1
|
Ma Z, Buckley TN, Sack L. The determination of leaf size on the basis of developmental traits. THE NEW PHYTOLOGIST 2025; 246:461-480. [PMID: 39994877 DOI: 10.1111/nph.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Mature leaf area (LA) is a showcase of diversity - varying enormously within and across species, and associated with the productivity and distribution of plants and ecosystems. Yet, it remains unclear how developmental processes determine variation in LA. We introduce a mathematical framework pinpointing the origin of variation in LA by quantifying six epidermal 'developmental traits': initial mean cell size and number (approximating values within the leaf primordium), and the maximum relative rates and durations of cell proliferation and expansion until leaf maturity. We analyzed a novel database of developmental trajectories of LA and epidermal anatomy, representing 12 eudicotyledonous species and 52 Arabidopsis experiments. Within and across species, mean primordium cell number and maximum relative cell proliferation rate were the strongest developmental determinants of LA. Trade-offs between developmental traits, consistent with evolutionary and metabolic scaling theory, strongly constrain LA variation. These include trade-offs between primordium cell number vs cell proliferation, primordium mean cell size vs cell expansion, and the durations vs maximum relative rates of cell proliferation and expansion. Mutant and wild-type comparisons showed these trade-offs have a genetic basis in Arabidopsis. Analyses of developmental traits underlying LA and its diversification highlight mechanisms for leaf evolution, and opportunities for breeding trait shifts.
Collapse
Affiliation(s)
- Zeqing Ma
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Plackett ARG, Hibberd JM. Rice bundle sheath cell shape is regulated by the timing of light exposure during leaf development. PLANT, CELL & ENVIRONMENT 2024; 47:2597-2613. [PMID: 38549236 DOI: 10.1111/pce.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 06/06/2024]
Abstract
Plant leaves contain multiple cell types which achieve distinct characteristics whilst still coordinating development within the leaf. The bundle sheath possesses larger individual cells and lower chloroplast content than the adjacent mesophyll, but how this morphology is achieved remains unknown. To identify regulatory mechanisms determining bundle sheath cell morphology we tested the effects of perturbing environmental (light) and endogenous signals (hormones) during leaf development of Oryza sativa (rice). Total chloroplast area in bundle sheath cells was found to increase with cell size as in the mesophyll but did not maintain a 'set-point' relationship, with the longest bundle sheath cells demonstrating the lowest chloroplast content. Application of exogenous cytokinin and gibberellin significantly altered the relationship between cell size and chloroplast biosynthesis in the bundle sheath, increasing chloroplast content of the longest cells. Delayed exposure to light reduced the mean length of bundle sheath cells but increased corresponding leaf length, whereas premature light reduced final leaf length but did not affect bundle sheath cells. This suggests that the plant hormones cytokinin and gibberellin are regulators of the bundle sheath cell-chloroplast relationship and that final bundle sheath length may potentially be affected by light-mediated control of exit from the cell cycle.
Collapse
Affiliation(s)
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Zhang X, Chen K, Lv G, Wang W, Jiang J, Liu G. The association analysis of DNA methylation and transcriptomics identified BpCYCD3;2 as a participant in influencing cell division in autotetraploid birch (Betula pendula) leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112099. [PMID: 38640971 DOI: 10.1016/j.plantsci.2024.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Polyploidization plays a crucial role in plant breeding and genetic improvement. Although the phenomenon of polyploidization affecting the area and number of plant epidermal pavement cells is well described, the underlying mechanism behind this phenomenon is still largely unknown. In this study, we found that the leaves of autotetraploid birch (Betula pendula) stopped cell division earlier and had a larger cell area. In addition, compared to diploids, tetraploids have a smaller stomatal density and fewer stomatal numbers. Genome-wide DNA methylation analysis revealed no significant difference in global DNA methylation levels between diploids and tetraploids. A total of 9154 differential methylation regions (DMRs) were identified between diploids and tetraploids, with CHH-type DMRs accounting for 91.73% of all types of DMRs. Further research has found that there are a total of 2105 differentially methylated genes (DMEGs) with CHH-type DMRs in birch. The GO functional enrichment results of DMEGs showed that differentially methylated genes were mainly involved in terms such as cellular process and metabolic process. The analysis of differentially methylated genes and differentially expressed genes suggests that hyper-methylation in the promoter region may inhibit the gene expression level of BpCYCD3;2 in tetraploids. To investigate the function of BpCYCD3;2 in birch, we obtained overexpression and repressed expression lines of BpCYCD3;2 through genetic transformation. The morphogenesis of both BpCYCD3;2-OE and BpCYCD3;2-RE lines was not affected. However, low expression of BpCYCD3;2 can lead to inhibition of cell division in leaves, and this inhibition of cell proliferation can be compensated for by an increase in cell size. Additionally, we found that the number and density of stomata in the BpCYCD3;2-RE lines were significantly reduced, consistent with the tetraploid. These data indicate that changes in cell division ability and stomatal changes in tetraploid birch can be partially attributed to low expression of the BpCYCD3;2 gene, which may be related to hyper-methylation in its promoter region. These results will provide new insights into the mechanism by which polyploidization affects plant development.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
4
|
Li P, He Y, Xiao L, Quan M, Gu M, Jin Z, Zhou J, Li L, Bo W, Qi W, Huang R, Lv C, Wang D, Liu Q, El-Kassaby YA, Du Q, Zhang D. Temporal dynamics of genetic architecture governing leaf development in Populus. THE NEW PHYTOLOGIST 2024; 242:1113-1130. [PMID: 38418427 DOI: 10.1111/nph.19649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 03/01/2024]
Abstract
Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuling He
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Xiao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyang Quan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingyue Gu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhuoying Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jiaxuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lianzheng Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weina Qi
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Huang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lv
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Dan Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, 2601, Australia
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Qingzhang Du
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Deqiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Mano NA, Shaikh MA, Widhalm JR, Yoo CY, Mickelbart MV. Transcriptional repression of GTL1 under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance. PLANT DIRECT 2024; 8:e594. [PMID: 38799417 PMCID: PMC11117050 DOI: 10.1002/pld3.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Collapse
Affiliation(s)
- Noel Anthony Mano
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological and Environmental SciencesHeidelberg UniversityTiffinOhioUSA
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Mearaj A. Shaikh
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Joshua R. Widhalm
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Chan Yul Yoo
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Michael V. Mickelbart
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
6
|
Donnelly CP, De Sousa A, Cuypers B, Laukens K, Al-Huqail AA, Asard H, Beemster GTS, AbdElgawad H. Malate production, sugar metabolism, and redox homeostasis in the leaf growth zone of Rye (Secale cereale) increase stress tolerance to aluminum stress: A biochemical and genome-wide transcriptional study. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132956. [PMID: 37976853 DOI: 10.1016/j.jhazmat.2023.132956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.
Collapse
Affiliation(s)
- Chase P Donnelly
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Alexandra De Sousa
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Bart Cuypers
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Kris Laukens
- ADReM Data Lab, Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Asma A Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
7
|
Zhao W, Lv Z, Zhang H, Yue J, Zhang X, Li L, Huang F, Lin S. Anatomical Mechanisms of Leaf Blade Morphogenesis in Sasaella kogasensis 'Aureostriatus'. PLANTS (BASEL, SWITZERLAND) 2024; 13:332. [PMID: 38337866 PMCID: PMC10857177 DOI: 10.3390/plants13030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
There are limited studies on the cytology of bamboo leaf development from primordium to maturity. This study delves into the leaf morphological characteristics and growth patterns of Sasaella kogasensis 'Aureostriatus' and provides a three-dimensional anatomical analysis of cell division, expansion, and degradation. Leaves on the same branch develop bottom-up, while individual leaves develop the other way around. Like bamboo shoots and culms, the leaves follow a "slow-fast-slow" growth pattern, with longitudinal growth being predominant during their development. The growth zones of individual leaves included division, elongation, and maturation zones based on the distribution of growth space. By measuring 13,303 epidermal long cells and 3293 mesophyll cells in longitudinal sections of rapidly elongating leaves, we observed that in the rapid elongation phase (S4-S5), the division zone was located in the 1-2 cm segment at the bottom of the leaf blade and maintained a constant size, continuously providing new cells for leaf elongation, whereas in the late rapid elongation phase (S6), when the length of the leaf blade was approaching that of a mature leaf, its cells at the bottom of the blade no longer divided and were replaced by the ability to elongate. Furthermore, to gain an insight into the dynamic changes in the growth of the S. kogasensis 'Aureostriatus' leaves in the lateral and periclinal directions, the width and thickness of 1459 epidermal and 2719 mesophyll cells were counted in the mid-cross section of leaves at different developmental stages. The results showed that during the early stages of development (S1-S3), young leaves maintained vigorous division in the lateral direction, while periplasmic division gradually expanded from the bottom to the top of the leaf blade and the number of cell layers stabilized at S4. The meristematic tissues on both sides of the leaf were still able to divide at S4 but the frequency of the division gradually decreased, while cell division and expansion occurred simultaneously between the veins. At S6, the cells at the leaf margins and between the veins were completely differentiated and the width of the leaf blade no longer expanded. These findings revealed changes in cell growth anisotropically during the leaf development of S. kogasensis 'Aureostriatus' and demonstrated that leaf elongation was closely related to the longitudinal expansion of epidermal cells and proliferative growth of mesophyll cells, whereas the cell division of meristematic tissues and expansion of post-divisional cells contributed to the increases in blade width and thickness. The presented framework will facilitate a further exploration of the molecular regulatory mechanisms of leaf development in S. kogasensis 'Aureostriatus' and provide relevant information for developmental and taxonomic studies of bamboo plants.
Collapse
Affiliation(s)
- Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hanjiao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Yue
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Feiyi Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (W.Z.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Krasauskas J, Ganie SA, Al-Husari A, Bindschedler L, Spanu P, Ito M, Devoto A. Jasmonates, gibberellins, and powdery mildew modify cell cycle progression and evoke differential spatiotemporal responses along the barley leaf. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:180-203. [PMID: 37611210 PMCID: PMC10735486 DOI: 10.1093/jxb/erad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Barley (Hordeum vulgare) is an important cereal crop, and its development, defence, and stress responses are modulated by different hormones including jasmonates (JAs) and the antagonistic gibberellins (GAs). Barley productivity is severely affected by the foliar biotrophic fungal pathogen Blumeria hordei. In this study, primary leaves were used to examine the molecular processes regulating responses to methyl-jasmonate (MeJA) and GA to B. hordei infection along the leaf axis. Flow cytometry, microscopy, and spatiotemporal expression patterns of genes associated with JA, GA, defence, and the cell cycle provided insights on cell cycle progression and on the gradient of susceptibility to B. hordei observed along the leaf. Notably, the combination of B. hordei with MeJA or GA pre-treatment had a different effect on the expression patterns of the analysed genes compared to individual treatments. MeJA reduced susceptibility to B. hordei in the proximal part of the leaf blade. Overall, distinctive spatiotemporal gene expression patterns correlated with different degrees of cell proliferation, growth capacity, responses to hormones, and B. hordei infection along the leaf. Our results highlight the need to further investigate differential spatial and temporal responses to pathogens at the organ, tissue, and cell levels in order to devise effective disease control strategies in crops.
Collapse
Affiliation(s)
- Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Showkat Ahmad Ganie
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Aroub Al-Husari
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Laurence Bindschedler
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Masaki Ito
- School of Biological Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
9
|
Soni N, Bacete L. The interplay between cell wall integrity and cell cycle progression in plants. PLANT MOLECULAR BIOLOGY 2023; 113:367-382. [PMID: 38091166 PMCID: PMC10730644 DOI: 10.1007/s11103-023-01394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Plant cell walls are dynamic structures that play crucial roles in growth, development, and stress responses. Despite our growing understanding of cell wall biology, the connections between cell wall integrity (CWI) and cell cycle progression in plants remain poorly understood. This review aims to explore the intricate relationship between CWI and cell cycle progression in plants, drawing insights from studies in yeast and mammals. We provide an overview of the plant cell cycle, highlight the role of endoreplication in cell wall composition, and discuss recent findings on the molecular mechanisms linking CWI perception to cell wall biosynthesis and gene expression regulation. Furthermore, we address future perspectives and unanswered questions in the field, such as the identification of specific CWI sensing mechanisms and the role of CWI maintenance in the growth-defense trade-off. Elucidating these connections could have significant implications for crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- Nancy Soni
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Laura Bacete
- Faculty of Natural Sciences, Institute for Biology, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
10
|
Vandionant S, Hendrix S, Alfano R, Plusquin M, Cuypers A. Comparing cadmium-induced effects on the regulation of the DNA damage response and cell cycle progression between entire rosettes and individual leaves of Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108105. [PMID: 37883918 DOI: 10.1016/j.plaphy.2023.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Cadmium (Cd) activates the DNA damage response (DDR) and inhibits the cell cycle in Arabidopsis thaliana through the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1. The aim of this study was to investigate which individual leaf best reflects the Cd-induced effects on the regulation of the DDR and cell cycle progression in rosettes, enabling a more profound interpretation of the rosette data since detailed information, provided by the individual leaf responses, is lost when studying the whole rosette. Wild-type A. thaliana plants were cultivated in hydroponics and exposed to different Cd concentrations. Studied individual leaves were leaf 1 and 2, which emerged before Cd exposure, and leaf 3, which emerged upon Cd exposure. The DDR and cell cycle regulation were studied in rosettes as well as individual leaves after several days of Cd exposure. Varying concentration-dependent response patterns were observed between the entire rosette and individual leaves. Gene expression of selected DDR and cell cycle regulators showed higher similarity in their response between the rosette and the individual leaf emerged during Cd exposure than between both individual leaves. The same pattern was observed for plant growth and cell cycle-related parameters. We conclude that Cd-induced effects on the regulation of the DDR and cell cycle progression in the leaf that emerged during Cd exposure, resemble those observed in the rosette the most, which contributes to the interpretation of the rosette data in the framework of plant development and after exposure to Cd.
Collapse
Affiliation(s)
- Stéphanie Vandionant
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
11
|
Morinaka H, Sakamoto Y, Iwase A, Sugimoto K. How do plants reprogramme the fate of differentiated cells? CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102377. [PMID: 37167921 DOI: 10.1016/j.pbi.2023.102377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
Being able to change cell fate after differentiation highlights the remarkable developmental plasticity of plant cells. Recent studies show that phytohormones, such as auxin and cytokinin, promote cell cycle reactivation, a critical first step to reprogramme mitotically inactive, differentiated cells into organogenic stem cells. Accumulating evidence suggests that wounding provides an additional cue to convert the identity of differentiated cells by promoting the loss of existing cell fate and/or acquisition of new cell fate. Differentiated cells can also alter cell fate without undergoing cell division and in this case, wounding and phytohormones induce master regulators that can directly assign new cell fate.
Collapse
Affiliation(s)
- Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Yuki Sakamoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PRESTO), 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Tang HB, Wang J, Wang L, Shang GD, Xu ZG, Mai YX, Liu YT, Zhang TQ, Wang JW. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1386-1407. [PMID: 36748203 PMCID: PMC10118278 DOI: 10.1093/plcell/koad031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/17/2023]
Abstract
Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.
Collapse
Affiliation(s)
- Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Juan Wang
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Yan-Xia Mai
- Core Facility Center of CEMPS, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Ye-Tong Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai 200234, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
13
|
Bruscalupi G, Di Micco P, Failla CM, Pascarella G, Morea V, Saliola M, De Paolis A, Venditti S, Mauro ML. Arabidopsis thaliana sirtuins control proliferation and glutamate dehydrogenase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:236-245. [PMID: 36436414 DOI: 10.1016/j.plaphy.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Sirtuins are part of a gene family of NAD-dependent deacylases that act on histone and non-histone proteins and control a variety of activities in all living organisms. Their roles are mainly related to energy metabolism and include lifetime regulation, DNA repair, stress resistance, and proliferation. A large amount of knowledge concerning animal sirtuins is available, but data about their plant counterparts are scarce. Plants possess few sirtuins that have, like in animals, a recognized role in stress defense and metabolism regulation. However, engagement in proliferation control, which has been demonstrated for mammalian sirtuins, has not been reported for plant sirtuins so far. In this work, srt1 and srt2 Arabidopsis mutant seedlings have been used to evaluate in vivo the role of sirtuins in cell proliferation and regulation of glutamate dehydrogenase, an enzyme demonstrated to be involved in the control of cell cycle in SIRT4-defective human cells. Moreover, bioinformatic analyses have been performed to elucidate sequence, structure, and function relationships between Arabidopsis sirtuins and between each of them and the closest mammalian homolog. We found that cell proliferation and GDH activity are higher in mutant seedlings, suggesting that both sirtuins exert a physiological inhibitory role in these processes. In addition, mutant seedlings show plant growth and root system improvement, in line with metabolic data. Our data also indicate that utilization of an easy to manipulate organism, such as Arabidopsis plant, can help to shed light on the molecular mechanisms underlying the function of genes present in interkingdom species.
Collapse
Affiliation(s)
- Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Patrizio Di Micco
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Cristina Maria Failla
- IDI-IRCCS, Laboratory of Experimental Immunology, Via dei Monti di Creta 104, 00167, Rome, Italy.
| | - Gianmarco Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy; National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Veronica Morea
- National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Michele Saliola
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Angelo De Paolis
- Institute of Sciences of Food Production (ISPA-CNR), Via Monteroni, Lecce, 73100, Italy.
| | - Sabrina Venditti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Mauro
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
14
|
Burgess AJ, Masclaux‐Daubresse C, Strittmatter G, Weber APM, Taylor SH, Harbinson J, Yin X, Long S, Paul MJ, Westhoff P, Loreto F, Ceriotti A, Saltenis VLR, Pribil M, Nacry P, Scharff LB, Jensen PE, Muller B, Cohan J, Foulkes J, Rogowsky P, Debaeke P, Meyer C, Nelissen H, Inzé D, Klein Lankhorst R, Parry MAJ, Murchie EH, Baekelandt A. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur 2022; 12:e435. [PMID: 37035025 PMCID: PMC10078444 DOI: 10.1002/fes3.435] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant-derived products. In the coming years, plant-based research will be among the major drivers ensuring food security and the expansion of the bio-based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity.
Collapse
Affiliation(s)
- Alexandra J. Burgess
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | | | - Günter Strittmatter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | | | - Jeremy Harbinson
- Laboratory for Biophysics Wageningen University and Research Wageningen The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences Wageningen University & Research Wageningen The Netherlands
| | - Stephen Long
- Lancaster Environment Centre Lancaster University Lancaster UK
- Plant Biology and Crop Sciences University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | | | - Peter Westhoff
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS) Heinrich‐Heine‐Universität Düsseldorf Düsseldorf Germany
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR), Rome, Italy and University of Naples Federico II Napoli Italy
| | - Aldo Ceriotti
- Institute of Agricultural Biology and Biotechnology National Research Council (CNR) Milan Italy
| | - Vandasue L. R. Saltenis
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Philippe Nacry
- BPMP, Univ Montpellier, INRAE, CNRS Institut Agro Montpellier France
| | - Lars B. Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences University of Copenhagen Copenhagen Denmark
| | - Poul Erik Jensen
- Department of Food Science University of Copenhagen Copenhagen Denmark
| | - Bertrand Muller
- Université de Montpellier ‐ LEPSE – INRAE Institut Agro Montpellier France
| | | | - John Foulkes
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Peter Rogowsky
- INRAE UMR Plant Reproduction and Development Lyon France
| | | | - Christian Meyer
- IJPB UMR1318 INRAE‐AgroParisTech‐Université Paris Saclay Versailles France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Erik H. Murchie
- School of Biosciences University of Nottingham, Sutton Bonington campus Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| |
Collapse
|
15
|
Sakamoto Y, Kawamura A, Suzuki T, Segami S, Maeshima M, Polyn S, De Veylder L, Sugimoto K. Transcriptional activation of auxin biosynthesis drives developmental reprogramming of differentiated cells. THE PLANT CELL 2022; 34:4348-4365. [PMID: 35922895 PMCID: PMC9614439 DOI: 10.1093/plcell/koac218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 05/26/2023]
Abstract
Plant cells exhibit remarkable plasticity of their differentiation states, enabling regeneration of whole plants from differentiated somatic cells. How they revert cell fate and express pluripotency, however, remains unclear. In this study, we demonstrate that transcriptional activation of auxin biosynthesis is crucial for reprogramming differentiated Arabidopsis (Arabidopsis thaliana) leaf cells. Our data show that interfering with the activity of histone acetyltransferases dramatically reduces callus formation from leaf mesophyll protoplasts. Histone acetylation permits transcriptional activation of PLETHORAs, leading to the induction of their downstream YUCCA1 gene encoding an enzyme for auxin biosynthesis. Auxin biosynthesis is in turn required to accomplish initial cell division through the activation of G2/M phase genes mediated by MYB DOMAIN PROTEIN 3-RELATED (MYB3Rs). We further show that the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19 and INDOLE-3-ACETIC ACID INDUCIBLE 3 (IAA3)/IAA18-mediated auxin signaling pathway is responsible for cell cycle reactivation by transcriptionally upregulating MYB3R4. These findings provide a mechanistic model of how differentiated plant cells revert their fate and reinitiate the cell cycle to become pluripotent.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Ayako Kawamura
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Shoji Segami
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masayoshi Maeshima
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | | |
Collapse
|
16
|
Transcriptome Analysis of Air Space-Type Variegation Formation in Trifolium pratense. Int J Mol Sci 2022; 23:ijms23147794. [PMID: 35887138 PMCID: PMC9322087 DOI: 10.3390/ijms23147794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Air space-type variegation is the most diverse among the species of known variegated leaf plants and is caused by conspicuous intercellular spaces between the epidermal and palisade cells and among the palisade cells at non-green areas. Trifolium pratense, a species in Fabaceae with V-shaped air space-type variegation, was selected to explore the application potential of variegated leaf plants and accumulate basic data on the molecular regulatory mechanism and evolutionary history of leaf variegation. We performed comparative transcriptome analysis on young and adult leaflets of variegated and green plants and identified 43 candidate genes related to air space-type variegation formation. Most of the genes were related to cell-wall structure modification (CESA, CSL, EXP, FLA, PG, PGIP, PLL, PME, RGP, SKS, and XTH family genes), followed by photosynthesis (LHCB subfamily, RBCS, GOX, and AGT family genes), redox (2OG and GSH family genes), and nitrogen metabolism (NodGS family genes). Other genes were related to photooxidation, protein interaction, and protease degradation systems. The downregulated expression of light-responsive LHCB subfamily genes and the upregulated expression of the genes involved in cell-wall structure modification were important conditions for air space-type variegation formation in T. pratense. The upregulated expression of the ubiquitin-protein ligase enzyme (E3)-related genes in the protease degradation systems were conducive to air space-type variegation formation. Because these family genes are necessary for plant growth and development, the mechanism of the leaf variegation formation in T. pratense might be a widely existing regulation in air space-type variegation in nature.
Collapse
|
17
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
18
|
Jathar V, Saini K, Chauhan A, Rani R, Ichihashi Y, Ranjan A. Spatial control of cell division by GA-OsGRF7/8 module in a leaf explaining the leaf length variation between cultivated and wild rice. THE NEW PHYTOLOGIST 2022; 234:867-883. [PMID: 35152411 DOI: 10.1111/nph.18029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cellular and genetic understanding of the rice leaf size regulation is limited, despite rice being the staple food of more than half of the global population. We investigated the mechanism controlling the rice leaf length using cultivated and wild rice accessions that remarkably differed for leaf size. Comparative transcriptomics, gibberellic acid (GA) quantification and leaf kinematics of the contrasting accessions suggested the involvement of GA, cell cycle and growth-regulating factors (GRFs) in the rice leaf size regulation. Zone-specific expression analysis and VIGS established the functions of specific GRFs in the process. The leaf length of the selected accessions was strongly correlated with GA levels. Higher GA content in wild rice accessions with longer leaves and GA-induced increase in the leaf length via an increase in cell division confirmed a GA-mediated regulation of division zone in rice. Downstream to GA, OsGRF7 and OsGRF8 function for controlling cell division to determine the rice leaf length. Spatial control of cell division to determine the division zone size mediated by GA and downstream OsGRF7 and OsGRF8 explains the leaf length differences between the cultivated and wild rice. This mechanism to control the rice leaf length might have contributed to optimizing leaf size during domestication.
Collapse
Affiliation(s)
- Vikram Jathar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kumud Saini
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Chauhan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchi Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Yasunori Ichihashi
- RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Aashish Ranjan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
19
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:273-296. [PMID: 33689401 DOI: 10.1146/annurev-arplant-080720-103739] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
- Current affiliation: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| |
Collapse
|
20
|
Martín-Esquinas A, Hernández-Apaolaza L. Rice responses to silicon addition at different Fe status and growth pH. Evaluation of ploidy changes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:296-307. [PMID: 33892228 DOI: 10.1016/j.plaphy.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/10/2021] [Indexed: 05/14/2023]
Abstract
It has been described in rice that Si only plays a physical barrier that does not allow Fe to enter cell apoplast, causing Fe deficiency responses even under Fe sufficiency growth conditions. Most of the conclusions were attained at acidic pH, but rice is also grown at calcareous conditions, which especially induce Fe deficiency in the plants. In this study, we assay the effect of Si in rice suffering both Fe deficiency and sufficiency in hydroponics at two pHs (5.5 and 7.5). Plant biometric parameters, ROS concentration, enzymatic activities, and total phenolic compounds, as well as ploidy levels, have been determined. In general, both pHs promoted similar rice responses under Fe sufficiency and deficiency status, but at pH 7.5, stress was favored. Flow cytometry studies revealed that Fe deficiency increased the percentage of cells in higher ploidy levels. Moreover, under this Fe status, Si addition enhanced this effect. This increase contributed to maintaining chloroplast structure which may have preserved antioxidant activities, and fortified cell walls, diminishing Fe uptake. The first is considered a beneficial effect as plants presented acceptable SPAD values, well chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy, even under Fe deficiency. But contributes to intensify the Fe shortage, by decreasing apoplast Fe pools. In summary, Si addition to rice plants may not only behave as an apoplastic barrier but may also protect plant chloroplast and alter the plant endoreplication cycle, giving a memory effect to cope with present and future stresses.
Collapse
Affiliation(s)
- Alexandra Martín-Esquinas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Martinez CC, Li S, Woodhouse MR, Sugimoto K, Sinha NR. Spatial transcriptional signatures define margin morphogenesis along the proximal-distal and medio-lateral axes in tomato (Solanum lycopersicum) leaves. THE PLANT CELL 2021; 33:44-65. [PMID: 33710280 PMCID: PMC8136875 DOI: 10.1093/plcell/koaa012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 05/26/2023]
Abstract
Leaf morphogenesis involves cell division, expansion, and differentiation in the developing leaf, which take place at different rates and at different positions along the medio-lateral and proximal-distal leaf axes. The gene expression changes that control cell fate along these axes remain elusive due to difficulties in precisely isolating tissues. Here, we combined rigorous early leaf characterization, laser capture microdissection, and transcriptomic sequencing to ask how gene expression patterns regulate early leaf morphogenesis in wild-type tomato (Solanum lycopersicum) and the leaf morphogenesis mutant trifoliate. We observed transcriptional regulation of cell differentiation along the proximal-distal axis and identified molecular signatures delineating the classically defined marginal meristem/blastozone region during early leaf development. We describe the role of endoreduplication during leaf development, when and where leaf cells first achieve photosynthetic competency, and the regulation of auxin transport and signaling along the leaf axes. Knockout mutants of BLADE-ON-PETIOLE2 exhibited ectopic shoot apical meristem formation on leaves, highlighting the role of this gene in regulating margin tissue identity. We mapped gene expression signatures in specific leaf domains and evaluated the role of each domain in conferring indeterminacy and permitting blade outgrowth. Finally, we generated a global gene expression atlas of the early developing compound leaf.
Collapse
Affiliation(s)
- Ciera C Martinez
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94709
- Berkeley Institute for Data Science, University of California at Berkeley, Berkeley, CA 94709
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| | - Siyu Li
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| | | | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 15 230-0045 Japan
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
22
|
Okumura T, Nomoto Y, Kobayashi K, Suzuki T, Takatsuka H, Ito M. MYB3R-mediated active repression of cell cycle and growth under salt stress in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2021; 134:261-277. [PMID: 33580347 DOI: 10.1007/s10265-020-01250-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Under environmental stress, plants are believed to actively repress their growth to save resource and alter its allocation to acquire tolerance against the stress. Although a lot of studies have uncovered precise mechanisms for responding to stress and acquiring tolerance, the mechanisms for regulating growth repression under stress are not as well understood. It is especially unclear which particular genes related to cell cycle control are involved in active growth repression. Here, we showed that decreased growth in plants exposed to moderate salt stress is mediated by MYB3R transcription factors that have been known to positively and negatively regulate the transcription of G2/M-specific genes. Our genome-wide gene expression analysis revealed occurrences of general downregulation of G2/M-specific genes in Arabidopsis under salt stress. Importantly, this downregulation is significantly and universally mitigated by the loss of MYB3R repressors by mutations. Accordingly, the growth performance of Arabidopsis plants under salt stress is significantly recovered in mutants lacking MYB3R repressors. This growth recovery involves improved cell proliferation that is possibly due to prolonging and accelerating cell proliferation, which were partly suggested by enlarged root meristem and increased number of cells positive for CYCB1;1-GUS. Our ploidy analysis further suggested that cell cycle progression at the G2 phase was delayed under salt stress, and this delay was recovered by loss of MYB3R repressors. Under salt stress, the changes in expression of MYB3R activators and repressors at both the mRNA and protein levels were not significant. This observation suggests novel mechanisms underlying MYB3R-mediated growth repression under salt stress that are different from the mechanisms operating under other stress conditions such as DNA damage and high temperature.
Collapse
Affiliation(s)
- Toru Okumura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Chikusa, 464-8601, Japan
| | - Yuji Nomoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kosuke Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Chikusa, 464-8601, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masaki Ito
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
23
|
Schneider M, Gonzalez N, Pauwels L, Inzé D, Baekelandt A. The PEAPOD Pathway and Its Potential To Improve Crop Yield. TRENDS IN PLANT SCIENCE 2021; 26:220-236. [PMID: 33309102 DOI: 10.1016/j.tplants.2020.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 05/18/2023]
Abstract
A key strategy to increase plant productivity is to improve intrinsic organ growth. Some of the regulatory networks underlying organ growth and development, as well as the interconnections between these networks, are highly conserved. An example of such a growth-regulatory module with a highly conserved role in final organ size and shape determination in eudicot species is the PEAPOD (PPD)/KINASE-INDUCIBLE DOMAIN INTERACTING (KIX)/STERILE APETALA (SAP) module. We review the proteins constituting the PPD pathway and their roles in different plant developmental processes, and explore options for future research. We also speculate on strategies to exploit knowledge about the PPD pathway for targeted yield improvement to engineer crop traits of agronomic interest, such as leaf, fruit, and seed size.
Collapse
Affiliation(s)
- Michele Schneider
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Biologie du Fruit et Pathologie (BFP), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Vlaams Instituut voor Biotechnologie (VIB) Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
24
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
25
|
Nishio H, Iwayama K, Kudoh H. Duration of cold exposure defines the rate of reactivation of a perennial FLC orthologue via H3K27me3 accumulation. Sci Rep 2020; 10:16056. [PMID: 32994432 PMCID: PMC7525499 DOI: 10.1038/s41598-020-72566-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Vernalisation is the process in which long-term cold exposure makes plants competent to flower. In vernalisation of Arabidopsis thaliana, a floral repressor, AtFLC, undergoes epigenetic silencing. Although the silencing of AtFLC is maintained under warm conditions after a sufficient duration of cold, FLC orthologues are reactivated under the same conditions in perennial plants, such as A. halleri. In contrast to the abundant knowledge on cold requirements in AtFLC silencing, it has remained unknown how cold duration affects the reactivation of perennial FLC. Here, we analysed the dynamics of A. halleri FLC (AhgFLC) mRNA, H3K4me3, and H3K27me3 over 8 weeks and 14 weeks cold followed by warm conditions. We showed that the minimum levels of AhgFLC mRNA and H3K4me3 were similar between 8 and 14 weeks vernalisation; however, the maximum level of H3K27me3 was higher after 14 weeks than after 8 weeks vernalisation. Combined with mathematical modelling, we showed that H3K27me3 prevents a rapid increase in AhgFLC expression in response to warm temperatures after vernalisation, which controls AhgFT expression and the initiation of flowering. Thus, the duration of cold defines the rate of AhgFLC reactivation via the buffering function of H3K27me3 against temperature increase.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan.
| | - Koji Iwayama
- Faculty of Data Science, Shiga University, 1-1-1 Bamba, Hikone, Shiga, 522-8522, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, 520-2113, Japan.
| |
Collapse
|
26
|
Inoculation of maize seeds with Pseudomonas putida leads to enhanced seedling growth in combination with modified regulation of miRNAs and antioxidant enzymes. Symbiosis 2020. [DOI: 10.1007/s13199-020-00703-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Moreno S, Canales J, Hong L, Robinson D, Roeder AH, Gutiérrez RA. Nitrate Defines Shoot Size through Compensatory Roles for Endoreplication and Cell Division in Arabidopsis thaliana. Curr Biol 2020; 30:1988-2000.e3. [DOI: 10.1016/j.cub.2020.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/29/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
|
28
|
Zhu Y, Luo X, Liu X, Wu W, Cui X, He Y, Huang J. Arabidopsis PEAPODs function with LIKE HETEROCHROMATIN PROTEIN1 to regulate lateral organ growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:812-831. [PMID: 31099089 DOI: 10.1111/jipb.12841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
In higher plants, lateral organs are usually of determinate growth. It remains largely elusive how the determinate growth is achieved and maintained. Previous reports have shown that Arabidopsis PEAPOD (PPD) proteins suppress proliferation of dispersed meristematic cells partly through a TOPLESS corepressor complex. Here, we identified a new PPD-interacting partner, LIKE HETEROCHROMATIN PROTEIN1 (LHP1), using the yeast two-hybrid system, and their interaction is mediated by the chromo shadow domain and the Jas domain in LHP1 and PPD2, respectively. Our genetic data demonstrate that the phenotype of ppd2 lhp1 is more similar to lhp1 than to ppd2, indicating epistasis of lhp1 to ppd2. Microarray analysis reveals that PPD2 and LHP1 can regulate expression of a common set of genes directly or indirectly. Consistently, chromatin immunoprecipitation results confirm that PPD2 and LHP1 are coenriched at the promoter region of their targets such as D3-TYPE CYCLINS and HIGH MOBILITY GROUP A, which are upregulated in ppd2, lhp1 and ppd2 lhp1 mutants, and that PPDs mediate repressive histone 3 lysine-27 trimethylation at these loci. Taken together, our data provide evidence that PPD and LHP1 form a corepressor complex that regulates lateral organ growth.
Collapse
Affiliation(s)
- Ying Zhu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao Luo
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xuxin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences,, Shanghai Normal University,, Shanghai, 200234, China
| | - Xiaofeng Cui
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences,, Shanghai Normal University,, Shanghai, 200234, China
| |
Collapse
|
29
|
Panda C, Li X, Wager A, Chen HY, Li X. An importin-beta-like protein mediates lignin-modification-induced dwarfism in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1281-1293. [PMID: 31972869 DOI: 10.1111/tpj.14701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 05/27/2023]
Abstract
Perturbation of lignin biosynthesis often results in severe growth and developmental defects in plants, which imposes practical limitations to genetic enhancement of lignocellulosic biomass for biofuel production. Currently, little information is known about the cellular and genetic mechanisms of this important phenomenon. Here we show that defects in both cell division and cell expansion underlie the dwarfism of an Arabidopsis lignin mutant ref8, and report the identification of a GROWTH INHIBITION RELIEVED 1 (GIR1) gene from a suppressor screen. GIR1 encodes an importin-beta-like protein required for the nuclear import of MYB4, a transcriptional repressor of phenylpropanoid metabolism. Disruption of GIR1 and MYB4 similarly alleviates the cellular defects and growth inhibition in ref8, suggesting that the growth rescue effect of gir1 is likely due to compromised MYB4 transport and function. Importantly, the phenylpropanoid perturbation is not alleviated in gir1 ref8 and myb4 ref8, suggesting that the function of MYB4 in growth inhibition of lignin-modified plants is likely to be distinct from its known role in transcriptional regulation of phenylpropanoid biosynthetic genes. This study also provides evidence that lignin-modification-induced dwarfism is not merely due to compromised water transport brought about by lignin deficiency, as gir1 has no effect on the growth inhibition of other lignin mutants that show the collapsed xylem phenotype.
Collapse
Affiliation(s)
- Chinmayee Panda
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Xin Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Amanda Wager
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Han-Yi Chen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Xu Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| |
Collapse
|
30
|
Kalve S, Sizani BL, Markakis MN, Helsmoortel C, Vandeweyer G, Laukens K, Sommen M, Naulaerts S, Vissenberg K, Prinsen E, Beemster GTS. Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses. THE NEW PHYTOLOGIST 2020; 226:1766-1780. [PMID: 32077108 DOI: 10.1111/nph.16490] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::β-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response.
Collapse
Affiliation(s)
- Shweta Kalve
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Manou Sommen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
31
|
Serra L, Perrot-Rechenmann C. Spatiotemporal control of cell growth by CUC3 shapes leaf margins. Development 2020; 147:dev183277. [PMID: 32094116 DOI: 10.1242/dev.183277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/14/2020] [Indexed: 01/03/2023]
Abstract
How a shape arises from the coordinated behavior of cells is one of the most fascinating questions in developmental biology. In plants, fine spatial and temporal controls of cell proliferation and cell expansion sustain differential growth that defines organ shape and size. At the leaf margin of Arabidopsis thaliana, interplay between auxin transport and transcription factors named CUP SHAPED COTYLEDON (CUCs), which are involved in the establishment of boundary domain identity, were reported to trigger differential growth, leading to serration. Cellular behaviors behind these differential growths remain scarcely described. Here, we used 3D and time lapse imaging on young leaves at different stages of development to determine the sequence of cellular events resulting in leaf serrations. In addition, we showed that the transcription factor CUC3 is a negative regulator of cell growth and that its expression dynamics in a small number of cells at the leaf margin is tightly associated with the control of differential growth.
Collapse
Affiliation(s)
- Léo Serra
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | | |
Collapse
|
32
|
Choudhary A, Kumar A, Kaur N. ROS and oxidative burst: Roots in plant development. PLANT DIVERSITY 2020; 42:33-43. [PMID: 32140635 PMCID: PMC7046507 DOI: 10.1016/j.pld.2019.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are widely generated in various redox reactions in plants. In earlier studies, ROS were considered toxic byproducts of aerobic metabolism. In recent years, it has become clear that ROS act as plant signaling molecules that participate in various processes such as growth and development. Several studies have elucidated the roles of ROS from seed germination to senescence. However, there is much to discover about the diverse roles of ROS as signaling molecules and their mechanisms of sensing and response. ROS may provide possible benefits to plant physiological processes by supporting cellular proliferation in cells that maintain basal levels prior to oxidative effects. Although ROS are largely perceived as either negative by-products of aerobic metabolism or makers for plant stress, elucidating the range of functions that ROS play in growth and development still require attention.
Collapse
|
33
|
Yuan J, Sun X, Guo T, Chao Y, Han L. Global transcriptome analysis of alfalfa reveals six key biological processes of senescent leaves. PeerJ 2020; 8:e8426. [PMID: 32002335 PMCID: PMC6979412 DOI: 10.7717/peerj.8426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Leaf senescence is a complex organized developmental stage limiting the yield of crop plants, and alfalfa is an important forage crop worldwide. However, our understanding of the molecular mechanism of leaf senescence and its influence on biomass in alfalfa is still limited. In this study, RNA sequencing was utilized to identify differentially expressed genes (DEGs) in young, mature, and senescent leaves, and the functions of key genes related to leaf senescence. A total of 163,511 transcripts and 77,901 unigenes were identified from the transcriptome, and 5,133 unigenes were differentially expressed. KEGG enrichment analyses revealed that ribosome and phenylpropanoid biosynthesis pathways, and starch and sucrose metabolism pathways are involved in leaf development and senescence in alfalfa. GO enrichment analyses exhibited that six clusters of DEGs are involved in leaf morphogenesis, leaf development, leaf formation, regulation of leaf development, leaf senescence and negative regulation of the leaf senescence biological process. The WRKY and NAC families of genes mainly consist of transcription factors that are involved in the leaf senescence process. Our results offer a novel interpretation of the molecular mechanisms of leaf senescence in alfalfa.
Collapse
Affiliation(s)
- Jianbo Yuan
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Key Laboratory of Crop Growth Regulation of Hebei Province, China
| | - Tao Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yuehui Chao
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Oblessuc PR, Obulareddy N, DeMott L, Matiolli CC, Thompson BK, Melotto M. JAZ4 is involved in plant defense, growth, and development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:371-383. [PMID: 31557372 DOI: 10.1111/tpj.14548] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 05/25/2023]
Abstract
Jasmonate zim-domain (JAZ) proteins comprise a family of transcriptional repressors that modulate jasmonate (JA) responses. JAZ proteins form a co-receptor complex with the F-box protein coronatine insensitive1 (COI1) that recognizes both jasmonoyl-l-isoleucine (JA-Ile) and the bacterial-produced phytotoxin coronatine (COR). Although several JAZ family members have been placed in this pathway, the role of JAZ4 in this model remains elusive. In this study, we observed that the jaz4-1 mutant of Arabidopsis is hyper-susceptible to Pseudomonas syringae pv. tomato (Pst) DC3000, while Arabidopsis lines overexpressing a JAZ4 protein lacking the Jas domain (JAZ4∆Jas) have enhanced resistance to this bacterium. Our results show that the Jas domain of JAZ4 is required for its physical interaction with COI1, MYC2 or MYC3, but not with the repressor complex adaptor protein NINJA. Furthermore, JAZ4 degradation is induced by COR in a proteasome- and Jas domain-dependent manner. Phenotypic evaluations revealed that expression of JAZ4∆Jas results in early flowering and increased length of root, hypocotyl, and petiole when compared with Col-0 and jaz4-1 plants, although JAZ4∆Jas lines remain sensitive to MeJA- and COR-induced root and hypocotyl growth inhibition. Additionally, jaz4-1 mutant plants have increased anthocyanin accumulation and late flowering compared with Col-0, while JAZ4∆Jas lines showed no alteration in anthocyanin production. These findings suggest that JAZ4 participates in the canonical JA signaling pathway leading to plant defense response in addition to COI1/MYC-independent functions in plant growth and development, supporting the notion that JAZ4-mediated signaling may have distinct branches.
Collapse
Affiliation(s)
- Paula R Oblessuc
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Nisita Obulareddy
- Department of Biology, University of Texas, Arlington, TX, 76019, USA
| | - Logan DeMott
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Blaine K Thompson
- Department of Biology, University of Texas, Arlington, TX, 76019, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
35
|
Chen W, Cheng Z, Liu L, Wang M, You X, Wang J, Zhang F, Zhou C, Zhang Z, Zhang H, You S, Wang Y, Luo S, Zhang J, Wang J, Wang J, Zhao Z, Guo X, Lei C, Zhang X, Lin Q, Ren Y, Zhu S, Wan J. Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110208. [PMID: 31521223 DOI: 10.1016/j.plantsci.2019.110208] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Homeodomain leucine zipper (HD-Zip) proteins are transcription factors that regulate plant development. Bioactive gibberellin (GA) is a key endogenous hormone that participates in plant growth. However, the relationship between HD-Zip genes and modulation of GA biosynthesis in rice remains elusive. Here, we identified a rice mutant, designated as small grain and dwarf 2 (sgd2), which had reduced height and grain size compared with the wild type. Cytological observations indicated that the defective phenotype was mainly due to decreased cell length. Map-based cloning and complementation tests demonstrated that a 9 bp deletion in a homeodomain leucine zipper (HD-Zip) II family transcription factor was responsible for the sgd2 mutant phenotype. Expression of SGD2 was pronounced in developing panicles, and its protein was localized in nucleus. Luciferase reporter system and transactivation assays in yeast suggested that SGD2 functioned as a transcriptional repressor. High performance liquid chromatography assays showed that the endogenous GA1 level in the sgd2 mutant was dramatically decreased, and exogenous GA3 recovered the second leaf sheath to normal length. Results of qRT-PCR showed that the expression levels of genes positively regulating GA-biosynthesis were mostly down-regulated in the mutant. Our data identified the role of an HD-Zip transcription factor that affects rice plant development by modulating gibberellin biosynthesis.
Collapse
Affiliation(s)
- Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Feng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chunlei Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Huan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shimin You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jinhui Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
36
|
Koch G, Rolland G, Dauzat M, Bédiée A, Baldazzi V, Bertin N, Guédon Y, Granier C. Leaf Production and Expansion: A Generalized Response to Drought Stresses from Cells to Whole Leaf Biomass-A Case Study in the Tomato Compound Leaf. PLANTS (BASEL, SWITZERLAND) 2019; 8:E409. [PMID: 31614737 PMCID: PMC6843756 DOI: 10.3390/plants8100409] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022]
Abstract
It is clearly established that there is not a unique response to soil water deficit but that there are as many responses as soil water deficit characteristics: Drought intensity, drought duration, and drought position during plant cycle. For a same soil water deficit, responses can also differ on plant genotype within a same species. In spite of this variability, at least for leaf production and expansion processes, robust tendencies can be extracted from the literature when similar watering regimes are compared. Here, we present response curves and multi-scale dynamics analyses established on tomato plants exposed to different soil water deficit treatments. Results reinforce the trends already observed for other species: Reduction in plant leaf biomass under water stress was due to reduction in individual leaf biomass and areas whereas leaf production and specific leaf area were not affected. The dynamics of leaf expansion was modified both at the leaf and cell scales. Cell division and expansion were reduced by drought treatments as well as the endoreduplication process. Combining response curves analyses together with dynamic analyses of tomato compound leaf growth at different scales not only corroborate results on simple leaf responses to drought but also increases our knowledge on the cellular mechanisms behind leaf growth plasticity.
Collapse
Affiliation(s)
- Garance Koch
- Univ Montpellier, INRA, Montpellier SupAgro, LEPSE, 34095 Montpellier, France.
- Unité Plantes et Systèmes de culture Horticoles, INRA, UR 1115 PSH, F-84000 Avignon, France.
| | - Gaëlle Rolland
- Univ Montpellier, INRA, Montpellier SupAgro, LEPSE, 34095 Montpellier, France.
| | - Myriam Dauzat
- Univ Montpellier, INRA, Montpellier SupAgro, LEPSE, 34095 Montpellier, France.
| | - Alexis Bédiée
- Univ Montpellier, INRA, Montpellier SupAgro, LEPSE, 34095 Montpellier, France.
| | - Valentina Baldazzi
- Unité Plantes et Systèmes de culture Horticoles, INRA, UR 1115 PSH, F-84000 Avignon, France.
- Université Côte d'Azur, INRA, CNRS, ISA, 06903 Sophia-Antipolis, France.
- Université Côte d'Azur, INRIA, INRA, CNRS, Sorbonne Université, BIOCORE Team, 06903 Sophia-Antipolis, France.
| | - Nadia Bertin
- Unité Plantes et Systèmes de culture Horticoles, INRA, UR 1115 PSH, F-84000 Avignon, France.
| | - Yann Guédon
- Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, AGAP, 34095 Montpellier, France.
| | - Christine Granier
- Univ Montpellier, INRA, Montpellier SupAgro, LEPSE, 34095 Montpellier, France.
- Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, AGAP, 34095 Montpellier, France.
| |
Collapse
|
37
|
Neuser J, Metzen CC, Dreyer BH, Feulner C, van Dongen JT, Schmidt RR, Schippers JH. HBI1 Mediates the Trade-off between Growth and Immunity through Its Impact on Apoplastic ROS Homeostasis. Cell Rep 2019; 28:1670-1678.e3. [DOI: 10.1016/j.celrep.2019.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/15/2018] [Accepted: 07/11/2019] [Indexed: 10/26/2022] Open
|
38
|
Micromanagement of Developmental and Stress-Induced Senescence: The Emerging Role of MicroRNAs. Genes (Basel) 2019; 10:genes10030210. [PMID: 30871088 PMCID: PMC6470504 DOI: 10.3390/genes10030210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are short (19⁻24-nucleotide-long), non-coding RNA molecules. They downregulate gene expression by triggering the cleavage or translational inhibition of complementary mRNAs. Senescence is a stage of development following growth completion and is dependent on the expression of specific genes. MicroRNAs control the gene expression responsible for plant competence to answer senescence signals. Therefore, they coordinate the juvenile-to-adult phase transition of the whole plant, the growth and senescence phase of each leaf, age-related cellular structure changes during vessel formation, and remobilization of resources occurring during senescence. MicroRNAs are also engaged in the ripening and postharvest senescence of agronomically important fruits. Moreover, the hormonal regulation of senescence requires microRNA contribution. Environmental cues, such as darkness or drought, induce senescence-like processes in which microRNAs also play regulatory roles. In this review, we discuss recent findings concerning the role of microRNAs in the senescence of various plant species.
Collapse
|
39
|
Sizani BL, Kalve S, Markakis MN, Domagalska MA, Stelmaszewska J, AbdElgawad H, Zhao X, De Veylder L, De Vos D, Broeckhove J, Schnittger A, Beemster GTS. Multiple mechanisms explain how reduced KRP expression increases leaf size of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 221:1345-1358. [PMID: 30267580 DOI: 10.1111/nph.15458] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/26/2018] [Indexed: 05/24/2023]
Abstract
Although cell number generally correlates with organ size, the role of cell cycle control in growth regulation is still largely unsolved. We studied kip related protein (krp) 4, 6 and 7 single, double and triple mutants of Arabidopsis thaliana to understand the role of cell cycle inhibitory proteins in leaf development. We performed leaf growth and seed size analysis, kinematic analysis, flow cytometery, transcriptome analysis and mathematical modeling of G1/S and G2/M checkpoint progression of the mitotic and endoreplication cycle. Double and triple mutants progressively increased mature leaf size, because of elevated expression of cell cycle and DNA replication genes stimulating progression through the division and endoreplication cycle. However, cell number was also already increased before leaf emergence, as a result of an increased cell number in the embryo. We show that increased embryo and seed size in krp4/6/7 results from seed abortion, presumably reducing resource competition, and that seed size differences contribute to the phenotype of several large-leaf mutants. Our results provide a new mechanistic understanding of the role of cell cycle regulation in leaf development and highlight the contribution of the embryo to the development of leaves after germination in general.
Collapse
Affiliation(s)
- Bulelani L Sizani
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Shweta Kalve
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Marios N Markakis
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Malgorzata A Domagalska
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Joanna Stelmaszewska
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
- Department of Reproduction and Gynecological Endocrinology Medical, University of Bialystok, 15-089, Bialystok, Poland
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521, Beni-Suef, Egypt
| | - Xin'ai Zhao
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 6052, Belgium
| | - Dirk De Vos
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Jan Broeckhove
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, 2020, Belgium
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 22609, Germany
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| |
Collapse
|
40
|
Fang J, Yuan S, Li C, Jiang D, Zhao L, Peng L, Zhao J, Zhang W, Li X. Reduction of ATPase activity in the rice kinesin protein Stemless Dwarf 1 inhibits cell division and organ development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:620-634. [PMID: 30071144 DOI: 10.1111/tpj.14056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Several kinesins, the ATP-driven microtubule (MT)-based motor proteins, have been reported to be involved in many basic processes of plant development; however, little is known about the biological relevance of their ATPase activity. Here, we characterized the Oryza sativa (rice) stemless dwarf 1 (std1) mutant, showing a severely dwarfed phenotype, with no differentiation of the node and internode structure, abnormal cell shapes, a shortened leaf division zone and a reduced cell division rate. Further analysis revealed that a substantial subset of cells was arrested in the S and G2/M phases, and multinucleate cells were present in the std1 mutant. Map-based cloning revealed that STD1 encodes a phragmoplast-associated kinesin-related protein, a homolog of the Arabidopsis thaliana PAKRP2, and is mainly expressed in the actively dividing tissues. The STD1 protein is localized specifically to the phragmoplast midzone during telophase and cytokinesis. In the std1 mutant, the substitution of Val-40-Glu in the motor domain of STD1 significantly reduced its MT-dependent ATPase activity. Accordingly, the lateral expansion of phragmoplast, a key step in cell plate formation, was arrested during cytokinesis. Therefore, these results indicate that the MT-dependent ATPase activity is indispensible for STD1 in regulating normal cell division and organ development.
Collapse
Affiliation(s)
- Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Chenchen Li
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Dan Jiang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linlin Zhao
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenhui Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252059, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
41
|
Du F, Guan C, Jiao Y. Molecular Mechanisms of Leaf Morphogenesis. MOLECULAR PLANT 2018; 11:1117-1134. [PMID: 29960106 DOI: 10.1016/j.molp.2018.06.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 05/17/2023]
Abstract
Plants maintain the ability to form lateral appendages throughout their life cycle and form leaves as the principal lateral appendages of the stem. Leaves initiate at the peripheral zone of the shoot apical meristem and then develop into flattened structures. In most plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. To produce structures that can optimally fulfill this function, plants precisely control the initiation, shape, and polarity of leaves. Moreover, leaf development is highly flexible but follows common themes with conserved regulatory mechanisms. Leaves may have evolved from lateral branches that are converted into determinate, flattened structures. Many other plant parts, such as floral organs, are considered specialized leaves, and thus leaf development underlies their morphogenesis. Here, we review recent advances in the understanding of how three-dimensional leaf forms are established. We focus on how genes, phytohormones, and mechanical properties modulate leaf development, and discuss these factors in the context of leaf initiation, polarity establishment and maintenance, leaf flattening, and intercalary growth.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Gupta S, Gupta V, Singh V, Varadwaj PK. Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress. Genes Genomics 2018; 40:973-990. [PMID: 30155715 DOI: 10.1007/s13258-018-0705-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/06/2018] [Indexed: 12/21/2022]
Abstract
A wide range of plant species growth influenced when they exposed to solar UV-B radiation. Leaves of the plant are highly affected by UV-B radiation lead to the reduction in the growth of the plant. Current work demonstrates the comparative transcriptional changes and visible symptoms occurred in the maize leaf growth zone (GZ). Primary objective of this study was to identify differentially expressed genes (DEGs) responsible for leaf growth and their association in the transcriptional regulatory network under UV-B stress. Whole transcriptomic data was analysed and the quality check was tested for each sample and further genome-wide mapping and DEGs were performed. Gene Ontology (GO) based functional annotation, associated transcriptional networks and molecular pathways were annotated. Reduction in cell production due to UV-B stress causes a decrease in leaf's length and size was observed. Further, the specific role of the DEGs, in UV-B signalling pathways and other molecular functions responsible for leaf cell death was discovered. Results also infer that the major changes occurred in the cell cycle, transcriptional regulation, post-transcriptional modification, phytohormones, flavonoids biosynthesis, and chromatin remodeling. UV-B signalling pathways and the transcriptional regulatory networks infer the different molecular steps along with downstream transcriptional and post-transcriptional control of metabolic enzymes used in long-term memory adoption and attainment resistance to UV-B stress identified. Effects of UV-B radiation on leaf growth was noted in this study. UV-B stress response genes and associated transcriptional regulatory networks were identified, can be used in developing the marker assist UB-B stress tolerant genotypes of the maize.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India
| | - Vikas Gupta
- Department of Molecular and Cellular Engineering, JIBB, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vishal Singh
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India.
| |
Collapse
|
43
|
Zinta G, AbdElgawad H, Peshev D, Weedon JT, Van den Ende W, Nijs I, Janssens IA, Beemster GTS, Asard H. Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2159-2170. [PMID: 29462345 PMCID: PMC6019062 DOI: 10.1093/jxb/ery055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/06/2018] [Indexed: 05/24/2023]
Abstract
As a consequence of global change processes, plants will increasingly be challenged by extreme climatic events, against a background of elevated atmospheric CO2. We analysed responses of Arabidopsis thaliana to periods of a combination of elevated heat and water deficit at ambient and elevated CO2 in order to gain mechanistic insights regarding changes in primary metabolism. Metabolic changes induced by extremes of climate are dynamic and specific to different classes of molecules. Concentrations of soluble sugars and amino acids increased transiently after short (4-d) exposure to heat and drought, and readjusted to control levels under prolonged (8-d) stress. In contrast, fatty acids showed persistent changes during the stress period. Elevated CO2 reduced the impact of stress on sugar and amino acid metabolism, but not on fatty acids. Integrating metabolite data with transcriptome results revealed that some of the metabolic changes were regulated at the transcriptional level. Multivariate analyses grouped metabolites on the basis of stress exposure time, indicating specificity in metabolic responses to short and prolonged stress. Taken together, the results indicate that dynamic metabolic reprograming plays an important role in plant acclimation to climatic extremes. The extent of such metabolic adjustments is less under high CO2, further pointing towards the role of high CO2 in stress mitigation.
Collapse
Affiliation(s)
- Gaurav Zinta
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - James T Weedon
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Ivan Nijs
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
| | - Ivan A Janssens
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
| |
Collapse
|
44
|
The Circadian Clock Sets the Time of DNA Replication Licensing to Regulate Growth in Arabidopsis. Dev Cell 2018; 45:101-113.e4. [DOI: 10.1016/j.devcel.2018.02.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
|
45
|
Bresso EG, Chorostecki U, Rodriguez RE, Palatnik JF, Schommer C. Spatial Control of Gene Expression by miR319-Regulated TCP Transcription Factors in Leaf Development. PLANT PHYSIOLOGY 2018; 176:1694-1708. [PMID: 29133375 PMCID: PMC5813565 DOI: 10.1104/pp.17.00823] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/09/2017] [Indexed: 05/18/2023]
Abstract
The characteristic leaf shapes we see in all plants are in good part the outcome of the combined action of several transcription factor networks that translate into cell division activity during the early development of the organ. We show here that wild-type leaves have distinct transcriptomic profiles in center and marginal regions. Certain transcripts are enriched in margins, including those of CINCINNATA-like TCPs (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) and members of the NGATHA and STYLISH gene families. We study in detail the contribution of microRNA319 (miR319)-regulated TCP transcription factors to the development of the center and marginal regions of Arabidopsis (Arabidopsis thaliana) leaves. We compare in molecular analyses the wild type, the tcp2 tcp4 mutant that has enlarged flat leaves, and the tcp2 tcp3 tcp4 tcp10 mutant with strongly crinkled leaves. The different leaf domains of the tcp mutants show changed expression patterns for many photosynthesis-related genes, indicating delayed differentiation, especially in the marginal parts of the organ. At the same time, we found an up-regulation of cyclin genes and other genes that are known to participate in cell division, specifically in the marginal regions of tcp2 tcp3 tcp4 tcp10 Using GUS reporter constructs, we confirmed extended mitotic activity in the tcp2 tcp3 tcp4 tcp10 leaf, which persisted in small defined foci in the margins when the mitotic activity had already ceased in wild-type leaves. Our results describe the role of miR319-regulated TCP transcription factors in the coordination of activities in different leaf domains during organ development.
Collapse
Affiliation(s)
- Edgardo G Bresso
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Uciel Chorostecki
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Carla Schommer
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| |
Collapse
|
46
|
Muñoz P, Munné-Bosch S. Photo-Oxidative Stress during Leaf, Flower and Fruit Development. PLANT PHYSIOLOGY 2018; 176:1004-1014. [PMID: 29051197 PMCID: PMC5813531 DOI: 10.1104/pp.17.01127] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 05/07/2023]
Abstract
Photooxidative stress plays a crucial role in organ growth and development, with some similarities but also important differences in the development of leaves, flowers, and fruits.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain 08028
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain 08028
| |
Collapse
|
47
|
Liu L, Wang Z, Liu J, Liu F, Zhai R, Zhu C, Wang H, Ma F, Xu L. Histological, hormonal and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. HORTICULTURE RESEARCH 2018; 5:1. [PMID: 29736250 PMCID: PMC5798812 DOI: 10.1038/s41438-017-0012-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/07/2017] [Accepted: 11/28/2017] [Indexed: 05/06/2023]
Abstract
Phytohormones play crucial roles in fruit set regulation and development. Here, gibberellins (GA4+7), but not GA3, induced pear parthenocarpy. To systematically investigate the changes upon GA4+7 induced pear parthenocarpy, dynamic changes in histology, hormone and transcript levels were observed and identified in unpollinated, pollinated and GA4+7-treated ovaries. Mesocarp cells continued developing in both GA4+7-treated and pollinated ovaries. In unpollinated ovaries, mesocarp cells stopped developing 14 days after anthesis. During fruit set process, GA4+7, but not GA1+3, increased after pollination. Abscisic acid (ABA) accumulation was significantly repressed by GA4+7 or pollination, but under unpollinated conditions, ABA was produced in large quantities. Moreover, indole-3-acetic acid biosynthesis was not induced by GA4+7 or pollination treatments. Details of this GA-auxin-ABA cross-linked gene network were determined by a comparative transcriptome analysis. The indole-3-acetic acid transport-related genes, mainly auxin efflux carrier component genes, were induced in both GA4+7-treated and pollinated ovaries. ABA biosynthetic genes of the 9-cis-epoxycarotenoid dioxygenase family were repressed by GA4+7 and pollination. Moreover, directly related genes in the downstream parthenocarpy network involved in cell division and expansion (upregulated), and MADS-box family genes (downregulated), were also identified. Thus, a model of GA-induced hormonal balance and its effects on parthenocarpy were established.
Collapse
Affiliation(s)
- Lulu Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Zhigang Wang
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Jianlong Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fengxia Liu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Rui Zhai
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Chunqin Zhu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Huibin Wang
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Fengwang Ma
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| | - Lingfei Xu
- Institution: College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province China
| |
Collapse
|
48
|
Wu Y, Gong W, Yang W. Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean. Sci Rep 2017; 7:9259. [PMID: 28835715 PMCID: PMC5569092 DOI: 10.1038/s41598-017-10026-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/02/2017] [Indexed: 11/23/2022] Open
Abstract
To gain more insight into the physiological function of shade and how shade affects leaf size, we investigated the growth, leaf anatomical structure, hormones and genes expressions in soybean. Soybean seeds were sown in plastic pots and were allowed to germinate and grow for 30 days under shade or full sunlight conditions. Shade treated plants showed significantly increase on stem length and petiole length, and decrease on stem diameters, shoot biomass and its partition to leaf also were significantly lower than that in full sunlight. Smaller and thinner on shade treated leaves than corresponding leaves on full sunlight plants. The decreased leaf size caused by shade was largely attributable to cell proliferation in young leaves and both cell proliferation and enlargement in old leaves. Shade induced the expression of a set of genes related to cell proliferation and/or enlargement, but depended on the developmental stage of leaf. Shade significantly increased the auxin and gibberellin content, and significantly decreased the cytokinin content in young, middle and old leaves. Taken together, these results indicated that shade inhibited leaf size by controlling cell proliferation and enlargement, auxin, gibberellin and cytokinin may play important roles in this process.
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China
| | - Wanzhuo Gong
- Characteristic Crops Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, P.R. China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China.
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China.
| |
Collapse
|
49
|
Saini K, AbdElgawad H, Markakis MN, Schoenaers S, Asard H, Prinsen E, Beemster GTS, Vissenberg K. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1308. [PMID: 28824662 PMCID: PMC5539238 DOI: 10.3389/fpls.2017.01308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 05/02/2023]
Abstract
Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.
Collapse
Affiliation(s)
- Kumud Saini
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef UniversityBeni Suef, Egypt
| | - Marios N. Markakis
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of AntwerpAntwerp, Belgium
- Plant and Biochemistry and Biotechnology Lab, Department of Agriculture, School of Agriculture, Food and Nutrition, Technological Educational Institute of Crete: University of Applied SciencesHeraklion, Greece
| |
Collapse
|
50
|
Abstract
Control of leaf expansion by auxin is not well understood. Evidence from short term exogenous applications and from treatment of excised tissues suggests auxin positively influences growth. Manipulations of endogenous leaf auxin content, however, suggests that, long-term, auxin suppresses leaf expansion. This study attempts to clarify the growth effects of auxin on unifoliate (primary) leaves of the common bean (Phaseolus vulgaris) by reexamining the response to auxin treatment of both excised leaf strips and attached leaves. Leaf strips, incubated in culture conditions that promoted steady elongation for up to 48 h, treated with 10 μM NAA responded with an initial surge of elongation growth complete within 10 hours followed by insensitivity. A range of NAA concentrations from 0.1 μM to 300 μM induced increased strip elongation after 24 hours and 48 hours. Increased elongation and epinastic curvature of leaf strips was found specific to active auxins. Expanding attached unifoliates treated once with aqueous auxin α-naphthalene acetic acid (NAA) at 1.0 mM showed both an initial surge in growth lasting 4-6 hours followed by growth inhibition sustained at least as long as 24 hours post treatment. Auxin-induced inhibition of leaf expansion was associated with smaller epidermal cell area. Together the results suggest increasing leaf auxin first increases growth then slows growth through inhibition of cell expansion. Excised leaf strips, retain only the initial increased growth response to auxin and not the subsequent growth inhibition, either as a consequence of wounding or of isolation from the plant.
Collapse
Affiliation(s)
- Christopher P Keller
- Department of Biology, Minot State University, 500 University Avenue West, Minot, North Dakota 58707
| |
Collapse
|