1
|
Sybilska E, Collin A, Sadat Haddadi B, Mur LAJ, Beckmann M, Guo W, Simpson CG, Daszkowska-Golec A. The cap-binding complex modulates ABA-responsive transcript splicing during germination in barley (Hordeum vulgare). Sci Rep 2024; 14:18278. [PMID: 39107424 PMCID: PMC11303550 DOI: 10.1038/s41598-024-69373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
To decipher the molecular bases governing seed germination, this study presents the pivotal role of the cap-binding complex (CBC), comprising CBP20 and CBP80, in modulating the inhibitory effects of abscisic acid (ABA) in barley. Using both single and double barley mutants in genes encoding the CBC, we revealed that the double mutant hvcbp20.ab/hvcbp80.b displays ABA insensitivity, in stark contrast to the hypersensitivity observed in single mutants during germination. Our comprehensive transcriptome and metabolome analysis not only identified significant alterations in gene expression and splicing patterns but also underscored the regulatory nexus among CBC, ABA, and brassinosteroid (BR) signaling pathways.
Collapse
Affiliation(s)
- Ewa Sybilska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Collin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | | | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Manfred Beckmann
- Department of Life Science, Aberystwyth University, Aberystwyth, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, James Hutton Institute, Dundee, DD2 5DA, Scotland, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
2
|
Sybilska E, Daszkowska-Golec A. Alternative splicing in ABA signaling during seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1144990. [PMID: 37008485 PMCID: PMC10060653 DOI: 10.3389/fpls.2023.1144990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is an essential step in a plant's life cycle. It is controlled by complex physiological, biochemical, and molecular mechanisms and external factors. Alternative splicing (AS) is a co-transcriptional mechanism that regulates gene expression and produces multiple mRNA variants from a single gene to modulate transcriptome diversity. However, little is known about the effect of AS on the function of generated protein isoforms. The latest reports indicate that alternative splicing (AS), the relevant mechanism controlling gene expression, plays a significant role in abscisic acid (ABA) signaling. In this review, we present the current state of the art about the identified AS regulators and the ABA-related changes in AS during seed germination. We show how they are connected with the ABA signaling and the seed germination process. We also discuss changes in the structure of the generated AS isoforms and their impact on the functionality of the generated proteins. Also, we point out that the advances in sequencing technology allow for a better explanation of the role of AS in gene regulation by more accurate detection of AS events and identification of full-length splicing isoforms.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
3
|
Wyrzykowska A, Bielewicz D, Plewka P, Sołtys‐Kalina D, Wasilewicz‐Flis I, Marczewski W, Jarmolowski A, Szweykowska‐Kulinska Z. The MYB33, MYB65, and MYB101 transcription factors affect Arabidopsis and potato responses to drought by regulating the ABA signaling pathway. PHYSIOLOGIA PLANTARUM 2022; 174:e13775. [PMID: 36050907 PMCID: PMC9828139 DOI: 10.1111/ppl.13775] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the main climate threats limiting crop production. Potato is one of the four most important food crop species worldwide and is sensitive to water shortage. The CBP80 gene was shown to affect Arabidopsis and potato responses to drought by regulating the level of microRNA159 and, consequently, the levels of the MYB33 and MYB101 transcription factors (TFs). Here, we show that three MYB TFs, MYB33, MYB65, and MYB101, are involved in plant responses to water shortage. Their downregulation in Arabidopsis causes stomatal hyposensitivity to abscisic acid (ABA), leading to reduced tolerance to drought. Transgenic Arabidopsis and potato plants overexpressing these genes, with a mutated recognition site in miR159, show hypersensitivity to ABA and relatively high tolerance to drought conditions. Thus, the MYB33, MYB65, and MYB101 genes may be potential targets for innovative breeding to obtain crops with relatively high tolerance to drought.
Collapse
Affiliation(s)
- Anna Wyrzykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Patrycja Plewka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Dorota Sołtys‐Kalina
- Plant Breeding and Acclimatization Institute – National Research InstituteMłochówMasovian VoivodeshipPoland
| | - Iwona Wasilewicz‐Flis
- Plant Breeding and Acclimatization Institute – National Research InstituteMłochówMasovian VoivodeshipPoland
| | - Waldemar Marczewski
- Plant Breeding and Acclimatization Institute – National Research InstituteMłochówMasovian VoivodeshipPoland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| | - Zofia Szweykowska‐Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of BiologyAdam Mickiewicz UniversityPoznańWielkopolskiePoland
| |
Collapse
|
4
|
Yan Y, Gan J, Tao Y, Okita TW, Tian L. RNA-Binding Proteins: The Key Modulator in Stress Granule Formation and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:882596. [PMID: 35783947 PMCID: PMC9240754 DOI: 10.3389/fpls.2022.882596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
To cope with abiotic environmental stress, plants rapidly change their gene expression transcriptionally and post-transcriptionally, the latter by translational suppression of selected proteins and the assembly of cytoplasmic stress granules (SGs) that sequester mRNA transcripts. RNA-binding proteins (RBPs) are the major players in these post-transcriptional processes, which control RNA processing in the nucleus, their export from the nucleus, and overall RNA metabolism in the cytoplasm. Because of their diverse modular domain structures, various RBP types dynamically co-assemble with their targeted RNAs and interacting proteins to form SGs, a process that finely regulates stress-responsive gene expression. This review summarizes recent findings on the involvement of RBPs in adapting plants to various abiotic stresses via modulation of specific gene expression events and SG formation. The relationship of these processes with the stress hormone abscisic acid (ABA) is discussed.
Collapse
Affiliation(s)
- Yanyan Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Jianghuang Gan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yilin Tao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Thomas W. Okita,
| | - Li Tian
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable (Ministry of Agriculture and Rural Affairs), Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- Li Tian,
| |
Collapse
|
5
|
Gomes AL, Revermann R, Meller P, Gonçalves FMP, Aidar MPM, Lages F, Finckh M. Functional traits and symbiotic associations of geoxyles and trees explain the dominance of detarioid legumes in miombo ecosystems. THE NEW PHYTOLOGIST 2021; 230:510-520. [PMID: 33411968 DOI: 10.1111/nph.17168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The miombo region in Africa is covered by a mosaic of woodlands and geoxylic grasslands and is subject to disturbances such as fires, frost and drought, and low nutrient availability. The dominance of Fabaceae Detarioideae species in miombo ecosystems is remarkable but little understood. We therefore compared plant functional traits (PFTs) of common woody species of the Angolan plateau, grouped by life form (trees, geoxyles), lineage (Fabaceae: Detarioideae, non-Detarioideae) and symbiont association (ectomycorrhiza, rhizobia). PFTs reflect group-specific adaptations to prevalent environmental conditions. To analyse the impact of environmental drivers, we selected PFTs reflecting ecophysiological aspects of leaf morphology, nutrient content and water transport. Traits were measured following standardized protocols. We found differences in key PFTs between trees and geoxyles reflecting both life form-specific adaptations to environmental conditions and lineage-specific strategies to cope with environmental stresses. We interpret higher leaf thickness and higher wood density of geoxyles as responses to harsher open environments. Fabaceae in general and ectomycorrhizal species showed better nutrient status. Symbiotic associations of detarioid legumes with ectomycorrhiza show specific advantages for phosphorous uptake as compared to Rhizobia-associated Fabaceae and to non-Fabaceae and thus may be crucial for the stunning dominance of Detarioideae in miombo landscapes.
Collapse
Affiliation(s)
- Amândio L Gomes
- Faculty of Sciences, Agostinho Neto University, Av. 4 de Fevereiro 71, Luanda, CP 815, Angola
- Biodiversity, Evolution and Ecology of Plants, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Rasmus Revermann
- Biodiversity, Evolution and Ecology of Plants, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
- Faculty of Natural Resources and Spatial Sciences, Namibia University of Science and Technology, Windhoek, 10005, Namibia
| | - Paulina Meller
- Biodiversity, Evolution and Ecology of Plants, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| | - Francisco M P Gonçalves
- Biodiversity, Evolution and Ecology of Plants, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
- Department of Natural Sciences, Herbarium of Lubango, ISCED Huíla, Sarmento Rodrigues str., Lubango, CP 230, Angola
| | - Marcos P M Aidar
- Plant Physiology and Biochemistry, Institute of Botany, São Paulo, CP 3005, CEP 01061-970, Brazil
| | - Fernanda Lages
- Department of Natural Sciences, Herbarium of Lubango, ISCED Huíla, Sarmento Rodrigues str., Lubango, CP 230, Angola
| | - Manfred Finckh
- Biodiversity, Evolution and Ecology of Plants, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
| |
Collapse
|
6
|
Arabidopsis ACINUS is O-glycosylated and regulates transcription and alternative splicing of regulators of reproductive transitions. Nat Commun 2021; 12:945. [PMID: 33574257 PMCID: PMC7878923 DOI: 10.1038/s41467-021-20929-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
O-GlcNAc modification plays important roles in metabolic regulation of cellular status. Two homologs of O-GlcNAc transferase, SECRET AGENT (SEC) and SPINDLY (SPY), which have O-GlcNAc and O-fucosyl transferase activities, respectively, are essential in Arabidopsis but have largely unknown cellular targets. Here we show that AtACINUS is O-GlcNAcylated and O-fucosylated and mediates regulation of transcription, alternative splicing (AS), and developmental transitions. Knocking-out both AtACINUS and its distant paralog AtPININ causes severe growth defects including dwarfism, delayed seed germination and flowering, and abscisic acid (ABA) hypersensitivity. Transcriptomic and protein-DNA/RNA interaction analyses demonstrate that AtACINUS represses transcription of the flowering repressor FLC and mediates AS of ABH1 and HAB1, two negative regulators of ABA signaling. Proteomic analyses show AtACINUS's O-GlcNAcylation, O-fucosylation, and association with splicing factors, chromatin remodelers, and transcriptional regulators. Some AtACINUS/AtPININ-dependent AS events are altered in the sec and spy mutants, demonstrating a function of O-glycosylation in regulating alternative RNA splicing.
Collapse
|
7
|
Daszkowska-Golec A, Karcz J, Plociniczak T, Sitko K, Szarejko I. Cuticular waxes-A shield of barley mutant in CBP20 (Cap-Binding Protein 20) gene when struggling with drought stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110593. [PMID: 33180718 DOI: 10.1016/j.plantsci.2020.110593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
CBP20 (Cap-Binding Protein 20) encodes a small subunit of nuclear Cap-Binding Complex (nCBC) that together with CBP80 binds mRNA cap. We previously described barley hvcbp20.ab mutant that demonstrated higher leaf water content and faster stomatal closure than the WT after drought stress. Hence, we presumed that the better water-saving mechanism in hvcbp20.ab may result from the lower permeability of epidermis that together with stomata action limit the water evaporation under drought stress. We asked whether hvcbp20.ab exhibited any differences in wax load on the leaf surface when subjected to drought in comparison to WT cv. 'Sebastian'. To address this question, we investigated epicuticular wax structure and chemical composition under drought stress in hvcbp20.ab mutant and its WT. We showed that hvcbp20.ab mutant exhibited the increased deposition of cuticular wax. Moreover, our gene expression results suggested a role of HvCBP20 as a negative regulator of both, the biosynthesis of waxes at the level of alkane-forming, and waxes transportation. Interestingly, we also observed increased wax deposition in Arabidopsis cbp20 mutant exposed to drought, which allowed us to describe the CBP20-regulated epicuticular wax accumulation under drought stress in a wider evolutionarily context.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland.
| | - Jagna Karcz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Tomasz Plociniczak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Krzysztof Sitko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032, Katowice, Poland
| |
Collapse
|
8
|
Arabidopsis thaliana cbp80, c2h2, and flk Knockout Mutants Accumulate Increased Amounts of Circular RNAs. Cells 2020; 9:cells9091937. [PMID: 32825779 PMCID: PMC7564263 DOI: 10.3390/cells9091937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are the products of the non-canonical splicing of pre-mRNAs. In contrast to humans and animals, our knowledge of the biogenesis and function of circRNAs in plants is very scarce. To identify proteins involved in plant circRNA generation, we characterized the transcriptomes of 18 Arabidopsis thaliana knockout mutants for genes related to splicing. The vast majority (>90%) of circRNAs were formed in more than one variant; only a small fraction of circRNAs was mutant-specific. Five times more circRNA types were identified in cbp80 and three times more in c2h2 mutants than in the wild-type. We also discovered that in cbp80, c2h2 and flk mutants, the accumulation of circRNAs was significantly increased. The increased accumulation of circular transcripts was not accompanied by corresponding changes in the accumulation of linear transcripts. Our results indicate that one of the roles of CBP80, C2H2 and FLK in splicing is to ensure the proper order of the exons. In the absence of one of the above-mentioned factors, the process might be altered, leading to the production of circular transcripts. This suggests that the transition toward circRNA production can be triggered by factors sequestering these proteins. Consequently, the expression of linear transcripts might be regulated through circRNA production.
Collapse
|
9
|
Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U, Ali E, Fahad S. Phytohormones enhanced drought tolerance in plants: a coping strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33103-33118. [PMID: 30284160 DOI: 10.1007/s11356-018-3364-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/27/2018] [Indexed: 05/20/2023]
Abstract
Drought stress is a severe environmental constraint among the emerging problems. Plants are highly vulnerable to drought stress and a severe decrease in yield was recorded in the last few decades. So, it is highly desirable to understand the mechanism of drought tolerance in plants and consequently enhance the tolerance against drought stress. Phytohormones are known to play vital roles in regulating various phenomenons in plants to acclimatize to varying drought environment. Abscisic acid (ABA) is considered the main hormone which intensifies drought tolerance in plants through various morpho-physiological and molecular processes including stomata regulation, root development, and initiation of ABA-dependent pathway. In addition, jasmonic acid (JA), salicylic acid (SA) ethylene (ET), auxins (IAA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs) are also very important phytohormones to congregate the challenges of drought stress. However, these hormones are usually cross talk with each other to increase the survival of plants in drought conditions. On the other hand, the transgenic approach is currently the most accepted technique to engineer the genes responsible for the synthesis of phytohormones in drought stress response. Our present review highlights the regulatory circuits of phytohormones in drought tolerance mechanism.
Collapse
Affiliation(s)
- Abid Ullah
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
- Department of Botany, University of Malakand, Chakdara Dir Lower, Khyber Pakhtunkhwa, 18550, Pakistan.
| | - Hakim Manghwar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Adnan Akbar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- Department of Agriculture, University of Swabi, Swabi, KPK, Pakistan
| |
Collapse
|
10
|
Daszkowska-Golec A. Emerging Roles of the Nuclear Cap-Binding Complex in Abiotic Stress Responses. PLANT PHYSIOLOGY 2018; 176:242-253. [PMID: 29142023 PMCID: PMC5761810 DOI: 10.1104/pp.17.01017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 05/26/2023]
Abstract
Plant nuclear CBC consisted of two subunits (CBP20 and CBP80) is involved in both conserved processes related to RNA metabolism and simultaneously in extremely dynamic plant stress response.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
11
|
Daszkowska-Golec A, Skubacz A, Marzec M, Slota M, Kurowska M, Gajecka M, Gajewska P, Płociniczak T, Sitko K, Pacak A, Szweykowska-Kulinska Z, Szarejko I. Mutation in HvCBP20 ( Cap Binding Protein 20) Adapts Barley to Drought Stress at Phenotypic and Transcriptomic Levels. FRONTIERS IN PLANT SCIENCE 2017; 8:942. [PMID: 28626467 PMCID: PMC5454077 DOI: 10.3389/fpls.2017.00942] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 05/20/2023]
Abstract
CBP20 (Cap-Binding Protein 20) encodes a small subunit of the cap-binding complex (CBC), which is involved in the conserved cell processes related to RNA metabolism in plants and, simultaneously, engaged in the signaling network of drought response, which is dependent on ABA. Here, we report the enhanced tolerance to drought stress of barley mutant in the HvCBP20 gene manifested at the morphological, physiological, and transcriptomic levels. Physiological analyses revealed differences between the hvcbp20.ab mutant and its WT in response to a water deficiency. The mutant exhibited a higher relative water content (RWC), a lower stomatal conductance and changed epidermal pattern compared to the WT after drought stress. Transcriptome analysis using the Agilent Barley Microarray integrated with observed phenotypic traits allowed to conclude that the hvcbp20.ab mutant exhibited better fitness to stress conditions by its much more efficient and earlier activation of stress-preventing mechanisms. The network hubs involved in the adjustment of hvcbp20.ab mutant to the drought conditions were proposed. These results enabled to make a significant progress in understanding the role of CBP20 in the drought stress response.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Anna Skubacz
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Michal Slota
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Marzena Kurowska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Monika Gajecka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Patrycja Gajewska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Tomasz Płociniczak
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Krzysztof Sitko
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Faculty of Biology, Adam Mickiewicz University in PoznanPoznań, Poland
| | | | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in KatowiceKatowice, Poland
| |
Collapse
|
12
|
Liang Y, Richardson S, Yan J, Benites VT, Cheng-Yue C, Tran T, Mortimer J, Mukhopadhyay A, Keasling JD, Scheller HV, Loqué D. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants. ACS Synth Biol 2017; 6:806-816. [PMID: 28094975 DOI: 10.1021/acssynbio.6b00295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. Meeting these challenges will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression-repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repress transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Using a bioinformatics approach, we identified 54 orthologous systems from various bacteria, and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.
Collapse
Affiliation(s)
- Yan Liang
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Sarah Richardson
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jingwei Yan
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Veronica T. Benites
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Clarabelle Cheng-Yue
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Thu Tran
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jenny Mortimer
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Henrik V. Scheller
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dominique Loqué
- Joint BioEnergy Institute, EmeryStation East, 5885 Hollis Street, 4th Floor, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- INSA de Lyon, CNRS, UMR5240, Microbiologie,
Adaptation et Pathogénie, Université Claude Bernard Lyon 1, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| |
Collapse
|
13
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
14
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|
15
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 612] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
16
|
Zielezinski A, Dolata J, Alaba S, Kruszka K, Pacak A, Swida-Barteczka A, Knop K, Stepien A, Bielewicz D, Pietrykowska H, Sierocka I, Sobkowiak L, Lakomiak A, Jarmolowski A, Szweykowska-Kulinska Z, Karlowski WM. mirEX 2.0 - an integrated environment for expression profiling of plant microRNAs. BMC PLANT BIOLOGY 2015; 15:144. [PMID: 26141515 PMCID: PMC4490709 DOI: 10.1186/s12870-015-0533-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/23/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs are the key post-transcriptional regulators of gene expression in development and stress responses. Thus, precisely quantifying the level of each particular microRNA is of utmost importance when studying the biology of any organism. DESCRIPTION The mirEX 2.0 web portal ( http://www.combio.pl/mirex ) provides a comprehensive platform for the exploration of microRNA expression data based on quantitative Real Time PCR and NGS sequencing experiments, covering various developmental stages, from wild-type to mutant plants. The portal includes mature and pri-miRNA expression levels detected in three plant species (Arabidopsis thaliana, Hordeum vulgare and Pellia endiviifolia), and in A. thaliana miRNA biogenesis pathway mutants. In total, the database contains information about the expression of 461 miRNAs representing 268 families. The data can be explored through the use of advanced web tools, including (i) a graphical query builder system allowing a combination of any given species, developmental stages and tissues, (ii) a modular presentation of the results in the form of thematic windows, and (iii) a number of user-friendly utilities such as a community-building discussion system and extensive tutorial documentation (e.g., tooltips, exemplary videos and presentations). All data contained within the mirEX 2.0 database can be downloaded for use in further applications in a context-based way from the result windows or from a dedicated web page. CONCLUSIONS The mirEX 2.0 portal provides the plant research community with easily accessible data and powerful tools for application in multi-conditioned analyses of miRNA expression from important plant species in different biological and developmental backgrounds.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Jakub Dolata
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Sylwia Alaba
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Aleksandra Swida-Barteczka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Katarzyna Knop
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Agata Stepien
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Halina Pietrykowska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Lukasz Sobkowiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Alicja Lakomiak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Zofia Szweykowska-Kulinska
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland.
| |
Collapse
|
17
|
Zehnálek J, Adam V, Kizek R. Influence of potassium on growth, content of mineral nutrients and yield formation of the spring barley (Hordeum vulgare L.). ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun200654010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS One 2014; 9:e90706. [PMID: 24598973 PMCID: PMC3944608 DOI: 10.1371/journal.pone.0090706] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/04/2014] [Indexed: 11/29/2022] Open
Abstract
Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.
Collapse
Affiliation(s)
- Clara Pons
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Cristina Martí
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Javier Forment
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Carlos H. Crisosto
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Antonio Granell
- Plant Genomics and Biotechnology lab, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
19
|
Raczynska KD, Stepien A, Kierzkowski D, Kalak M, Bajczyk M, McNicol J, Simpson CG, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2013; 42:1224-44. [PMID: 24137006 PMCID: PMC3902902 DOI: 10.1093/nar/gkt894] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved.
Collapse
Affiliation(s)
- Katarzyna Dorota Raczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland, Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland, Max Planck Institute for Plant Breading Research, 50829, Germany, Biomathematics and Statistics Scotland (BioSS), James Hutton Institute, Dundee DD2 5DA, Scotland, UK, Cell and Molecular Sciences, James Hutton Institute, Dundee DD2 5DA, Scotland, UK and Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Towards the identification of new genes involved in ABA-dependent abiotic stresses using Arabidopsis suppressor mutants of abh1 hypersensitivity to ABA during seed germination. Int J Mol Sci 2013; 14:13403-32. [PMID: 23807502 PMCID: PMC3742194 DOI: 10.3390/ijms140713403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/20/2013] [Accepted: 06/06/2013] [Indexed: 01/23/2023] Open
Abstract
Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.
Collapse
|
21
|
Daszkowska-Golec A, Szarejko I. Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:138. [PMID: 23717320 PMCID: PMC3652521 DOI: 10.3389/fpls.2013.00138] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
Two highly specialized cells, the guard cells that surround the stomatal pore, are able to integrate environmental and endogenous signals in order to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of stomata is regulated by the integration of environmental signals and endogenous hormonal stimuli. The various different factors to which the guard cells respond translates into the complexity of the network of signaling pathways that control stomatal movements. The perception of an abiotic stress triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA), is the best-known stress hormone that closes the stomata, although other phytohormones, such as jasmonic acid, brassinosteroids, cytokinins, or ethylene are also involved in the stomatal response to stresses. As a part of the drought response, ABA may interact with jasmonic acid and nitric oxide in order to stimulate stomatal closure. In addition, the regulation of gene expression in response to ABA involves genes that are related to ethylene, cytokinins, and auxin signaling. In this paper, recent findings on phytohormone crosstalk, changes in signaling pathways including the expression of specific genes and their impact on modulating stress response through the closing or opening of stomata, together with the highlights of gaps that need to be elucidated in the signaling network of stomatal regulation, are reviewed.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
22
|
McDowell SC, Akmakjian G, Sladek C, Mendoza-Cozatl D, Morrissey JB, Saini N, Mittler R, Baxter I, Salt DE, Ward JM, Schroeder JI, Guerinot ML, Harper JF. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions. PLoS One 2013; 8:e63014. [PMID: 23671651 PMCID: PMC3646034 DOI: 10.1371/journal.pone.0063014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport.
Collapse
Affiliation(s)
- Stephen C McDowell
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pieczynski M, Marczewski W, Hennig J, Dolata J, Bielewicz D, Piontek P, Wyrzykowska A, Krusiewicz D, Strzelczyk-Zyta D, Konopka-Postupolska D, Krzeslowska M, Jarmolowski A, Szweykowska-Kulinska Z. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:459-69. [PMID: 23231480 DOI: 10.1111/pbi.12032] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 05/03/2023]
Abstract
Developing new strategies for crop plants to respond to drought is crucial for their innovative breeding. The down-regulation of nuclear cap-binding proteins in Arabidopsis renders plants drought tolerant. The CBP80 gene in the potato cultivar Desiree was silenced using artificial microRNAs. Transgenic plants displayed a higher tolerance to drought, ABA-hypersensitive stomatal closing, an increase in leaf stomata and trichome density, and compact cuticle structures with a lower number of microchannels. These findings were correlated with a higher tolerance to water stress. The level of miR159 was decreased, and the levels of its target mRNAs MYB33 and MYB101 increased in the transgenic plants subjected to drought. Similar trends were observed in an Arabidopsis cbp80 mutant. The evolutionary conservation of CBP80, a gene that plays a role in the response to drought, suggests that it is a candidate for genetic manipulations that aim to obtain improved water-deficit tolerance of crop plants.
Collapse
Affiliation(s)
- Marcin Pieczynski
- Department of Gene Expression, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Daszkowska-Golec A, Wojnar W, Rosikiewicz M, Szarejko I, Maluszynski M, Szweykowska-Kulinska Z, Jarmolowski A. Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4-in response to ABA and abiotic stresses during seed germination. PLANT MOLECULAR BIOLOGY 2013; 81. [PMID: 23196831 PMCID: PMC3527740 DOI: 10.1007/s11103-012-9991-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although the importance of abscisic acid (ABA) in plant development and response to abiotic and biotic stresses is well recognized, the molecular basis of the signaling pathway has not been fully elucidated. Mutants in genes related to ABA are widely used as a tool for gaining insight into the mechanisms of ABA signal transduction and ABA-dependent stress response. We used a genetic approach of a suppressor screening in order to decipher the interaction between ABH1 (CBP80) and other components of ABA signaling. ABH1 (CBP80) encodes a large subunit of CBC (CAP BINDING COMPLEX) and the abh1 mutant is drought-tolerant and hypersensitive to ABA during seed germination. The suppressor mutants of abh1 were generated after chemical mutagenesis. The mutant named soa1 (suppressor of abh1 hypersensitivity to ABA 1) displayed an ABA-insensitive phenotype during seed germination. The genetic analysis showed that the soa1 phenotype is dominant in relation to abh1 and segregates as a single locus. Based on soa1's response to a wide spectrum of physiological assays during different stages of development, we used the candidate-genes approach in order to identify a suppressor gene. The molecular analysis revealed that mutation causing the phenotype of soa1 occurred in the ABI4 (ABA insensitive 4) gene. Analysis of pre-miR159 expression, whose processing depends on CBC, as well as targets of miR159: MYB33 and MYB101, which are positive regulators of ABA signaling, revealed a possible link between CBP80 (ABH1) and ABI4 presented here.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Shi C, Baldwin IT, Wu J. Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:99-114. [PMID: 22353561 DOI: 10.1111/j.1744-7909.2012.01093.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an important mRNA quality surveillance pathway in all eukaryotes that eliminates aberrant mRNAs derived from various sources. Three NMD factor proteins, UPF1, UPF2, and UPF3 are required for the NMD process and were found to be also involved in certain stress responses in mammalian and yeast cells. Using Arabidopsis thaliana mutants of UPF1 and UPF3 and UPF2-silenced lines (irUPF2), we examined the involvement of UPF1, UPF2, and UPF3 in development and in response to stresses, wounding and infection by Pseudomonas syringae pv. tomato strain DC3000. Under the long (16 h) photoperiod condition, Arabidopsis having a defect in NMD factors exhibited altered morphologies of various organs, disturbed homeostasis of wounding-induced jasmonic acid and pathogen-elicited salicylic acid, and abnormal wounding- and methyl jasmonate-induced changes in the transcript levels of two defense-related genes, LOX2 and VSP2. Importantly, when plants were cultivated under the short (10 h) photoperiod condition, mutants of UPF1 and UPF3 and irUPF2 showed smaller differences from the wild-type plants in growth and stress-induced responses. These data suggest a complex regulatory network, likely composed of light signaling and NMD factor-mediated pathways, in influencing plant development and adaption to environmental stresses.
Collapse
Affiliation(s)
- Chuan Shi
- Department of Medical Engineering and Biotechnology, University of Applied Sciences, Jena, 07745 Germany
| | | | | |
Collapse
|
26
|
Meier I. mRNA export and sumoylation-Lessons from plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:531-7. [PMID: 22306659 DOI: 10.1016/j.bbagrm.2012.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 01/22/2023]
Abstract
SUMO is a small ubiquitin-related protein modifier that is involved in a number of biological processes, including transcription, DNA repair, genome stability, and chromatin organization. Its potential role in mRNA biogenesis is less well investigated. The biogenesis of mRNA is closely coupled to transcription as well as mRNA nuclear export and several of the involved proteins have dual roles and appear in several complexes. Recently, SUMO-proteome analyses have discovered a number of these proteins as putative targets of SUMO regulation. In the model plant Arabidopsis thaliana, several mutants as well as environmental conditions have been identified that show a close correlation between over- and under-sumoylation of nuclear proteins and mRNA export retention. Three new plant SUMO-proteome studies add to the list of potentially sumoylated RNA-related proteins. Here, the emerging connection between SUMO and mRNA export is compared across kingdoms and its potential mechanistic role is discussed. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
27
|
Joshi-Saha A, Valon C, Leung J. Abscisic acid signal off the STARting block. MOLECULAR PLANT 2011; 4:562-80. [PMID: 21746700 DOI: 10.1093/mp/ssr055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The year 2009 marked a real turnaround in our understanding of the mode of abscisic acid (ABA) action. Nearly 25 years had elapsed since the first biochemical detection of ABA-binding proteins in the plasmalemma of Vicia guard cells was reported. This recent--and laudable--achievement is owed largely to the discovery of the soluble ABA receptors whose major interacting proteins happen to be some of the most well-established components of earliest steps in ABA signaling. These soluble receptors, with the double name of PYRABACTIN RESISTANCE (PYR) or REGULATORY COMPONENT OF ABA RECEPTOR (RCAR), are a family of Arabidopsis proteins of about 150-200 amino acids that share a conserved START domain. The ABA signal transduction circuitry under non-stress conditions is muted by the clade A protein phosphatases 2C (PP2C) (notably HAB1, ABI1, and ABI2). During the initial steps of ABA signaling, the binding of the hormone to the receptor induces a conformational change in the latter that allows it to sequester the PP2Cs. This excludes them from the negative regulation of the downstream ABA-activated kinases (OST1/SnRK2.6/SRK2E, SnRK2.2, and SnRK2.3), thus unleashing the pathway by freeing them to phosphorylate downstream targets that now include several b-ZIP transcription factors, ion channels (SLAC1, KAT1), and a NADPH oxidase (AtrbohF). The discovery of this family of soluble receptors and the rich insight already gained from structural studies of their complexes with different isoforms of ABA, PP2C, and the synthetic agonist pyrabactin lay the foundation towards rational design of chemical switches that can bolster drought hardiness in plants.
Collapse
Affiliation(s)
- Archana Joshi-Saha
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, UPR2355, 1 Avenue de la Terrasse, Bât. 23, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
28
|
Krugman T, Peleg Z, Quansah L, Chagué V, Korol AB, Nevo E, Saranga Y, Fait A, Chalhoub B, Fahima T. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct Integr Genomics 2011; 11:565-83. [PMID: 21656015 DOI: 10.1007/s10142-011-0231-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 12/27/2022]
Abstract
Transcriptomic and metabolomic profiles were used to unravel drought adaptation mechanisms in wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of cultivated wheat, by comparing the response to drought stress in roots of genotypes contrasting in drought tolerance. The differences between the drought resistant (R) and drought susceptible (S) genotypes were characterized mainly by shifts in expression of hormone-related genes (e.g., gibberellins, abscisic acid (ABA) and auxin), including biosynthesis, signalling and response; RNA binding; calcium (calmodulin, caleosin and annexin) and phosphatidylinositol signalling, in the R genotype. ABA content in the roots of the R genotype was higher in the well-watered treatment and increased in response to drought, while in the S genotype ABA was invariant. The metabolomic profiling revealed in the R genotype a higher accumulation of tricarboxylic acid cycle intermediates and drought-related metabolites, including glucose, trehalose, proline and glycine. The integration of transcriptomics and metabolomics results indicated that adaptation to drought included efficient regulation and signalling pathways leading to effective bio-energetic processes, carbon metabolism and cell homeostasis. In conclusion, mechanisms of drought tolerance were identified in roots of wild emmer wheat, supporting our previous studies on the potential of this genepool as a valuable source for novel candidate genes to improve drought tolerance in cultivated wheat.
Collapse
Affiliation(s)
- Tamar Krugman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. PLANT CELL REPORTS 2011; 30:153-76. [PMID: 20960203 PMCID: PMC3020307 DOI: 10.1007/s00299-010-0928-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 05/19/2023]
Abstract
Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants.
Collapse
Affiliation(s)
- Thomas Merkle
- Faculty of Biology, Institute for Genome Research and Systems Biology, University of Bielefeld, 33594 Bielefeld, Germany.
| |
Collapse
|
30
|
Jäger K, Fábián A, Tompa G, Deák C, Höhn M, Olmedilla A, Barnabás B, Papp I. New phenotypes of the drought-tolerant cbp20 Arabidopsis thaliana mutant have changed epidermal morphology. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:78-84. [PMID: 21143728 DOI: 10.1111/j.1438-8677.2010.00343.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This paper provides a detailed phenotypic analysis of the abscisic acid (ABA) hypersensitive Cap Binding Protein 20 (cbp20) mutant. Some hitherto undescribed changes were found in the tissue structure and epidermal morphology of this mutant. These include more and smaller cells in the epidermis, a thicker cuticle and more frequent occurrence of trichomes on leaf surfaces. Some of these traits may contribute to the physiological processes responsible for the water-saving behaviour of the mutant. Abnormal spatial patterns between stomatal pore complexes were also found on various organs of the mutant. All these observations indicate profoundly disturbed development of epidermal tissue in the cbp20 mutant, which has not previously been reported for this class of mutants. A potential connection between the new phenotypes and disturbed miRNA metabolism and mRNA splicing of the mutant is discussed.
Collapse
Affiliation(s)
- K Jäger
- Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Deák C, Jäger K, Fábián A, Papp I. Low and high ψ ways from post-transcriptional RNA regulation to drought tolerance. PLANT SIGNALING & BEHAVIOR 2010; 5:1549-1552. [PMID: 21139424 PMCID: PMC3115100 DOI: 10.4161/psb.5.12.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 05/30/2023]
Abstract
Plants withstand adverse environmental effects by stress responses governed by a complex multilayer regulatory network. Besides well established transcriptional cascades posttranscriptional modifications give more plasticity to the plant's behavior under unfavorable circumstances. These modifications include various RNA alterations typically interlaced with transcriptional or translational regulation. Recent examples have been described in RNA splicing, processing, translation and degradation, some of which operate through effects of small non-coding RNAs. So far details of physiological output mechanisms affected by RNA regulation have been uncovered in a few cases only, some of those will be detailed in this review. In the well documented example of the nuclear cap binding complex (nCBC) mutants, molecular mechanisms of the regulatory switch and downstream events have been established in detail. New results directly link nCBC function to splicing, RNA processing and abscisic acid (ABA). Potential output mechanisms of this control point have also been implicated, both in fast stress responses and in developmental regulation. This latter aspect provides a new insight into how RNA regulation may contribute to acclimation by facilitating drought tolerant morphology. Recent results pinpoint the importance of cuticular structure in acclimation to drought stress at high water potential (ψ).
Collapse
Affiliation(s)
- Csilla Deák
- Department of Plant Physiology and Plant Biochemistry; Faculty of Horticultural Science; Corvinus University of Budapest; Budapest, Hungary
| | - Katalin Jäger
- Agricultural Research institute of the Hungarian Academy of Sciences; Martonvásár, Hungary
| | - Attila Fábián
- Agricultural Research institute of the Hungarian Academy of Sciences; Martonvásár, Hungary
| | - István Papp
- Department of Plant Physiology and Plant Biochemistry; Faculty of Horticultural Science; Corvinus University of Budapest; Budapest, Hungary
| |
Collapse
|
32
|
Khan MN, Mohammad F, Siddiqui MH, Naeem M. Gibberellic acid mediated co-ordination of calcium and magnesium ameliorate physiological activities, seed yield and fibre yield of Linum usitatissimum L.-a dual-purpose crop. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:333-41. [PMID: 23572983 PMCID: PMC3550647 DOI: 10.1007/s12298-010-0034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Commercial cultivation of linseed for both seed and fibre is not keeping pace with increasing demand for linseed products. Although, different strategies are being adopted to produce a dual-purpose linseed crop with good yield of seed and fibre, little progress has been achieved. The present study was carried out to investigate whether application of gibberellic acid (GA3) along with CaCl2 and/or MgSO4 could ameliorate the seed yield in three linseed genotypes 'Parvati', 'Shekhar' and 'Shubhra' without compromising the fibre production. Before sowing the seeds of linseed genotypes were soaked for 8 h in 10(-6) M GA3. Forty days after sowing (DAS), the plants were sprayed with 10(-6) M GA3 along with 2 kg Ca/ha (Ca2) and/or 0.5 kg Mg/ha (Mg0.5). Treatments comprised of (1) 10(-6) M GA3 + Ca0Mg0 (control, T0); (2) 10(-6) M GA3 + Ca2Mg0 (T1); (3) 10(-6) M GA3 + Ca0Mg0.5 (T2) and (4) 10(-6) M GA3 + Ca2Mg0.5 (T3). Performance of the crop was assessed in terms of growth characteristics, physiological and biochemical parameters at 60 and 75 DAS and yield and quality attributes at harvest. Treatment T3 proved best, it enhanced dry weight per plant by 38.2 and 20.6%, P N by 20.7 and 19.1% and gs by 18.2 and 8.8% at 60 and 75 DAS, respectively and seed yield by 39.6%, oil yield by 46.9% and fibre yield by 36.9% at harvest. Further, a decrease in lodging by 13.9% was recorded. Of the three genotypes tested, all exhibited significant difference for all the parameters studied, except for leaf-N content, biological yield and iodine value which showed no difference. However, 'Shubhra' performed better than 'Parvati'.
Collapse
Affiliation(s)
- Mohammad Nasir Khan
- />Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002 India
| | - Firoz Mohammad
- />Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002 India
| | - Manzer H. Siddiqui
- />Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002 India
- />Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - M. Naeem
- />Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002 India
| |
Collapse
|
33
|
Raczynska KD, Simpson CG, Ciesiolka A, Szewc L, Lewandowska D, McNicol J, Szweykowska-Kulinska Z, Brown JWS, Jarmolowski A. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res 2009; 38:265-78. [PMID: 19864257 PMCID: PMC2800227 DOI: 10.1093/nar/gkp869] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site.
Collapse
|
34
|
Ludwików A, Kierzek D, Gallois P, Zeef L, Sadowski J. Gene expression profiling of ozone-treated Arabidopsis abi1td insertional mutant: protein phosphatase 2C ABI1 modulates biosynthesis ratio of ABA and ethylene. PLANTA 2009; 230:1003-17. [PMID: 19705149 DOI: 10.1007/s00425-009-1001-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 08/05/2009] [Indexed: 05/09/2023]
Abstract
We report on the characterization of the interaction between reactive oxygen species signalling and abscisic acid (ABA)-mediated gene network in ozone (O(3)) stress response. To identify the stress-related signalling pathways and possible cross-talk controlled by an ABA-negative regulator, the protein phosphatase 2C abscisic acid insensitive1 (ABI1), we performed a genome-wide transcription profiling of O(3)-treated wild-type and ABI1 knockout (abi1td) plants. In addition, to better understand ABA signalling and the interactions between stress response pathways, we performed a microarray analysis of drought-treated plants. Functional categorization of the identified genes showed that ABI1 is involved in the modulation of several cellular processes including metabolism, transport, development, information pathways and variant splicing. Comparisons with available transcriptome data sets revealed the extent of ABI1 involvement in both ABA-dependent and ABA-independent gene expression. Furthermore, in O(3) stress the ABA hypersensitivity of abi1td resulted in a significant reduction of the ABA level, ethylene (ET) over-production and O(3) tolerance. Moreover, the physical interaction of ABI1 with ACC synthase2 and ACC synthase6 was shown. We provide a model explaining how ABI1 can regulate both ABA and ET biosynthesis. Altogether, our findings indicate that ABI1 plays the role of a general signal transducer linking ABA and ET biosynthesis as well as signalling pathways to O(3) stress tolerance.
Collapse
Affiliation(s)
- Agnieszka Ludwików
- Department of Biotechnology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:575-89. [PMID: 18643966 DOI: 10.1111/j.1365-313x.2008.03622.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many stimuli, such as hormones and abiotic stress factors, elicit changes in intracellular calcium levels that serve to convey information and activate appropriate responses. The Ca2+ signals are perceived by different Ca2+ receptors, and calmodulin (CaM) is one of the best-characterized Ca2+ sensors in eukaryotes. Calmodulin-like (CML) proteins also exist in plants; they share sequence similarity with the ubiquitous and highly conserved CaM, but their roles at the physiological and molecular levels are largely unknown. We present data on Arabidopsis thaliana CML9 (AtCML9) that exhibits 46% amino acid sequence identity with CaM. AtCML9 transcripts are found in all major organs, and a putative AtCML9 regulatory region confers reporter gene expression at various sites, including root apex, stomata, hydathodes and trichomes. AtCML9 expression is rapidly induced by abiotic stress and abscisic acid (ABA) in young seedlings, and by using cml9 knock-out mutants we present evidence that AtCML9 plays essential roles in modulating responses to salt stress and ABA. Seed germination and seedling growth for the mutant lines present a hypersensitive response to ABA that could be correlated with enhanced tolerance to salt stress and water deficit. Mutations of the AtCML9 gene also alter the expression of several stress-regulated genes, suggesting that AtCML9 is involved in salt stress tolerance through its effects on the ABA-mediated pathways.
Collapse
Affiliation(s)
- Fabienne Magnan
- UMR 5546 CNRS-Université Toulouse III, Pôle de Biotechnologie Végétale, 24 Chemin de Borde-Rouge, BP42617, 31326 Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
37
|
Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2008; 105:8795-800. [PMID: 18550839 DOI: 10.1073/pnas.0802493105] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The processing of Arabidopsis thaliana microRNAs (miRNAs) from longer primary transcripts (pri-miRNAs) requires the activity of several proteins, including DICER-LIKE1 (DCL1), the double-stranded RNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). It has been noted before that the morphological appearance of weak se mutants is reminiscent of plants with mutations in ABH1/CBP80 and CBP20, which encode the two subunits of the nuclear cap-binding complex. We report that, like SE, the cap-binding complex is necessary for proper processing of pri-miRNAs. Inactivation of either ABH1/CBP80 or CBP20 results in decreased levels of mature miRNAs accompanied by apparent stabilization of pri-miRNAs. Whole-genome tiling array analyses reveal that se, abh1/cbp80, and cbp20 mutants also share similar splicing defects, leading to the accumulation of many partially spliced transcripts. This is unlikely to be an indirect consequence of improper miRNA processing or other mRNA turnover pathways, because introns retained in se, abh1/cbp80, and cbp20 mutants are not affected by mutations in other genes required for miRNA processing or for nonsense-mediated mRNA decay. Taken together, our results uncover dual roles in splicing and miRNA processing that distinguish SE and the cap-binding complex from specialized miRNA processing factors such as DCL1 and HYL1.
Collapse
|
38
|
Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 2008; 14:854-66. [PMID: 18486559 DOI: 10.1016/j.devcel.2008.04.005] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/01/2008] [Accepted: 04/23/2008] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) are abundant endogenous small RNAs (smRNAs) that control transcript expression through posttranscriptional gene silencing. Here, we show that concomitant loss of XRN4/EIN5, a 5'-3' exoribonuclease, and ABH1/CBP80, a subunit of the mRNA cap binding complex, results in Arabidopsis plants manifesting myriad developmental defects. We find that ABH1/CBP80 is necessary to obtain proper mature miRNA levels, which suggests this protein affects the miRNA-mediated RNA silencing pathway. Additionally, we show that XRN4/EIN5 affects the levels of a smRNA class that is processed from both sense and antisense strands of approximately 130 endogenous transcripts that apparently are converted to double-stranded RNA (dsRNA) and subsequently processed. We find that the parent transcripts of these smRNAs accumulate in an uncapped form upon loss of XRN4/EIN5, which suggests that uncapped endogenous transcripts can become smRNA biogenesis substrates. Overall, our results reveal unexpected connections between RNA metabolism and silencing pathways.
Collapse
Affiliation(s)
- Brian D Gregory
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang Y, Costa A, Leonhardt N, Siegel RS, Schroeder JI. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. PLANT METHODS 2008; 4:6. [PMID: 18284694 PMCID: PMC2323621 DOI: 10.1186/1746-4811-4-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/19/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND A common limitation in guard cell signaling research is that it is difficult to obtain consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback of the 35S promoter is that ectopically expressing a gene throughout the organism could cause pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we isolated strong guard cell promoter candidates based on new guard cell-specific microarray analyses of 23,000 genes that are made available together with this report. RESULTS A promoter, pGC1(At1g22690), drove strong and relatively specific reporter gene expression in guard cells including GUS (beta-glucuronidase) and yellow cameleon YC3.60 (GFP-based calcium FRET reporter). Reporter gene expression was weaker in immature guard cells. The expression of YC3.60 was sufficiently strong to image intracellular Ca2+ dynamics in guard cells of intact plants and resolved spontaneous calcium transients in guard cells. The GC1 promoter also mediated strong reporter expression in clustered stomata in the stomatal development mutant too-many-mouths (tmm). Furthermore, the same promoter::reporter constructs also drove guard cell specific reporter expression in tobacco, illustrating the potential of this promoter as a method for high level expression in guard cells. A serial deletion of the promoter defined a guard cell expression promoter region. In addition, anti-sense repression using pGC1 was powerful for reducing specific GFP gene expression in guard cells while expression in leaf epidermal cells was not repressed, demonstrating strong cell-type preferential gene repression. CONCLUSION The pGC1 promoter described here drives strong reporter expression in guard cells of Arabidopsis and tobacco plants. It provides a potent research tool for targeted guard cell expression or gene silencing. It is also applicable to reduce specific gene expression in guard cells, providing a method for circumvention of limitations arising from genetic redundancy and lethality. These advances could be very useful for manipulating signaling pathways in guard cells and modifying plant performance under stress conditions. In addition, new guard cell and mesophyll cell-specific 23,000 gene microarray data are made publicly available here.
Collapse
Affiliation(s)
- Yingzhen Yang
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Alex Costa
- Department of Biology, University of Padua, Via U. Bassi 58/B, I-35131, Padova, Italy
| | - Nathalie Leonhardt
- CEA Cadarache, DSV, UMR 6191 CEA-CNRS, DEVM, LEMS and LEMP, St Paul les Durance Cedex, France
| | - Robert S Siegel
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| | - Julian I Schroeder
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA
| |
Collapse
|
40
|
Kuhn JM, Hugouvieux V, Schroeder JI. mRNA cap binding proteins: effects on abscisic acid signal transduction, mRNA processing, and microarray analyses. Curr Top Microbiol Immunol 2008; 326:139-50. [PMID: 18630751 DOI: 10.1007/978-3-540-76776-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The plant hormone abscisic acid (ABA) intricately regulates a multitude of processes during plant growth and development. Recent studies have established a connection between genes participating in various steps of cellular RNA metabolism and the ABA signal transduction machinery. In this chapter we focus on the plant nuclear mRNA cap binding proteins, CBP20 and CBP80. We summarize and report recent findings on their effects on cellular signal transduction networks and mRNA processing events. ABA hypersensitive 1 (abh1) harbors a gene disruption in the Arabidopsis CBP80 gene. Loss-of-function mutation of ABH1 can also result in an early flowering phenotype in the Arabidopsis accession C24. abh1 revealed noncoding cis-natural antisense transcripts (cis-NATs) at the CONSTANS locus in wild-type plants with elevated cis-NAT expression in the mutant. abh1 also revealed an influence on the splicing of the MADS box transcription factor Flowering Locus C pre-mRNA, which may result in the regulation of flowering time. Furthermore, new experiments analyzing complementation of cpb20 with site-directed cpb20 mutants provide evidence that the CAP binding activity of CBP20 is essential for the observed cbp-associated phenotypes. In conclusion, mutants in genes participating in RNA processing provide excellent tools to uncover novel molecular mechanisms for the regulation of RNA metabolism and of signal transduction networks in wild-type plants.
Collapse
Affiliation(s)
- J M Kuhn
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
41
|
|
42
|
Kuhn JM, Breton G, Schroeder JI. mRNA metabolism of flowering-time regulators in wild-type Arabidopsis revealed by a nuclear cap binding protein mutant, abh1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1049-62. [PMID: 17488241 DOI: 10.1111/j.1365-313x.2007.03110.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The precise regulation of RNA metabolism has crucial roles in numerous developmental and physiological processes such as the induction of flowering in plants. Here we report the identification of processes associated with mRNA metabolism of flowering-time regulators in wild-type Arabidopsis plants, which were revealed by an early flowering mutation, abh1, in an Arabidopsis nuclear mRNA cap-binding protein. By using abh1 as an enhancer of mRNA metabolism events, we identify non-coding polyadenylated cis natural antisense transcripts (cis-NATs) at the CONSTANS locus in wild-type plants. Our analyses also reveal a regulatory function of FLC intron 1 during transcript maturation in wild type. Moreover, transcripts encoding the FLM MADS box transcription factor are subject to premature intronic polyadenylation in wild type. In each case, abh1 showed altered patterns in RNA metabolism in these events compared with wild type. Together, abh1 enhances steps in the RNA metabolism that allowed us to identify novel molecular events of three key flowering-time regulators in wild-type plants, delivering important insights for further dissecting RNA-based mechanisms regulating flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Josef M Kuhn
- Division of Biological Sciences, Center for Molecular Genetics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | |
Collapse
|
43
|
Pandey S, Zhang W, Assmann SM. Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 2007; 581:2325-36. [PMID: 17462636 DOI: 10.1016/j.febslet.2007.04.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 12/16/2022]
Abstract
Stomatal complexes consist of pairs of guard cells and the pore they enclose. Reversible changes in guard cell volume alter the aperture of the pore and provide the major regulatory mechanism for control of gas exchange between the plant and the environment. Stomatal movement is facilitated by the activity of ion channels and ion transporters found in the plasma membrane and vacuolar membrane of guard cells. Progress in recent years has elucidated the molecular identities of many guard cell transport proteins, and described their modulation by various cellular signal transduction components during stomatal opening and closure prompted by environmental and endogenous stimuli.
Collapse
Affiliation(s)
- Sona Pandey
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, United States
| | | | | |
Collapse
|
44
|
Li S, Assmann SM, Albert R. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 2007; 4:e312. [PMID: 16968132 PMCID: PMC1564158 DOI: 10.1371/journal.pbio.0040312] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 07/21/2006] [Indexed: 02/02/2023] Open
Abstract
Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA) inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K(+) efflux through slowly activating K(+) channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited.
Collapse
Affiliation(s)
- Song Li
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Physics Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Nilson SE, Assmann SM. The control of transpiration. Insights from Arabidopsis. PLANT PHYSIOLOGY 2007; 143:19-27. [PMID: 17210910 PMCID: PMC1761994 DOI: 10.1104/pp.106.093161] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 11/23/2006] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah E Nilson
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
46
|
Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. THE PLANT CELL 2006; 18:2929-45. [PMID: 17098808 PMCID: PMC1693934 DOI: 10.1105/tpc.106.045617] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
CUP-SHAPED COTYLEDON1 (CUC1), CUC2, and CUC3 define the boundary domain around organs in the Arabidopsis thaliana meristem. CUC1 and CUC2 transcripts are targeted by a microRNA (miRNA), miR164, encoded by MIR164A, B, and C. We show that each MIR164 is transcribed to generate a large population of primary miRNAs of variable size with a locally conserved secondary structure around the pre-miRNA. We identified mutations in the MIR164A gene that deepen serration of the leaf margin. By contrast, leaves of plants overexpressing miR164 have smooth margins. Enhanced leaf serration was observed following the expression of an miR164-resistant CUC2 but not of an miR164-resistant CUC1. Furthermore, CUC2 inactivation abolished serration in mir164a mutants and the wild type, whereas CUC1 inactivation did not. Thus, CUC2 specifically controls leaf margin development. CUC2 and MIR164A are transcribed in overlapping domains at the margins of young leaf primordia, with transcription gradually restricted to the sinus, where the leaf margins become serrated. We suggest that leaf margin development is controlled by a two-step process in Arabidopsis. The pattern of serration is determined first, independently of CUC2 and miR164. The balance between coexpressed CUC2 and MIR164A then determines the extent of serration.
Collapse
Affiliation(s)
- Krisztina Nikovics
- Laboratoire de Biologie Cellulaire, Institut Jean Pierre Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Verslues PE, Guo Y, Dong CH, Ma W, Zhu JK. Mutation of SAD2, an importin beta-domain protein in Arabidopsis, alters abscisic acid sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:776-87. [PMID: 16889648 DOI: 10.1111/j.1365-313x.2006.02833.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A number of protein and RNA-processing mutants have been shown to affect ABA sensitivity. A new mutant, sad2-1, was isolated from a T-DNA mutagenized population of RD29A:LUC plants and shown to have increased luminescence after ABA, salt, cold or polyethylene glycol treatments. Expression of several ABA- and stress-responsive genes was higher in the mutant than in the wild type. sad2-1 also exhibited ABA hypersensitivity in seed germination and seedling growth. SAD2 was found to encode an importin beta-domain family protein likely to be involved in nuclear transport. SAD2 was expressed at a low level in all tissues examined except flowers, but SAD2 expression was not inducible by ABA or stress. Subcellular localization of GFP-tagged SAD2 showed a predominantly nuclear localization, consistent with a role for SAD2 in nuclear transport. Knockout of the closest importin beta homolog of SAD2 in Arabidopsis did not duplicate the sad2 phenotype, indicating that SAD2 plays a specific role in ABA signaling. Analysis of RD29A:LUC luminescence and ABA and stress sensitivity in double mutants of sad2-1 and sad1 or abh1-7, a newly isolated allele of ABH1 also in the RD29A:LUC background, suggested that SAD2 acts upstream of or has additive effects with these two genes. The results suggest a role for nuclear transport in ABA signal transduction, and the possible roles of SAD2 in relation to that of SAD1 and ABH1 are discussed.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
48
|
Lee BH, Kapoor A, Zhu J, Zhu JK. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. THE PLANT CELL 2006; 18:1736-49. [PMID: 16751345 PMCID: PMC1488911 DOI: 10.1105/tpc.106.042184] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, many gene transcripts are very unstable, which is important for the tight control of their temporal and spatial expression patterns. To identify cellular factors controlling the stability of unstable mRNAs in plants, we used luciferase imaging in Arabidopsis thaliana to isolate a recessive mutant, stabilized1-1 (sta1-1), with enhanced stability of the normally unstable luciferase transcript. The sta1-1 mutation also causes the stabilization of some endogenous gene transcripts and has a range of developmental and stress response phenotypes. STA1 encodes a nuclear protein similar to the human U5 small ribonucleoprotein-associated 102-kD protein and to the yeast pre-mRNA splicing factors Prp1p and Prp6p. STA1 expression is upregulated by cold stress, and the sta1-1 mutant is defective in the splicing of the cold-induced COR15A gene. Our results show that STA1 is a pre-mRNA splicing factor required not only for splicing but also for the turnover of unstable transcripts and that it has an important role in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Byeong-ha Lee
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
49
|
Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E. Integration of abscisic acid signalling into plant responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:314-25. [PMID: 16807823 DOI: 10.1055/s-2006-924120] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a major role as an endogenous messenger in the regulation of plant's water status. ABA is generated as a signal during a plant's life cycle to control seed germination and further developmental processes and in response to abiotic stress imposed by salt, cold, drought, and wounding. The action of ABA can target specifically guard cells for induction of stomatal closure but may also signal systemically for adjustment towards severe water shortage. At the molecular level, the responses are primarily mediated by regulation of ion channels and by changes in gene expression. In the last years, the molecular complexity of ABA signal transduction surfaced more and more. Many proteins and a plethora of "secondary" messengers that regulate or modulate ABA-responses have been identified by analysis of mutants including gene knock-out plants and by applying RNA interference technology together with protein interaction analysis. The complexity possibly reflects intensive cross-talk with other signal pathways and the role of ABA to be part of and to integrate several responses. Despite the missing unifying concept, it is becoming clear that ABA action enforces a sophisticated regulation at all levels.
Collapse
Affiliation(s)
- A Christmann
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, 85354 Freising, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Kuhn JM, Boisson-Dernier A, Dizon MB, Maktabi MH, Schroeder JI. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. PLANT PHYSIOLOGY 2006; 140:127-39. [PMID: 16361522 PMCID: PMC1326037 DOI: 10.1104/pp.105.070318] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To identify new loci in abscisic acid (ABA) signaling, we screened a library of 35ScDNA Arabidopsis (Arabidopsis thaliana)-expressing lines for ABA-insensitive mutants in seed germination assays. One of the identified mutants germinated on 2.5 microm ABA, a concentration that completely inhibits wild-type seed germination. Backcrosses and F2 analyses indicated that the mutant exhibits a dominant phenotype and that the ABA insensitivity was linked to a single T-DNA insertion containing a 35ScDNA fusion. The inserted cDNA corresponds to a full-length cDNA of the AtPP2CA gene, encoding a protein phosphatase type 2C (PP2C). Northern-blot analyses demonstrated that the AtPP2CA transcript is indeed overexpressed in the mutant (named PP2CAox). Two independent homozygous T-DNA insertion lines, pp2ca-1 and pp2ca-2, were recovered from the Arabidopsis Biological Resource Center and shown to lack full-length AtPP2CA expression. A detailed characterization of PP2CAox and the T-DNA disruption mutants demonstrated that, whereas ectopic expression of a 35SAtPP2CA fusion caused ABA insensitivity in seed germination and ABA-induced stomatal closure responses, disruption mutants displayed the opposite phenotype, namely, strong ABA hypersensitivity. Thus our data demonstrate that the PP2CA protein phosphatase is a strong negative regulator of ABA signal transduction. Furthermore, it has been previously shown that the AtPP2CA transcript is down-regulated in the ABA-hypersensitive nuclear mRNA cap-binding protein mutant abh1. We show here that down-regulation of AtPP2CA in abh1 is not due to impaired RNA splicing of AtPP2CA pre-mRNA. Moreover, expression of a 35SAtPP2CA cDNA fusion in abh1 partially suppresses abh1 hypersensitivity, and the data further suggest that additional mechanisms contribute to ABA hypersensitivity of abh1.
Collapse
Affiliation(s)
- Josef M Kuhn
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, La Jolla, California 92093-0116, USA
| | | | | | | | | |
Collapse
|