, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kemnitzer TW, Tschense CBL, Wittmann T, Rössler EA, Senker J. Exploring Local Disorder within CAU-1 Frameworks Using Hyperpolarized 129Xe NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12538-12548. [PMID: 30247917 DOI: 10.1021/acs.langmuir.8b02592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The sorption properties of metal-organic frameworks (MOFs) can be influenced by introducing covalently attached functional side chains, which make this subclass of porous materials promising for applications as diverse as gas storage and separation, catalysis, and drug delivery. The incorporation of side groups usually comes along with disorder, as the synthesis procedures rarely allow for one specific position among a larger group of equivalent sites to be selected. For a series of isoreticular CAU-1 frameworks, chosen as model compounds, one out of four positions at every linker is modified with equal probability. Here, we investigate the influence of this disorder on Ar sorption and 129Xe nuclear magnetic resonance spectroscopy using hyperpolarized 129Xe gas. Models used for predicting the pore dimensions as well as their distributions were derived from the unfunctionalized framework by replacing one proton at every linker with either an amino, an acetamide, or a methyl urea functionality. The resulting structures were optimized using density functional theory (DFT) calculations. Results from void analyses and Monte Carlo force field simulations suggest that for available Ar nonlocal DFT (NLDFT) kernels, neither the pore dimensions nor the distributions induced by the side-chain disorder are well-reproduced. By contrast, we found the 129Xe chemical shift analysis for the shift observed at high temperature to be well-suited to develop a detailed fingerprint of the porosity and side-chain disorder within the isoreticular CAU-1 series. After calibrating the 129Xe limiting shift of the amino-functionalized framework with DFT calculations, the downfield shifts for the other two derivatives are an excellent measure for the reduction of the accessible pore space and reveal a strong preference for the side chains toward the octahedral voids for both cases. We expect that the strategy presented here can be commonly applied to disorder phenomena within MOFs in the future.
Collapse
|
29
|
Salnikov OG, Kovtunov KV, Nikolaou P, Kovtunova LM, Bukhtiyarov VI, Koptyug IV, Chekmenev EY. Heterogeneous Parahydrogen Pairwise Addition to Cyclopropane. Chemphyschem 2018; 19:2621-2626. [PMID: 30039565 PMCID: PMC6197887 DOI: 10.1002/cphc.201800690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/05/2022]
Abstract
Hyperpolarized gases revolutionize functional pulmonary imaging. Hyperpolarized propane is a promising emerging contrast agent for pulmonary MRI. Unlike hyperpolarized noble gases, proton-hyperpolarized propane gas can be imaged using conventional MRI scanners with proton imaging capability. Moreover, it is non-toxic odorless anesthetic. Furthermore, propane hyperpolarization can be accomplished by pairwise addition of parahydrogen to propylene. Here, we demonstrate the feasibility of propane hyperpolarization via hydrogenation of cyclopropane with parahydrogen. 1 H propane polarization up to 2.4 % is demonstrated here using 82 % parahydrogen enrichment and heterogeneous Rh/TiO2 hydrogenation catalyst. This level of polarization is several times greater than that obtained with propylene as a precursor under the same conditions despite the fact that direct pairwise addition of parahydrogen to cyclopropane may also lead to formation of propane with NMR-invisible hyperpolarization due to magnetic equivalence of nascent parahydrogen protons in two CH3 groups. NMR-visible hyperpolarized propane demonstrated here can be formed only via a reaction pathway involving cleavage of at least one C-H bond in the reactant molecule. The resulting NMR signal enhancement of hyperpolarized propane was sufficient for 2D gradient echo MRI of ∼5.5 mL phantom with 1×1 mm2 spatial resolution and 64×64 imaging matrix despite relatively low chemical conversion of cyclopropane substrate.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk 630090, Russia,
- Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk 630090, Russia,
- Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russia
| | - Panayiotis Nikolaou
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232-2310, United States
| | - Larisa M. Kovtunova
- Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev pr., Novosibirsk 630090, Russia
| | - Valerii I. Bukhtiyarov
- Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis, SB RAS, 5 Acad. Lavrentiev pr., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk 630090, Russia,
- Novosibirsk State University, 2 Pirogova st., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232-2310, United States
- Russian Academy of Sciences, 14 Leninskiy prospect, Moscow 119991, Russia
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI 48202, United States,
| |
Collapse
|
30
|
Norquay G, Collier GJ, Rao M, Stewart NJ, Wild JM. ^{129}Xe-Rb Spin-Exchange Optical Pumping with High Photon Efficiency. PHYSICAL REVIEW LETTERS 2018; 121:153201. [PMID: 30362785 DOI: 10.1103/physrevlett.121.153201] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Here we present a Rb-^{129}Xe spin-exchange optical pumping polarizer capable of rapid generation of large volumes of highly polarized ^{129}Xe gas. Through modeling and measurements we maximize the ^{129}Xe nuclear spin polarization output to enable the generation of polarized ^{129}Xe gas imaging volumes (300 cm^{3}) every 5 min within a clinical setting. Our model is verified by experiment to correctly predict the optimum Rb vapor density for maximum ^{129}Xe nuclear polarization for a flux 3.4 W/cm^{2} of circularly polarized Rb D_{1} photons incident on an 80 cm long cylindrical optical cell. We measure a ^{129}Xe magnetization production efficiency of η_{pr}=1.8%, which approaches the photon efficiency limit η_{γ}=3.3% of this system and enables the polarization of 2.72×10^{22} ^{129}Xe spins per hour, corresponding to 1013 cm^{3} of 100% polarized ^{129}Xe at STP. This magnetization production rate is threefold higher than the highest previously published ^{129}Xe magnetization production rate and has enabled routine clinical lung magnetic resonance imaging (MRI) with hyperpolarized ^{129}Xe doses available on demand at run time, as well as high-SNR ^{129}Xe MRI of the human brain and kidneys.
Collapse
Affiliation(s)
- G Norquay
- POLARIS, Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - G J Collier
- POLARIS, Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - M Rao
- POLARIS, Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - N J Stewart
- POLARIS, Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - J M Wild
- POLARIS, Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|
31
|
Hyperpolarized Helium-3 Diffusion-weighted Magnetic Resonance Imaging Detects Abnormalities of Lung Structure in Children With Bronchopulmonary Dysplasia. J Thorac Imaging 2018; 32:323-332. [PMID: 28221241 DOI: 10.1097/rti.0000000000000244] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study was to determine whether hyperpolarized He diffusion-weighted magnetic resonance imaging detects abnormalities in the lungs in children with bronchopulmonary dysplasia (BPD) as compared with age-matched normal children. MATERIALS AND METHODS All experiments were compliant with Health Insurance Portability and Accountability Act (HIPAA) and performed with Food and Drug Administration approval under an IND application. The protocol was approved by our Institutional Review Board, and written informed consent was obtained. Hyperpolarized He diffusion-weighted magnetic resonance imaging was performed in 16 subjects with a history of preterm birth complicated by BPD (age range, 6.8 to 13.5 y; mean, 9.0 y) and in 29 healthy term-birth subjects (age range, 4.5-14.7 y; mean, 9.2 y) using a gradient-echo sequence with bipolar diffusion gradients and with measurements at 2 b values (0 and 1.6 s/cm). Age-related comparison of the whole-lung mean apparent diffusion coefficient (ADC), 90th percentile ADC, and percentage of whole-lung volume with ADC>0.2 cm/s between the 2 groups was examined using ordinary least-squares multiple regression. RESULTS The mean ADC was significantly greater in subjects with BPD (0.187 vs. 0.152 cm/s, P<0.001). The 90th percentile ADC and mean percentage lung volume with ADC>0.2 cm/s were also higher in the BPD group (0.258 vs. 0.215 cm/s, 30.3% vs. 11.9%, P<0.001 for both). The body surface area-adjusted ventilated lung volume was similar in the 2 groups (1.93 vs. 1.91 L, P=0.90). CONCLUSIONS Children with BPD had higher ADCs and the same lung volumes when compared with age-matched healthy subjects, suggesting that children with BPD have enlarged alveoli that are reduced in number.
Collapse
|
32
|
Imai H, Yoshimura H, Kimura A, Fujiwara H. Continuous flow production of concentrated hyperpolarized xenon gas from a dilute xenon gas mixture by buffer gas condensation. Sci Rep 2017; 7:7352. [PMID: 28779105 PMCID: PMC5544720 DOI: 10.1038/s41598-017-07695-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022] Open
Abstract
We present a new method for the continuous flow production of concentrated hyperpolarized xenon-129 (HP 129Xe) gas from a dilute xenon (Xe) gas mixture with high nuclear spin polarization. A low vapor pressure (i.e., high boiling-point) gas was introduced as an alternative to molecular nitrogen (N2), which is the conventional quenching gas for generating HP 129Xe via Rb-Xe spin-exchange optical-pumping (SEOP). In contrast to the generally used method of extraction by freezing Xe after the SEOP process, the quenching gas separated as a liquid at moderately low temperature so that Xe was maintained in its gaseous state, allowing the continuous delivery of highly polarized concentrated Xe gas. We selected isobutene as the candidate quenching gas and our method was demonstrated experimentally while comparing its performance with N2. Isobutene could be liquefied and removed from the Xe gas mixture using a cold trap, and the concentrated HP 129Xe gas exhibited a significantly enhanced nuclear magnetic resonance (NMR) signal. Although the system requires further optimization depending on the intended purpose, our approach presented here could provide a simple means for performing NMR or magnetic resonance imaging (MRI) measurements continuously using HP 129Xe with improved sensitivity.
Collapse
Affiliation(s)
- Hirohiko Imai
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan. .,Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
| | | | - Atsuomi Kimura
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hideaki Fujiwara
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
33
|
Zhong J, Zhang H, Ruan W, Xie J, Li H, Deng H, Han Y, Sun X, Ye C, Zhou X. Simultaneous assessment of both lung morphometry and gas exchange function within a single breath-hold by hyperpolarized 129 Xe MRI. NMR IN BIOMEDICINE 2017; 30:e3730. [PMID: 28508450 DOI: 10.1002/nbm.3730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
During the measurement of hyperpolarized 129 Xe magnetic resonance imaging (MRI), the diffusion-weighted imaging (DWI) technique provides valuable information for the assessment of lung morphometry at the alveolar level, whereas the chemical shift saturation recovery (CSSR) technique can evaluate the gas exchange function of the lungs. To date, the two techniques have only been performed during separate breaths. However, the request for multiple breaths increases the cost and scanning time, limiting clinical application. Moreover, acquisition during separate breath-holds will increase the measurement error, because of the inconsistent physiological status of the lungs. Here, we present a new method, referred to as diffusion-weighted chemical shift saturation recovery (DWCSSR), in order to perform both DWI and CSSR within a single breath-hold. Compared with sequential single-breath schemes (namely the 'CSSR + DWI' scheme and the 'DWI + CSSR' scheme), the DWCSSR scheme is able to significantly shorten the breath-hold time, as well as to obtain high signal-to-noise ratio (SNR) signals in both DWI and CSSR data. This scheme enables comprehensive information on lung morphometry and function to be obtained within a single breath-hold. In vivo experimental results demonstrate that DWCSSR has great potential for the evaluation and diagnosis of pulmonary diseases.
Collapse
Affiliation(s)
- Jianping Zhong
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Huiting Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Weiwei Ruan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Junshuai Xie
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - He Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Chaohui Ye
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
34
|
Coffey AM, Feldman MA, Shchepin RV, Barskiy DA, Truong ML, Pham W, Chekmenev EY. High-resolution hyperpolarized in vivo metabolic 13C spectroscopy at low magnetic field (48.7mT) following murine tail-vein injection. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 281:246-252. [PMID: 28651245 PMCID: PMC5544012 DOI: 10.1016/j.jmr.2017.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 05/20/2023]
Abstract
High-resolution 13C NMR spectroscopy of hyperpolarized succinate-1-13C-2,3-d2 is reported in vitro and in vivo using a clinical-scale, biplanar (80cm-gap) 48.7mT permanent magnet with a high homogeneity magnetic field. Non-localized 13C NMR spectra were recorded at 0.52MHz resonance frequency over the torso of a tumor-bearing mouse every 2s. Hyperpolarized 13C NMR signals with linewidths of ∼3Hz (corresponding to ∼6ppm) were recorded in vitro (2mL in a syringe) and in vivo (over a mouse torso). Comparison of the full width at half maximum (FWHM) for 13C NMR spectra acquired at 48.7mT and at 4.7T in a small-animal MRI scanner demonstrates a factor of ∼12 improvement for the 13C resonance linewidth attainable at 48.7mT compared to that at 4.7T in vitro. 13C hyperpolarized succinate-1-13C resonance linewidths in vivo are at least one order of magnitude narrower at 48.7mT compared to those observed in high-field (≥3T) studies employing HP contrast agents. The demonstrated high-resolution 13C in vivo spectroscopy could be useful for high-sensitivity spectroscopic studies involving monitoring HP agent uptake or detecting metabolism using HP contrast agents with sufficiently large 13C chemical shift differences.
Collapse
Affiliation(s)
- Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology, Vanderbilt University, Nashville, TN 37232-2310, United States.
| | - Matthew A Feldman
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Danila A Barskiy
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Milton L Truong
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology, Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-2310, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology, Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-2310, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232-2310, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia.
| |
Collapse
|
35
|
Flower C, Freeman MS, Plue M, Driehuys B. Electron microscopic observations of Rb particles and pitting in 129Xe spin-exchange optical pumping cells. JOURNAL OF APPLIED PHYSICS 2017; 122:024902. [PMID: 28804157 PMCID: PMC5505777 DOI: 10.1063/1.4991642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/07/2017] [Indexed: 05/13/2023]
Abstract
High-volume production of hyperpolarized 129Xe by spin-exchange optical pumping (SEOP) has historically fallen short of theoretical predictions. Recently, this shortfall was proposed to be caused by the formation of alkali metal clusters during optical pumping. However, this hypothesis has yet to be verified experimentally. Here, we seek to detect the presence of alkali particles using a combination of both transmission (TEM) and scanning (SEM) electron microscopy. From TEM studies, we observe the presence of particles exhibiting sizes ranging from approximately 0.2 to 1 μm and present at densities of order 10 s of particles per 100 square microns. Particle formation was more closely associated with extensive cell usage history than short-term ([Formula: see text]1 h) SEOP exposure. From the SEM studies, we observe pits on the cell surface. These pits are remarkably smooth, were frequently found adjacent to Rb particles, and located predominantly on the front face of the cells; they range in size from 1 to 5 μm. Together, these findings suggest that Rb particles do form during the SEOP process and at times can impart sufficient energy to locally alter the Pyrex surface.
Collapse
Affiliation(s)
- C Flower
- Center for In Vivo Microscopy, Department of Radiology, Duke University, 311 Research Dr, Durham, North Carolina 27710, USA
| | | | - M Plue
- Shared Materials Instrumentation Facility, Duke University, 101 Science Dr., Durham, North Carolina 27710, USA
| | - B Driehuys
- Center for In Vivo Microscopy, Department of Radiology, Duke University, 311 Research Dr, Durham, North Carolina 27710, USA
| |
Collapse
|
36
|
Salzillo TC, Hu J, Nguyen L, Whiting N, Lee J, Weygand J, Dutta P, Pudakalakatti S, Millward NZ, Gammon ST, Lang FF, Heimberger AB, Bhattacharya PK. Interrogating Metabolism in Brain Cancer. Magn Reson Imaging Clin N Am 2017; 24:687-703. [PMID: 27742110 DOI: 10.1016/j.mric.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reviews existing and emerging techniques of interrogating metabolism in brain cancer from well-established proton magnetic resonance spectroscopy to the promising hyperpolarized metabolic imaging and chemical exchange saturation transfer and emerging techniques of imaging inflammation. Some of these techniques are at an early stage of development and clinical trials are in progress in patients to establish the clinical efficacy. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy; with the combined knowledge of genomics and proteomics a complete understanding of tumorigenesis in brain might be achieved.
Collapse
Affiliation(s)
- Travis C Salzillo
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jingzhe Hu
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Linda Nguyen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas Whiting
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Joseph Weygand
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Niki Zacharias Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Amy B Heimberger
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
37
|
Adamson EB, Ludwig KD, Mummy DG, Fain SB. Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol 2017; 62:R81-R123. [PMID: 28384123 DOI: 10.1088/1361-6560/aa6be8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac disease and (6) lung function in both pre-clinical and clinical research studies, concluding with (7) some future directions and challenges, and (8) an overall summary.
Collapse
Affiliation(s)
- Erin B Adamson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | | | | |
Collapse
|
38
|
An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe. Sci Rep 2017; 7:43994. [PMID: 28266629 PMCID: PMC5339783 DOI: 10.1038/srep43994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 02/03/2017] [Indexed: 11/29/2022] Open
Abstract
Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation.
Collapse
|
39
|
Yablonskiy DA, Sukstanskii AL, Quirk JD. Diffusion lung imaging with hyperpolarized gas MRI. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3448. [PMID: 26676342 PMCID: PMC4911335 DOI: 10.1002/nbm.3448] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 05/28/2023]
Abstract
Lung imaging using conventional 1 H MRI presents great challenges because of the low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2 * is about 1-2 ms). MRI with hyperpolarized gases (3 He and 129 Xe) provides a valuable alternative because of the very strong signal originating from inhaled gas residing in the lung airspaces and relatively slow gas T2 * relaxation (typical T2 * is about 20-30 ms). However, in vivo human experiments should be performed very rapidly - usually during a single breath-hold. In this review, we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of the results of modeling of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows the extraction of quantitative information on the lung microstructure at the alveolar level. From an MRI scan of less than 15 s, this approach, called in vivo lung morphometry, allows the provision of quantitative values and spatial distributions of the same physiological parameters as measured by means of 'standard' invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). In addition, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure: average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiment based on the in vivo lung morphometry technique combined with quantitative computed tomography measurements, as well as with gradient echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas volume and length of the acinar airways, and allow the evaluation of lung parenchymal and non-parenchymal tissue. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | - James D Quirk
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
40
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
41
|
Slack CC, Finbloom JA, Jeong K, Bruns CJ, Wemmer DE, Pines A, Francis MB. Rotaxane probes for protease detection by 129Xe hyperCEST NMR. Chem Commun (Camb) 2017; 53:1076-1079. [DOI: 10.1039/c6cc09302g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report on the design and implementation of a cucurbit[6]uril rotaxane probe for the detection of matrix metalloproteases by Xe hyperCEST NMR.
Collapse
Affiliation(s)
- Clancy C. Slack
- Department of Chemistry
- University of California, Berkeley
- Berkeley
- USA
- Materials Sciences Division
| | - Joel A. Finbloom
- Department of Chemistry
- University of California, Berkeley
- Berkeley
- USA
| | - Keunhong Jeong
- Department of Chemistry
- University of California, Berkeley
- Berkeley
- USA
- Materials Sciences Division
| | - Carson J. Bruns
- Department of Chemistry
- University of California, Berkeley
- Berkeley
- USA
| | - David E. Wemmer
- Department of Chemistry
- University of California, Berkeley
- Berkeley
- USA
- Physical Biosciences Division
| | - Alexander Pines
- Department of Chemistry
- University of California, Berkeley
- Berkeley
- USA
- Materials Sciences Division
| | - Matthew B. Francis
- Department of Chemistry
- University of California, Berkeley
- Berkeley
- USA
- Materials Sciences Division
| |
Collapse
|
42
|
Vuichoud B, Canet E, Milani J, Bornet A, Baudouin D, Veyre L, Gajan D, Emsley L, Lesage A, Copéret C, Thieuleux C, Bodenhausen G, Koptyug I, Jannin S. Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K. J Phys Chem Lett 2016; 7:3235-9. [PMID: 27483034 DOI: 10.1021/acs.jpclett.6b01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.
Collapse
Affiliation(s)
- Basile Vuichoud
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - Estel Canet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM) , 24 rue Lhomond, 75005 Paris, France
- Sorbonnes Universités , UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoires des Biomolécules (LBM), 75005 Paris, France
| | - Jonas Milani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - David Baudouin
- Université de Lyon , Institut de Chimie de Lyon, LC2P2, UMR 5265 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Laurent Veyre
- Université de Lyon , Institut de Chimie de Lyon, LC2P2, UMR 5265 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - David Gajan
- Université de Lyon , Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, rue de la Doua, 69100 Villeurbanne, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| | - Anne Lesage
- Université de Lyon , Institut des Sciences Analytiques, UMR 5280, CNRS, Université Lyon 1, ENS Lyon-5, rue de la Doua, 69100 Villeurbanne, France
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Chloé Thieuleux
- Université de Lyon , Institut de Chimie de Lyon, LC2P2, UMR 5265 CNRS-CPE Lyon-UCBL, CPE Lyon, 43 Bvd du 11 Novembre 1918, 69100 Villeurbanne, France
| | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM) , 24 rue Lhomond, 75005 Paris, France
- Sorbonnes Universités , UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoires des Biomolécules (LBM), 75005 Paris, France
| | - Igor Koptyug
- Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM) , 24 rue Lhomond, 75005 Paris, France
- Sorbonnes Universités , UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoires des Biomolécules (LBM), 75005 Paris, France
- International Tomography Center , SB RAS, 3A Institutskaya St., Novosibirsk, 630090, Russia
- Novosibirsk State University , Pirogova St. 2, Novosibirsk, 630090, Russia
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Batochime, CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Roos JE, McAdams HP, Kaushik SS, Driehuys B. Hyperpolarized Gas MR Imaging: Technique and Applications. Magn Reson Imaging Clin N Am 2016; 23:217-29. [PMID: 25952516 DOI: 10.1016/j.mric.2015.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Functional imaging offers information more sensitive to changes in lung structure and function. Hyperpolarized helium ((3)He) and xenon ((129)Xe) MR imaging of the lungs provides sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure, and gas exchange. Gas imaging has shifted to the use of (129)Xe. Xenon is well-tolerated. (129)Xe is soluble in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. Hyperpolarized gases and (129)Xe in particular stand to be an excellent probe of pulmonary structure and function, and provide sensitive and noninvasive biomarkers for pulmonary diseases.
Collapse
Affiliation(s)
- Justus E Roos
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710, USA.
| | - Holman P McAdams
- Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710, USA
| | - S Sivaram Kaushik
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
| | - Bastiaan Driehuys
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
44
|
Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Proc Natl Acad Sci U S A 2016; 113:3164-8. [PMID: 26961001 DOI: 10.1073/pnas.1600379113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.
Collapse
|
45
|
Li H, Zhang Z, Zhong J, Ruan W, Han Y, Sun X, Ye C, Zhou X. Oxygen-dependent hyperpolarized (129) Xe brain MR. NMR IN BIOMEDICINE 2016; 29:220-225. [PMID: 26915791 DOI: 10.1002/nbm.3465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/01/2015] [Accepted: 11/19/2015] [Indexed: 06/05/2023]
Abstract
Hyperpolarized (HP) (129) Xe MR offers unique advantages for brain functional imaging (fMRI) because of its extremely high sensitivity to different chemical environments and the total absence of background noise in biological tissues. However, its advancement and applications are currently plagued by issues of signal strength. Generally, xenon atoms found in the brain after inhalation are transferred from the lung via the bloodstream. The longitudinal relaxation time (T1 ) of HP (129) Xe is inversely proportional to the pulmonary oxygen concentration in the lung because oxygen molecules are paramagnetic. However, the T1 of (129) Xe is proportional to the pulmonary oxygen concentration in the blood, because the higher pulmonary oxygen concentration will result in a higher concentration of diamagnetic oxyhemoglobin. Accordingly, there should be an optimal pulmonary oxygen concentration for a given quantity of HP (129) Xe in the brain. In this study, the relationship between pulmonary oxygen concentration and HP (129) Xe signal in the brain was analyzed using a theoretical model and measured through in vivo experiments. The results from the theoretical model and experiments in rats are found to be in good agreement with each other. The optimal pulmonary oxygen concentration predicted by the theoretical model was 21%, and the in vivo experiments confirmed the presence of such an optimal ratio by reporting measurements between 25% and 35%. These findings are helpful for improving the (129) Xe signal in the brain and make the most of the limited spin polarization available for brain experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiying Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jianping Zhong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiwei Ruan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
46
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
47
|
Yablonskiy DA, Sukstanskii AL, Quirk JD, Woods JC, Conradi MS. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med 2016; 71:486-505. [PMID: 23554008 DOI: 10.1002/mrm.24729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The introduction of hyperpolarized gases ((3)He and (129)Xe) has opened the door to applications for which gaseous agents are uniquely suited-lung MRI. One of the pulmonary applications, diffusion MRI, relies on measuring Brownian motion of inhaled hyperpolarized gas atoms diffusing in lung airspaces. In this article we provide an overview of the theoretical ideas behind hyperpolarized gas diffusion MRI and the results obtained over the decade-long research. We describe a simple technique based on measuring gas apparent diffusion coefficient (ADC) and an advanced technique, in vivo lung morphometry, that quantifies lung microstructure both in terms of Weibel parameters (acinar airways radii and alveolar depth) and standard metrics (mean linear intercept, surface-to-volume ratio, and alveolar density) that are widely used by lung researchers but were previously available only from invasive lung biopsy. This technique has the ability to provide unique three-dimensional tomographic information on lung microstructure from a less than 15 s MRI scan with results that are in good agreement with direct histological measurements. These safe and sensitive diffusion measurements improve our understanding of lung structure and functioning in health and disease, providing a platform for monitoring the efficacy of therapeutic interventions in clinical trials.
Collapse
|
48
|
Jeong K, Slack CC, Vassiliou CC, Dao P, Gomes MD, Kennedy DJ, Truxal AE, Sperling LJ, Francis MB, Wemmer DE, Pines A. Investigation of DOTA-Metal Chelation Effects on the Chemical Shift of (129) Xe. Chemphyschem 2015; 16:3573-7. [PMID: 26376768 DOI: 10.1002/cphc.201500806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 01/10/2023]
Abstract
Recent work has shown that xenon chemical shifts in cryptophane-cage sensors are affected when tethered chelators bind to metals. Here, we explore the xenon shifts in response to a wide range of metal ions binding to diastereomeric forms of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) linked to cryptophane-A. The shifts induced by the binding of Ca(2+) , Cu(2+) , Ce(3+) , Zn(2+) , Cd(2+) , Ni(2+) , Co(2+) , Cr(2+) , Fe(3+) , and Hg(2+) are distinct. In addition, the different responses of the diastereomers for the same metal ion indicate that shifts are affected by partial folding with a correlation between the expected coordination number of the metal in the DOTA complex and the chemical shift of (129) Xe. These sensors may be used to detect and quantify many important metal ions, and a better understanding of the basis for the induced shifts could enhance future designs.
Collapse
Affiliation(s)
- Keunhong Jeong
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Clancy C Slack
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christophoros C Vassiliou
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Phuong Dao
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Muller D Gomes
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Daniel J Kennedy
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Ashley E Truxal
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lindsay J Sperling
- Department of Chemistry and Biochemistry, Santa Clara University, Sata Clara, CA, 95053-0270, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - David E Wemmer
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.,Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Alexander Pines
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA. .,Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
49
|
Flors L, Altes T, Mugler J, de Lange E, Miller G, Mata J, Ruset I, Hersman F. New insights into lung diseases using hyperpolarized gas MRI. RADIOLOGIA 2015. [DOI: 10.1016/j.rxeng.2014.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Ruppert K, Altes TA, Mata JF, Ruset IC, Hersman FW, Mugler JP. Detecting pulmonary capillary blood pulsations using hyperpolarized xenon-129 chemical shift saturation recovery (CSSR) MR spectroscopy. Magn Reson Med 2015; 75:1771-80. [PMID: 26017009 DOI: 10.1002/mrm.25794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/06/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Abstract
PURPOSE To investigate whether chemical shift saturation recovery (CSSR) MR spectroscopy with hyperpolarized xenon-129 is sensitive to the pulsatile nature of pulmonary blood flow during the cardiac cycle. METHODS A CSSR pulse sequence typically uses radiofrequency (RF) pulses to saturate the magnetization of xenon-129 dissolved in lung tissue followed, after a variable delay time, by an RF excitation and subsequent acquisition of a free-induction decay. Thereby it is possible to monitor the uptake of xenon-129 by lung tissue and extract physiological parameters of pulmonary gas exchange. In the current studies, the delay time was instead held at a constant value, which permitted observation of xenon-129 gas uptake as a function of breath-hold time. CSSR studies were performed in 13 subjects (10 healthy, 2 chronic obstructive pulmonary disease [COPD], 1 second-hand smoke exposure), holding their breath at total lung capacity. RESULTS The areas of the tissue/plasma and the red-blood-cell peaks in healthy subjects varied by an average of 1.7±0.7% and 15.1±3.8%, respectively, during the cardiac cycle. In 2 subjects with COPD these peak pulsations were not detectable during at least part of the measurement period. CONCLUSION CSSR spectroscopy is sufficiently sensitive to detect oscillations in the xenon-129 gas-uptake rate associated with the cardiac cycle.
Collapse
Affiliation(s)
- Kai Ruppert
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA.,Department of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Talissa A Altes
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jaime F Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Iulian C Ruset
- Xemed, LLC, Durham, New Hampshire, USA.,Department of Physics, University of New Hampshire, Durham, New Hampshire, USA
| | - F William Hersman
- Xemed, LLC, Durham, New Hampshire, USA.,Department of Physics, University of New Hampshire, Durham, New Hampshire, USA
| | - John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|