1
|
Wang L, Tian J, Duan R, Feng Y, Xie Q, Lu W, Duan D. The transcription factor bHLH77 promotes the expression of stilbene synthase gene family member STS48 and stilbene biosynthesis by stabilizing MYB15 in Vitis quinquangularis. Int J Biol Macromol 2025; 310:143327. [PMID: 40268022 DOI: 10.1016/j.ijbiomac.2025.143327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Stilbenes are crucial phytoalexins in plants that can protect against pathogenic invasions. Grapevines, in particular, contain significant amounts of stilbenes. The stilbene synthase (STS) genes have been shown to facilitate the accumulation of these stilbenes. MYB15, a v-myb avian myeloblastosis viral oncogene homolog (MYB) transcription factors (TFs) from grapevine, has been identified as a positive regulator of stilbene synthesis by activating the promoter of STS48, thereby enhancing plant's resistance to biotic and abiotic stresses. MYB TFs have been demonstrated to play diverse roles in plant growth and development through interacting with basic helix-loop-helix (bHLH) TFs. In the present study, we discovered the interaction between VqbHLH77 and VqMYB15 through Y2H screening from Vitis quinquangularis (V. quinquangularis), and the confirmation of this interaction was achieved using Y2H, BiFC, Pull-down and split-luciferase assays. Additionally, transient expression of VqbHLH77 and VqMYB15 in grape leaves revealed that their co-expression significantly increased the expression of VqSTS48 and the accumulation of stilbenes. More importantly, VqbHLH77 was shown to directly enhance the protein stability of VqMYB15. Heterologous expression of VqbHLH77, VqMYB15, and VqSTS48 in Arabidopsis significantly enhanced its resistance to Pst DC3000. Further we found that VqbHLH77 confers resistance to Pst DC3000 in Arabidopsis by activating the salicylic acid (SA) and jasmonic acid (JA) signaling pathways.
Collapse
Affiliation(s)
- Linxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jingwen Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Ruiwei Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yang Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Qingqing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Wenjing Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
2
|
Amato V, Mahalath S, Zhang L, Rushton PJ, Shen QJ. Structure and Functions of NDR1/HIN1-Like (NHL) Proteins in Plant Development and Response to Environmental Stresses. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255187 DOI: 10.1111/pce.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
The NON-RACE-SPECIFIC DISEASE RESISTANCE 1/harpin-induced 1-LIKE (NHL) gene family plays pivotal roles, including pathogen resistance, abiotic stress tolerance, and developmental regulation, underscoring their functional versatility in developmental and physiological processes of plants. NHL proteins often localize to the plasma membrane and contain conserved motifs, including the LEA2 and transmembrane domains, enabling dynamic interactions with signalling molecules and transcription factors. The ability of NHL proteins to dimerize and oligomerize further enhances their regulatory potential in signalling pathways. This review explores the structural and functional diversity of NHL proteins including their localizations, interacting proteins, and responses to abiotic and biotic stresses, ion transportation, seed germination, and responses to phytohormones. Future research integrating phylogenetics, and advanced tools including artificial intelligence will unlock the full potential of this gene family for breeding climate-resilient crops and agricultural sustainability.
Collapse
Affiliation(s)
- Victoria Amato
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Shantel Mahalath
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Liyuan Zhang
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Paul J Rushton
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
3
|
Zhang M, Fu R, Lin MM, Fang JB, Wang R, Li YK, Chen JY, Sun LM, Qi XJ. Genome-wide identification of NDR1/HIN1-like genes in kiwifruit and function analysis of AeNHL17 in response to disease resistance. BMC PLANT BIOLOGY 2024; 24:1184. [PMID: 39695371 DOI: 10.1186/s12870-024-05936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND NDR1/HIN1-like (NHL) genes play crucial roles in Psa resistance. Kiwifruit canker, caused by Pseudomonas syringae pv. Actinidiae (Psa) infection is one of the most serious diseases affecting the kiwifruit industry. However, the key NHL has not yet been identified in kiwifruit. RESULTS In this study, we conducted a genome-wide identification of NHL family in kiwifruit (Actinidia eriantha). A total of 33 AeNHLs were divided into five domain-conserved subfamilies, which were mainly assigned into phytohormones and defense responses. The expression of AeNHL genes was analyzed to identify key genes in response to Psa, and we found AeNHL17 was highly expressed upon Psa inoculation. Transgenic tobacco overexpressing AeNHL17 presented higher resistance to Psa than wild-type (WT) tobacco, implying a key role for AeNHL17 in Psa resistance. Finally, we carried out a stable genetic transformation of kiwifruit (A. chinensis), which is sensitive to Psa, and found that the overexpression of AeNHL17 increased resistance to infection. AeNHL17-silenced plants exhibited larger disease lesions than control plants. CONCLUSIONS Our findings revealed the function of AaNHL17 in Psa resistance, providing new data regarding the functional analysis of the NHL gene family in kiwifruit.
Collapse
Affiliation(s)
- Min Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Rong Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Miao-Miao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Jin-Bao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yu-Kuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China
| | - Jin-Yong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lei-Ming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Xiu-Juan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop/ Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453514, China.
| |
Collapse
|
4
|
Luo Y, Wang L, Zhu J, Tian J, You L, Luo Q, Li J, Yao Q, Duan D. The grapevine miR827a regulates the synthesis of stilbenes by targeting VqMYB14 and gives rise to susceptibility in plant immunity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:95. [PMID: 38582777 DOI: 10.1007/s00122-024-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Grapevine (Vitis vinifera L.) is an economically important fruit crop cultivated worldwide. In China, grapevine cultivation is very extensive, and a few Vitis grapes have excellent pathogen and stress resistance, but the molecular mechanisms underlying the grapevine response to stress remain unclear. In this study, a microRNA (miRNA; miR827a), which negatively regulates its target gene VqMYB14, a key regulatory role in the synthesis of stilbenes, was identified in Vitis quinquangularis (V. quinquangularis) using transcriptome sequencing. Using overexpression and silencing approaches, we found that miR827a regulates the synthesis of stilbenes by targeting VqMYB14. We used flagellin N-terminal 22-amino-acid peptide (flg22), the representative elicitor in plant basal immunity, as the elicitor to verify whether miR827a is involved in the basal immunity of V. quinquangularis. Furthermore, the promoter activity of miR827a was alleviated in transgenic grape protoplasts and Arabidopsis thaliana following treatment with flg22 and Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000), respectively. In addition, yeast one-hybrid and dual luciferase reporter assay revealed that the ethylene transcription factor VqERF057 acted as a key regulator in the inhibition of miR827a transcription. These results will contribute to the understanding of the biological functions of miR827a in grapevine and clarify the molecular mechanism of the interaction between miR827a and VqMYB14.
Collapse
Affiliation(s)
- Yangyang Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Linxia Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jie Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jingwen Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lin You
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qin Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Jia Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Qian Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Dong Duan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
5
|
Tee E, Johnston M, Papp D, Faulkner C. A PDLP-NHL3 complex integrates plasmodesmal immune signaling cascades. Proc Natl Acad Sci U S A 2023; 120:e2216397120. [PMID: 37068237 PMCID: PMC10151459 DOI: 10.1073/pnas.2216397120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
The plant immune system relies on the perception of molecules that signal the presence of a microbe threat. This triggers signal transduction that mediates a range of cellular responses via a collection of molecular machinery including receptors, small molecules, and enzymes. One response to pathogen perception is the restriction of cell-to-cell communication by plasmodesmal closure. We previously found that while chitin and flg22 trigger specialized immune signaling cascades in the plasmodesmal plasma membrane, both execute plasmodesmal closure via callose synthesis at the plasmodesmata. Therefore, the signaling pathways ultimately converge at or upstream of callose synthesis. To establish the hierarchy of signaling at plasmodesmata and characterize points of convergence in microbe elicitor-triggered signaling, we profiled the dependence of plasmodesmal responses triggered by different elicitors on a range of plasmodesmal signaling machinery. We identified that, like chitin, flg22 signals via RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) to induce plasmodesmal closure. Further, we found that PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1), PDLP5, and CALLOSE SYNTHASE 1 (CALS1) are common to microbe- and salicylic acid (SA)-triggered responses, identifying PDLPs as a candidate signaling nexus. To understand how PDLPs relay a signal to CALS1, we screened for PDLP5 interactors and found NON-RACE SPECIFIC DISEASE RESISTANCE/HIN1 HAIRPIN-INDUCED-LIKE protein 3 (NHL3), which is also required for chitin-, flg22- and SA-triggered plasmodesmal responses and PDLP-mediated activation of callose synthesis. We conclude that a PDLP-NHL3 complex acts as an integrating node of plasmodesmal signaling cascades, transmitting multiple immune signals to activate CALS1 and plasmodesmata closure.
Collapse
Affiliation(s)
- Estee E. Tee
- Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Matthew G. Johnston
- Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Diana Papp
- Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| | - Christine Faulkner
- Cell and Developmental Biology, John Innes Centre, NorwichNR4 7UH, United Kingdom
| |
Collapse
|
6
|
Zhang X, Xue Y, Wang H, Nisa Z, Jin X, Yu L, Liu X, Yu Y, Chen C. Genome-wide identification and characterization of NHL gene family in response to alkaline stress, ABA and MEJA treatments in wild soybean ( Glycine soja). PeerJ 2022; 10:e14451. [PMID: 36518280 PMCID: PMC9744164 DOI: 10.7717/peerj.14451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Background NDR1/HIN1-like (NHL) family genes are known to be involved in pathogen induced plant responses to biotic stress. Even though the NHL family genes have been identified and characterized in plant defense responses in some plants, the roles of these genes associated with the plant abiotic stress tolerance in wild soybean is not fully established yet, especially in response to alkaline stress. Methods We identified the potential NHL family genes by using the Hidden Markov model and wild soybean genome. The maximum-likelihood phylogenetic tree and conserved motifs were generated by using the MEME online server and MEGA 7.0 software, respectively. Furthermore, the syntenic analysis was generated with Circos-0.69. Then we used the PlantCARE online software to predict and analyze the regulatory cis-acting elements in promoter regions. Hierarchical clustering trees was generated using TM4: MeV4.9 software. Additionally, the expression levels of NHL family genes under alkaline stress, ABA and MEJA treatment were identified by qRT-PCR. Results In this study, we identified 59 potential NHL family genes in wild soybean. We identified that wild soybean NHL family genes could be mainly classified into five groups as well as exist with conserved motifs. Syntenic analysis of NHL family genes revealed genes location on 18 chromosomes and presence of 65 pairs of duplication genes. Moreover, NHL family genes consisted of a variety of putative hormone-related and abiotic stress responsive elements, where numbers of methyl jasmonate (MeJA) and abscisic acid (ABA) responsive elements were significantly larger than other elements. We confirmed the regulatory roles of NHL family genes in response to alkaline stress, ABA and MEJA treatment. In conclusion, we identified and provided valuable information on the wild soybean NHL family genes, and established a foundation to further explore the potential roles of NHL family genes in crosstalk with MeJA or ABA signal transduction mechanisms under alkaline stress.
Collapse
Affiliation(s)
- Xu Zhang
- Harbin Normal University, Harbin, Heilongjiang, China
| | - Yongguo Xue
- Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Haihang Wang
- Harbin Normal University, Harbin, Heilongjiang, China
| | | | - Xiaoxia Jin
- Harbin Normal University, Harbin, Heilongjiang, China
| | - Lijie Yu
- Harbin Normal University, Harbin, Heilongjiang, China
| | - Xinlei Liu
- Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yang Yu
- Shenyang University, Shenyang, China
| | - Chao Chen
- Harbin Normal University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Yamazaki A, Battenberg K, Shimoda Y, Hayashi M. NDR1/HIN1-Like Protein 13 Interacts with Symbiotic Receptor Kinases and Regulates Nodulation in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:845-856. [PMID: 36107197 DOI: 10.1094/mpmi-11-21-0263-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysin-motif receptor-like kinases (LysM-RLKs) are involved in the recognition of microbe-associated molecular patterns to initiate pattern-triggered immunity (PTI). LysM-RLKs are also required for recognition of microbe-derived symbiotic signal molecules upon establishing mutualistic interactions between plants and microsymbionts. A LysM-RLK CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) plays central roles both in chitin-mediated PTI and in arbuscular mycorrhizal symbiosis, suggesting the overlap between immunity and symbiosis, at least in the signal perception and the activation of downstream signal cascades. In this study, we screened for the interacting proteins of Nod factor Receptor1 (NFR1), a CERK1 homolog in the model legume Lotus japonicus, and obtained a protein orthologous to NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13), a protein involved in the activation of innate immunity in Arabidopsis thaliana, which we named LjNHL13a. LjNHL13a interacted with NFR1 and with the symbiosis receptor kinase SymRK. LjNHL13a also displayed positive effects in nodulation. Our results suggest that NHL13 plays a role both in plant immunity and symbiosis, possibly where they overlap. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Akihiro Yamazaki
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kai Battenberg
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Makoto Hayashi
- Center for Sustainable Resource Science, RIKEN 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| |
Collapse
|
8
|
Ishwarya Lakshmi VG, Sreedhar M, JhansiLakshmi V, Gireesh C, Rathod S, Bohar R, Deshpande S, Laavanya R, Kiranmayee KNSU, Siddi S, Vanisri S. Development and Validation of Diagnostic KASP Markers for Brown Planthopper Resistance in Rice. Front Genet 2022; 13:914131. [PMID: 35899197 PMCID: PMC9309266 DOI: 10.3389/fgene.2022.914131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Rice (Oryza sativa L.) is an important source of nutrition for the world's burgeoning population that often faces yield loss due to infestation by the brown planthopper (BPH, Nilaparvata lugens (Stål)). The development of rice cultivars with BPH resistance is one of the crucial precedences in rice breeding programs. Recent progress in high-throughput SNP-based genotyping technology has made it possible to develop markers linked to the BPH more quickly than ever before. With this view, a genome-wide association study was undertaken for deriving marker-trait associations with BPH damage scores and SNPs from genotyping-by-sequencing data of 391 multi-parent advanced generation inter-cross (MAGIC) lines. A total of 23 significant SNPs involved in stress resistance pathways were selected from a general linear model along with 31 SNPs reported from a FarmCPU model in previous studies. Of these 54 SNPs, 20 were selected in such a way to cover 13 stress-related genes. Kompetitive allele-specific PCR (KASP) assays were designed for the 20 selected SNPs and were subsequently used in validating the genotypes that were identified, six SNPs, viz, snpOS00912, snpOS00915, snpOS00922, snpOS00923, snpOS00927, and snpOS00929 as efficient in distinguishing the genotypes into BPH-resistant and susceptible clusters. Bph17 and Bph32 genes that are highly effective against the biotype 4 of the BPH have been validated by gene specific SNPs with favorable alleles in M201, M272, M344, RathuHeenati, and RathuHeenati accession. These identified genotypes could be useful as donors for transferring BPH resistance into popular varieties with marker-assisted selection using these diagnostic SNPs. The resistant lines and the significant SNPs unearthed from our study can be useful in developing BPH-resistant varieties after validating them in biparental populations with the potential usefulness of SNPs as causal markers.
Collapse
Affiliation(s)
- V. G. Ishwarya Lakshmi
- Department of Genetics and Plant Breeding, College of Agriculture, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - M. Sreedhar
- Administrative Office, PJTSAU, Hyderabad, India
| | | | - C. Gireesh
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Santosha Rathod
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Rajaguru Bohar
- CGIAR Excellence in Breeding (EiB), CIMMYT-ICRISAT, Hyderabad, India
| | - Santosh Deshpande
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - R. Laavanya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Sreedhar Siddi
- Agricultural Research Station, PJTSAU, Peddapalli, India
| | - S. Vanisri
- Institute of Biotechnology, PJTSAU, Hyderabad, India
| |
Collapse
|
9
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
10
|
Singh A, Sharma A, Singh N, Nandi AK. MTO1-RESPONDING DOWN 1 (MRD1) is a transcriptional target of OZF1 for promoting salicylic acid-mediated defense in Arabidopsis. PLANT CELL REPORTS 2022; 41:1319-1328. [PMID: 35325291 DOI: 10.1007/s00299-022-02861-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
OZF1 promotes the transcription of MRD1, which is essential for SA-mediated defense against virulent and avirulent bacterial pathogens in Arabidopsis. Salicylic acid (SA) is critical for defense against biotrophic pathogens. A trans-activator protein NPR1 plays significant roles in SA-signaling. However, evidences suggest the existence of NPR1-independent pathways for SA signaling in plants. Previously, we reported Arabidopsis OXIDATION-RELATED ZN-FINGER PROTEIN1 (OZF1) as a positive regulator of NPR1-independent SA-signaling. However, the mechanism or components of OZF1-mediated SA signaling was not known. Through the analysis of differentially expressing genes, we report the identification of MTO1-RESPONDING DOWN 1 (MRD1) as a transcriptional target of OZF1. Expressions of MRD1 and its overlapping gene in Arabidopsis genome, HEI10 increase upon pathogen inoculation in an OZF1-dependent manner. Their mutants are susceptible to both virulent and avirulent bacterial pathogens and show compromised SA-mediated immunity. Overexpression of MRD1 but not the HEI10 rescues the loss-of-resistance phenotype of the ozf1 mutant. OZF1 physically associates at the MRD1 promoter area upon pathogen inoculation. Results altogether support that MRD1 is a transcriptional target of OZF1 for promoting SA-mediated defense in Arabidopsis.
Collapse
Affiliation(s)
- Anupriya Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akash Sharma
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nidhi Singh
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Dagvadorj B, Outram MA, Williams SJ, Solomon PS. The necrotrophic effector ToxA from Parastagonospora nodorum interacts with wheat NHL proteins to facilitate Tsn1-mediated necrosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:407-418. [PMID: 35061310 DOI: 10.1111/tpj.15677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
The plant pathogen Parastagonospora nodorum secretes necrotrophic effectors to promote disease. These effectors induce cell death on wheat cultivars carrying dominant susceptibility genes in an inverse gene-for-gene manner. However, the molecular mechanisms underpinning these interactions and resulting cell death remain unclear. Here, we used a yeast two-hybrid library approach to identify wheat proteins that interact with the necrotrophic effector ToxA. Using this strategy, we identified an interaction between ToxA and a wheat transmembrane NDR/HIN1-like protein (TaNHL10) and confirmed the interaction using in planta co-immunoprecipitation and confocal microscopy co-localization analysis. We showed that the C-terminus of TaNHL10 is extracellular whilst the N-terminus is localized in the cytoplasm. Further analyses using yeast two-hybrid and confocal microscopy co-localization showed that ToxA interacts with the C-terminal LEA2 extracellular domain of TaNHL10. Random mutagenesis was then used to identify a ToxA mutant, ToxAN109D , which was unable to interact with TaNHL10 in yeast two-hybrid assays. Subsequent heterologous expression and purification of ToxAN109D in Nicotiania benthamiana revealed that the mutated protein was unable to induce necrosis on Tsn1-dominant wheat cultivars, confirming that the interaction of ToxA with TaNHL10 is required to induce cell death. Collectively, these data advance our understanding on how ToxA induces cell death during infection and further highlight the importance of host cell surface interactions in necrotrophic pathosystems.
Collapse
Affiliation(s)
- Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
12
|
Genome-wide analysis uncovers tomato leaf lncRNAs transcriptionally active upon Pseudomonas syringae pv. tomato challenge. Sci Rep 2021; 11:24523. [PMID: 34972834 PMCID: PMC8720101 DOI: 10.1038/s41598-021-04005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Plants rely on (in)direct detection of bacterial pathogens through plasma membrane-localized and intracellular receptor proteins. Surface pattern-recognition receptors (PRRs) participate in the detection of microbe-associated molecular patterns (MAMPs) and are required for the activation of pattern-triggered immunity (PTI). Pathogenic bacteria, such as Pseudomonas syringae pv. tomato (Pst) deploys ~ 30 effector proteins into the plant cell that contribute to pathogenicity. Resistant plants are capable of detecting the presence or activity of effectors and mount another response termed effector-triggered immunity (ETI). In order to investigate the involvement of tomato’s long non-coding RNAs (lncRNAs) in the immune response against Pst, we used RNA-seq data to predict and characterize those that are transcriptionally active in leaves challenged with a large set of treatments. Our prediction strategy was validated by sequence comparison with tomato lncRNAs described in previous works and by an alternative approach (RT-qPCR). Early PTI (30 min), late PTI (6 h) and ETI (6 h) differentially expressed (DE) lncRNAs were identified and used to perform a co-expression analysis including neighboring (± 100 kb) DE protein-coding genes. Some of the described networks could represent key regulatory mechanisms of photosynthesis, PRR abundance at the cell surface and mitigation of oxidative stress, associated to tomato-Pst pathosystem.
Collapse
|
13
|
Yang YH, Li MJ, Yi YJ, Li RF, Li CX, Yang H, Wang J, Zhou JX, Shang S, Zhang ZY. Integrated miRNA-mRNA analysis reveals the roles of miRNAs in the replanting benefit of Achyranthes bidentata roots. Sci Rep 2021; 11:1628. [PMID: 33452468 PMCID: PMC7810699 DOI: 10.1038/s41598-021-81277-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
The yield and quality of the medicinal plant Achyranthes bidentata can be increased when it is replanted into a field cultivated previously with the same crop, however, fundamental aspects of its biology (so-called "replanting benefit") still remain to be elucidated. miRNAs are sRNA molecules involved in the post-transcriptional regulation of gene expression in plant biological processes. Here, 267 conserved and 36 novel miRNAs were identified in A. bidentata roots. We compared the miRNA content of the roots (R1) from first-year planting with that of the roots (R2) of second-year replanting, and screened 21 differentially expressed (DE) miRNAs. Based on in silico functional analysis, integrated miRNA-mRNA datasets allowed the identification of 10 miRNA-target family modules, which might participate in the benefit. The expression profiles of the miRNA-target modules were potentially correlated with the presence of the replanting benefit. The indication was that the miRNA-responsive continuous monoculture could reprogram miRNA-mRNA expression patterns, which possibly promote the root growth and development, enhance its transport activity and strengthen its tolerance to various stresses, thereby improving A. bidentata productivity as observed in the replanting benefit. Our study provides basic data for further research on the molecular mechanisms of the benefit in A. bidentata.
Collapse
Affiliation(s)
- Yan Hui Yang
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Ming Jie Li
- grid.256111.00000 0004 1760 2876College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002 China
| | - Yan Jie Yi
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Rui Fang Li
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Cui Xiang Li
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Heng Yang
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Jing Wang
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Jing Xuan Zhou
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Sui Shang
- grid.412099.70000 0001 0703 7066College of Bioengineering, Henan University of Technology, Lianhua Street 100, High-technology Zero, Zhengzhou, 450001 Henan Province China
| | - Zhong Yi Zhang
- grid.256111.00000 0004 1760 2876College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002 China
| |
Collapse
|
14
|
Wang D, Jiang C, Liu W, Wang Y. The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3211-3226. [PMID: 32080737 DOI: 10.1093/jxb/eraa097] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/10/2020] [Indexed: 05/03/2023]
Abstract
Resveratrol is notable not only for its functions in disease resistance in plants but also for its health benefits when it forms part of the human diet. Identification of new transcription factors helps to reveal the regulatory mechanisms of stilbene synthesis. Here, the WRKY53 transcription factor was isolated from the Chinese wild grape, Vitis quinquangularis. Vqwrky53 was expressed in a variety of tissues and responded to powdery mildew infection and to exogenous hormone application. VqWRKY53 was located in the nucleus and had transcriptional activation activity in yeast. A yeast two-hybrid assay and a bimolecular fluorescence complementation assay confirmed that VqWRKY53 interacted physically with VqMYB14 and VqMYB15, which have previously been reported to regulate stilbene synthesis. When Vqwrky53 was overexpressed in grape leaves, the expression of VqSTS32 and VqSTS41 and the content of stilbenes were increased. A yeast one-hybrid assay demonstrated that VqWRKY53 could bind directly to the promoters of STS genes. Overexpression of Vqwrky53 activated β-glucuronidase expression, driven by STS promoters, and co-expressing Vqwrky53 with VqMYB14 and VqMYB15 showed stronger regulatory functions. Heterologous overexpression of Vqwrky53 in Arabidopsis accelerated leaf senescence and disease resistance to PstDC3000.
Collapse
Affiliation(s)
- Dan Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Changyue Jiang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Wandi Liu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
15
|
Gupta P, Roy S, Nandi AK. MEDEA-interacting protein LONG-CHAIN BASE KINASE 1 promotes pattern-triggered immunity in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 103:173-184. [PMID: 32100164 DOI: 10.1007/s11103-020-00982-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
Arabidopsis LONG-CHAIN BASE KINASE 1 (LCBK1) interacts with MEDEA, a component of PCR2 complex that negatively regulates immunity. LCBK1 phosphorylates phytosphingosine and thereby promotes stomatal immunity against bacterial pathogens. Arabidopsis polycomb-group repressor complex2 (PRC2) protein MEDEA (MEA) suppresses both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). MEA represses the expression of RPS2 and thereby attenuates AvrRpt2 effector-mediated ETI. However, the mechanism of MEA-mediated PTI diminution was not known. By screening the Arabidopsis cDNA library using yeast-2-hybrid interaction, we identified LONG-CHAIN BASE KINASE1 (LCBK1) as an MEA-interacting protein. We found that lcbk1 mutants are susceptible to virulent bacterial pathogens, such as Pseudomonas syringae pv maculicola (Psm) and P. syringae pv tomato (Pst) but not the avirulent strain of Pst that carries AvrRpt2 effector. Pathogen inoculation induces LCBK1 expression, especially in guard cells. We found that LCBK1 has a positive regulatory role in stomatal closure after pathogen inoculation. WT plants close stomata within an hour of Pst inoculation or flg22 (a 22 amino acid peptide from bacterial flagellin protein that activates PTI) treatment, but not lcbk1 mutants. LCBK1 phosphorylates phytosphingosine (PHS). Exogenous application of phosphorylated PHS (PHS-P) induces stomatal closure and rescues loss-of-PTI phenotype of lcbk1 mutant plants. MEA overexpressing (MEA-Oex) plants are defective, whereas loss-of-function mea-6 mutants are hyperactive in PTI-induced stomatal closure. Exogenous application of PHS-P rescues loss-of-PTI in MEA-Oex plants. Results altogether demonstrate that LCBK1 is an interactor of MEA that positively regulates PTI-induced stomatal closure in Arabidopsis.
Collapse
Affiliation(s)
- Priya Gupta
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
| | - Shweta Roy
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, 415, New Delhi, 110067, India.
| |
Collapse
|
16
|
Liu C, Peng H, Li X, Liu C, Lv X, Wei X, Zou A, Zhang J, Fan G, Ma G, Ma L, Sun X. Genome-wide analysis of NDR1/HIN1-like genes in pepper ( Capsicum annuum L.) and functional characterization of CaNHL4 under biotic and abiotic stresses. HORTICULTURE RESEARCH 2020; 7:93. [PMID: 32528705 PMCID: PMC7261774 DOI: 10.1038/s41438-020-0318-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 05/21/2023]
Abstract
Plant NDR1/HIN1-like (NHL) genes play an important role in triggering plant defenses in response to biotic stresses. In this study, we performed a genome-wide identification of the NHL genes in pepper (Capsicum annuum L.) and characterized the functional roles of these CaNHL genes in response to abiotic stresses and infection by different pathogens. Phylogenetic analysis revealed that CaNHLs can be classified into five distinct subgroups, with each group containing generic and specific motifs. Regulatory element analysis showed that the majority of the promoter regions of the identified CaNHLs contain jasmonic acid (JA)-responsive and salicylic acid (SA)-responsive elements, and transcriptomic analysis revealed that CaNHL genes are expressed in all the examined tissues of pepper. The CaNHL1, CaNHL4, CaNHL6, CaNHL10, CaNHL11, and CaNHL12 genes were significantly upregulated under abiotic stress as well as in response to different pathogens, such as TMV, Phytophthora capsici and Pseudomonas syringae. In addition, we found that CaNHL4 localizes to the plasma membrane. CaNHL4-silenced pepper plants display significantly increased susceptibility to TMV, Phytophthora capsici and Pseudomonas syringae, exhibiting reduced expression of JA-related and SA-related genes and reduced ROS production. However, transient overexpression of CaNHL4 in pepper increases the expression of JA-related and SA-related genes, enhances the accumulation of ROS, and inhibits the infection of these three pathogens. Collectively, for the first time, we identified the NHL genes in pepper and demonstrated that CaNHL4 is involved in the production of ROS and that it also regulates the expression of JA-related and SA-related genes in response to different pathogens, suggesting that members of the CaNHL family play an essential role in the disease resistance of pepper.
Collapse
Affiliation(s)
- Changyun Liu
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Haoran Peng
- Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, 1211 Geneva 4, Switzerland
| | - Xinyu Li
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Chaolong Liu
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Xing Lv
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Xuefeng Wei
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Aihong Zou
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Jian Zhang
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Guangjin Fan
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Guanhua Ma
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071001 Baoding, China
| | - Xianchao Sun
- Laboratory of plant immunity and ecological control of plant disease, College of Plant Protection, Southwest University, 400716 Chongqing, China
| |
Collapse
|
17
|
Peng H, Pu Y, Yang X, Wu G, Qing L, Ma L, Sun X. Overexpression of a pathogenesis-related gene NbHIN1 confers resistance to Tobacco Mosaic Virus in Nicotiana benthamiana by potentially activating the jasmonic acid signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:147-156. [PMID: 31128684 DOI: 10.1016/j.plantsci.2019.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 05/02/2023]
Abstract
Harpin proteins secreted by plant-pathogenic gram-negative bacteria induce diverse plant defenses against different pathogens. Harpin-induced 1 (HIN1) gene highly induced in tobacco after application of Harpin protein is involved in a common plant defense pathway. However, the role of HIN1 against Tobacco mosaic virus (TMV) remains unknown. In this study, we functionally characterized the Nicotiana benthamiana HIN1 (NbHIN1) gene and generated the transgenic tobacco overexpressing the NbHIN1 gene. In a subcellular localization experiment, we found that NbHIN1 localized in the plasma membrane and cytosol. Overexpression of NbHIN1 did not lead to observed phenotype compared to wild type tobacco plant. However, the NbHIN1 overexpressing tobacco plant exhibited significantly enhanced resistance to TMV infection. Moreover, RNA-sequencing revealed the transcriptomic profiling of NbHIN1 overexpression and highlighted the primary effects on the genes in the processes related to biosynthesis of amino acids, plant-pathogen interaction and RNA transport. We also found that overexpression of NbHIN1 highly induced the expression of NbRAB11, suggesting that jasmonic acid signaling pathway might be involved in TMV resistance. Taken together, for the first time we demonstrated that overexpressing a pathogenesis-related gene NbHIN1 in N. benthamiana significantly enhances the TMV resistance, providing a potential mechanism that will enable us to engineer tobacco with improved TMV resistance in the future.
Collapse
Affiliation(s)
- Haoran Peng
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yundan Pu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Xue Yang
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Gentu Wu
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ling Qing
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Lisong Ma
- College of Plant Protection, Hebei Agriculture University, Baoding 071001, China; Division of Plant Science, Research School of Biology, The Australian National University, ACT, Acton, 2601, Australia.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
18
|
Demenkov PS, Saik OV, Ivanisenko TV, Kolchanov NA, Kochetov AV, Ivanisenko VA. Prioritization of potato genes involved in the formation of agronomically valuable traits using the SOLANUM TUBEROSUM knowledge base. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of highly efficient technologies in genomics, transcriptomics, proteomics and metabolomics, as well as new technologies in agriculture has led to an “information explosion” in plant biology and crop production, including potato production. Only a small part of the information reaches formalized databases (for example, Uniprot, NCBI Gene, BioGRID, IntAct, etc.). One of the main sources of reliable biological data is the scientific literature. The well-known PubMed database contains more than 18 thousand abstracts of articles on potato. The effective use of knowledge presented in such a number of non-formalized documents in natural language requires the use of modern intellectual methods of analysis. However, in the literature, there is no evidence of a widespread use of intelligent methods for automatically extracting knowledge from scientific publications on cultures such as potatoes. Earlier we developed the SOLANUM TUBEROSUM knowledge base (http://www-bionet.sysbio.cytogen. ru/and/plant/). Integrated into the knowledge base information about the molecular genetic mechanisms underlying the selection of significant traits helps to accelerate the identification of candidate genes for the breeding characteristics of potatoes and the development of diagnostic markers for breeding. The article searches for new potential participants of the molecular genetic mechanisms of resistance to adverse factors in plants. Prioritizing candidate genes has shown that the PHYA, GF14, CNIH1, RCI1A, ABI5, CPK1, RGS1, NHL3, GRF8, and CYP21-4 genes are the most promising for further testing of their relationships with resistance to adverse factors. As a result of the analysis, it was shown that the molecular genetic relationships responsible for the formation of significant agricultural traits are complex and include many direct and indirect interactions. The construction of associative gene networks and their analysis using the SOLANUM TUBEROSUM knowledge base is the basis for searching for target genes for targeted mutagenesis and marker-oriented selection of potato varieties with valuable agricultural characteristics.
Collapse
Affiliation(s)
- P. S. Demenkov
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - O. V. Saik
- Institute of Cytology and Genetics, SB RAS
| | | | | | | | | |
Collapse
|
19
|
Mapping Gene Markers for Apple Fruit Ring Rot Disease Resistance Using a Multi-omics Approach. G3-GENES GENOMES GENETICS 2019; 9:1663-1678. [PMID: 30910819 PMCID: PMC6505150 DOI: 10.1534/g3.119.400167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apple fruit ring rot (FRR), caused by Botryosphaeria dothidea, is a worldwide disease that impacts Asian apple production regions. However, no substantial progress has thus far been made toward the mapping of candidate genes or the development of effective genetic makers. In this five-year study, the resistance of 1,733 F1 hybrids from the cross ‘Jonathan’ × ‘Golden Delicious’ was phenotyped by non-wounding inoculation with four B. dothidea isolates. We first conducted systematic comparison of different analytic strategies for bulk segregant analysis by re-sequencing (BSA-Seq) and obtained suitable one for outbreeding species such as Malus. Forty-six quantitative trait loci (QTL) for resistance/susceptibility to the four isolates, including one QTL ‘hotspot’ on chromosome 14, were identified via BSA-Seq. Using integrated multi-omics strategies including RNA-sequencing, parental re-sequencing, BSA-Seq and meta-analysis of RNA-sequencing, fifty-seven candidate genes and corresponding functional mutations from the QTL were predicted. Functional mutations located on the candidate genes were validated using kompetitive allele-specific PCR in hybrids and Malus germplasm accessions with extremely resistant/susceptible phenotypes. Ten effective markers for apple ring rot were developed. The results provide an example of rapid candidate gene mapping for complex traits in outbreeding species.
Collapse
|
20
|
Identification of Candidate Ergosterol-Responsive Proteins Associated with the Plasma Membrane of Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20061302. [PMID: 30875866 PMCID: PMC6471938 DOI: 10.3390/ijms20061302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 11/17/2022] Open
Abstract
The impact of fungal diseases on crop production negatively reflects on sustainable food production and overall economic health. Ergosterol is the major sterol component in fungal membranes and regarded as a general elicitor or microbe-associated molecular pattern (MAMP) molecule. Although plant responses to ergosterol have been reported, the perception mechanism is still unknown. Here, Arabidopsis thaliana protein fractions were used to identify those differentially regulated following ergosterol treatment; additionally, they were subjected to affinity-based chromatography enrichment strategies to capture and categorize ergosterol-interacting candidate proteins using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Mature plants were treated with 250 nM ergosterol over a 24 h period, and plasma membrane-associated fractions were isolated. In addition, ergosterol was immobilized on two different affinity-based systems to capture interacting proteins/complexes. This resulted in the identification of defense-related proteins such as chitin elicitor receptor kinase (CERK), non-race specific disease resistance/harpin-induced (NDR1/HIN1)-like protein, Ras-related proteins, aquaporins, remorin protein, leucine-rich repeat (LRR)- receptor like kinases (RLKs), G-type lectin S-receptor-like serine/threonine-protein kinase (GsSRK), and glycosylphosphatidylinositol (GPI)-anchored protein. Furthermore, the results elucidated unknown signaling responses to this MAMP, including endocytosis, and other similarities to those previously reported for bacterial flagellin, lipopolysaccharides, and fungal chitin.
Collapse
|
21
|
Ahmed MB, Santos KCGD, Sanchez IB, Petre B, Lorrain C, Plourde MB, Duplessis S, Desgagné-Penix I, Germain H. A rust fungal effector binds plant DNA and modulates transcription. Sci Rep 2018; 8:14718. [PMID: 30283062 PMCID: PMC6170375 DOI: 10.1038/s41598-018-32825-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023] Open
Abstract
The basidiomycete Melampsora larici-populina causes poplar rust disease by invading leaf tissues and secreting effector proteins through specialized infection structures known as haustoria. The mechanisms by which rust effectors promote pathogen virulence are poorly understood. The present study characterized Mlp124478, a candidate effector of M. larici-populina. We used the models Arabidopsis thaliana and Nicotiana benthamiana to investigate the function of Mlp124478 in plant cells. We established that Mlp124478 accumulates in the nucleus and nucleolus, however its nucleolar accumulation is not required to promote growth of the oomycete pathogen Hyaloperonospora arabidopsidis. Stable constitutive expression of Mlp124478 in A. thaliana repressed the expression of genes involved in immune responses, and also altered leaf morphology by increasing the waviness of rosette leaves. Chip-PCR experiments showed that Mlp124478 associats'e with the TGA1a-binding DNA sequence. Our results suggest that Mlp124478 exerts a virulence activity and binds the TGA1a promoter to suppress genes induced in response to pathogen infection.
Collapse
Affiliation(s)
- Md Bulbul Ahmed
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de recherche en biologie végétale, UQTR, Trois-Rivières, QC, G9A 5H7, Canada
| | - Karen Cristine Gonçalves Dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de recherche en biologie végétale, UQTR, Trois-Rivières, QC, G9A 5H7, Canada
| | - Ingrid Benerice Sanchez
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de recherche en biologie végétale, UQTR, Trois-Rivières, QC, G9A 5H7, Canada
- Department of Biotechnology and Engineering in Chemistry, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Estado de México (ITESM CEM), Margarita Maza de Juárez, 52926, Cd, López Mateos, Mexico
| | - Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- INRA, UMR 1136 Interactions Arbres/Microorganismes, INRA/Université de Lorraine, Centre INRA Grand Est - Nancy, 54280, Champenoux, France
- Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA/Université de Lorraine, Faculté des Sciences et Technologies - Campus Aiguillettes, BP, 70239-54506, Vandoeuvre-lès-Nancy, France
| | - Cécile Lorrain
- INRA, UMR 1136 Interactions Arbres/Microorganismes, INRA/Université de Lorraine, Centre INRA Grand Est - Nancy, 54280, Champenoux, France
| | - Mélodie B Plourde
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, G9A 5H7, Canada.
- Groupe de recherche en biologie végétale, UQTR, Trois-Rivières, QC, G9A 5H7, Canada.
| | - Sébastien Duplessis
- INRA, UMR 1136 Interactions Arbres/Microorganismes, INRA/Université de Lorraine, Centre INRA Grand Est - Nancy, 54280, Champenoux, France
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de recherche en biologie végétale, UQTR, Trois-Rivières, QC, G9A 5H7, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, G9A 5H7, Canada.
- Groupe de recherche en biologie végétale, UQTR, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
22
|
Amiri M, Jalali-Javaran M, Haddad R, Ehsani P. In silico and in vivo analyses of the mutated human tissue plasminogen activator (mtPA) and the antithetical effects of P19 silencing suppressor on its expression in two Nicotiana species. Sci Rep 2018; 8:14079. [PMID: 30232346 PMCID: PMC6145930 DOI: 10.1038/s41598-018-32099-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/13/2018] [Indexed: 11/23/2022] Open
Abstract
Human tissue-type plasminogen activator is one of the most important therapeutic proteins involved in the breakdown of blood clots following the stroke. A mutation was found at position 1541 bp (G514E) and the mutated form was cloned into the binary vector pTRAc-ERH. In silico analysis showed that this mutation might have no significant effect on the active site of the tissue plasminogen activator enzyme. Accordingly, zymography assay confirmed the serine protease activity of the mutated form and its derivatives. The expression of the mutated form was verified with/without co-agroinjection of the P19 gene silencing suppressor in both Nicotiana tabacum and N. benthamiana. The ELISA results showed that the concentration of the mutated form in the absence of P19 was 0.65% and 0.74% of total soluble protein versus 0.141% and 1.36% in the presence of P19 in N. benthamiana and N. tabacum, respectively. In N. tabacum, co-agroinjection of P19 had the synergistic effect and increased the mutated tissue plasminogen activator production two-fold higher. However, in N. benthamiana, the presence of P19 had the adverse effect of five-fold reduction in the concentration. Moreover, results showed that the activity of the mutated form and its derivatives was more than that of the purified commercial tissue plasminogen activator.
Collapse
Affiliation(s)
- Mahshid Amiri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mokhtar Jalali-Javaran
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Raheem Haddad
- Agricultural Biotechnology Department, Imam Khomeini International University, Qazvin, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran (IPI), Tehran, Iran.
| |
Collapse
|
23
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
24
|
Singh N, Swain S, Singh A, Nandi AK. AtOZF1 Positively Regulates Defense Against Bacterial Pathogens and NPR1-Independent Salicylic Acid Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:323-333. [PMID: 29327969 DOI: 10.1094/mpmi-08-17-0208-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plant hormone salicylic acid (SA) plays critical roles in defense signaling against biotrophic pathogens. Pathogen inoculation leads to SA accumulation in plants. SA activates a transactivator protein NPR1, which, in turn, transcriptionally activates many defense response genes. Reports also suggest the presence of NPR1-independent pathways for SA signaling in Arabidopsis. Here, we report the characterization of a zinc-finger protein-coding gene AtOZF1 that positively influences NPR1-independent SA signaling. Mutants of AtOZF1 are compromised, whereas AtOZF1-overexpressing plants are hyperactive for defense against virulent and avirulent pathogens. AtOZF1 expression is SA-inducible. AtOZF1 function is not required for pathogenesis-associated biosynthesis and accumulation of SA. However, it is required for SA responsiveness. By generating atozf1npr1 double mutant, we show that contributions of these two genes are additive in terms of defense. We identified AtOZF1-interacting proteins by a yeast-two-hybrid screening of an Arabidopsis cDNA library. VDAC2 and NHL3 are two AtOZF1-interacting proteins, which are positive regulators of basal defense. AtOZF1 interacts with NHL3 and VDAC2 in plasma membrane and mitochondria, respectively. Our results demonstrate that AtOZF1 coordinates multiple steps of plant-pathogen interaction.
Collapse
Affiliation(s)
- Nidhi Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupriya Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Chen Q, Tian Z, Jiang R, Zheng X, Xie C, Liu J. StPOTHR1, a NDR1/HIN1-like gene in Solanum tuberosum, enhances resistance against Phytophthora infestans. Biochem Biophys Res Commun 2018; 496:1155-1161. [PMID: 29407171 DOI: 10.1016/j.bbrc.2018.01.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 11/18/2022]
Abstract
A family of NDR1/HIN1-like (NHL) genes that shows homology to the nonrace-specific disease resistance (NDR1) and the tobacco (Nicotiana tabacum) harpin-induced (HIN1) genes is reported to be involved in defense. However, little information about NHL genes is available for the potato (Solanum tuberosum). Here, we report that the expression of StPOTHR1, a member of the NHL gene family, is associated with resistance in potato against Phytophthora infestans, and is specifically induced in inoculation sites. Overexpression of StPOTHR1 enhances resistance against P. infestans via restricting rapid pathogen proliferation. Further, suppression of StPOTHR1 does not compromise R-mediated cell death. Subcellular localization and posttranscription modifications (PTMs) analysis reveals that StPOTHR1 is localized in plasma membrane (PM) and undergoes multiple PTMs. Moreover, StPOTHR1 interacts with NbMKK5L, a component of the MAP kinase signaling cascade. Taken together, our results suggest that the PM-localized StPOTHR1 contributes to potato immunity against P. infestans and may be associated with the MAP kinase signaling cascade.
Collapse
Affiliation(s)
- Qiansi Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, PR China; Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China
| | - Zhendong Tian
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, PR China
| | - Rui Jiang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, PR China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, PR China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, PR China
| | - Jun Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Wuhan 430070, PR China.
| |
Collapse
|
26
|
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. FRONTIERS IN PLANT SCIENCE 2018; 9:991. [PMID: 30050548 PMCID: PMC6052134 DOI: 10.3389/fpls.2018.00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/08/2023]
Abstract
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- *Correspondence: Petra Junková, ;
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Enric Zelazny
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS–CEA–Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
27
|
Santos C, Nelson CD, Zhebentyayeva T, Machado H, Gomes-Laranjo J, Costa RL. First interspecific genetic linkage map for Castanea sativa x Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi. PLoS One 2017; 12:e0184381. [PMID: 28880954 PMCID: PMC5589223 DOI: 10.1371/journal.pone.0184381] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
The Japanese chestnut (Castanea crenata) carries resistance to Phytophthora cinnamomi, the destructive and widespread oomycete causing ink disease. The European chestnut (Castanea sativa), carrying little to no disease resistance, is currently threatened by the presence of the oomycete pathogen in forests, orchards and nurseries. Determining the genetic basis of P. cinnamomi resistance, for further selection of molecular markers and candidate genes, is a prominent issue for implementation of marker assisted selection in the breeding programs for resistance. In this study, the first interspecific genetic linkage map of C. sativa x C. crenata allowed the detection of QTLs for P. cinnamomi resistance. The genetic map was constructed using two independent, control-cross mapping populations. Chestnut populations were genotyped using 452 microsatellite and single nucleotide polymorphism molecular markers derived from the available chestnut transcriptomes. The consensus genetic map spans 498,9 cM and contains 217 markers mapped with an average interval of 2.3 cM. For QTL analyses, the progression rate of P. cinnamomi lesions in excised shoots inoculated was used as the phenotypic metric. Using non-parametric and composite interval mapping approaches, two QTLs were identified for ink disease resistance, distributed in two linkage groups: E and K. The presence of QTLs located in linkage group E regarding P. cinnamomi resistance is consistent with a previous preliminary study developed in American x Chinese chestnut populations, suggesting the presence of common P. cinnamomi defense mechanisms across species. Results presented here extend the genomic resources of Castanea genus providing potential tools to assist the ongoing and future chestnut breeding programs.
Collapse
Affiliation(s)
- Carmen Santos
- Laboratório de Biologia Molecular, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Avenida da República, Oeiras, Portugal
| | - Charles Dana Nelson
- Southern Institute of Forest Genetics, Southern Research Station, USDA Forest Service, Saucier, Mississippi, United States of America
- Forest Health Research and Education Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Tetyana Zhebentyayeva
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Genomics & Computational Biology Laboratory, Clemson University, Clemson, South Carolina, United States of America
| | - Helena Machado
- Laboratório de Biologia Molecular, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Avenida da República, Oeiras, Portugal
| | - José Gomes-Laranjo
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Rita Lourenço Costa
- Laboratório de Biologia Molecular, Instituto Nacional de Investigação Agrária e Veterinária, I.P., Avenida da República, Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa - Tapada da Ajuda, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
28
|
Gonzalez LE, Keller K, Chan KX, Gessel MM, Thines BC. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics 2017; 18:533. [PMID: 28716048 PMCID: PMC5512810 DOI: 10.1186/s12864-017-3864-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/15/2017] [Indexed: 01/14/2023] Open
Abstract
Background The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Results Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1–1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. Conclusion FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3864-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kristen Keller
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Karen X Chan
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Megan M Gessel
- Chemistry Department, University of Puget Sound, Tacoma, WA, 98416, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA, 98416, USA.
| |
Collapse
|
29
|
Pierella Karlusich JJ, Zurbriggen MD, Shahinnia F, Sonnewald S, Sonnewald U, Hosseini SA, Hajirezaei MR, Carrillo N. Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-host Interaction of Tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. vesicatoria. FRONTIERS IN PLANT SCIENCE 2017; 8:1158. [PMID: 28725231 PMCID: PMC5495832 DOI: 10.3389/fpls.2017.01158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/16/2017] [Indexed: 05/05/2023]
Abstract
Non-host resistance is the most ample and durable form of plant resistance against pathogen infection. It includes induction of defense-associated genes, massive metabolic reprogramming, and in many instances, a form of localized cell death (LCD) at the site of infection, purportedly designed to limit the spread of biotrophic and hemibiotrophic microorganisms. Reactive oxygen species (ROS) have been proposed to act as signals for LCD orchestration. They are produced in various cellular compartments including chloroplasts, mitochondria and apoplast. We have previously reported that down-regulation of ROS build-up in chloroplasts by expression of a plastid-targeted flavodoxin (Fld) suppressed LCD in tobacco leaves inoculated with the non-host bacterium Xanthomonas campestris pv. vesicatoria (Xcv), while other defensive responses were unaffected, suggesting that chloroplast ROS and/or redox status play a major role in the progress of LCD. To better understand these effects, we compare here the transcriptomic alterations caused by Xcv inoculation on leaves of Fld-expressing tobacco plants and their wild-type siblings. About 29% of leaf-expressed genes were affected by Xcv and/or Fld. Surprisingly, 5.8% of them (1,111 genes) were regulated by Fld in the absence of infection, presumably representing pathways responsive to chloroplast ROS production and/or redox status during normal growth conditions. While the majority (∼75%) of pathogen-responsive genes were not affected by Fld, many Xcv responses were exacerbated, attenuated, or regulated in opposite direction by expression of this protein. Particularly interesting was a group of 384 genes displaying Xcv responses that were already triggered by Fld in the absence of infection, suggesting that the transgenic plants had a larger and more diversified suite of constitutive defenses against the attacking microorganism compared to the wild type. Fld modulated many genes involved in pathogenesis, signal transduction, transcriptional regulation and hormone-based pathways. Remarkable interactions with proteasomal protein degradation were observed. The results provide the first genome-wide, comprehensive picture illustrating the relevance of chloroplast redox status in biotic stress responses.
Collapse
Affiliation(s)
- Juan J. Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Matias D. Zurbriggen
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Sophia Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-NurembergErlangen, Germany
| | - Uwe Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-NurembergErlangen, Germany
| | - Seyed A. Hosseini
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Mohammad-Reza Hajirezaei, Néstor Carrillo,
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
- *Correspondence: Mohammad-Reza Hajirezaei, Néstor Carrillo,
| |
Collapse
|
30
|
Wang X, Guo R, Tu M, Wang D, Guo C, Wan R, Li Z, Wang X. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2017; 8:97. [PMID: 28197166 PMCID: PMC5281567 DOI: 10.3389/fpls.2017.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/17/2017] [Indexed: 05/10/2023]
Abstract
WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52, from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea, compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea. In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.
Collapse
Affiliation(s)
- Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Dejun Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Chunlei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- *Correspondence: Xiping Wang,
| |
Collapse
|
31
|
Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong MJ, Bae H. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis. Sci Rep 2016; 6:33370. [PMID: 27665921 PMCID: PMC5036088 DOI: 10.1038/srep33370] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Bosung Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Sang Kwon
- Environmental Biology and Chemistry Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Dong Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo-Chul Park
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
32
|
Guo R, Tu M, Wang X, Zhao J, Wan R, Li Z, Wang Y, Wang X. Ectopic expression of a grape aspartic protease gene, AP13, in Arabidopsis thaliana improves resistance to powdery mildew but increases susceptibility to Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:17-27. [PMID: 27181943 DOI: 10.1016/j.plantsci.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 05/24/2023]
Abstract
The grape aspartic protease gene, AP13 was previously reported to be responsive, in Chinese wild Vitis quinquangularis cv. 'Shang-24', to infection by Erysiphe necator, the causal agent of powdery mildew disease, as well as to treatment with salicylic acid in V. labrusca×V. vinifera cv. 'Kyoho'. In the current study, we evaluated the expression levels of AP13 in 'Shang-24' in response to salicylic acid (SA), methyl jasmonate (MeJA) and ethylene (ET) treatments, as well as to infection by the necrotrophic fungus, Botrytis cinerea, and the transcript levels of VqAP13 decreased after B. cinerea infection and MeJA treatment, but increased following ET and SA treatments. Transgenic Arabidopsis thaliana lines over-expressing VqAP13 under the control of a constitutive promoter showed enhanced resistance to powdery mildew and to the bacterium Pseudomonas syringae pv. tomato DC3000, and accumulated more callose than wild type plants, while the resistance of transgenic A. thaliana lines to B. cinerea inoculation was reduced. In addition, the expression profiles of various disease resistance- related genes in the transgenic A. thaliana lines following infection by different pathogens were compared to the equivalent profiles in the wild type plants. The results suggest that VqAP13 action promotes the SA dependent signal transduction pathway, but suppresses the JA signal transduction pathway.
Collapse
Affiliation(s)
- Rongrong Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangxi Academy of Agricultures Sciences, Nanning, Guangxi 530007, China.
| | - Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiao Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ran Wan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
33
|
Bao Y, Song WM, Zhang HX. Role of Arabidopsis NHL family in ABA and stress response. PLANT SIGNALING & BEHAVIOR 2016; 11:e1180493. [PMID: 27110948 PMCID: PMC4977461 DOI: 10.1080/15592324.2016.1180493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Based on their sequence homology to Arabidopsis NDR1 and tobacco (Nicotiana tabacum) HIN1, 45 NHL (NDR1/HIN1-like) family genes are found in Arabidopsis genome. Recently, we reported that overexpression of NHL6, a member of NHL family, modulated seed germination under abiotic stresses through affecting ABA biosynthesis and signaling. We also carried out qPCR and investigated the expression of the other 8 member genes (NHL7a, 16, 17, 21, 25, 26, 41, 43) whose transcriptional data are publicly unavailable, and found that expression of NHL17 was induced more than 2 folds in ABA treated seedlings. Furthermore, in addition to the plasma membrane localization, YFP-NHL6 fusion protein was also observed in the cytosol (as dots) or on the membrane of small vacuoles or vesicles. As a member of the pathogen infection related genes, expression of NHL6 was significantly induced by salicylic acid and NHL6s are evolutionarily conserved among different plant species. A working model of NHL6 in ABA response was proposed.
Collapse
Affiliation(s)
- Yan Bao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Plant Sciences Institute and the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Wei-Meng Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Xia Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Agriculture, Ludong University, Yantai, China
- Hong-Xia Zhang ,
| |
Collapse
|
34
|
Bao Y, Song WM, Pan J, Jiang CM, Srivastava R, Li B, Zhu LY, Su HY, Gao XS, Liu H, Yu X, Yang L, Cheng XH, Zhang HX. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis. PLoS One 2016; 11:e0148572. [PMID: 26849212 PMCID: PMC4744021 DOI: 10.1371/journal.pone.0148572] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/19/2016] [Indexed: 01/29/2023] Open
Abstract
NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis.
Collapse
Affiliation(s)
- Yan Bao
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Plant Sciences Institute and the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, United States of America
| | - Wei-Meng Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jing Pan
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Chun-Mei Jiang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Renu Srivastava
- Plant Sciences Institute and the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, United States of America
| | - Bei Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Lu-Ying Zhu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Hong-Yan Su
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Xiao-Shu Gao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hua Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xiang Yu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Lei Yang
- College of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Xian-Hao Cheng
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- * E-mail: (X-HC); (H-XZ)
| | - Hong-Xia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- * E-mail: (X-HC); (H-XZ)
| |
Collapse
|
35
|
Xin XF, Nomura K, Ding X, Chen X, Wang K, Aung K, Uribe F, Rosa B, Yao J, Chen J, He SY. Pseudomonas syringae Effector Avirulence Protein E Localizes to the Host Plasma Membrane and Down-Regulates the Expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 Gene Required for Antibacterial Immunity in Arabidopsis. PLANT PHYSIOLOGY 2015; 169. [PMID: 26206852 PMCID: PMC4577396 DOI: 10.1104/pp.15.00547] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many bacterial pathogens of plants and animals deliver effector proteins into host cells to promote infection. Elucidation of how pathogen effector proteins function not only is critical for understanding bacterial pathogenesis but also provides a useful tool in discovering the functions of host genes. In this study, we characterized the Pseudomonas syringae pv tomato DC3000 effector protein Avirulence Protein E (AvrE), the founding member of a widely distributed, yet functionally enigmatic, bacterial effector family. We show that AvrE is localized in the plasma membrane (PM) and PM-associated vesicle-like structures in the plant cell. AvrE contains two physically interacting domains, and the amino-terminal portion contains a PM-localization signal. Genome-wide microarray analysis indicates that AvrE, as well as the functionally redundant effector Hypersensitive response and pathogenicity-dependent Outer Protein M1, down-regulates the expression of the NONRACE-SPECIFIC DISEASE RESISTANCE1/HARPIN-INDUCED1-LIKE13 (NHL13) gene in Arabidopsis (Arabidopsis thaliana). Mutational analysis shows that NHL13 is required for plant immunity, as the nhl13 mutant plant displayed enhanced disease susceptibility. Our results defined the action site of one of the most important bacterial virulence proteins in plants and the antibacterial immunity function of the NHL13 gene.
Collapse
Affiliation(s)
- Xiu-Fang Xin
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Kinya Nomura
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Xinhua Ding
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Xujun Chen
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Kun Wang
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Kyaw Aung
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Francisco Uribe
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Bruce Rosa
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Jian Yao
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Jin Chen
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory (X.-F.X., K.N., X.D., X.C., K.A., F.U., B.R., J.Y., J.C., S.Y.H.), Department of Plant Biology (X.-F.X.), Department of Biochemistry and Molecular Biology (K.W.), and Howard Hughes Medical Institute (S.Y.H.), Michigan State University, East Lansing, Michigan 48824;State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018 Shandong, China (X.D.);Key Laboratory of Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100193, China (X.C.);Genome Institute, Washington University, St. Louis, Missouri 63108 (B.R.); andDepartment of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008 (J.Y.)
| |
Collapse
|
36
|
Lucas-Reina E, Romero-Campero FJ, Romero JM, Valverde F. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling. PLANT PHYSIOLOGY 2015; 168:561-74. [PMID: 25897001 PMCID: PMC4453789 DOI: 10.1104/pp.15.00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/19/2015] [Indexed: 05/18/2023]
Abstract
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs.
Collapse
Affiliation(s)
- Eva Lucas-Reina
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| | - Francisco J Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| | - José M Romero
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| | - Federico Valverde
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| |
Collapse
|
37
|
Anami SE, Zhang L, Xia Y, Zhang Y, Liu Z, Jing H. Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energy Secur 2015. [DOI: 10.1002/fes3.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvester Elikana Anami
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Institute of Biotechnology Research Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya
| | - Li‐Min Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yan Xia
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yu‐Miao Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Zhi‐Quan Liu
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Hai‐Chun Jing
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
38
|
Shimizu M, Fujimoto R, Ying H, Pu ZJ, Ebe Y, Kawanabe T, Saeki N, Taylor JM, Kaji M, Dennis ES, Okazaki K. Identification of candidate genes for Fusarium yellows resistance in Chinese cabbage by differential expression analysis. PLANT MOLECULAR BIOLOGY 2014; 85:247-57. [PMID: 24668026 DOI: 10.1007/s11103-014-0182-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/04/2014] [Indexed: 05/12/2023]
Abstract
Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans is an important disease of Brassica worldwide. To identify a resistance (R) gene against Fusarium yellows in Chinese cabbage (Brassica rapa var. pekinensis), we analyzed differential expression at the whole genome level between resistant and susceptible inbred lines using RNA sequencing. Four hundred and eighteen genes were significantly differentially expressed, and these were enriched for genes involved in response to stress or stimulus. Seven dominant DNA markers at putative R-genes were identified. Presence and absence of the sequence of the putative R-genes, Bra012688 and Bra012689, correlated with the resistance of six inbred lines and susceptibility of four inbred lines, respectively. In F(2) populations derived from crosses between resistant and susceptible inbred lines, presence of Bra012688 and Bra012689 cosegregated with resistance, suggesting that Bra012688 and Bra012689 are good candidates for fusarium yellows resistance in Chinese cabbage.
Collapse
Affiliation(s)
- Motoki Shimizu
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata, 950-2181, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Armijo G, Salinas P, Monteoliva MI, Seguel A, García C, Villarroel-Candia E, Song W, van der Krol AR, Álvarez ME, Holuigue L. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1395-406. [PMID: 24006883 DOI: 10.1094/mpmi-02-13-0044-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Salicylic acid (SA) is one of the key hormones that orchestrate the pathogen-induced immune response in plants. This response is often characterized by the activation of a local hypersensitive reaction involving programmed cell death, which constrains proliferation of biotrophic pathogens. Here, we report the identification and functional characterization of an SA-induced legume lectin-like protein 1 (SAI-LLP1), which is coded by a gene that belongs to the group of early SA-activated Arabidopsis genes. SAI-LLP1 expression is induced upon inoculation with avirulent strains of Pseudomonas syringae pv. tomato via an SA-dependent mechanism. Constitutive expression of SAI-LLP1 restrains proliferation of P. syringae pv. tomato Avr-Rpm1 and triggers more cell death in inoculated leaves. Cellular and biochemical evidence indicates that SAI-LLP1 is a glycoprotein located primarily at the apoplastic side of the plasma membrane. This work indicates that SAI-LLP1 is involved in resistance to P. syringae pv. tomato Avr-Rpm1 in Arabidopsis, as a component of the SA-mediated defense processes associated with the effector-triggered immunity response.
Collapse
|
40
|
Bernfur K, Larsson O, Larsson C, Gustavsson N. Relative abundance of integral plasma membrane proteins in Arabidopsis leaf and root tissue determined by metabolic labeling and mass spectrometry. PLoS One 2013; 8:e71206. [PMID: 23990937 PMCID: PMC3747180 DOI: 10.1371/journal.pone.0071206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022] Open
Abstract
Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome.
Collapse
Affiliation(s)
- Katja Bernfur
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
- * E-mail:
| | - Olaf Larsson
- Mutation Analysis Facility, Clinical Research Centre, Novum, Huddinge University Hospital, Stockholm, Sweden
| | - Christer Larsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | | |
Collapse
|
41
|
Hemsley PA, Weimar T, Lilley K, Dupree P, Grierson C. Palmitoylation in plants: new insights through proteomics. PLANT SIGNALING & BEHAVIOR 2013; 8:25209. [PMID: 23759553 PMCID: PMC3999067 DOI: 10.4161/psb.25209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 05/20/2023]
Abstract
Palmitoylation is the post-translational addition of lipids to proteins though thioester bonds and acts to promote association with membranes. Palmitoylation also acts to target proteins to specific membrane compartments, control residence in and movement between membrane microdomains and regulate protein conformation and activity. Palmitoylation is unique among lipid modifications of proteins as it is reversible, allowing for dynamic control over all palmitoylation dependent processes. Palmitoylation cannot be predicted from protein sequence and as a result is understudied when compared with other post-translational modifications. We recently published a proteomic analysis of palmitoylation in plants and increased the number of proposed palmitoylated proteins in plants from ~30 to over 500. The wide range of identified proteins indicates that palmitoylation is likely important for a variety of different functions in plants. Many supposedly well characterized proteins were identified as palmitoylated and our new data provides novel insight into regulatory mechanisms and potential explanations for observed phenomena. These data represent a new resource for plant biologist and will allow the study of palmitoylated proteins in plants to expand and move forward.
Collapse
Affiliation(s)
- Piers A. Hemsley
- Division of Plant Sciences; University of Dundee at the James Hutton Institute; Invergowrie, UK
- Cell and Molecular Sciences; James Hutton Institute; Invergowrie, UK
- Correspondence to: Piers A. Hemsley,
| | - Thilo Weimar
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | - Kathryn Lilley
- Cambridge Center for Proteomics; University of Cambridge; Cambridge, UK
| | - Paul Dupree
- Department of Biochemistry; University of Cambridge; Cambridge, UK
| | - Claire Grierson
- School of Biological Sciences; University of Bristol; Bristol, UK
| |
Collapse
|
42
|
Sørhagen K, Laxa M, Peterhänsel C, Reumann S. The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:723-36. [PMID: 23506300 DOI: 10.1111/j.1438-8677.2012.00723.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/08/2012] [Indexed: 05/06/2023]
Abstract
Photorespiration represents one of the major highways of primary plant metabolism and is the most prominent example of metabolic cell organelle integration, since the pathway requires the concerted action of plastidial, peroxisomal, mitochondrial and cytosolic enzymes and organellar transport proteins. Oxygenation of ribulose-1,5-bisphosphate by Rubisco leads to the formation of large amounts of 2-phosphoglycolate, which are recycled to 3-phosphoglycerate by the photorespiratory C2 cycle, concomitant with stoichiometric production rates of H2 O2 in peroxisomes. Apart from its significance for agricultural productivity, a secondary function of photorespiration in pathogen defence has emerged only recently. Here, we summarise literature data supporting the crosstalk between photorespiration and pathogen defence and perform a meta-expression analysis of photorespiratory genes during pathogen attack. Moreover, we screened Arabidopsis proteins newly predicted using machine learning methods to be targeted to peroxisomes, the central H2 O2 -producing organelle of photorespiration, for homologues of known pathogen defence proteins and analysed their expression during pathogen infection. The analyses further support the idea that photorespiration and non-photorespiratory peroxisomal metabolism play multi-faceted roles in pathogen defence beyond metabolism of reactive oxygen species.
Collapse
Affiliation(s)
- K Sørhagen
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | | | | |
Collapse
|
43
|
Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:157. [PMID: 23761797 PMCID: PMC3669760 DOI: 10.3389/fpls.2013.00157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 05/20/2023]
Abstract
Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Ute Albrecht
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| | - Rena Shimizu
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Guanfeng Wang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Kim D. Bowman
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| |
Collapse
|
44
|
Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:157. [PMID: 23761797 DOI: 10.3389/fpls.2013.00157.4:157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 05/23/2023]
Abstract
Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
45
|
Upadhyaya HD, Wang YH, Sharma R, Sharma S. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1649-57. [PMID: 23463493 DOI: 10.1007/s00122-013-2081-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/23/2013] [Indexed: 05/20/2023]
Abstract
Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.
Collapse
Affiliation(s)
- Hari D Upadhyaya
- International Crops Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, Andhra Pradesh, India
| | | | | | | |
Collapse
|
46
|
Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. THE NEW PHYTOLOGIST 2013; 197:805-814. [PMID: 23252521 DOI: 10.1111/nph.12077] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/31/2012] [Indexed: 05/06/2023]
Abstract
S-acylation (palmitoylation) is a poorly understood post-translational modification of proteins involving the addition of acyl lipids to cysteine residues. S-acylation promotes the association of proteins with membranes and influences protein stability, microdomain partitioning, membrane targeting and activation state. No consensus motif for S-acylation exists and it therefore requires empirical identification. Here, we describe a biotin switch isobaric tagging for relative and absolute quantification (iTRAQ)-based method to identify S-acylated proteins from Arabidopsis. We use these data to predict and confirm S-acylation of proteins not in our dataset. We identified c. 600 putative S-acylated proteins affecting diverse cellular processes. These included proteins involved in pathogen perception and response, mitogen-activated protein kinases (MAPKs), leucine-rich repeat receptor-like kinases (LRR-RLKs) and RLK superfamily members, integral membrane transporters, ATPases, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs) and heterotrimeric G-proteins. The prediction of S-acylation of related proteins was demonstrated by the identification and confirmation of S-acylation sites within the SNARE and LRR-RLK families. We showed that S-acylation of the LRR-RLK FLS2 is required for a full response to elicitation by the flagellin derived peptide flg22, but is not required for localization to the plasma membrane. Arabidopsis contains many more S-acylated proteins than previously thought. These data can be used to identify S-acylation sites in related proteins. We also demonstrated that S-acylation is required for full LRR-RLK function.
Collapse
Affiliation(s)
- Piers A Hemsley
- School of Biological Science, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Thilo Weimar
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Claire S Grierson
- School of Biological Science, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
47
|
Wide screening of phage-displayed libraries identifies immune targets in planta. PLoS One 2013; 8:e54654. [PMID: 23372747 PMCID: PMC3556032 DOI: 10.1371/journal.pone.0054654] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Microbe-Associated Molecular Patterns and virulence effectors are recognized by plants as a first step to mount a defence response against potential pathogens. This recognition involves a large family of extracellular membrane receptors and other immune proteins located in different sub-cellular compartments. We have used phage-display technology to express and select for Arabidopsis proteins able to bind bacterial pathogens. To rapidly identify microbe-bound phage, we developed a monitoring method based on microarrays. This combined strategy allowed for a genome-wide screening of plant proteins involved in pathogen perception. Two phage libraries for high-throughput selection were constructed from cDNA of plants infected with Pseudomonas aeruginosa PA14, or from combined samples of the virulent isolate DC3000 of Pseudomonas syringae pv. tomato and its avirulent variant avrRpt2. These three pathosystems represent different degrees in the specificity of plant-microbe interactions. Libraries cover up to 2×107 different plant transcripts that can be displayed as functional proteins on the surface of T7 bacteriophage. A number of these were selected in a bio-panning assay for binding to Pseudomonas cells. Among the selected clones we isolated the ethylene response factor ATERF-1, which was able to bind the three bacterial strains in competition assays. ATERF-1 was rapidly exported from the nucleus upon infiltration of either alive or heat-killed Pseudomonas. Moreover, aterf-1 mutants exhibited enhanced susceptibility to infection. These findings suggest that ATERF-1 contains a microbe-recognition domain with a role in plant defence. To identify other putative pathogen-binding proteins on a genome-wide scale, the copy number of selected-vs.-total clones was compared by hybridizing phage cDNAs with Arabidopsis microarrays. Microarray analysis revealed a set of 472 candidates with significant fold change. Within this set defence-related genes, including well-known targets of bacterial effectors, are over-represented. Other genes non-previously related to defence can be associated through this study with general or strain-specific recognition of Pseudomonas.
Collapse
|
48
|
Puga-Freitas R, Barot S, Taconnat L, Renou JP, Blouin M. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana. PLoS One 2012; 7:e49504. [PMID: 23226498 PMCID: PMC3513312 DOI: 10.1371/journal.pone.0049504] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/09/2012] [Indexed: 12/23/2022] Open
Abstract
Earthworms have generally a positive impact on plant growth, which is often attributed to a trophic mechanism: namely, earthworms increase the release of mineral nutrients from soil litter and organic matter. An alternative hypothesis has been proposed since the discovery of a signal molecule (Indole Acetic Acid) in earthworm faeces. In this study, we used methodologies developed in plant science to gain information on ecological mechanisms involved in plant-earthworm interaction, by looking at plant response to earthworm presence at a molecular level. First, we looked at plant overall response to earthworm faeces in an in vitro device where only signal molecules could have an effect on plant growth; we observed that earthworms were inducing positive or negative effects on different plant species. Then, using an Arabidopsis thaliana mutant with an impaired auxin transport, we demonstrated the potential of earthworms to stimulate root growth and to revert the dwarf mutant phenotype. Finally, we performed a comparative transcriptomic analysis of Arabidopsis thaliana in the presence and absence of earthworms; we found that genes modulated in the presence of earthworms are known to respond to biotic and abiotic stresses, or to the application of exogenous hormones. A comparison of our results with other studies found in databases revealed strong analogies with systemic resistance, induced by signal molecules emitted by Plant Growth Promoting Rhizobacteria and/or elicitors emitted by non-virulent pathogens. Signal molecules such as auxin and ethylene, which are considered as major in plant-microorganisms interactions, can also be of prior importance to explain plant-macroinvertebrates interactions. This could imply revisiting ecological theories which generally stress on the role of trophic relationships.
Collapse
Affiliation(s)
- Ruben Puga-Freitas
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Université Paris-Est Créteil, Créteil, France
| | - Sébastien Barot
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Institut de Recherche pour le Développement, Ecole Normale Supérieure, Paris, France
| | | | | | - Manuel Blouin
- UMR Biogéochimie et Ecologie des Milieux Continentaux, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
49
|
Caesar K, Thamm AMK, Witthöft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K. Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5571-80. [PMID: 21841169 PMCID: PMC3223052 DOI: 10.1093/jxb/err238] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/08/2011] [Accepted: 07/12/2011] [Indexed: 05/18/2023]
Abstract
Cytokinins are hormones that are involved in various processes of plant growth and development. The model of cytokinin signalling starts with hormone perception through membrane-localized histidine kinase receptors. Although the biochemical properties and functions of these receptors have been extensively studied, there is no solid proof of their subcellular localization. Here, cell biological and biochemical evidence for the localization of functional fluorophor-tagged fusions of Arabidopsis histidine kinase 3 (AHK3) and 4 (AHK4), members of the cytokinin receptor family, in the endoplasmic reticulum (ER) is provided. Furthermore, membrane-bound AHK3 interacts with AHK4 in vivo. The ER localization and putative function of cytokinin receptors from the ER have major impacts on the concept of cytokinin perception and signalling, and hormonal cross-talk in plants.
Collapse
Affiliation(s)
- Katharina Caesar
- Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Antje M. K. Thamm
- Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Janika Witthöft
- Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Kirstin Elgass
- Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Peter Huppenberger
- Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Christopher Grefen
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jakub Horak
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Klaus Harter
- Center for Plant Molecular Biology, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| |
Collapse
|
50
|
Champigny MJ, Shearer H, Mohammad A, Haines K, Neumann M, Thilmony R, He SY, Fobert P, Dengler N, Cameron RK. Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters. BMC PLANT BIOLOGY 2011; 11:125. [PMID: 21896186 PMCID: PMC3180652 DOI: 10.1186/1471-2229-11-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/06/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in Arabidopsis. RESULTS DIR1 promoter:DIR1-GUS/dir1-1 lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent Pseudomonas syringae pv tomato (Pst) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the dir1-1 SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response. CONCLUSIONS Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR.
Collapse
Affiliation(s)
- Marc J Champigny
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Heather Shearer
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Asif Mohammad
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Karen Haines
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Melody Neumann
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Roger Thilmony
- Department of Plant Biology, Michigan State University, East Lansing MI, 48824 USA
- USDA-ARS, Western Regional Research Center, Crop Improvement and Utilization Research Unit, 800 Buchanan St., Albany, CA, 94710 USA
| | - Sheng Yang He
- Department of Plant Biology, Michigan State University, East Lansing MI, 48824 USA
| | - Pierre Fobert
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nancy Dengler
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Robin K Cameron
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|