1
|
Ferraz APCR, Figueiredo PDO, Yoshida NC. Black Mulberry ( Morus nigra L.): A Review of Attributes as an Anticancer Agent to Encourage Pharmaceutical Development. Adv Pharmacol Pharm Sci 2024; 2024:3784092. [PMID: 39529942 PMCID: PMC11554416 DOI: 10.1155/2024/3784092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Recent considerations of natural sources as potential anticancer agents have arisen due to the origins of numerous drugs commonly used in chemotherapy. Plant-based drugs, in particular, have attracted attention for offering the advantage of low adverse effects. Among these, the black mulberry plant (Morus nigra L.) stands out as a natural source of polyphenols, widely used to treat metabolic dysfunctions and confer benefits on human health. This study explores the potential of this plant as an anticancer agent, examining its effectiveness based on the type of application of the plant extracts or isolated substances, extraction methods, and its potential biological effects on cancer cells. Consequently, this study contributes to a better understanding of the distribution of phytochemicals in M. nigra and their applications in the context of cancer field. Among the compounds found in black mulberry are flavonoids, chlorogenic acid, cryptochlorogenic acid, and protocatechuic acid, along with cyanidin-3-O-glucoside as the main anthocyanin on the fruit. The phytochemicals derived from M. nigra exhibit antinociceptive and antimicrobial activities, while also showing protective effects, such as antioxidant properties that underline their potential as anticancer agents. The black mulberry's roots, stem bark, pulp, and leaves are particularly rich sources of anti-inflammatory compounds. Ethanol and methanol extraction methods appear to be the most effective in cancer management, offering compounds that facilitate the integration of apoptosis induction, cell growth inhibition, and cytotoxicity modulation. These results collectively represent the salient biological attributes that positioned black mulberry as a promising anticancer agent. Therefore, these findings highlight the multifaceted potential of M. nigra as an anticancer agent, making a compelling case for further research to advance prospects in the medical field.
Collapse
Affiliation(s)
| | | | - Nídia Cristiane Yoshida
- Federal University of Mato Grosso do Sul (UFMS), Institute of Chemistry, INQUI, Campo Grande 79074-460/549, Brazil
| |
Collapse
|
2
|
Jiang H, Peng J, Li Q, Geng S, Zhang H, Shu Y, Wang R, Zhang B, Li C, Xiang X. Genome-wide identification and analysis of monocot-specific chimeric jacalins (MCJ) genes in Maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:636. [PMID: 38971734 PMCID: PMC11227246 DOI: 10.1186/s12870-024-05354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The monocot chimeric jacalins (MCJ) proteins, which contain a jacalin-related lectin (JRL) domain and a dirigent domain (DIR), are specific to Poaceae. MCJ gene family is reported to play an important role in growth, development and stress response. However, their roles in maize have not been thoroughly investigated. RESULTS In this study, eight MCJ genes in the maize genome (designated as ZmMCJs) were identified, which displayed unequal distribution across four chromosomes. Phylogenetic relationships between the ZmMCJs were evident through the identification of highly conserved motifs and gene structures. Analysis of transcriptome data revealed distinct expression patterns among the ZmMCJ genes, leading to their classification into four different modules, which were subsequently validated using RT-qPCR. Protein structures of the same module are found to be relatively similar. Subcellular localization experiments indicated that the ZmMCJs are mainly located on the cell membrane. Additionally, hemagglutination and inhibition experiments show that only part of the ZmMCJs protein has lectin activity, which is mediated by the JRL structure, and belongs to the mannose-binding type. The cis-acting elements in the promoter region of ZmMCJ genes predicted their involvement response to phytohormones, such as abscisic acid and jasmonic acid. This suggests that ZmMCJ genes may play a significant role in both biotic and abiotic stress responses. CONCLUSIONS Overall, this study adds new insights into our understanding of the gene-protein architecture, evolutionary characteristics, expression profiles, and potential functions of MCJ genes in maize.
Collapse
Affiliation(s)
- Hailong Jiang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Jiajian Peng
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Qian Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Siqian Geng
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Hualei Zhang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Yuting Shu
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Rui Wang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Bin Zhang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Changsheng Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoli Xiang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
3
|
Xiong H, Luo Y, Zhao H, Wang J, Hu B, Yan C, Yao T, Zhang Y, Shi X, Rennenberg H. Integrated proteome and physiological traits reveal interactive mechanisms of new leaf growth and storage protein degradation with mature leaves of evergreen citrus trees. TREE PHYSIOLOGY 2024; 44:tpae001. [PMID: 38195893 DOI: 10.1093/treephys/tpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Yayin Luo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Chengquan Yan
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Tingshan Yao
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
4
|
Swamy MJ, Mondal S. Subunit association, and thermal and chemical unfolding of Cucurbitaceae phloem exudate lectins. A review. Int J Biol Macromol 2023; 233:123434. [PMID: 36709810 DOI: 10.1016/j.ijbiomac.2023.123434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Detailed characterization of protein (un)folding intermediates is crucial for understanding the (un)folding pathway, aggregation, stability and their functional properties. In recent years, stress-inducible lectins are being investigated with much interest. In plants phloem proteins PP1 and PP2 are major components of the phloem fluid. While PP1 is a structural protein, PP2 exhibits lectin activity, and was proposed to play key roles in wound sealing, anti-pathogenic activity, and transportation of various molecules including RNA within the plant. Cucurbitaceae fruits contain high concentrations of PP2 lectins, which recognize chitooligosaccharides with high specificity. Although the presence of PP2 lectins in the phloem exudate of Cucurbitaceae species was documented over 40 years ago, so far only a few proteins from this family have been purified and characterized in detail. This review summarizes the results of biophysical studies aimed at investigating the oligomeric status of these lectins, their thermal stability, structural perturbations caused by changes in pH and addition of chaotropic agents and characterization of intermediates observed in the unfolding process. The implications of these results in the functional roles played by PP2 type lectins in their native environment are discussed. Finally, perspectives for future biophysical research on these proteins are given.
Collapse
Affiliation(s)
- Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India.
| | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
5
|
Memete AR, Timar AV, Vuscan AN, Miere (Groza) F, Venter AC, Vicas SI. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020152. [PMID: 35050040 PMCID: PMC8777750 DOI: 10.3390/plants11020152] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
In recent years, mulberry has acquired a special importance due to its phytochemical composition and its beneficial effects on human health, including antioxidant, anticancer, antidiabetic and immunomodulatory effects. Botanical parts of Morus sp. (fruits, leaves, twigs, roots) are considered a rich source of secondary metabolites. The aim of our study was to highlight the phytochemical profile of each of the botanical parts of Morus tree, their health benefits and applications in food industry with an updated review of literature. Black and white mulberries are characterized in terms of predominant phenolic compounds in correlation with their medical applications. In addition to anthocyanins (mainly cyanidin-3-O-glucoside), black mulberry fruits also contain flavonols and phenolic acids. The leaves are a rich source of flavonols, including quercetin and kaempferol in the glycosylated forms and chlorogenic acid as predominant phenolic acids. Mulberry bark roots and twigs are a source of prenylated flavonoids, predominantly morusin. In this context, the exploitation of mulberry in food industry is reviewed in this paper, in terms of developing novel, functional food with multiple health-promoting effects.
Collapse
Affiliation(s)
- Adriana Ramona Memete
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Adrian Vasile Timar
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
| | - Adrian Nicolae Vuscan
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
| | - Florina Miere (Groza)
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.); (A.C.V.)
| | - Alina Cristiana Venter
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.); (A.C.V.)
| | - Simona Ioana Vicas
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
- Correspondence:
| |
Collapse
|
6
|
Ma R, Huang B, Chen J, Huang Z, Yu P, Ruan S, Zhang Z. Genome-wide identification and expression analysis of dirigent-jacalin genes from plant chimeric lectins in Moso bamboo (Phyllostachys edulis). PLoS One 2021; 16:e0248318. [PMID: 33724993 PMCID: PMC7963094 DOI: 10.1371/journal.pone.0248318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
Dirigent-jacalin (D-J) genes belong to the plant chimeric lectin family, and play vital roles in plant growth and resistance to abiotic and biotic stresses. To explore the functions of the D-J family in the growth and development of Moso bamboo (Phyllostachys edulis), their physicochemical properties, phylogenetic relationships, gene and protein structures, and expression patterns were analyzed in detail. Four putative PeD-J genes were identified in the Moso bamboo genome, and microsynteny and phylogenetic analyses indicated that they represent a new branch in the evolution of plant lectins. PeD-J proteins were found to be composed of a dirigent domain and a jacalin-related lectin domain, each of which contained two different motifs. Multiple sequence alignment and homologous modeling analysis indicated that the three-dimensional structure of the PeD-J proteins was significantly different compared to other plant lectins, primarily due to the tandem dirigent and jacalin domains. We surveyed the upstream putative promoter regions of the PeD-Js and found that they mainly contained cis-acting elements related to hormone and abiotic stress response. An analysis of the expression patterns of root, leaf, rhizome and panicle revealed that four PeD-J genes were highly expressed in the panicle, indicating that they may be required during the formation and development of several different tissue types in Moso bamboo. Moreover, PeD-J genes were shown to be involved in the rapid growth and development of bamboo shoots. Quantitative Real-time PCR (qRT PCR) assays further verified that D-J family genes were responsive to hormones and stresses. The results of this study will help to elucidate the biological functions of PeD-Js during bamboo growth, development and stress response.
Collapse
Affiliation(s)
- Ruifang Ma
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Bin Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Peiyao Yu
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Shiyu Ruan
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
7
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
8
|
Poiroux G, Barre A, Simplicien M, Pelofy S, Segui B, Van Damme EJM, Rougé P, Benoist H. Morniga-G, a T/Tn-Specific Lectin, Induces Leukemic Cell Death via Caspase and DR5 Receptor-Dependent Pathways. Int J Mol Sci 2019; 20:ijms20010230. [PMID: 30626136 PMCID: PMC6337360 DOI: 10.3390/ijms20010230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023] Open
Abstract
Morniga-G, the Gal-specific black mulberry (Morus nigra) lectin, displays high affinity for T (CD176) and Tn (CD175) antigens, frequently expressed at the cancer cell surface. The effects of Morniga-G were investigated on a Tn-positive leukemic Jurkat cell line. The lectin, used in a concentration range between 5⁻20 μg/mL, induced cell death in leukemic Jurkat cells. Microscopic and cytofluorometric analyses indicated that Jurkat cell death was essentially apoptotic, associated with an increase in the ceramide content and a depolarization of the mitochondrial transmembrane potential. This lectin-mediated cell death was inhibited by the pan caspase-inhibitor zVAD. In addition, cleavage of caspases 8, 9, and 3 was observed in Morniga-G-treated Jurkat cells whereas Jurkat cell lines that are deficient in caspase 8⁻10, caspase 9, or FADD, survived to the lectin-mediated toxicity. Furthermore, in the presence of TRAIL- or DR5-blocking mononoclonal antibodies, Jurkat cells became resistant to Morniga-G, suggesting that the lectin triggers cell death via the TRAIL/DR5 pathway. In silico computer simulations suggest that Morniga-G might facilitate both the DR5 dimerization and the building of TRAIL/DR5 complexes. Finally, upon treatment of Jurkat cells with benzyl-GalNAc, an O-glycosylation inhibitor, a decrease in Tn antigen expression associating with a reduced Morniga-G toxicity, was observed. Taken together, these results suggest that Morniga-G induces the cell death of Tn-positive leukemic cells via concomitant O-glycosylation-, caspase-, and TRAIL/DR5-dependent pathways.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Université de Toulouse, Cancer Research Center of Toulouse, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Annick Barre
- Université de Toulouse, UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Mathias Simplicien
- Université de Toulouse, UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Sandrine Pelofy
- Université de Toulouse, UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Bruno Segui
- Université de Toulouse, Cancer Research Center of Toulouse, INSERM UMR 1037, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- Université de Toulouse, UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Hervé Benoist
- Université de Toulouse, UMR 152 PharmaDev, Université Paul Sabatier, Institut de Recherche et Développement, Faculté de Pharmacie, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
9
|
Azarkan M, Feller G, Vandenameele J, Herman R, El Mahyaoui R, Sauvage E, Vanden Broeck A, Matagne A, Charlier P, Kerff F. Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Sci Rep 2018; 8:11508. [PMID: 30065388 PMCID: PMC6068142 DOI: 10.1038/s41598-018-29439-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
A mannose binding jacalin-related lectin from Ananas comosus stem (AcmJRL) was purified and biochemically characterized. This lectin is homogeneous according to native, SDS-PAGE and N-terminal sequencing and the theoretical molecular mass was confirmed by ESI-Q-TOF-MS. AcmJRL was found homodimeric in solution by size-exclusion chromatography. Rat erythrocytes are agglutinated by AcmJRL while no agglutination activity is detected against rabbit and sheep erythrocytes. Hemagglutination activity was found more strongly inhibited by mannooligomannosides than by D-mannose. The carbohydrate-binding specificity of AcmJRL was determined in some detail by isothermal titration calorimetry. All sugars tested were found to bind with low affinity to AcmJRL, with Ka values in the mM range. In agreement with hemagglutination assays, the affinity increased from D-mannose to di-, tri- and penta-mannooligosaccharides. Moreover, the X-ray crystal structure of AcmJRL was obtained in an apo form as well as in complex with D-mannose and methyl-α-D-mannopyranoside, revealing two carbohydrate-binding sites per monomer similar to the banana lectin BanLec. The absence of a wall separating the two binding sites, the conformation of β7β8 loop and the hemagglutinating activity are reminiscent of the BanLec His84Thr mutant, which presents a strong anti-HIV activity in absence of mitogenic activity.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070, Brussels, Belgium
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, Institute of Chemistry B6a, University of Liège, 4000, Liège, Belgium
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering-InBioS, Institut de Chimie B6, University of Liège, 4000, Liège, Belgium
| | - Raphaël Herman
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - Rachida El Mahyaoui
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070, Brussels, Belgium
| | - Eric Sauvage
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - Arnaud Vanden Broeck
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering-InBioS, Institut de Chimie B6, University of Liège, 4000, Liège, Belgium
| | - Paulette Charlier
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - Frédéric Kerff
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
10
|
Physico-chemical characteristics and primary structure of an affinity-purified α-D-galactose-specific, jacalin-related lectin from the latex of mulberry (Morus indica). Arch Biochem Biophys 2016; 609:59-68. [PMID: 27664852 DOI: 10.1016/j.abb.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/23/2022]
Abstract
An α-D-galactose specific lectin belonging to the family of jacalin-related lectins (JRL) has been purified by affinity chromatography on cross-linked guar-gum. Mass spectrometric data revealed that the protein harbors two chains like all the members of galactose-specific jacalin-related lectins (gJRL). De novo sequencing of proteolytic peptides demonstrated that the heavier chain consists of 133 amino acids and the lighter chain comprises of 21 or 24 amino acids. The heavier chain contains one N-glycosylation site (Asn47) occupied with either pauci-mannose type [GlcNAc2(Fuc)Man3(Xyl)] or complex type [GlcNAc2(Fuc)Man3(Xyl)GlcNAc(Fuc)Gal] N-glycans. Circular dichroism spectroscopy indicated that the secondary structure of the lectin is predominantly made up of β-sheets, and differential scanning calorimetry revealed a thermal denaturation temperature of 77.6 °C. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assays on MCF-7 and MDCK cells showed that the lectin is highly cytotoxic towards both cell lines when dosed at micromolar concentrations, suggesting that it may play a role in the defense mechanism of the plant.
Collapse
|
11
|
Bari AU, Santiago MQ, Osterne VJS, Pinto-Junior VR, Pereira LP, Silva-Filho JC, Debray H, Rocha BAM, Delatorre P, Teixeira CS, Neto CC, Assreuy AMS, Nascimento KS, Cavada BS. Lectins from Parkia biglobosa and Parkia platycephala: A comparative study of structure and biological effects. Int J Biol Macromol 2016; 92:194-201. [PMID: 27411295 DOI: 10.1016/j.ijbiomac.2016.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
Abstract
The relation structure-activity of the Mimosoideae lectins of Parkia platycephala (PPL) and Parkia biglobosa (PBL) was analyzed in this study. PBL was solved by X-ray crystallography at a resolution of 2.1Å, and the crystal structure belonged to the C2221 space group. Structural organization and binding sites were also characterized. Specifically, PBL monomer consists of three β-prism domains tandemly arranged with each one presenting a different carbohydrate recognition domain (CRD). PPL showed antinociceptive activity in the mouse model of acetic acid-induced writhes with maximal inhibitory effect by 74% at 1mg/mL. PPL also demonstrated anti-inflammatory effect causing inhibition of leukocyte migration induced by both direct and indirect chemoattractants. These PPL activities were compared to that of PBL described previously. Molecular docking of both PBL and PPL demonstrated some differences in carbohydrate-lectin interaction energy. Comparing structure and biological effects of the two lectins provided new data about their structure and the relation with its biological activities.
Collapse
Affiliation(s)
- Alfa Umaro Bari
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil
| | - Mayara Queiroz Santiago
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil
| | - Vinicius Jose Silva Osterne
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil
| | - Vanir Reis Pinto-Junior
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil
| | - Lívia Paulo Pereira
- Laboratório de Fisiofarmacologia da Inflamação, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, 60714-242, Fortaleza, Ceará, Brazil
| | | | - Henri Debray
- University of Science and Technology of Lille, Lille, France
| | - Bruno Anderson Matias Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil
| | - Plinio Delatorre
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, Paraíba, Brazil
| | | | - Cornevile Correia Neto
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil
| | - Ana Maria Sampaio Assreuy
- Laboratório de Fisiofarmacologia da Inflamação, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, 60714-242, Fortaleza, Ceará, Brazil
| | - Kyria Santiago Nascimento
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil
| | - Benildo Sousa Cavada
- Laboratório de Moléculas Biologicamente Ativas - BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, s/n bloco 907, 60440-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
12
|
Saeed B, Baranwal VK, Khurana P. Identification and Expression Profiling of the Lectin Gene Superfamily in Mulberry. THE PLANT GENOME 2016; 9. [PMID: 27898803 DOI: 10.3835/plantgenome2015.10.0107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lectins are a diverse group of ubiquitously present, highly specific sugar-binding proteins. Members of this large gene family have been assigned broad biological functions from defense to acting as storage proteins. Despite possessing several interesting characteristics, their functions remain essentially undefined. Mulberry ( spp.) known for its medicinal benefits is also a rich source of lectins. Using an exhaustive hidden Markov model (HMM)-based search, we identified the lectin gene complement in C.K. Schneid with around 197 members. These putative lectin genes were classified into 12 distinct gene families based on the presence of characteristic sugar-binding domains. Members of this superfamily were assigned varied gene ontologies (GOs) to identify putative functions and determine cellular localizations. Interestingly, characteristic expression patterns were observed across the lectin superfamily in response to a variety of environmental cues. This is suggestive of specialized functions under diverse conditions possibly by linking the specificity of sugar recognition with mediating precise stress responses in plants. The identification of putative gene family members from the genus developed in this study can find wide applicability in lectin gene identification and characterization. It can also contribute immensely in the understanding of lectins from mulberry with potential medicinal uses.
Collapse
|
13
|
Shimokawa M, Haraguchi T, Minami Y, Yagi F, Hiemori K, Tateno H, Hirabayashi J. Two carbohydrate recognizing domains from Cycas revoluta leaf lectin show the distinct sugar-binding specificity-A unique mannooligosaccharide recognition by N-terminal domain. J Biochem 2016; 160:27-35. [PMID: 26867733 DOI: 10.1093/jb/mvw011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/04/2016] [Indexed: 11/15/2022] Open
Abstract
Cycas revoluta leaf lectin (CRLL) of mannose-recognizing jacalin-related lectin (mJRL) has two tandem repeated carbohydrate recognition domains, and shows the characteristic sugar-binding specificity toward high mannose-glycans, compared with other mJRLs. We expressed the N-terminal domain and C-terminal domain (CRLL-N and CRLL-C) separately, to determine the fine sugar-binding specificity of each domain, using frontal affinity chromatography, glycan array and equilibrium dialysis. The specificity of CRLL toward high mannose was basically derived from CRLL-N, whereas CRLL-C had affinity for α1-6 extended mono-antennary complex-type glycans. Notably, the affinity of CRLL-N was most potent to one of three Man 8 glycans and Man 9 glycan, whereas the affinity of CRLL-C decreased with the increase in the number of extended α1-2 linked mannose residue. The recognition of the Man 8 glycans by CRLL-N has not been found for other mannose recognizing lectins. Glycan array reflected these specificities of the two domains. Furthermore, it was revealed by equilibrium dialysis method that the each domain had two sugar-binding sites, similar with Banlec, banana mannose-binding Jacalin-related lectin.
Collapse
Affiliation(s)
- Michiko Shimokawa
- Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan and
| | - Tomokazu Haraguchi
- Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan and
| | - Yuji Minami
- Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan and
| | - Fumio Yagi
- Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan and
| | - Keiko Hiemori
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Hiroaki Tateno
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Jun Hirabayashi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
14
|
Pinedo M, Orts F, Carvalho ADO, Regente M, Soares JR, Gomes VM, de la Canal L. Molecular characterization of Helja, an extracellular jacalin-related protein from Helianthus annuus: Insights into the relationship of this protein with unconventionally secreted lectins. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:144-53. [PMID: 26140981 DOI: 10.1016/j.jplph.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/21/2015] [Accepted: 06/11/2015] [Indexed: 05/25/2023]
Abstract
Jacalin-related lectins (JRLs) encompass cytosolic, nuclear and vacuolar members displaying the jacalin domain in one or more copies or in combination with unrelated domains. Helianthus annuus jacalin (Helja) is a mannose-specific JRL previously identified in the apoplast of Helianthus annuus seedlings, and this protein has been proposed to follow unconventional secretion. Here, we describe the full-length Helja cDNA sequence, which presents a unique jacalin domain (merolectin) and the absence of a signal peptide, confirming that the protein cannot follow the classical ER-dependent secretory pathway. Helja mRNA is present in seeds, cotyledons, roots and hypocotyls, but no transcripts were detected in the leaves. Searches for sequence similarity showed that Helja is barely similar to other JRLs present in H. annuus databases and less than 45% identical to other monocot or dicot JRLs. Strikingly, most of the merolectins recovered through data mining using Helja as a query were predicted as apoplastic, although most of these proteins lack the signal peptide required for classical secretion. Thus, Helja is the first bait identified to recover putative unconventionally secreted lectins. Because the recovered JRLs are widely distributed among the plant kingdom, an as yet unknown role for jacalin lectins in the apoplast is emerging.
Collapse
Affiliation(s)
- Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Facundo Orts
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil.
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Julia Ribeiro Soares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil.
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes 3250, 7600 Mar del Plata, Argentina.
| |
Collapse
|
15
|
Shimokawa M, Nsimba-Lubaki SM, Hayashi N, Minami Y, Yagi F, Hiemori K, Tateno H, Hirabayashi J. Two jacalin-related lectins from seeds of the African breadfruit (Treculia africana L.). Biosci Biotechnol Biochem 2014; 78:2036-44. [PMID: 25155899 DOI: 10.1080/09168451.2014.948376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two jacalin-related lectins (JRLs) were purified by mannose-agarose and melibiose-agarose from seeds of Treculia africana. One is galactose-recognizing JRL (gJRL), named T. africana agglutinin-G (TAA-G), and another one is mannose-recognizing JRL (mJRL), TAA-M. The yields of the two lectins from the seed flour were approximately 7.0 mg/g for gJRL and 7.2 mg/g for mJRL. The primary structure of TAA-G was determined by protein sequencing of lysyl endopeptic peptides and chymotryptic peptides. The sequence identity of TAA-G to other gJRLs was around 70%. Two-residue insertion was found around the sugar-binding sites, compared with the sequences of other gJRLs. Crystallographic studies on other gJRLs have shown that the primary sugar-binding site of gJRLs can accommodate Gal, GalNAc, and GalNAc residue of T-antigen (Galβ1-3GalNAcα-). However, hemagglutination inhibition and glycan array showed that TAA-G did not recognize GalNAc itself and T-antigen. TAA-G preferred melibiose and core 3 O-glycan.
Collapse
Affiliation(s)
- Michiko Shimokawa
- a Biochemical Science and Technology, Faculty of Agriculture , Kagoshima University , Kagoshima , Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Albornos L, Cabrera J, Hernández-Nistal J, Martín I, Labrador E, Dopico B. Organ accumulation and subcellular location of Cicer arietinum ST1 protein. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 224:44-53. [PMID: 24908505 DOI: 10.1016/j.plantsci.2014.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/06/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
The ST (ShooT Specific) proteins are a new family of proteins characterized by a signal peptide, tandem repeats of 25/26 amino acids, and a domain of unknown function (DUF2775), whose presence is limited to a few families of dicotyledonous plants, mainly Fabaceae and Asteraceae. Their function remains unknown, although involvement in plant growth, fruit morphogenesis or in biotic and abiotic interactions have been suggested. This work is focused on ST1, a Cicer arietinum ST protein. We established the protein accumulation in different tissues and organs of chickpea seedlings and plants and its subcellular localization, which could indicate the possible function of ST1. The raising of specific antibodies against ST1 protein revealed that its accumulation in epicotyls and radicles was related to their elongation rate. Its pattern of tissue location in cotyledons during seed formation and early seed germination, as well as its localization in the perivascular fibres of epicotyls and radicles, indicated a possible involvement in seed germination and seedling growth. ST1 protein appears both inside the cell and in the cell wall. This double subcellular localization was found in every organ in which the ST1 protein was detected: seeds, cotyledons and seedling epicotyls and radicles.
Collapse
Affiliation(s)
- Lucía Albornos
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Javier Cabrera
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Josefina Hernández-Nistal
- Dpto de Fisiología Vegetal, Universidad de Santiago de Compostela, Campus de Lugo, Lugo 27002, Spain.
| | - Ignacio Martín
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Emilia Labrador
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| | - Berta Dopico
- Dpto de Fisiología Vegetal. Facultad de Biología, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, Pza Doctores de la Reina s/n., Salamanca 37007, Spain.
| |
Collapse
|
17
|
Fernandez-del-Carmen A, Juárez P, Presa S, Granell A, Orzáez D. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity. J Biotechnol 2013; 163:391-400. [PMID: 23220214 DOI: 10.1016/j.jbiotec.2012.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
The plant kingdom is an underexplored source of valuable proteins which, like plant lectins, display unique interacting specificities. Furthermore, plant protein diversity remains under-exploited due to the low availability and heterogeneity of native sources. All these hurdles could be overcome with recombinant production. A narrow phylogenetic gap between the native source and the recombinant platform is likely to facilitate proper protein processing and stability; therefore, the plant cell chassis should be specially suited for the recombinant production of many plant native proteins. This is illustrated herein with the recombinant production of two representatives of the plant jacalin-related lectin (JRLs) protein family in Nicotiana benthamiana using state-of-the-art magnICON technology. Mannose-specific Banlec JRL was produced at very high levels in leaves, reaching 1.0mg of purified protein per gram of fresh weight and showing strong agglutination activity. Galactose-specific jacalin JRL, with its complicated processing requirements, was also successfully produced in N. benthamiana at levels of 0.25 mg of purified protein per gram of fresh weight. Recombinant Jacalin (rJacalin) proved efficient in the purification of human IgA1, and was able to discriminate between plant-made and native IgA1 due to their differential glycosylation status. Together, these results show that the plant cell factory should be considered a primary option in the recombinant production of valuable plant proteins.
Collapse
Affiliation(s)
- Asun Fernandez-del-Carmen
- Instituto de Biología Molecular y Celular de Plantas-IBMCP, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Avda Tarongers SN, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
18
|
Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC. The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties. Glycoconj J 2013; 30:641-57. [PMID: 23299509 PMCID: PMC3769584 DOI: 10.1007/s10719-012-9464-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 12/31/2022]
Abstract
Advances in the glycobiology and immunology fields have provided many insights into the role of carbohydrate-protein interactions in the immune system. We aim to present a comprehensive review of the effects that some plant lectins exert as immunomodulatory agents, showing that they are able to positively modify the immune response to certain pathological conditions, such as cancer and infections. The present review comprises four main themes: (1) an overview of plant lectins that exert immunomodulatory effects and the mechanisms accounting for these activities; (2) general characteristics of the immunomodulatory lectin ArtinM from the seeds of Artocarpus heterophyllus; (3) activation of innate immunity cells by ArtinM and consequent induction of Th1 immunity; (4) resistance conferred by ArtinM administration in infections with intracellular pathogens, such as Leishmania (Leishmania) major, Leishmania (Leishmania) amazonensis, and Paracoccidioides brasiliensis. We believe that this review will be a valuable resource for more studies in this relatively neglected area of research, which has the potential to reveal carbohydrate targets for novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Maria A Souza
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | |
Collapse
|
19
|
Senthilkumar R, Yeh KW. Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol Adv 2012; 30:1309-17. [PMID: 22306516 DOI: 10.1016/j.biotechadv.2012.01.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/22/2011] [Accepted: 01/20/2012] [Indexed: 12/27/2022]
Abstract
The initial investigation of the nature of the proteins in the tuber of sweet potato (Ipomoea batatas Lam.) revealed a globulin-designated "ipomoein," which was reported by Jones and Gersdorff, (1931). Later, "ipomoein" was renamed "sporamin" and was found to be a major storage protein that accounted for over 80% of the total protein in the tuberous root. To date, sporamin has been studied by a series of biochemical and molecular approaches. The first purification of sporamin into two major fractions, A and B, was successfully completed in 1985. Several characteristics of the protein, such as the diversification of the nucleotide sequences in the gene family, the protein structure, the biological functions of storage, defense, inhibitory activity and ROS scavenging, were identified. In the past decade, sporamin was classified as a Kunitz-type trypsin inhibitor, and its insect-resistance capability has been examined in transgenic tobacco and cauliflower plants, indicating the multiple functions of this protein has evolved to facilitate the growth and development of sweet potato. Sporamin is constitutively expressed in the tuberous root and is not normally expressed in the stem or leaves. However, this protein is expressed systemically in response to wounding and other abiotic stresses. These dual expression patterns at the transcriptional level revealed that the complex regulatory mechanism of sporamin was modulated by environmental stresses. The versatile functions of sporamin make this storage protein a good research model to study molecular evolution, regulatory mechanisms and physiological functions in plants. This review summarizes and discusses recent approaches and future perspectives in agricultural biotechnology.
Collapse
|
20
|
Freire MDGM, Franco OL, Kubo CEG, Migliolo L, Vargas RH, de Oliveira CFR, Parra JRP, Macedo MLR. Structural insights regarding an insecticidal Talisia esculenta protein and its biotechnological potential for Diatraea saccharalis larval control. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:86-92. [PMID: 21983187 DOI: 10.1016/j.cbpb.2011.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Talisin is a seed-storage protein from Talisia esculenta that presents lectin-like activities, as well as proteinase-inhibitor properties. The present study aims to provide new in vitro and in silico biochemical information about this protein, shedding some light on its mechanistic inhibitory strategies. A theoretical three-dimensional structure of Talisin bound to trypsin was constructed in order to determine the relative interaction mode. Since the structure of non-competitive inhibition has not been elucidated, Talisin-trypsin docking was carried out using Hex v5.1, since the structure of non-competitive inhibition has not been elucidated. The predicted non-coincidence of the trypsin binding site is completely different from that previously proposed for Kunitz-type inhibitors, which demonstrate a substitution of an Arg(64) for the Glu(64) residue. Data, therefore, provide more information regarding the mechanisms of non-competitive plant proteinase inhibitors. Bioassays with Talisin also presented a strong insecticide effect on the larval development of Diatraea saccharalis, demonstrating LD50 and ED50 of ca. 2.0% and 1.5%, respectively.
Collapse
|
21
|
Poiroux G, Pitié M, Culerrier R, Lafont E, Ségui B, Van Damme EJM, Peumans WJ, Bernadou J, Levade T, Rougé P, Barre A, Benoist H. Targeting of T/Tn antigens with a plant lectin to kill human leukemia cells by photochemotherapy. PLoS One 2011; 6:e23315. [PMID: 21858067 PMCID: PMC3157357 DOI: 10.1371/journal.pone.0023315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 07/15/2011] [Indexed: 11/18/2022] Open
Abstract
Photochemotherapy is used both for solid tumors and in extracorporeal treatment of various hematologic disorders. Nevertheless, its development in oncology remains limited, because of the low selectivity of photosensitizers (PS) towards human tumor cells. To enhance PS efficiency, we recently covalently linked a porphyrin (TrMPyP) to a plant lectin (Morniga G), known to recognize with high affinity tumor-associated T and Tn antigens. The conjugation allowed a quick uptake of PS by Tn-positive Jurkat leukemia cells and efficient PS-induced phototoxicity. The present study was performed: (i) to evaluate the targeting potential of the conjugate towards tumor and normal cells and its phototoxicity on various leukemia cells, (ii) to investigate the mechanism of conjugate-mediated cell death. The conjugate: (i) strongly increased (×1000) the PS phototoxicity towards leukemic Jurkat T cells through an O-glycan-dependent process; (ii) specifically purged tumor cells from a 1∶1 mixture of Jurkat leukemia (Tn-positive) and healthy (Tn-negative) lymphocytes, preserving the activation potential of healthy lymphocytes; (iii) was effective against various leukemic cell lines with distinct phenotypes, as well as fresh human primary acute and chronic lymphoid leukemia cells; (iv) induced mostly a caspase-independent cell death, which might be an advantage as tumor cells often resist caspase-dependent cell death. Altogether, the present observations suggest that conjugation with plant lectins can allow targeting of photosensitizers towards aberrant glycosylation of tumor cells, e.g. to purge leukemia cells from blood and to preserve the normal leukocytes in extracorporeal photochemotherapy.
Collapse
Affiliation(s)
- Guillaume Poiroux
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Marguerite Pitié
- Centre National de la Recherhce Scientifique, Laboratoire de Chimie de Coordination, 205 route de Narbonne, F-31077, Toulouse, France
| | - Raphaël Culerrier
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Elodie Lafont
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
| | - Bruno Ségui
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
| | - Els J. M. Van Damme
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Willy J. Peumans
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Jean Bernadou
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
- Centre National de la Recherhce Scientifique, Laboratoire de Chimie de Coordination, 205 route de Narbonne, F-31077, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
| | - Pierre Rougé
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Annick Barre
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
- Université de Toulouse, UMR UPS-CNRS 5546, 24 Chemin de Borde Rouge, 31326 Castanet-Tolosan, France
| | - Hervé Benoist
- Institut National de la Santé et de la Recherche Médicale UMR 1037, Equipe 4, Centre de Recherches en Cancérologie de Toulouse, CHU Rangueil, BP84225, 31432 Toulouse, France
- Université de Toulouse, Faculté des Sciences Pharmaceutiques, 35 chemin des Maraîchers, 31062 Toulouse, France
- * E-mail:
| |
Collapse
|
22
|
Evangelio E, Poiroux G, Culerrier R, Pratviel G, Van Damme EJM, Peumans WJ, Barre A, Rougé P, Benoist H, Pitié M. Comparative study of the phototoxicity of long-wavelength photosensitizers targeted by the MornigaG lectin. Bioconjug Chem 2011; 22:1337-44. [PMID: 21671658 DOI: 10.1021/bc1005703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Morniga G is a plant lectin selective for high density of tumor-associated carbohydrate T and Tn antigens on the surface of cells. The interaction of the protein with Tn induces its cell penetration. This property was used for targeting photosensitizers (consisting of the porphyrins TrMPyP and TPPS, the Al(III)-phthalocyanin AlPcS(4), and the chlorin e6) against leukemic Jurkat T cells after covalent coupling to the protein. The control of MornigaG/photosensitizer loading allowed the comparison of the toxicity of the different photosensitizer conjugates. Conjugate including a single AlPcS(4) per protein appeared promising, since it is poorly toxic when irradiated under white light, while it shows a strong phototoxicity (LD(50) = 4 nM) when irradiated in the therapeutic window, it preferentially kills cancerous lymphocytes, and the sugar binding specificity of the lectin part of the molecule remains unaltered.
Collapse
Affiliation(s)
- Emi Evangelio
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Khurana P, Checker VG. The advent of genomics in mulberry and perspectives for productivity enhancement. PLANT CELL REPORTS 2011; 30:825-38. [PMID: 21431349 DOI: 10.1007/s00299-011-1059-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/10/2011] [Indexed: 05/06/2023]
Abstract
Sericulture in India is a highly remunerative industry, especially for the rural population. Mulberry is an extremely versatile plant, having multifaceted applications, the most important being the sole feed for the monophagus silkworm, Bombyx mori. Profitability of the sericulture industry is directly correlated with production of high-quality mulberry leaves. However, mulberry productivity is severely impacted by abiotic as well as biotic stresses. Therefore, to develop stress-tolerant mulberry with desired characteristics, a comprehensive understanding and utility of biotechnological resources is essential. Research efforts on mulberry encompass broad range of fields in plant biology from breeding, molecular markers, transcriptomics, proteomics, and metabolomics. Additionally, a large number of mulberry germplasm accessions have been maintained and evaluated in several countries. Identification of superior cultivars under stressed regimes is extremely important, and therefore, physiological traits have often been used as proxy genetic markers for assessing stress tolerance index. Mulberry genomic resources have provided a limited but an important list of novel candidate genes, thus enhancing the scope for future investigations for improvement of its productivity. The present review article gives a bird's eye view of current initiatives of genomics advancements in mulberry research and enumerates the prospects for enhancing its productivity.
Collapse
Affiliation(s)
- Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, South Campus, Dhaula Kuan, New Delhi, 110021, India.
| | | |
Collapse
|
24
|
Novel Concepts About the Role of Lectins in the Plant Cell. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:271-94. [DOI: 10.1007/978-1-4419-7877-6_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Macedo MLR, Freire MDGM, Kubo CEG, Parra JRP. Bioinsecticidal activity of Talisia esculenta reserve protein on growth and serine digestive enzymes during larval development of Anticarsia gemmatalis. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:24-33. [PMID: 20692365 DOI: 10.1016/j.cbpc.2010.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/01/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops.
Collapse
Affiliation(s)
- Maria Lígia R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Departamento de Tecnologia de Alimentos, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil.
| | | | | | | |
Collapse
|
26
|
Poiroux G, Pitié M, Culerrier R, Ségui B, Van Damme EJM, Peumans WJ, Bernadou J, Levade T, Rougé P, Barre A, Benoist H. Morniga G: a plant lectin as an endocytic ligand for photosensitizer molecule targeting toward tumor-associated T/Tn antigens. Photochem Photobiol 2010; 87:370-7. [PMID: 21143236 DOI: 10.1111/j.1751-1097.2010.00858.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyrins are used as photosensitizer (PS) in photodynamic therapy in cancer treatment. Nevertheless, the development of photochemotherapy in oncology remains limited, because of the low selectivity of PSs. In order to allow PS targeting toward tumor-associated antigens, for the first time a white-light activatable porphyrin, [5-(4-(5-carboxy-1-butoxy)-phenyl)-10,15,20-tris(4-N-methyl)-pyridiniumyl)-porphyrin] (TrMPyP) was covalently linked to Morniga G (MorG), a galactose-specific binding plant lectin, known to recognize with high-affinity tumor-associated T/Tn antigen in cell-free systems. Firstly, using fluorescein-labeled MorG, the sugar-dependent binding and uptake of lectin by Tn-positive (Jurkat lymphoid leukemia) cells was demonstrated. Secondly, the TrMPyP-MorG conjugate was molecularly characterized. Cytometric and confocal microscopic analysis demonstrated that PS covalent linking to MorG preserved sugar-dependent specific binding and uptake of lectin by Jurkat leukemia lymphocytes. Thirdly, the conjugate (with a 1:1 PS:lectin ratio) that was bound and quickly (5 min) taken-up, induced greater than 90% cytotoxicity upon irradiation at 10 nm concentration, whereas the free PS was absolutely nontoxic. On the contrary, normal lymphocytes strongly resisted to the conjugate-mediated phototoxicity. Thus, owing to their binding and endocytosis capacities, plant lectins represent promising molecules for targeting of tumor glycan alteration and to enhance the efficiency of specific delivery of PSs to tumor cells.
Collapse
|
27
|
Bertini L, Proietti S, Caporale C, Caruso C. Molecular characterization of a wheat protein induced by vernalisation. Protein J 2010; 28:253-62. [PMID: 19626429 DOI: 10.1007/s10930-009-9190-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using a PCR strategy we isolated from winter wheat (Triticum aestivum L. cv. Bolero) the ver2 gene coding for a modular protein constituted by an N-terminal domain called "dirigent", found in several defence-related genes, and a C-terminal domain related to jacalin-related lectin (JRL). ver2 transcript as well as native Ver2 levels increased during vernalisation and upon methyl jasmonate treatment of young seedlings. ver2 transcript levels were kept constant either in infected tissues or in wounded samples indicating that Ver2 is not directly involved in plant defence mechanisms. The Ver2 protein was expressed in bacteria as a recombinant GST-Ver2 fusion protein. The purified recombinant protein was further characterized using an affinity chromatography approach based on its interaction with mannose-agarose beads. GST-Ver2 tightly bound to the matrix. Molecular modelling of the jacalin domain and mannose docking confirmed that Ver2 possesses D: -mannose binding capacity.
Collapse
Affiliation(s)
- Laura Bertini
- Dipartimento di Agrobiologia e Agrochimica, Universita' della Tuscia, Via S. Camillo De Lellis, 01100, Viterbo, Italy
| | | | | | | |
Collapse
|
28
|
Oliveira C, Costa S, Teixeira JA, Domingues L. cDNA Cloning and Functional Expression of the α-d-Galactose-Binding Lectin Frutalin in Escherichia coli. Mol Biotechnol 2009; 43:212-20. [DOI: 10.1007/s12033-009-9191-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 05/26/2009] [Indexed: 11/25/2022]
|
29
|
Benoist H, Culerrier R, Poiroux G, Ségui B, Jauneau A, Van Damme EJM, Peumans WJ, Barre A, Rougé P. Two structurally identical mannose-specific jacalin-related lectins display different effects on human T lymphocyte activation and cell death. J Leukoc Biol 2009; 86:103-14. [PMID: 19401384 DOI: 10.1189/jlb.0708434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plant lectins displaying similar single sugar-binding specificity and identical molecular structure might present various biological effects. To explore this possibility, the effects on human lymphocytes of two mannose-specific and structurally closely related lectins, Morniga M from Morus nigra and artocarpin from Artocarpus integrifolia were investigated. In silico analysis revealed that Morniga M presents a more largely open carbohydrate-binding cavity than artocarpin, probably allowing interactions with a broader spectrum of carbohydrate moieties. In vitro, Morniga M interacted strongly with the lymphocyte surface and was uptaken quickly by cells. Morniga M and artocarpin triggered the proliferation and activation of human T and NK lymphocytes. A minority of B lymphocytes was activated in artocarpin-treated culture, whereas Morniga M favored the emergence of CD4+ CD8+ T lymphocytes. Moreover, cell death occurred in activated PBMC, activated T lymphocytes, and Jurkat T leukemia cells incubated with Morniga M only. The biological effects of both lectins were dependent on carbohydrate recognition. The Morniga M-induced cell death resulted, at least in part, from caspase-dependent apoptosis and FADD-dependent receptor-mediated cell death. Finally, Morniga M, but not artocarpin, triggered AICD of T lymphocytes. In conclusion, both lectins trigger lymphocyte activation, but only Morniga M induces cell death. In spite of similar in vitro mannose-binding specificities and virtually identical structure, only Morniga M probably interacts with carbohydrate moieties bound to molecules able to induce cell death. The present data suggest that subtle alterations in N-glycans can distinguish activation and cell death molecules at the lymphocyte surface.
Collapse
|
30
|
Sá RA, Santos NDDL, da Silva CSB, Napoleão TH, Gomes FS, Cavada BS, Coelho LCBB, Navarro DMDAF, Bieber LW, Paiva PMG. Larvicidal activity of lectins from Myracrodruon urundeuva on Aedes aegypti. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:300-6. [PMID: 18761426 DOI: 10.1016/j.cbpc.2008.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/08/2008] [Accepted: 08/10/2008] [Indexed: 11/28/2022]
Abstract
Aedes aegypti transmits etiologic agents of yellow fever and dengue. Vaccine for dengue virus is not available and vector control is essential to minimize dengue incidence. This report deals with the larvicidal activity of lectins isolated from Myracrodruon urundeuva bark (MuBL) and heartwood (MuHL). The lectins were isolated by ammonium sulphate treatment of crude extracts followed by chromatography on chitin. MuBL and MuHL were evaluated by electrophoresis under native (PAGE) and denaturing conditions (SDS-PAGE). Carbohydrate specificity of lectins was evaluated by hemagglutinating activity (HA) inhibition assay using N-acetyl-d-glucosamine and by affinity chromatography on N-acetyl-D-glucosamine immobilized in agarose gel. Larvicidal activity against A. aegypti was investigated with the extracts, salt fractions and isolated lectins. MuBL and MuHL were characterized by PAGE as basic proteins of molecular masses of 14.0 and 14.4 kDa, respectively. The interaction of lectins with N-acetylglucosamine was detected by inhibition of HA by monosaccharide and lectin adsorptions on N-acetyl-D-glucosamine matrix. All M. urundeuva preparations promoted larvae mortality. LC16, LC50 and LC84 values of 0.077, 0.125, 0.173 for MuBL and 0.03, 0.04 and 0.05 mg/mL for MuHL were obtained. To our knowledge this is the first report of larvicidal activity of lectins against A. aegypti.
Collapse
Affiliation(s)
- Roberto Araújo Sá
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901, Recife, Pernambuco, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xing L, Li J, Xu Y, Xu Z, Chong K. Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS One 2009; 4:e4854. [PMID: 19287503 PMCID: PMC2654674 DOI: 10.1371/journal.pone.0004854] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 02/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND O-linked beta-N-acetylglucosamine (O-GlcNAc) modification of proteins mediates stress response and cellular motility in animal cells. The plant lectin concanavalin A can increase nuclear O-GlcNAc levels and decrease cytoplasmic O-GlcNAc levels in T lymphocytes. However, the functions of O-GlcNAc signaling in plants, as well as the relation between plant lectins and O-GlcNAc in response to environmental stimuli are largely undefined. METHODOLOGY/PRINCIPAL FINDINGS We describe a jacalin-like lectin VER2 in wheat that shows N-acetylglucosamine and galactose specificity. Immunocytochemical localization showed VER2 expression induced predominantly at potential nuclear structures in shoot tips and young leaves and weakly in cytoplasm in response to vernalization. In contrast, under devernalization (continuous stimulation with a higher temperature after vernalization), VER2 signals appeared predominantly in cytoplasm. 2-D electrophoresis, together with western blot analysis, showed phosphorylation modification of VER2 under vernalization. Immunoblot assay with O-GlcNAc-specific antibody revealed that vernalization increased O-GlcNAc modification of proteins at the global level. An O-GlcNAc-modified protein co-immunoprecipitated with VER2 in vernalized wheat plants but not in devernalized materials. The dynamic of VER2 was observed in transgenic Arabidopsis overexpressing the VER2-GFP fusion protein. Overexpressed VER2 accelerated nuclear migration. Immunogold labeling and indirect immunofluoresence colocalization assay indicated that VER2-GFP was targeted to the secretory pathway. CONCLUSIONS/SIGNIFICANCE O-GlcNAc signaling is involved in the vernalization response in wheat, and phosphorylation is necessary for the lectin VER2 involving O-GlcNAc signaling during vernalization. Our findings open the way to studies of O-GlcNAc protein modification in response to environmental signals in plants.
Collapse
Affiliation(s)
- Lijing Xing
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Yunyuan Xu
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Zhihong Xu
- National Centre for Plant Gene Research, Beijing, China
| | - Kang Chong
- Research Center for Molecular Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- National Centre for Plant Gene Research, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Expression of frutalin, an alpha-D-galactose-binding jacalin-related lectin, in the yeast Pichia pastoris. Protein Expr Purif 2008; 60:188-93. [PMID: 18534865 DOI: 10.1016/j.pep.2008.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/07/2008] [Accepted: 04/14/2008] [Indexed: 11/22/2022]
Abstract
Frutalin is an alpha-D-galactose-binding lectin expressed in breadfruit seeds. Its isolation from plant is time-consuming and results in a heterogeneous mixture of different lectin isoforms. In order to improve and facilitate the availability of the breadfruit lectin, we cloned an optimised codifying frutalin mature sequence into the pPICZalphaA expression vector. This expression vector, designed for protein expression in the methylotrophic yeast Pichia pastoris, contains the Saccharomyces alpha-factor preprosequence to direct recombinant proteins into the secretory pathway. Soluble recombinant frutalin was detected in the culture supernatants and recognised by native frutalin antibody. Approximately 18-20 mg of recombinant lectin per litre medium was obtained from a typical small scale methanol-induced culture purified by size-exclusion chromatography. SDS-PAGE and Edman degradation analysis revealed that frutalin was expressed as a single chain protein since the four amino-acid linker peptide "T-S-S-N", which connects alpha and beta chains, was not cleaved. In addition, incomplete processing of the signal sequence resulted in recombinant frutalin with one Glu-Ala N-terminal repeat derived from the alpha-factor prosequence. Endoglycosidase treatment and SDS-PAGE analysis revealed that the recombinant frutalin was partly N-glycosylated. Further characterisation of the recombinant lectin revealed that it specifically binds to the monosaccharide Me-alpha-galactose presenting, nevertheless, lesser affinity than the native frutalin. Recombinant frutalin eluted from a size-exclusion chromatography column with a molecular mass of about 62-64 kDa, suggesting a tetrameric structure, however it did not agglutinate rabbit erythrocytes as native frutalin does. This work shows that the galactose-binding jacalin-related lectins four amino-acid linker peptide "T-S-S-N" does not undergo any proteolytic cleavage in the yeast P. pastoris and also that linker cleavage might not be essential for lectin sugar specificity.
Collapse
|
33
|
Nomura K, Ikegami A, Koide A, Yagi F. Japanese chestnut (Castanea crenata) agglutinin may have a role as vegetative storage protein. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:671-675. [PMID: 17936407 DOI: 10.1016/j.jplph.2007.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/06/2007] [Accepted: 08/06/2007] [Indexed: 05/25/2023]
Abstract
The expression of Japanese chestnut (Castanea crenata) agglutinin (CCA) and its mRNA was investigated in nitrogen-fertilized young potted plants and in floral organs of adult trees. Two levels of N were used: 10 and 20mM NH(4)NO(3). Both levels increased protein content in all vegetative organs, though the magnitude of the increase differed. The highest increase was observed in stems. High levels were retained in 20mM N-fertilized plants, whereas the protein content decreased at 10mM N fertilization. Expression of CCA and its mRNA was observed in young leaves and stems, and their quantities depended on the amount of N fertilizer supplied. In mature leaves, CCA was detected in the first 4 weeks, but its mRNA was undetectable throughout the experimental period. Neither CCA nor its mRNA was detected in roots. In floral organs, CCA and its mRNA were expressed throughout the flower but their quantities differed. These results suggest that CCA acts as a vegetative storage protein, which functions in temporary nitrogen reserve. The results also suggest that expression of CCA is regulated at both transcriptional and translational levels.
Collapse
Affiliation(s)
- Keiichi Nomura
- Faculty of Agriculture, Kobe University, Nada-ku, Kobe, Japan.
| | | | | | | |
Collapse
|
34
|
Nakamura-Tsuruta S, Uchiyama N, Peumans WJ, Van Damme EJM, Totani K, Ito Y, Hirabayashi J. Analysis of the sugar-binding specificity of mannose-binding-type Jacalin-related lectins by frontal affinity chromatography - an approach to functional classification. FEBS J 2008; 275:1227-39. [DOI: 10.1111/j.1742-4658.2008.06282.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Citores L, Rojo MA, Jiménez P, Ferreras JM, Iglesias R, Aranguez I, Girbés T. Transient occurrence of an ebulin-related D-galactose-lectin in shoots of Sambucus ebulus L. PHYTOCHEMISTRY 2008; 69:857-864. [PMID: 18068741 DOI: 10.1016/j.phytochem.2007.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
Young shoots of Sambucus ebulus L. contain a monomeric d-galactose binding lectin (SELlm), which disappears upon shoot development, and was previously undetected since it co-purifies with the non-toxic type 2 ribosome-inactivating protein ebulin l and the dimeric lectin SELld. Molecular cloning of cDNA coding for SELlm and mass spectrometry analysis revealed a protein with a molecular mass of 34,239 Da, which displays 80%, 77% and 45% of amino acid sequence identity with the ebulin l-B chain, SELld and ricin-B chain, respectively. Furthermore, the cloned precursor, with respect to the ebulin l precursor is truncated and contains the signal peptide, a piece of the A chain, a piece of the connecting peptide and the B chain. Further processing yields the lectin protein, which contains only the B chain. Despite the fact that SELlm displays the same d-galactose-binding sites than ricin, it was found that the lectin has different binding properties to D-galactose-containing matrix than ricin. Notably, and unlike ricin, the binding of SELlm and other Sambucus lectins to such matrix was maximum in range of 0-10 degrees C and abolished at 20 degrees C.
Collapse
Affiliation(s)
- Lucía Citores
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Giribaldi M, Perugini I, Sauvage FX, Schubert A. Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF. Proteomics 2007; 7:3154-70. [PMID: 17683049 DOI: 10.1002/pmic.200600974] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Grape berry, a nonclimacteric fruit, during ripening turns from green, hard and acidic to coloured, soft and sweet. Many studies have focused on dynamic changes of mRNA levels, metabolites, sugars or individual proteins, but this is the first report of a proteomic approach applied to the screening of the most prominent variations that take place during berry ripening. Vitis vinifera cv. 'Nebbiolo Lampia' berries were collected at 10-day intervals, starting 1 month after flowering to complete ripe stage; total protein extracts from deseeded berries were separated by 2-DE. A total of 730 spots were detected in the 2-DE gels. 118 protein spots, differentially expressed during berry development, were subjected to MALDI-TOF analysis. Ninety-three of them were identified, corresponding to 101 proteins. The majority of proteins were linked to metabolism, energy and protein synthesis and fate. In comparison to published surveys of major berry proteins, fewer proteins related to stress response and more proteins related to cell structure were differentially expressed. Our data confirm a general decrease of glycolysis during ripening, and an increase of PR proteins in the range of 20-35 kDa. They furthermore suggest that oxidative stress decreases during ripening while extensive cytoskeleton rearrangement takes place in this period.
Collapse
Affiliation(s)
- Marzia Giribaldi
- Dipartimento di Colture Arboree, Università degli Studi di Torino, Grugliasco TO, Italy.
| | | | | | | |
Collapse
|
37
|
Grunwald I, Heinig I, Thole HH, Neumann D, Kahmann U, Kloppstech K, Gau AE. Purification and characterisation of a jacalin-related, coleoptile specific lectin from Hordeum vulgare. PLANTA 2007; 226:225-34. [PMID: 17245569 DOI: 10.1007/s00425-006-0467-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 12/15/2006] [Indexed: 05/13/2023]
Abstract
A plant lectin was isolated from barley (Hordeum vulgare) coleoptiles using acidic extraction and different chromatographic methods. Sequencing of more than 50% of the protein sequence by Edman degradation confirmed a full-length cDNA clone. The subsequently identified open reading frame encodes for a 15 kDa protein which could be found in the soluble fraction of barley coleoptiles. This protein exhibited specificity towards mannose sugar and is therefore, accordingly named as Horcolin (Hordeum vulgare coleoptile lectin). Database searches performed with the Horcolin protein sequence revealed a sequence and structure homology to the lectin family of jacalin-related lectins. Together with its affinity towards mannose, Horcolin is now identified as a new member of the mannose specific subgroup of jacalin-related lectins in monocot species. Horcolin shares a high amino acid homology to the highly light-inducible protein HL#2 and, in addition to two methyl jasmonic acid-inducible proteins of 32.6 and 32.7 kDa where the jasmonic acid-inducible proteins are examples of bitopic chimerolectins containing a dirigent and jacalin-related domain. Immunoblot analysis with a cross-reactive anti-HL#2 antibody in combination with Northern blot analysis of the Horcolin cDNA revealed tissue specific expression of Horcolin in the coleoptiles. The function of Horcolin is discussed in the context of its particular expression in coleoptiles and is then compared to other lectins, which apparently share a related response to biotic or abiotic stress factors.
Collapse
Affiliation(s)
- Ingo Grunwald
- Fraunhofer IFAM, Adhesive Bonding Technology and Surfaces, Wiener Str. 12, 28359, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 2007; 75:179-87. [PMID: 17428553 PMCID: PMC7114093 DOI: 10.1016/j.antiviral.2007.03.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/05/2007] [Accepted: 03/05/2007] [Indexed: 11/26/2022]
Abstract
We describe the antiviral activity of plant lectins with specificity for different glycan structures against the severe acute respiratory syndrome coronavirus (SARS-CoV) and the feline infectious peritonitis virus (FIPV) in vitro. The SARS-CoV emerged in 2002 as an important cause of severe lower respiratory tract infection in humans, and FIPV infection causes a chronic and often fatal peritonitis in cats. A unique collection of 33 plant lectins with different specificities were evaluated. The plant lectins possessed marked antiviral properties against both coronaviruses with EC50 values in the lower microgram/ml range (middle nanomolar range), being non-toxic (CC50) at 50–100 μg/ml. The strongest anti-coronavirus activity was found predominantly among the mannose-binding lectins. In addition, a number of galactose-, N-acetylgalactosamine-, glucose-, and N-acetylglucosamine-specific plant agglutinines exhibited anti-coronaviral activity. A significant correlation (with an r-value of 0.70) between the EC50 values of the 10 mannose-specific plant lectins effective against the two coronaviruses was found. In contrast, little correlation was seen between the activity of other types of lectins. Two targets of possible antiviral intervention were identified in the replication cycle of SARS-CoV. The first target is located early in the replication cycle, most probably viral attachment, and the second target is located at the end of the infectious virus cycle.
Collapse
Affiliation(s)
- Els Keyaerts
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Leen Vijgen
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Belgium
| | - Els Van Damme
- Department of Molecular Biotechnology, University of Gent, Belgium
| | - Willy Peumans
- Department of Molecular Biotechnology, University of Gent, Belgium
| | - Herman Egberink
- Department of Infectious Diseases & Immunology, Veterinary Faculty, Utrecht, The Netherlands
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Belgium
- Corresponding author. Tel.: +32 16 337352; fax: +32 16 337340.
| | - Marc Van Ranst
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
- Corresponding author at: Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium. Tel.: +32 16 347908; fax: +32 16 347900.
| |
Collapse
|
39
|
Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, Hall S, Kilian M, Poulsen K, Mestecky J, Julian BA, Novak J. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol 2007; 44:2598-604. [PMID: 17275907 PMCID: PMC2788496 DOI: 10.1016/j.molimm.2006.12.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 12/07/2006] [Accepted: 12/13/2006] [Indexed: 12/12/2022]
Abstract
Lectins are proteins with specificity of binding to certain monosaccharides or oligosaccharides. They can detect abnormal glycosylation patterns on immunoglobulins in patients with various chronic inflammatory diseases, including rheumatoid arthritis and IgA nephropathy (IgAN). However, lectins exhibit binding heterogeneity, depending on their source and methods of isolation. To characterize potential differences in recognition of terminal N-acetylgalactosamine (GalNAc) on IgA1, we evaluated the binding characteristics of several commercial preparations of GalNAc-specific lectins using a panel of IgA1 and, as controls, IgA2 and IgG myeloma proteins. These lectins originated from snails Helix aspersa (HAA) and Helix pomatia (HPA), and the plant Vicia villosa (VV). Only HAA and HPA bound exclusively to IgA1, with its O-linked glycans composed of GalNAc, galactose, and sialic acid. In contrast, VV reacted with sugars of both IgA subclasses and IgG, indicating that it also recognized N-linked glycans without GalNAc. Furthermore, HAA and HPA from several manufacturers differed in their ability to bind various IgA1 myeloma proteins and other GalNAc-containing glycoproteins in ELISA and Western blot. For serum samples from IgAN patients, HAA was the optimal lectin to study IgA1 glycosylation in ELISA and Western blot assays, including identification of the sites of attachment of the aberrant glycans. The galactose-deficient glycans were site-specific, localized mostly at Thr228 and/or Ser230. Because of the heterogeneity of GalNAc-specific lectins, they should be carefully characterized with appropriate substrates before undertaking any study.
Collapse
Affiliation(s)
- Jennifer S Moore
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nomura K, Ikegami A, Koide A, Yagi F. Glutathione transferase, but not agglutinin, is a dormancy-related protein in Castanea crenata trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:15-23. [PMID: 17296304 DOI: 10.1016/j.plaphy.2006.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 12/29/2006] [Indexed: 05/13/2023]
Abstract
The annual changes in Japanese chestnut (Castanea crenata Sieb. et Zucc.) agglutinin (CCA) were investigated by both protein and RNA blotting analyses, to clarify whether CCA has a function as storage protein. In the woody part of shoots and leaves, CCA expression was only detected at both the protein and RNA levels in May and June. In buds, the CCA protein and mRNA expressions were both restricted to April. However, the amount of accumulated CCA was too low to act as a nitrogen reserve. No expression was observed in the bark at any time point, suggesting that bark does not contain either CCA or CCA-like proteins. These results suggest that CCA may be required in young organs as a defense protein, rather than as a storage protein. In addition, CCA was not related to dormancy, unlike some other woody plant bark lectins. In contrast to CCA, a 28kDa polypeptide was observed to accumulate during dormancy. Sequence analysis indicated that this polypeptide was a glutathione transferase. After cDNA cloning, RNA blot analyses indicated that this glutathione transferase was strongly expressed in woody parts during mid-winter. In shoots, this protein represented approximately 10% of the total soluble protein content. Therefore, in Japanese chestnut trees, glutathione transferase may play a nitrogen storage role in addition to its intrinsic defensive role against stresses during dormancy.
Collapse
Affiliation(s)
- Keiichi Nomura
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | | | | | | |
Collapse
|
41
|
Haraguchi T, Nomura K, Yagi F. Cloning and expression of a mannose-binding jacalin-related lectin from leaves of Japanese cycad (Cycas revoluta Thunb.). Biosci Biotechnol Biochem 2006; 70:2222-9. [PMID: 16960375 DOI: 10.1271/bbb.60156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cycad leaf lectin (CRLL), a mannose-recognizing jacalin-related lectin (mJRL), was first cloned as a gymnosperm lectin and expressed. The cDNA sequence of CRLL (DDBJ, accession no. AB198328), coding 291 amino acid residues, has a tandem repeat of about 150 amino acids divided into N- and C-terminal domains as Japanese chestnut mJRL. Sequence alignment showed deletion and insertion of the sequence, and its putative carbohydrate-binding sites showed some differences from other JRLs. PCR analysis showed that this lectin was expressed in the cycad leaf but not in the root or seed. Recombinant CRLL (rCRLL) was expressed in Escherichia coli and purified by affinity chromatography after refolding procedures. Properties of active rCRLL appeared to be almost the same as those of native CRLL.
Collapse
Affiliation(s)
- Tomokazu Haraguchi
- Applied Biological Chemistry, The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | | | | |
Collapse
|
42
|
Sadeghi A, Van Damme EJM, Peumans WJ, Smagghe G. Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition. PHYTOCHEMISTRY 2006; 67:2078-84. [PMID: 16887156 DOI: 10.1016/j.phytochem.2006.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 05/11/2023]
Abstract
A set of 14 plant lectins was screened in a binary choice bioassay for inhibitory activity on cowpea weevil Callosobruchus maculatus (F.) oviposition. Coating of chickpea seeds (Cicer arietinum L.) with a 0.05% (w/v) solution of plant lectins caused a significant reduction in egg laying. Control experiments with heat inactivated lectin and BSA indicated that the observed deterrent effects are specific and require carbohydrate-binding activity. However, no clear correlation could be established between deterrent activity and sugar-binding specificity/molecular structure of the lectins. Increasing the insect density reduced the inhibitory effect of the lectins confirming that female insects are capable of adjusting their oviposition rates as a function of host availability.
Collapse
Affiliation(s)
- Amin Sadeghi
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
43
|
Sultan NAM, Rao RN, Nadimpalli SK, Swamy MJ. Tryptophan environment, secondary structure and thermal unfolding of the galactose-specific seed lectin from Dolichos lablab: Fluorescence and circular dichroism spectroscopic studies. Biochim Biophys Acta Gen Subj 2006; 1760:1001-8. [PMID: 16650937 DOI: 10.1016/j.bbagen.2006.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/05/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Fluorescence and circular dichroism spectroscopic studies were carried out on the galactose-specific lectin from Dolichos lablab seeds (DLL-II). The microenvironment of the tryptophan residues in the lectin under native and denaturing conditions were investigated by quenching of the intrinsic fluorescence of the protein by a neutral quencher (acrylamide), an anionic quencher (iodide ion) and a cationic quencher (cesium ion). The results obtained indicate that the tryptophan residues of DLL-II are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains residing close to at least some of the tryptophan residues under the experimental conditions. Analysis of the far UV CD spectrum of DLL-II revealed that the secondary structure of the lectin consists of 57% alpha-helix, 21% beta-sheet, 7% beta-turns and 15% unordered structures. Carbohydrate binding did not significantly alter the secondary and tertiary structures of the lectin. Thermal unfolding of DLL-II, investigated by monitoring CD signals, showed a sharp transition around 75 degrees C both in the far UV region (205 nm) and the near UV region (289 nm), which shifted to ca. 77-78 degrees C in the presence of 0.1 M methyl-beta-D-galactopyranoside, indicating that ligand binding leads to a moderate stabilization of the lectin structure.
Collapse
|
44
|
Singh T, Wu JH, Peumans WJ, Rougé P, Van Damme EJM, Wu AM. Recognition profile of Morus nigra agglutinin (Morniga G) expressed by monomeric ligands, simple clusters and mammalian polyvalent glycotopes. Mol Immunol 2006; 44:451-62. [PMID: 16581130 DOI: 10.1016/j.molimm.2006.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 02/21/2006] [Indexed: 11/25/2022]
Abstract
The carbohydrate binding properties of a novel member of the subfamily of galactose-specific jacalin-related lectin isolated from the bark of black mulberry (Morus nigra) (Morniga G) was studied in detail by enzyme-linked lectinosorbent and inhibition assays using panels of monomeric saccharides, mammalian polyvalent glycotopes and polysaccharides. Among the natural glycans tested for lectin binding, Morniga G reacted best with glycoproteins (gps) presenting a high density of tumor-associated carbohydrate antigens Tn (GalNAcalpha1-Ser/Thr) and Talpha (Galbeta1-3GalNAcalpha1-). Their reactivities, on a nanogram basis, were up to 72.5, 3.9x10(3), 6.0x10(3), 8.8x10(3) and 2.9x10(4) times higher than that of Tn-containing glycopeptides (M.W.<3000 Da), monomeric T, Tn, GalNAc and Gal, respectively. It also reacted well with many multi-antennary N-glycans with II (Galbeta1-4GlcNAc) termini, ABH histo-blood group antigens and their precursors containing high densities of I/II and T/Tn glycotopes, and sialylated T/Tn. Among the mono-, di- and oligosaccharides tested, Thomsen-Friedenreich (T) disaccharide with aromatic aglycon [Galbeta1-3GalNAcalpha1-benzyl (Talpha1-benzyl)] and Tn glycopeptides were the best inhibitors. Molecular modeling and docking studies indicated the occurrence of a primary GalNAcalpha1- and Galbeta1-3GalNAc glycotope-binding site in Morniga G. Using a recently proposed system [Wu, A.M., 2003. Carbohydrate structural units in glycoproteins and polysaccharides as important ligands for Gal and GalNAc reactive lectins. J. Biomed. Sci. 10, 676-688], the binding properties of the combining sites of Morniga G can be defined as follows: (i) the monosaccharide specificity is GalNAc/Gal>>Man/Glc, GlcNAc and lFuc; (ii) the mammalian glycotope specificity is Talpha1-benzyl>T>Tn>GalNAcbeta1-3Gal (P), while B/E (Galalpha1-3/4Gal), I/II (Galbeta1-3/4GlcNAc), S (GalNAcbeta1-4Gal), F/A (GalNAcalpha1-3GalNAc/Gal) and L (Galbeta1-4Glc) are inactive; (iii) the most active ligand is T/Tn; (iv) simple clustered Tn or triantennary N-glycans with II termini (Tri-II) have limited impact; (v) high-density polyvalent glycotopes play a prominent role for enhancing Morniga G reactivity. These results provide evidence for the binding of this lectin to dense cell surface T/Tn glycoconjugates and facilitate future usage of this lectin in biotechnological and medical applications.
Collapse
Affiliation(s)
- Tanuja Singh
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, Chang-Gung University, Kwei-san, Tao-yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
daSilva LLP, de Molfetta-Machado JB, Panunto-Castelo A, Denecke J, Goldman GH, Roque-Barreira MC, Goldman MHS. cDNA cloning and functional expression of KM+, the mannose-binding lectin from Artocarpus integrifolia seeds. Biochim Biophys Acta Gen Subj 2005; 1726:251-60. [PMID: 16242845 DOI: 10.1016/j.bbagen.2005.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 09/07/2005] [Accepted: 09/11/2005] [Indexed: 11/23/2022]
Abstract
KM+, a mannose-binding lectin present in the seeds of Artocarpus integrifolia, has interesting biological properties and potential pharmaceutical use [A. Panunto-Castelo, M.A. Souza, M.C. Roque-Barreira, J.S. Silva, KM(+), a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection, Glycobiology 11 (2001) 1035-1042. ; L.L.P. daSilva, A. Panunto-Castelo, M.H.S. Goldman, M.C. Roque-Barreira, R.S. Oliveira, M.D. Baruffi, J.B. Molfetta-Machado, Composition for preventing or treating appearance of epithelia wounds such as skin and corneal wounds or for immunomodulating, comprises lectin, Patent number WO20041008.]. Here, we have isolated clones encoding the full-length KM+ primary sequence from a cDNA library, through matrix PCR-based screening methodology. Analysis of KM+ nucleotide and deduced amino acid sequences provided strong evidence that it neither enters the secretory pathway nor undergoes post-translational modifications, which is in sharp contrast with jacalin, the more abundant lectin from A. integrifolia seeds. Current investigations into the KM+ properties are often impaired by the difficulty in obtaining sufficient quantities of jacalin-free KM+ through direct seed extraction. To obtain active recombinant protein (rKM+) in larger amounts, we tested three different expression systems. Expression vectors were constructed to produce: (a) rKM+ in E. coli in its native form, (b) rKM+ with GST as an N-terminal tag and (c) native rKM+ in Saccharomyces cerevisiae. The presence of the GST-tag significantly improved the overall rKM+ yield; however, most of the obtained rGST-KM+ was insoluble. Production of rKM+ in the yeast host yielded the highest quantities of soluble lectin that retained the typical high-mannose oligosaccharide-binding properties of the natural protein. The possible biotechnological applications of recombinant KM+ are discussed.
Collapse
Affiliation(s)
- Luis L P daSilva
- Depto. Biologia, FFCLRP/Universidade de São Paulo, Av. Bandeirantes, 3900 Ribeirão Preto, SP 14040-901, Brazil
| | | | | | | | | | | | | |
Collapse
|
46
|
Liu Y, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. PLANT PHYSIOLOGY 2005; 139:1545-56. [PMID: 16258019 PMCID: PMC1283788 DOI: 10.1104/pp.105.066837] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Indirect evidence previously suggested that Arabidopsis (Arabidopsis thaliana) vegetative storage protein (VSP) could play a role in defense against herbivorous insects. To test this hypothesis, other AtVSP-like sequences in Arabidopsis were identified through a Basic Local Alignment Search Tool search, and their transcriptional profiles were investigated. In response to methyl jasmonate application or phosphate starvation, AtVSP and AtVSP-like genes exhibited differential expression patterns, suggesting distinct roles played by each member. Arabidopsis VSP2 (AtVSP2), a gene induced by wounding, methyl jasmonate, insect feeding, and phosphate deprivation, was selected for bacterial expression and functional characterization. The recombinant protein exhibited a divalent cation-dependent phosphatase activity in the acid pH range. When incorporated into the diets of three coleopteran and dipteran insects that have acidic gut lumen, recombinant AtVSP2 significantly delayed development of the insects and increased their mortality. To further determine the biochemical basis of the anti-insect activity of the protein, the nucleophilic aspartic acid-119 residue at the conserved DXDXT signature motif was substituted by glutamic acid via site-directed mutagenesis. This single-amino acid alteration did not compromise the protein's secondary or tertiary structure, but resulted in complete loss of its acid phosphatase activity as well as its anti-insect activity. Collectively, we conclude that AtVSP2 is an anti-insect protein and that its defense function is correlated with its acid phosphatase activity.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rabijns A, Barre A, Van Damme EJM, Peumans WJ, De Ranter CJ, Rougé P. Structural analysis of the jacalin-related lectin MornigaM from the black mulberry (Morus nigra) in complex with mannose. FEBS J 2005; 272:3725-32. [PMID: 16008570 DOI: 10.1111/j.1742-4658.2005.04801.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structures of MornigaM and the MornigaM-mannose complex have been determined at 1.8 A and 2.0 A resolution, respectively. Both structures adopt the typical beta-prism motif found in other jacalin-related lectins and their tetrameric assembly closely resembles that of jacalin. The carbohydrate-binding cavity of MornigaM readily binds mannose. No major structural rearrangements can be observed in MornigaM upon binding of mannose. These results allow corroboration of the structure-function relationships within the small group of Moraceae lectins.
Collapse
Affiliation(s)
- Anja Rabijns
- Laboratory of Analytical Chemistry and Medicinal Physicochemistry, Faculty of Pharmaceutical Sciences, K. U. Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Gallego del Sol F, Nagano C, Cavada BS, Calvete JJ. The first crystal structure of a Mimosoideae lectin reveals a novel quaternary arrangement of a widespread domain. J Mol Biol 2005; 353:574-83. [PMID: 16185708 DOI: 10.1016/j.jmb.2005.08.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 11/16/2022]
Abstract
The crystal structures of the apo and mannose-bound Parkia platycephala seed lectin represent the first structure of a Mimosoideae lectin and a novel circular arrangement of beta-prism domains, and highlight the adaptability of the beta-prism fold as a building block in the evolution of plant lectins. The P.platycephala lectin is a dimer both in solution and in the crystals. Mannose binding to each of the three homologous carbohydrate-recognition domains of the lectin occurs through different modes, and restrains the flexibility of surface-exposed loops and residues involved in carbohydrate recognition. The planar array of carbohydrate-binding sites on the rim of the toroid-shaped structure of the P.platycephala lectin dimer immediately suggests a mechanism to promote multivalent interactions leading to cross-linking of carbohydrate ligands as part of the host strategy against phytopredators and pathogens. The cyclic structure of the P.platycephala lectin points to the convergent evolution of a structural principle for the construction of lectins involved in host defense or in attacking other organisms.
Collapse
|
49
|
Nakamura S, Yagi F, Totani K, Ito Y, Hirabayashi J. Comparative analysis of carbohydrate-binding properties of two tandem repeat-type Jacalin-related lectins, Castanea crenata agglutinin and Cycas revoluta leaf lectin. FEBS J 2005; 272:2784-99. [PMID: 15943812 DOI: 10.1111/j.1742-4658.2005.04698.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lectins belonging to the jacalin-related lectin family are distributed widely in the plant kingdom. Recently, two mannose-specific lectins having tandem repeat-type structures were discovered in Castanea crenata (angiosperm) and Cycas revoluta (gymnosperm). The occurrence of such similar molecules in taxonomically less related plants suggests their importance in the plant body. To obtain clues to understand their physiological roles, we performed detailed analysis of their sugar-binding specificity. For this purpose, we compared the dissociation constants (K(d)) of Castanea crenata agglutinin (CCA) and Cycas revoluta leaf lectin (CRLL) by using 102 pyridylaminated and 13 p-nitrophenyl oligosaccharides with a recently developed automated system for frontal affinity chromatography. As a result, we found that the basic carbohydrate-binding properties of CCA and CRLL were similar, but differed in their preference for larger N-linked glycans (e.g. Man7-9 glycans). While the affinity of CCA decreased with an increase in the number of extended alpha1-2 mannose residues, CRLL could recognize these Man7-9 glycans with much enhanced affinity. Notably, both lectins also preserved considerable affinity for mono-antennary, complex type N-linked glycans, though the specificity was much broader for CCA. The information obtained here should be helpful for understanding their functions in vivo as well as for development of useful probes for animal cells. This is the first systematic approach to elucidate the fine specificities of plant lectins by means of high-throughput, automated frontal affinity chromatography.
Collapse
Affiliation(s)
- Sachiko Nakamura
- Glycostructure Analysis Team, Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
50
|
Wu AM, Wu JH, Singh T, Chu KC, Peumans WJ, Rougé P, Van Damme EJM. A novel lectin (Morniga M) from mulberry (Morus nigra) bark recognizes oligomannosyl residues in N-glycans. J Biomed Sci 2005; 11:874-85. [PMID: 15591785 DOI: 10.1007/bf02254373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 06/10/2004] [Indexed: 10/25/2022] Open
Abstract
Morniga M is a jacalin-related and mannose-specific lectin isolated from the bark of the mulberry (Morus nigra). In order to understand the function and application of this novel lectin, the binding property of Morniga M was studied in detail using an enzyme-linked lectinosorbent assay and lectin-glycan inhibition assay with extended glycan/ligand collection. From the results, it was found that the di-, tri-, and oligomannosyl structural units of N-glycans such as those of the bovine alpha1-acid glycoprotein (gp) and lactoferrin were the most active gps, but not the O-glycans or polysaccharides including mannan from yeast. The binding affinity of Morniga M for ligands can be ranked in decreasing order as follows: gps carrying multiple N-glycans with oligomannosyl residues >> N-glycopeptide with a single trimannosyl core > Tri-Man oligomer [Man alpha1-->6(Man alpha1-->3) Man], Penta-Man oligomer [Man alpha1-->6(Man alpha1-->3)Man alpha1-->6(Man alpha1-->3) Man] > or = Man alpha1-->2, 3 or 6 Man > Man > GlcNAc, Glc >> L-Fuc, Gal, GalNAc (inactive), demonstrating the unique specificity of this lectin that may not only assist in our understanding of cell surface carbohydrate ligand-lectin recognition, but also provide informative guidelines for the application of this structural probe in biotechnological and clinical regimens, especially in the detection and purification of N-linked glycans.
Collapse
Affiliation(s)
- Albert M Wu
- Glyco-Immunochemistry Research Laboratory, Institute of Molecular and Cellular Biology, Chang-Gung University, Kweishan, Taoyuan, Taiwan.
| | | | | | | | | | | | | |
Collapse
|