1
|
Lowe C, Onkokesung N, Goldberg A, Beffa R, Neve P, Edwards R, Comont D. RNA and protein biomarkers for detecting enhanced metabolic resistance to herbicides mesosulfuron-methyl and fenoxaprop-ethyl in black-grass (Alopecurus myosuroides). PEST MANAGEMENT SCIENCE 2024; 80:2539-2551. [PMID: 38375975 DOI: 10.1002/ps.7960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND The evolution of non-target site resistance (NTSR) to herbicides leads to a significant reduction in herbicide control of agricultural weed species. Detecting NTSR in weed populations prior to herbicide treatment would provide valuable information for effective weed control. While not all NTSR mechanisms have been fully identified, enhanced metabolic resistance (EMR) is one of the better studied, conferring tolerance through increased herbicide detoxification. Confirming EMR towards specific herbicides conventionally involves detecting metabolites of the active herbicide molecule in planta, but this approach is time-consuming and requires access to well-equipped laboratories. RESULTS In this study, we explored the potential of using molecular biomarkers to detect EMR before herbicide treatment in black-grass (Alopecurus myosuroides). We tested the reliability of selected biomarkers to predict EMR and survival after herbicide treatments in both reference and 27 field-derived black-grass populations collected from sites across the UK. The combined analysis of the constitutive expression of biomarkers and metabolism studies confirmed three proteins, namely, AmGSTF1, AmGSTU2 and AmOPR1, as differential biomarkers of EMR toward the herbicides fenoxaprop-ethyl and mesosulfuron in black-grass. CONCLUSION Our findings demonstrate that there is potential to use molecular biomarkers to detect EMR toward specific herbicides in black-grass without reference to metabolism analysis. However, biomarker development must include testing at both transcript and protein levels in order to be reliable indicators of resistance. This work is a first step towards more robust resistance biomarker development, which could be expanded into other herbicide chemistries for on-farm testing and monitoring EMR in uncharacterised black-grass populations. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Claudia Lowe
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Nawaporn Onkokesung
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Alina Goldberg
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Roland Beffa
- Senior Scientific Consultant, Liederbach, Germany
| | - Paul Neve
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| | - Robert Edwards
- Agriculture, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David Comont
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, UK
| |
Collapse
|
2
|
Simmer RA, Schnoor JL. Phytoremediation, Bioaugmentation, and the Plant Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16602-16610. [PMID: 36399658 PMCID: PMC9730846 DOI: 10.1021/acs.est.2c05970] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 06/01/2023]
Abstract
Understanding plant biology and related microbial ecology as a means to phytoremediate soil and groundwater contamination has broadened and advanced the field of environmental engineering and science over the past 30 years. Using plants to transform and degrade xenobiotic organic pollutants delivers new methods for environmental restoration. Manipulations of the plant microbiome through bioaugmentation, endophytes, adding various growth factors, genetic modification, and/or selecting the microbial community via insertion of probiotics or phages for gene transfer are future areas of research to further expand this green, cost-effective, aesthetically pleasing technology─phytoremediation.
Collapse
|
3
|
AtGSTU19 and AtGSTU24 as Moderators of the Response of Arabidopsis thaliana to Turnip mosaic virus. Int J Mol Sci 2022; 23:ijms231911531. [PMID: 36232831 PMCID: PMC9570173 DOI: 10.3390/ijms231911531] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants not only through highly specific glutathione-binding abilities but also by participating in the signaling function. The tau class of GSTs has been reported to be induced as a response under stress conditions. Although several studies have focused on the role of the tau class of GSTs in plant–pathogen interactions, knowledge about their contribution to the response to virus inoculation is still inadequate. Therefore, in this study, the response of Atgstu19 and Atgstu24 knockout mutants to mechanical inoculation of Turnip mosaic virus (TuMV) was examined. The systemic infection of TuMV was more dynamically promoted in Atgstu19 mutants than in wild-type (Col-0) plants, suggesting the role of GSTU19 in TuMV resistance. However, Atgstu24 mutants displayed virus limitation and downregulation of the relative expression of TuMV capsid protein, accompanied rarely by TuMV particles only in vacuoles, and ultrastructural analyses of inoculated leaves revealed the lack of virus cytoplasmic inclusions. These findings indicated that Atgstu24 mutants displayed a resistance-like reaction to TuMV, suggesting that GSTU24 may suppress the plant resistance. In addition, these findings confirmed that GSTU1 and GSTU24 are induced and contribute to the susceptible reaction to TuMV in the Atgstu19–TuMV interaction. However, the upregulation of GSTU19 and GSTU13 highly correlated with virus limitation in the resistance-like reaction in the Atgstu24–TuMV interaction. Furthermore, the highly dynamic upregulation of GST and glutathione reductase (GR) activities resulted in significant induction (between 1 and 14 days post inoculation [dpi]) of the total glutathione pool (GSH + GSSG) in response to TuMV, which was accompanied by the distribution of active glutathione in plant cells. On the contrary, in Atgstu19, which is susceptible to TuMV interaction, upregulation of GST and GR activity only up to 7 dpi symptom development was reported, which resulted in the induction of the total glutathione pool between 1 and 3 dpi. These observations indicated that GSTU19 and GSTU24 are important factors in modulating the response to TuMV in Arabidopsis thaliana. Moreover, it was clear that glutathione is an important component of the regulatory network in resistance and susceptible response of A. thaliana to TuMV. These results help achieve a better understanding of the mechanisms regulating the Arabidopsis–TuMV pathosystem.
Collapse
|
4
|
Huang F, Abbas F, Rothenberg DO, Imran M, Fiaz S, Rehman NU, Amanullah S, Younas A, Ding Y, Cai X, Chen X, Yu L, Ye X, Jiang L, Ke Y, He Y. Molecular cloning, characterization and expression analysis of two 12-oxophytodienoate reductases (NtOPR1 and NtOPR2) from Nicotiana tabacum. Mol Biol Rep 2022; 49:5379-5387. [PMID: 35149935 DOI: 10.1007/s11033-022-07114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND 12-oxophytodienoic acid (OPDA) is a signaling molecule involved in defense and stress responses in plants. 12-oxophytodienoate reductase (OPR) is involved in the biosynthesis of jasmonic acid and trigger the conversion of OPDA into 3-oxo-2(2'[Z]-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0). METHODS AND RESULTS Sequence analysis revealed that Nicotiana tabacum 12-oxophytodienoate reductase 1 (OPR1) and OPR2 encoded polypeptides of 375 and 349 amino acids with molecular masses of 41.67 and 39.04 kilodaltons (kDa), respectively, while the deduced protein sequences of NtOPR1 and NtOPR2 showed high homology with other 12-oxophytodienoate reductases. BLAST (Basic local alignment search tool) analysis revealed that both NtOPRs belong to the family of Old Yellow Enzymes (OYE), and analysis of genomic DNA structure indicated that both genes include 5 exons and 4 introns. Phylogenetic analysis using MEGA X showed that NtOPR1 and NtOPR2 shared a close evolutionary relationship with Nicotiana attenuata 12-oxophytodienoate reductases. In silico analysis of subcellular localization indicated the probable locations of NtOPR1 and NtOPR2 to be the cytoplasm and the peroxisome, respectively. Tissue-specific expression assays via qRT-PCR revealed that NtOPR1 and NtOPR2 genes were highly expressed in Nicotiana tabacum roots, temperately expressed in leaves and flowers, while low expression was observed in stem tissue. CONCLUSIONS Presently, two 12-oxophytodienoate reductase genes (NtOPR1 and NtOPR2) were cloned and comprehensively characterized. Our findings provide comprehensive analyses that may guide future deep molecular studies of 12-oxophytodienoate reductases in Nicotiana tabacum.
Collapse
Affiliation(s)
- Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | | | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Yan Ding
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, 200082, Yunnan, China
| | - Xianjie Cai
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, 200082, Yunnan, China.
| | - Xiaolong Chen
- Tobacco Leaf Purchase Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, 450000, China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming, 650021, China
| | - Lin Jiang
- Honghe Tobacco Corporation of Yunnan Province, Honghe, 661400, China
| | - Yanguo Ke
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming, China.
- College of Economics and Management, Kunming University, Kunming, China.
| | - Yuansheng He
- Lincang Company of Yunnan Tobacco Company, Lincang, 677000, China
| |
Collapse
|
5
|
A Plant Based Modified Biostimulant (Copper Chlorophyllin), Mediates Defense Response in Arabidopsis thaliana under Salinity Stress. PLANTS 2021; 10:plants10040625. [PMID: 33806070 PMCID: PMC8064443 DOI: 10.3390/plants10040625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/10/2023]
Abstract
To date, managing salinity stress in agriculture relies heavily on development of salt tolerant plant varieties, a time-consuming process particularly challenging for many crops. Plant based biostimulants (PBs) that enhance plant defenses under stress can potentially address this drawback, as they are not crop specific and are easy to apply in the field. Unfortunately, limited knowledge about their modes of action makes it harder to utilize them on a broader scale. Understanding how PBs enhance plant defenses at cellular and molecular levels, is a prerequisite for the development of sustainable management practices utilizing biostimulants to improve crop health. In this study we elucidated the protective mechanism of copper chlorophyllin (Cu-chl), a PB, under salinity stress. Our results indicate that Cu-chl exerts protective effects primarily by decreasing oxidative stress through modulating cellular H2O2 levels. Cu-chl treated plants increased tolerance to oxidative stress imposed by an herbicide, methyl viologen dichloride hydrate as well, suggesting a protective role against various sources of reactive oxygen species (ROS). RNA-Seq analysis of Cu-chl treated Arabidopsis thaliana seedlings subjected to salt stress identified genes involved in ROS detoxification, and cellular growth.
Collapse
|
6
|
Kim H, Wang H, Ki JS. Chloroacetanilides inhibit photosynthesis and disrupt the thylakoid membranes of the dinoflagellate Prorocentrum minimum as revealed with metazachlor treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111928. [PMID: 33476845 DOI: 10.1016/j.ecoenv.2021.111928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The chloroacetanilides are among the most commonly used herbicides worldwide, which contaminate aquatic environments and affect aquatic phototrophs. Their sub-lethal toxicity has been evaluated using freshwater algae; however, the modes of cellular toxicity and levels of toxicity to marine organisms are not fully understood. In the present study, we assessed the cellular and molecular effects of chloroacetanilides on marine phototrophs using the dinoflagellate Prorocentrum minimum and the herbicide metazachlor (MZC). The MZC treatment led to a considerable reduction in cell number and pigment, and the EC50 of MZC was calculated to be 0.647 mg/L. The photosynthetic parameters, Fv/Fm and chlorophyll fluorescence significantly decreased with MZC exposure time in a dose-dependent manner. In addition, MZC significantly induced photosynthesis genes, including PmpsbA, PmpsaA, and PmatpB, and the antioxidant PmGST, but not PmKatG. These findings were well matched to reactive oxygen species (ROS) production in MZC-treated cells. Interestingly, we observed inflated vacuoles, undivided chloroplasts, and breakdown of thylakoid membranes in MZC-treated cells. These results support the hypothesis that MZC severely damages chloroplasts, resulting in dysfunction of the dinoflagellate photosynthesis and possibly marine phototrophs in the environment.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
7
|
Zhang JJ, Yang H. Advance in Methodology and Strategies To Unveil Metabolic Mechanisms of Pesticide Residues in Food Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2658-2667. [PMID: 33645212 DOI: 10.1021/acs.jafc.0c08122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pesticide residues are a food safety concern. A good detection method is critical for rapid and accurate determination of pesticide metabolites in crops and studying metabolism. The pretreatment methods have mainly been ultrasonic extraction-solid-phase extraction and QuEChERS, while detection methods have been radio-chromatography, nuclear magnetic resonance, and mass spectrometry. This perspective briefed the progress of analytical methods used for studying pesticide transformation in crops over the past decade. With the combination of the characteristics of the pesticide molecular structure and the transformation principles of pesticides in crops, we presented specific methods for elucidating new metabolites and the approaches to identify metabolites using multi-high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Jing Jing Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
8
|
Serra AA, Bittebière AK, Mony C, Slimani K, Pallois F, Renault D, Couée I, Gouesbet G, Sulmon C. Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140772. [PMID: 32711307 DOI: 10.1016/j.scitotenv.2020.140772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. Understanding the complex effects of soil pollution requires multi-level and multi-scale approaches. Non-target and agri-environmental plant communities of field margins and vegetative filter strips are confronted with agricultural xenobiotics through soil contamination, drift, run-off and leaching events that result from chemical applications. Plant-pesticide dynamics in vegetative filter strips was studied at field scale in the agricultural landscape of a long-term ecological research network in northern Brittany (France). Vegetative filter strips effected significant pesticide abatement between the field and riparian compartments. However, comparison of pesticide usage modalities and soil chemical analysis revealed the extent and complexity of pesticide persistence in fields and vegetative filter strips, and suggested the contribution of multiple sources (yearly carry-over, interannual persistence, landscape-scale contamination). In order to determine the impact of such persistence, plant dynamics was followed in experimentally-designed vegetative filter strips of identical initial composition (Agrostis stolonifera, Anthemis tinctoria/Cota tinctoria, Centaurea cyanus, Fagopyrum esculentum, Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, Trifolium pratense). After homogeneous vegetation establishment, experimental vegetative filter strips underwent rapid changes within the following two years, with Agrostis stolonifera, Festuca rubra, Lolium perenne and Phleum pratense becoming dominant and with the establishment of spontaneous vegetation. Co-inertia analysis showed that plant dynamics and soil residual pesticides could be significantly correlated, with the triazole fungicide epoxiconazole, the imidazole fungicide prochloraz and the neonicotinoid insecticide thiamethoxam as strong drivers of the correlation. However, the correlation was vegetative-filter-strip-specific, thus showing that correlation between plant dynamics and soil pesticides likely involved additional factors, such as threshold levels of residual pesticides. This situation of complex interactions between plants and soil contamination is further discussed in terms of agronomical, environmental and health issues.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Anne-Kristel Bittebière
- Université de Lyon 1, CNRS, UMR 5023 LEHNA, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Cendrine Mony
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Kahina Slimani
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Frédérique Pallois
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - David Renault
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Gwenola Gouesbet
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
9
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|
10
|
Ki JS, Ebenezer V, Lim WA. Yellow clay modulates carbohydrate and glutathione responses in the harmful dinoflagellate Cochlodinium polykrikoides and leads to sedimentation. Eur J Protistol 2019; 71:125642. [PMID: 31654920 DOI: 10.1016/j.ejop.2019.125642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022]
Abstract
The marine dinoflagellate Cochlodinium polykrikoides is a harmful algal bloom (HAB) species that severely impacts the environment and causes huge economic losses. Yellow clay (YC), considered to be a non-toxic and naturally-occurring material, represents an important step towards the direct control of HABs. In the present study, we evaluated the physiological and biochemical effects of YC on C. polykrikoides after exposures of up to 72 h. We observed little physiological changes in growth rate, chlorophyll a, lipid peroxidation, antioxidant enzymatic activities of superoxide dismutase and catalase, and activity of alkaline phosphatase after exposure to YC. Interestingly, YC significantly increased total carbohydrate and glutathione levels, affecting the physiology of the cells. These results indicate that total carbohydrate content may play an important role in cell-clay aggregation and it could be the main underlying mechanism that mitigates HAB cells via sedimentation.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| | - Vinitha Ebenezer
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| |
Collapse
|
11
|
Rylott EL, Bruce NC. Right on target: using plants and microbes to remediate explosives. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1051-1064. [PMID: 31056922 DOI: 10.1080/15226514.2019.1606783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While the immediate effect of explosives in armed conflicts is frequently in the public eye, until recently, the insidious, longer-term corollaries of these toxic compounds in the environment have gone largely unnoticed. Now, increased public awareness and concern are factors behind calls for more effective remediation solutions to these global pollutants. Scientists have been working on bioremediation projects in this area for several decades, characterizing genes, biochemical detoxification pathways, and field-applicable plant species. This review covers the progress made in understanding the fundamental biochemistry behind the detoxification of explosives, including new shock-insensitive explosive compounds; how field-relevant plant species have been characterized and genetically engineered; and the major roles that endophytic and rhizospheric microorganisms play in the detoxification of organic pollutants such as explosives.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| |
Collapse
|
12
|
Tzafestas K, Ahmad L, Dani MP, Grogan G, Rylott EL, Bruce NC. Structure-Guided Mechanisms Behind the Metabolism of 2,4,6-Trinitrotoluene by Glutathione Transferases U25 and U24 That Lead to Alternate Product Distribution. FRONTIERS IN PLANT SCIENCE 2018; 9:1846. [PMID: 30631331 PMCID: PMC6315187 DOI: 10.3389/fpls.2018.01846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The explosive xenobiotic 2,4,6-trinitrotoluene (TNT) is a major worldwide environmental pollutant and its persistence in the environment presents health and environmental concerns. The chemical structure of TNT dictates that biological detoxification pathways follow predominantly reductive transformation of the nitro groups, and as a result, TNT is notoriously recalcitrant to mineralization in the environment. Plant-based technologies to remediate this toxic pollutant rely on a solid understanding of the biochemical detoxification pathways involved. Toward this, two Arabidopsis Tau class glutathione transferases, GSTU24 and GSTU25, have been identified that catalyze the formation of three TNT-glutathionylated conjugates. These two GSTs share 79% identity yet only GSTU25 catalyzes the substitution of a nitro group for sulfur to form 2-glutathionyl-4,6-dinitrotoluene. The production of this compound is of interest because substitution of a nitro group could lead to destabilization of the aromatic ring, enabling subsequent biodegradation. To identify target amino acids within GSTU25 that might be involved in the formation of 2-glutathionyl-4,6-dinitrotoluene, the structure for GSTU25 was determined, in complex with oxidized glutathione, and used to inform site-directed mutagenesis studies. Replacement of five amino acids in GSTU24 established a conjugate profile and activity similar to that found in GSTU25. These findings contribute to the development of plant-based remediation strategies for the detoxification of TNT in the environment.
Collapse
Affiliation(s)
- Kyriakos Tzafestas
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Laziana Ahmad
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - M. Paulina Dani
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, United Kingdom
| | - Elizabeth L. Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Neil C. Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
13
|
Lukaszewicz G, Amé MV, Menone ML. Selection of reference genes for reverse transcription-qPCR analysis in the biomonitor macrophyte Bidens laevis L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:781-792. [PMID: 30150854 PMCID: PMC6103946 DOI: 10.1007/s12298-018-0534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 05/25/2023]
Abstract
The RT-qPCR has been the method used to analyze gene expression in plants but its benefits have not been completely exploited in the field of plants ecotoxicology when used as molecular biomarkers. The correct use of RT-qPCR demands to establish a certain number of reference genes (RG) which are expected to be invariable in their expression although it does not always happen. The main goals of this work were to: (1) analyze the stability of six potential RG, (2) establish the optimum number of RG, (3) select the most suitable RG to be applied in Bidens laevis under different test conditions and tissues and (4) confirm its convenience by normalizing the expression of one gene of interest under three different challenges. When all data were pooled together, the geNorm algorithm pointed out beta-actin and beta-tubulin (TUB) as the optimal RG pair while NormFinder algorithm selected nicotinamide adenine dinucleotide dehydrogenase (NADHD) and histone 3 (H3) as possessing the most invariable levels of expression. On the other hand, when data were grouped by tissues, ANOVA test selected H3 and TUB, while data grouped by conditions indicated that H3 and NADHD were the most stable RG under this analysis. Therefore, for a general-purpose set of RG, the overall analysis showed that a set of three RG would be optimum, and H3, TUB and NADHD were the selected ones. On the other hand, as RG can vary depending on the tissues or conditions, results achieved with ANOVA would be more reliable. Thus, appropriate normalization process would clearly need more than one RG.
Collapse
Affiliation(s)
- Germán Lukaszewicz
- Instituto de Investigaciones Marinas y Costeras (IIMyC) UNMDP, CONICET, Mar del Plata, Argentina
- Dto. Bioquímica Clínica—CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - CONICET, Haya de la Torre esq. Medina Allende, 5000 Córdoba, Argentina
| | - María Valeria Amé
- Dto. Bioquímica Clínica—CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - CONICET, Haya de la Torre esq. Medina Allende, 5000 Córdoba, Argentina
| | - Mirta Luján Menone
- Instituto de Investigaciones Marinas y Costeras (IIMyC) UNMDP, CONICET, Mar del Plata, Argentina
- Dto. Bioquímica Clínica—CIBICI, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - CONICET, Haya de la Torre esq. Medina Allende, 5000 Córdoba, Argentina
| |
Collapse
|
14
|
Ahammed GJ, He BB, Qian XJ, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ. 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:922-931. [PMID: 28774551 DOI: 10.1016/j.envpol.2017.07.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/10/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Environmental pollution by organic pollutants (OPs) has become a global concern due to its detrimental effects on the environment and human health. As plants are used to remediate contaminated sites, understanding the responses of plants to various OPs and fortification of plant tolerance are of great significance. In this work, we studied the biochemical and molecular responses of cucumber plants to three well-known OPs, 2,4,6-trichlorophenol, chlorpyrifos and oxytetracycline in the absence or presence of 24-epibrassinolide (EBR), a potent regulator of plant growth and stress tolerance. The results showed that the selected three OPs retarded root elongation; however, the phytotoxic effects of OPs were attenuated by exogenous EBR. OPs induced accumulations of both hydrogen peroxide (H2O2) and nitric oxide (NO) in root tips and resulted in an increased malondialdehyde (MDA) content, an indicator of membrane lipid peroxidation. Exogenous EBR reduced accumulations of H2O2, NO and MDA in the roots by increasing the expression of antioxidant and detoxification genes and the activities of the corresponding enzymes. Intriguingly, EBR not only promoted the activities of glutathione S-transferase and glutathione reductase, but also increased the content of reduced glutathione without altering the content of oxidized glutathione, which resulted in a reduced redox state under OPs stress. Furthermore, EBR increased the free radical scavenging capacity, flavonoid content and the activity and transcription of secondary metabolism related enzymes. Our results suggest that EBR treatment may fortify secondary metabolism to enhance antioxidant capacity in response to OPs treatment, which might have potential implication in phytoremediation of OPs.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Bei-Bei He
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xiang-Jie Qian
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, PR China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
15
|
Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, Oelmüller R, Yeh KW. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. PLANT MOLECULAR BIOLOGY 2016; 92:643-659. [PMID: 27796720 DOI: 10.1007/s11103-016-0531-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/19/2016] [Indexed: 05/20/2023]
Abstract
The beneficial root-colonizing fungus Piriformospora indica stimulates root development of Chinese cabbage (Brassica campestris subsp. Chinensis) and this is accompanied by the up-regulation of a τ-class glutathione (GSH)-S-transferase gene (BcGSTU) (Lee et al. 2011) in the roots. BcGSTU expression is further promoted by osmotic (salt and PEG) and heat stress. Ectopic expression of BcGSTU in Arabidopsis under the control of the 35S promoter results in the promotion of root and shoot growth as well as better performance of the plants under abiotic (150 mM NaCl, PEG, 42 °C) and biotic (Alternaria brassicae infection) stresses. Higher levels of glutathione, auxin and stress-related (salicylic and jasmonic acid) phytohormones as well as changes in the gene expression profile result in better performance of the BcGSTU expressors upon exposure to stress. Simultaneously the plants are primed against upcoming stresses. We propose that BcGSTU is a target of P. indica in Chinese cabbage roots because the enzyme participates in balancing growth and stress responses, depending on the equilibrium of the symbiotic interaction. A comparable function of BcGST in transgenic Arabidopsis makes the enzyme a valuable tool for agricultural applications.
Collapse
Affiliation(s)
- Chih-Wei Kao
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Madhunita Bakshi
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Michael Reichelt
- Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Ralf Oelmüller
- Institute of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Kai-Wun Yeh
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Mazari AMA, Mannervik B. Drosophila GSTs display outstanding catalytic efficiencies with the environmental pollutants 2,4,6-trinitrotoluene and 2,4-dinitrotoluene. Biochem Biophys Rep 2015; 5:141-145. [PMID: 28955816 PMCID: PMC5600427 DOI: 10.1016/j.bbrep.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 12/03/2022] Open
Abstract
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) and the related 2,4-dinitrotoluene (DNT) are toxic environmental pollutants. The biotransformation and detoxication of these persistent compounds in higher organisms are of great significance from a health perspective as well as for the biotechnological challenge of bioremediation of contaminated soil. We demonstrate that different human glutathione transferases (GSTs) and GSTs from the fruit fly Drosophila melanogaster are catalysts of the biotransformation of TNT and DNT. The human GSTs had significant but modest catalytic activities with both DNT and TNT. However, D. melanogaster GSTE6 and GSTE7 displayed outstanding high activities with both substrates. The explosive TNT is a carcinogenic environmental pollutant spread world-wide. TNT and the related DNT can be detoxified by conjugation with cellular glutathione. Previously studied plant glutathione transferases display modest activity with TNT. We found that human GSTs from four classes have low activity with TNT and DNT. By contrast Drosophila GSTE6 and GSTE7 displayed outstanding TNT and DNT activities.
Collapse
Affiliation(s)
- Aslam M A Mazari
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bengt Mannervik
- Department of Neurochemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
17
|
Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. PHYTOCHEMISTRY 2015; 112:33-53. [PMID: 25306398 DOI: 10.1016/j.phytochem.2014.09.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/20/2023]
Abstract
Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways.
Collapse
Affiliation(s)
- Graham Noctor
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France.
| | | | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris sud, 91405 Orsay Cedex, France
| |
Collapse
|
18
|
Rylott EL, Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Bruce NC. Phytodetoxification of the environmental pollutant and explosive 2,4,6-trinitrotoluene. PLANT SIGNALING & BEHAVIOR 2015; 10:e977714. [PMID: 25654165 PMCID: PMC5154393 DOI: 10.4161/15592324.2014.977714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Our recent study highlights the role of 2 glutathione transferases (GSTs) in the detoxification of the environmental pollutant, 2,4,6-trinitrotoluene (TNT) in Arabidopsis thaliana. TNT is toxic and highly resistant to biodegradation in the environment, raising both health and environmental concerns. Two GSTs, GST-U24 and GST-U25, are upregulated in response to TNT treatment, and expressed predominantly in the root tissues; the site of TNT location following uptake. Plants overexpressing GST-U24 and GST-U25 exhibited significantly enhanced ability to withstand and detoxify TNT, and remove TNT from contaminated soil. Analysis of the catalytic activities of these 2 enzymes revealed that they form 3 TNT-glutathionyl products. Of particular interest is 2-glutathionyl-4,6-dinitrotoluene as this represents a potentially favorable step toward subsequent degradation and mineralization of TNT. We demonstrate how GSTs fit into what is already known about pathways for TNT detoxification, and discuss the short and longer-term fate of TNT conjugates in planta.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
- Correspondence to: Elizabeth L Rylott;
| | - Vanda Gunning
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | - Kyriakos Tzafestas
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | - Helen Sparrow
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| | | | | | - Neil C Bruce
- Centre for Novel Agricultural Products;
Department of Biology; University of York; York,
UK
| |
Collapse
|
19
|
Gunning V, Tzafestas K, Sparrow H, Johnston EJ, Brentnall AS, Potts JR, Rylott EL, Bruce NC. Arabidopsis Glutathione Transferases U24 and U25 Exhibit a Range of Detoxification Activities with the Environmental Pollutant and Explosive, 2,4,6-Trinitrotoluene. PLANT PHYSIOLOGY 2014; 165:854-865. [PMID: 24733884 PMCID: PMC4044842 DOI: 10.1104/pp.114.237180] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The explosive 2,4,6-trinitrotoluene (TNT) is a major worldwide military pollutant. The presence of this toxic and highly persistent pollutant, particularly at military sites and former manufacturing facilities, presents various health and environmental concerns. Due to the chemically resistant structure of TNT, it has proven to be highly recalcitrant to biodegradation in the environment. Here, we demonstrate the importance of two glutathione transferases (GSTs), GST-U24 and GST-U25, from Arabidopsis (Arabidopsis thaliana) that are specifically up-regulated in response to TNT exposure. To assess the role of GST-U24 and GST-U25, we purified and characterized recombinant forms of both enzymes and demonstrated the formation of three TNT glutathionyl products. Importantly, GST-U25 catalyzed the denitration of TNT to form 2-glutathionyl-4,6-dinitrotoluene, a product that is likely to be more amenable to subsequent biodegradation in the environment. Despite the presence of this biochemical detoxification pathway in plants, physiological concentrations of GST-U24 and GST-U25 result in only a limited innate ability to cope with the levels of TNT found at contaminated sites. We demonstrate that Arabidopsis plants overexpressing GST-U24 and GST-U25 exhibit significantly enhanced ability to withstand and detoxify TNT, properties that could be applied for in planta detoxification of TNT in the field. The overexpressing lines removed significantly more TNT from soil and exhibited a corresponding reduction in glutathione levels when compared with wild-type plants. However, in the absence of TNT, overexpression of these GSTs reduces root and shoot biomass, and although glutathione levels are not affected, this effect has implications for xenobiotic detoxification.
Collapse
Affiliation(s)
- Vanda Gunning
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| | - Kyriakos Tzafestas
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| | - Helen Sparrow
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| | - Emily J Johnston
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| | - Andrew S Brentnall
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| | - Jennifer R Potts
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| | - Elizabeth L Rylott
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products (V.G., K.T., H.S., E.J.J., E.L.R., N.C.B.) and Department of Biology (A.S.B., J.R.P.), University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
20
|
Ali A, Zinnert JC, Muthukumar B, Peng Y, Chung SM, Stewart CN. Physiological and transcriptional responses of Baccharis halimifolia to the explosive "composition B" (RDX/TNT) in amended soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8261-8270. [PMID: 24687782 DOI: 10.1007/s11356-014-2764-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Unexploded explosives that include royal demolition explosive (RDX) and trinitrotoluene (TNT) cause environmental concerns for surrounding ecosystems. Baccharis halimifolia is a plant species in the sunflower family that grows naturally near munitions sites on contaminated soils, indicating that it might have tolerance to explosives. B. halimifolia plants were grown on 100, 300, and 750 mg kg(-1) of soil amended with composition B (Comp B) explosive, a mixture of royal demolition explosive and trinitrotoluene. These concentrations are environmentally relevant to such munitions sites. The purpose of the experiment was to mimic contaminated sites to assess the plant's physiological response and uptake of explosives and to identify upregulated genes in response to explosives in order to better understand how this species copes with explosives. Stomatal conductance was not significantly reduced in any treatments. However, net photosynthesis, absorbed photons, and chlorophyll were significantly reduced in all treatments relative to the control plants. The dark-adapted parameter of photosynthesis was reduced only in the 750 mg kg(-1) Comp B treatment. Thus, we observed partial physiological tolerance to Comp B in B. halimifolia plants. We identified and cloned 11 B. halimifolia gene candidates that were orthologous to explosive-responsive genes previously identified in Arabidopsis and poplar. Nine of those genes showed more than 90% similarity to Conyza canadensis (horseweed), which is the closest relative with significant available genomics resources. The expression patterns of these genes were studied using quantitative real-time PCR. Three genes were transcriptionally upregulated in Comp B treatments, and the Cytb6f gene was found to be highly active in all the tested concentrations of Comp B. These three newly identified candidate genes of this explosives-tolerant plant species can be potentially exploited for uses in phytoremediation by overexpressing these genes in transgenic plants and, similarly, by using promoters or variants of promoters from these genes fused to reporter genes in transgenic plants for making phytosensors to report the localized presence of explosives in contaminated soils.
Collapse
Affiliation(s)
- Asjad Ali
- Department of Life Science, Dongguk University-Seoul, Seoul, 100-715, South Korea
| | | | | | | | | | | |
Collapse
|
21
|
Licciardello C, D’Agostino N, Traini A, Recupero GR, Frusciante L, Chiusano ML. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck. BMC PLANT BIOLOGY 2014; 14:39. [PMID: 24490620 PMCID: PMC3922800 DOI: 10.1186/1471-2229-14-39] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/20/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). RESULTS We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. CONCLUSIONS This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in the conjugation of anthocyanin pigments and in their transport into the vacuole, specifically in fruit flesh of the pigmented cultivar.
Collapse
Affiliation(s)
- Concetta Licciardello
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di ricerca per l'Agrumicoltura e le Colture Mediterranee (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Nunzio D’Agostino
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di ricerca per l'Orticoltura (CRA-ORT), via Cavalleggeri 25, 84098 Pontecagnano, Salerno, Italy
| | | | - Giuseppe Reforgiato Recupero
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di ricerca per l'Agrumicoltura e le Colture Mediterranee (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Luigi Frusciante
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Via Università, 100, 80055 Portici, Naples, Italy
| | - Maria Luisa Chiusano
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Via Università, 100, 80055 Portici, Naples, Italy
| |
Collapse
|
22
|
|
23
|
Ramel F, Sulmon C, Serra AA, Gouesbet G, Couée I. Xenobiotic sensing and signalling in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3999-4014. [PMID: 22493519 DOI: 10.1093/jxb/ers102] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Anthropogenic changes and chemical pollution confront plant communities with various xenobiotic compounds or combinations of xenobiotics, involving chemical structures that are at least partially novel for plant species. Plant responses to chemical challenges and stimuli are usually characterized by the approaches of toxicology, ecotoxicology, and stress physiology. Development of transcriptomics and proteomics analysis has demonstrated the importance of modifications to gene expression in plant responses to xenobiotics. It has emerged that xenobiotic effects could involve not only biochemical and physiological disruption, but also the disruption of signalling pathways. Moreover, mutations affecting sensing and signalling pathways result in modifications of responses to xenobiotics, thus confirming interference or crosstalk between xenobiotic effects and signalling pathways. Some of these changes at gene expression, regulation and signalling levels suggest various mechanisms of xenobiotic sensing in higher plants, in accordance with xenobiotic-sensing mechanisms that have been characterized in other phyla (yeast, invertebrates, vertebrates). In higher plants, such sensing systems are difficult to identify, even though different lines of evidence, involving mutant studies, transcription factor analysis, or comparative studies, point to their existence. It remains difficult to distinguish between the hypothesis of direct xenobiotic sensing and indirect sensing of xenobiotic-related modifications. However, future characterization of xenobiotic sensing and signalling in higher plants is likely to be a key element for determining the tolerance and remediation capacities of plant species. This characterization will also be of interest for understanding evolutionary dynamics of stress adaptation and mechanisms of adaptation to novel stressors.
Collapse
Affiliation(s)
- Fanny Ramel
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Phongdara A, Nakkaew A, Nualkaew S. Isolation of the detoxification enzyme EgP450 from an oil palm EST library. PHARMACEUTICAL BIOLOGY 2012; 50:120-127. [PMID: 22196587 DOI: 10.3109/13880209.2011.631019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CONTEXT Sequencing of cDNA clones from plant tissue to generate expressed sequence tags (ESTs) is an effective tool for gene discovery. Together with powerful bioinformatics tools, EST sequences allow the prediction of functions of putative bioactive compounds that can later be confirmed. OBJECTIVE To isolate a detoxification enzyme from an EST library from the oil palm (Elaeis guineensis Jacq. Arecaceae). METHODS In total, 750 clones from an oil palm cDNA library were randomly sequenced and analyzed. A clone homologous to cytochrome P450 monooxygenases (P450) was selected from the list of highly expressed genes. The full-length cDNA of P450 from E. guineensis (EgP450) was generated and transformed into a bacterial host to produce recombinant protein. A 3D model of EgP450 was generated and used in a molecular docking analysis to screen for target herbicide substrates. Finally, the detoxification activity of EgP450 was confirmed by an herbicide tolerance test with rice seedlings. RESULTS AND DISCUSSION The full-length EgP450 has an open reading frame (ORF) of 1515 bp that encodes a protein of 505 amino acids. Docking analysis showed that EgP450 bound to phenylurea-like herbicides such as isoproturon, chlortoluron and fluometuron. The herbicide tolerance test demonstrated that the presence of EgP450 protected the rice seedlings from the killing action of the phytotoxic agent isoproturon. CONCLUSIONS The gene EgP450 was detected in the roots and stems of oil palm tissues, and its recombinant product was shown to protect rice seedlings from exogenous herbicides of the phenylurea family.
Collapse
Affiliation(s)
- Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand.
| | | | | |
Collapse
|
25
|
Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 2011; 22:434-40. [DOI: 10.1016/j.copbio.2010.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 11/23/2022]
|
26
|
Jiang L, Ma L, Sui Y, Han SQ, Wu ZY, Feng YX, Yang H. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:337-344. [PMID: 20828929 DOI: 10.1016/j.jhazmat.2010.08.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 05/11/2023]
Abstract
Soil amendment with manure compost may influence environmental behaviors and bioavailability of toxic organic chemicals (e.g. pesticide and polycyclic aromatic hydrocarbons). Dynamic parameters like adsorption, kinetics, mobility and degradation of pesticides have been intensively investigated. However, the current methods to evaluate the ultimate real bioavailability of pesticides to crops using physiochemical or biological approaches are limited. In this study, we developed a set of comprehensive and cost-effective parameters relevant to crop response to prometryne (s-triazine herbicide) to assess the accumulation and genotoxicity of the pesticide. Wheat plants exposed to 8 mg kg(-1) prometryne for 10 d showed stunt growth, reduced chlorophyll content and damaged membrane lipid. Concomitant treatment with 5% pig manure compost (PMC) alleviated the toxic effect on the plant. Prometryne in soils was readily accumulated by wheat. However, such an accumulation was significantly inhibited by PMC application. Because excessively accumulated prometryne triggered oxidative damage to plants, the biochemical responses of several antioxidant enzymes along with their molecular expressions were determined. In most cases, the activities and transcriptional expression of the enzymes were activated upon the exposure to prometryne but the process was prevented by PMC application. The set of biological parameters tested in this study were very sensitive and cost-effective, and therefore can be used to evaluate the degree of pesticide contamination to plants and other organisms.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China; Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, China
| | - Li Ma
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Ying Sui
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Su Qing Han
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Zhen Yu Wu
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Xiao Feng
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Hong Yang
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China; Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, China.
| |
Collapse
|
27
|
Landa P, Storchova H, Hodek J, Vankova R, Podlipna R, Marsik P, Ovesna J, Vanek T. Transferases and transporters mediate the detoxification and capacity to tolerate trinitrotoluene in Arabidopsis. Funct Integr Genomics 2010; 10:547-59. [DOI: 10.1007/s10142-010-0176-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/04/2010] [Accepted: 05/18/2010] [Indexed: 11/30/2022]
|
28
|
Abstract
The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not "glutathione transferase" activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies.
Collapse
Affiliation(s)
- David P. Dixon
- Centre for Bioactive Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Robert Edwards
- Centre for Bioactive Chemistry, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
- Address correspondence to
| |
Collapse
|
29
|
Wang J, Jiang Y, Chen S, Xia X, Shi K, Zhou Y, Yu Y, Yu J. The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves. CHEMOSPHERE 2010; 79:958-65. [PMID: 20347472 DOI: 10.1016/j.chemosphere.2010.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/07/2010] [Accepted: 02/11/2010] [Indexed: 05/18/2023]
Abstract
Chlorothalonil (CHT) and carbendazim (CAR) are two widely used fungicides in agriculture. Despite their agronomic importance in pest control, little is known about their detoxification in the plant. In this study, we investigated the effects of these fungicides on glutathione (GSH) content, GSH-dependent enzyme activities and gene expression in tomato leaves. Results showed that exposure to CHT resulted in increases in GSH content, activities of glutathione S-transferases (GSTs) and glutathione reductase (GR), as well as the transcriptional levels of glutathione S-transferase genes (GST1, GST2 and GST3), glutathione synthetase gene (GSH), glutathione reductase gene (GR) and glutathione peroxidase gene (GPX) in tomato leaves, but such increases were not observed in leaves exposed to CAR. In addition, GSTs, GR, peroxidase (POD) activities and most of GSH-dependent gene expression were induced by CHT in a concentration- and time-dependent manner. These results suggest that GSH-dependent pathway plays an important role in the CHT detoxification but not in the CAR detoxification in tomato leaves.
Collapse
Affiliation(s)
- Jitao Wang
- Department of Horticulture, Huajiachi Campus, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Weisman D, Alkio M, Colón-Carmona A. Transcriptional responses to polycyclic aromatic hydrocarbon-induced stress in Arabidopsis thaliana reveal the involvement of hormone and defense signaling pathways. BMC PLANT BIOLOGY 2010; 10:59. [PMID: 20377843 PMCID: PMC2923533 DOI: 10.1186/1471-2229-10-59] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 04/07/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are toxic, widely-distributed, environmentally persistent, and carcinogenic byproducts of carbon-based fuel combustion. Previously, plant studies have shown that PAHs induce oxidative stress, reduce growth, and cause leaf deformation as well as tissue necrosis. To understand the transcriptional changes that occur during these processes, we performed microarray experiments on Arabidopsis thaliana L. under phenanthrene treatment, and compared the results to published Arabidopsis microarray data representing a variety of stress and hormone treatments. In addition, to probe hormonal aspects of PAH stress, we assayed transgenic ethylene-inducible reporter plants as well as ethylene pathway mutants under phenanthrene treatment. RESULTS Microarray results revealed numerous perturbations in signaling and metabolic pathways that regulate reactive oxygen species (ROS) and responses related to pathogen defense. A number of glutathione S-transferases that may tag xenobiotics for transport to the vacuole were upregulated. Comparative microarray analyses indicated that the phenanthrene response was closely related to other ROS conditions, including pathogen defense conditions. The ethylene-inducible transgenic reporters were activated by phenanthrene. Mutant experiments showed that PAH inhibits growth through an ethylene-independent pathway, as PAH-treated ethylene-insensitive etr1-4 mutants exhibited a greater growth reduction than WT. Further, phenanthrene-treated, constitutive ethylene signaling mutants had longer roots than the untreated control plants, indicating that the PAH inhibits parts of the ethylene signaling pathway. CONCLUSIONS This study identified major physiological systems that participate in the PAH-induced stress response in Arabidopsis. At the transcriptional level, the results identify specific gene targets that will be valuable in finding lead compounds and engineering increased tolerance. Collectively, the results open a number of new avenues for researching and improving plant resilience and PAH phytoremediation.
Collapse
Affiliation(s)
- David Weisman
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| | - Merianne Alkio
- Institute of Biological Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Str 2, D-30419 Hannover, Germany
| | - Adán Colón-Carmona
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| |
Collapse
|
31
|
Das M, Reichman JR, Haberer G, Welzl G, Aceituno FF, Mader MT, Watrud LS, Pfleeger TG, Gutiérrez RA, Schäffner AR, Olszyk DM. A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus. PLANT MOLECULAR BIOLOGY 2010; 72:545-56. [PMID: 20043233 PMCID: PMC2816244 DOI: 10.1007/s11103-009-9590-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/10/2009] [Indexed: 05/04/2023]
Abstract
In this study, genome-wide expression profiling based on Affymetrix ATH1 arrays was used to identify discriminating responses of Arabidopsis thaliana to five herbicides, which contain active ingredients targeting two different branches of amino acid biosynthesis. One herbicide contained glyphosate, which targets 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), while the other four herbicides contain different acetolactate synthase (ALS) inhibiting compounds. In contrast to the herbicide containing glyphosate, which affected only a few transcripts, many effects of the ALS inhibiting herbicides were revealed based on transcriptional changes related to ribosome biogenesis and translation, secondary metabolism, cell wall modification and growth. The expression pattern of a set of 101 genes provided a specific, composite signature that was distinct from other major stress responses and differentiated among herbicides targeting the same enzyme (ALS) or containing the same chemical class of active ingredient (sulfonylurea). A set of homologous genes could be identified in Brassica napus that exhibited a similar expression pattern and correctly distinguished exposure to the five herbicides. Our results show the ability of a limited number of genes to classify and differentiate responses to closely related herbicides in A. thaliana and B. napus and the transferability of a complex transcriptional signature across species.
Collapse
Affiliation(s)
- Malay Das
- National Health and Environmental Effects Research Laboratory, Western Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR 97333 USA
| | - Jay R. Reichman
- National Health and Environmental Effects Research Laboratory, Western Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR 97333 USA
| | - Georg Haberer
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Gerhard Welzl
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Felipe F. Aceituno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael T. Mader
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Lidia S. Watrud
- National Health and Environmental Effects Research Laboratory, Western Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR 97333 USA
| | - Thomas G. Pfleeger
- National Health and Environmental Effects Research Laboratory, Western Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR 97333 USA
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anton R. Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - David M. Olszyk
- National Health and Environmental Effects Research Laboratory, Western Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR 97333 USA
| |
Collapse
|
32
|
Scheerer U, Haensch R, Mendel RR, Kopriva S, Rennenberg H, Herschbach C. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:609-22. [PMID: 19923196 PMCID: PMC2803220 DOI: 10.1093/jxb/erp327] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 05/18/2023]
Abstract
Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor treatment, and in APR overexpressing poplar, is discussed.
Collapse
Affiliation(s)
- Ursula Scheerer
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
| | - Robert Haensch
- Technical University Braunschweig, Institute of Plant Biology, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Ralf R. Mendel
- Technical University Braunschweig, Institute of Plant Biology, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Stanislav Kopriva
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
| | - Heinz Rennenberg
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
| | - Cornelia Herschbach
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. PLANT PHYSIOLOGY 2009; 151:253-61. [PMID: 19605548 PMCID: PMC2735992 DOI: 10.1104/pp.109.141598] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/08/2009] [Indexed: 05/17/2023]
Abstract
The explosive 2,4,6-trinitrotoluene (TNT) is a significant environmental pollutant that is both toxic and recalcitrant to degradation. Phytoremediation is being increasingly proposed as a viable alternative to conventional remediation technologies to clean up explosives-contaminated sites. Despite the potential of this technology, relatively little is known about the innate enzymology of TNT detoxification in plants. To further elucidate this, we used microarray analysis to identify Arabidopsis (Arabidopsis thaliana) genes up-regulated by exposure to TNT and found that the expression of oxophytodienoate reductases (OPRs) increased in response to TNT. The OPRs share similarity with the Old Yellow Enzyme family, bacterial members of which have been shown to transform explosives. The three predominantly expressed forms, OPR1, OPR2, and OPR3, were recombinantly expressed and affinity purified. Subsequent biochemical characterization revealed that all three OPRs are able to transform TNT to yield nitro-reduced TNT derivatives, with OPR1 additionally producing the aromatic ring-reduced products hydride and dihydride Meisenheimer complexes. Arabidopsis plants overexpressing OPR1 removed TNT more quickly from liquid culture, produced increased levels of transformation products, and maintained higher fresh weight biomasses than wild-type plants. In contrast, OPR1,2 RNA interference lines removed less TNT, produced fewer transformation products, and had lower biomasses. When grown on solid medium, two of the three OPR1 lines and all of the OPR2-overexpressing lines exhibited significantly enhanced tolerance to TNT. These data suggest that, in concert with other detoxification mechanisms, OPRs play a physiological role in xenobiotic detoxification.
Collapse
Affiliation(s)
- Emily R Beynon
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Funct Integr Genomics 2009; 9:537-47. [DOI: 10.1007/s10142-009-0125-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
|
35
|
Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 2009; 27:73-81. [DOI: 10.1016/j.tibtech.2008.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 11/20/2022]
|
36
|
Characterization of recombinant antibodies for detection of TNT and its derivatives. CHEMICAL PAPERS 2009. [DOI: 10.2478/s11696-009-0043-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AbstractDiverse recombinant immunoreagents specific for TNT-derivatives were tested in different assay forms in order to analyze their specificity and sensitivity. Performance of immunoassays was based on TNP-protein conjugates immobilization on a solid surface. In this work, the detection limit for TNT-analog TNP-Tris was 250 fmol or 87 pg mL−1 (87 ppt), which represents the most sensitive assay published until now, regarding the detection of recombinant antibodies.
Collapse
|
37
|
|
38
|
Brentner LB, Mukherji ST, Merchie KM, Yoon JM, Schnoor JL, Van Aken B. Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT). CHEMOSPHERE 2008; 73:657-62. [PMID: 18774158 DOI: 10.1016/j.chemosphere.2008.07.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 05/20/2023]
Abstract
Twelve Populus genes were identified from Arabidopsis thaliana sequences previously shown to be induced by exposure to 2,4,6-trinitrotoluene (TNT). Using the resources of the Poplar Genome Project and National Center for Biotechnology Information databases, Populus conserved domains were identified and used to design gene specific primers. RNA extracted from root tissues of TNT-exposed hydroponic poplar plants was used to quantify the expression of genes by reverse-transcriptase real-time polymerase chain reaction. Cyclophilin and 18S ribosomal DNA genes were used as internal standards. Exposure to TNT resulted in a significant increase of gene expression of two glutathione S-transferases (GST), peaking at levels of 25.0 +/- 13.1 and 10 +/- 0.7 fold the expression level of non-exposed plants after 24 h for each of the GST genes, respectively. This paper demonstrates the use of functional genomics information from the model plant species, Arabidopsis, to identify genes which may be important in detoxification of TNT in the model phytoremediation species, Populus trichocarpa.
Collapse
Affiliation(s)
- Laura B Brentner
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242
| | | | | | | | | | | |
Collapse
|
39
|
Steinberg CEW, Stürzenbaum SR, Menzel R. Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 400:142-61. [PMID: 18817948 DOI: 10.1016/j.scitotenv.2008.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 05/19/2023]
Abstract
This article provides an overview how the application of the gene profiling (mainly via microarray technology) can be used in different organisms to address issues of environmental importance. Only recently, environmental sciences, including ecotoxicology, and molecular biology have started to mutually fertilize each other. This conceptual blend has enabled the identification of the interaction between molecular events and whole animal and population responses. Likewise, striking the fine balance between biomonitoring and functional environmental genomics will allow legislative and administrative measures to be based on a more robust platform. The application of DNA microarrays to ecotoxicogenomics links ecotoxicological effects of exposure with expression profiles of several thousand genes. The gene expression profiles are altered during toxicity, as either a direct or indirect result of toxicant exposure and the comparison of numerous specific expression profiles facilitates the differentiation between intoxication and true responses to environmental stressors. Furthermore, the application of microarrays provides the means to identify complex pathways and strategies that an exposed organism applies in response to environmental stressors. This review will present evidence that the widespread phenomenon of hormesis has a genetic basis that goes beyond an adaptive response. Some more practical advantages emerge: the toxicological assessment of complex mixtures, such as effluents or sediments, as well as drugs seems feasible, especially when classical ecotoxicological tests have failed. The review of available information demonstrates the advantages of microarray application to environmental issues spanning from bacteria, over algae and spermatophytes, to invertebrates (nematode Caenorhabditis elegans, crustacea Daphnia spp., earthworms), and various fish species. Microarrays have also highlighted why populations of a given species respond differently to similar contaminations. Furthermore, this review points at inherent limits of microarrays which may not yet have been properly addressed, namely epigenetics, which may explain heritable variation observed in natural population that cannot be explained by differences in the DNA sequence. Finally, the review will address promising future molecular biological developments which may supersede the microarray technique.
Collapse
Affiliation(s)
- Christian E W Steinberg
- Humboldt University, Institute of Biology, Laboratory of Freshwater & Stress Ecology, Arboretum, Berlin, Germany.
| | | | | |
Collapse
|
40
|
Schwarzländer M, Fricker MD, Müller C, Marty L, Brach T, Novak J, Sweetlove LJ, Hell R, Meyer AJ. Confocal imaging of glutathione redox potential in living plant cells. J Microsc 2008; 231:299-316. [PMID: 18778428 DOI: 10.1111/j.1365-2818.2008.02030.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduction-oxidation-sensitive green fluorescent protein (roGFP1 and roGFP2) were expressed in different sub-cellular compartments of Arabidopsis and tobacco leaves to empirically determine their performance as ratiometric redox sensors for confocal imaging in planta. A lower redox-dependent change in fluorescence in combination with reduced excitation efficiency at 488 nm resulted in a significantly lower dynamic range of roGFP1 than for roGFP2. Nevertheless, when targeted to the cytosol and mitochondria of Arabidopsis leaves both roGFPs consistently indicated redox potentials of about -320 mV in the cytosol and -360 mV in the mitochondria after pH correction for the more alkaline matrix pH. Ratio measurements were consistent throughout the epidermal cell layer, but results might be attenuated deeper within the leaf tissue. Specific interaction of both roGFPs with glutaredoxin in vitro strongly suggests that in situ both variants preferentially act as sensors for the glutathione redox potential. roGFP2 targeted to plastids and peroxisomes in epidermal cells of tobacco leaves was slightly less reduced than in other plasmatic compartments, but still indicated a highly reduced glutathione pool. The only oxidizing compartment was the lumen of the endoplasmic reticulum, in which roGFP2 was almost completely oxidized. In all compartments tested, roGFP2 reversibly responded to perfusion with H(2)O(2) and DTT, further emphasizing that roGFP2 is a reliable probe for dynamic redox imaging in planta. Reliability of roGFP1 measurements might be obscured though in extended time courses as it was observed that intense irradiation of roGFP1 at 405 nm can lead to progressive photoisomerization and thus a redox-independent change of fluorescence excitation ratios.
Collapse
Affiliation(s)
- M Schwarzländer
- Department of Plant Science, University of Oxford, South Parks Road, Oxford OX1 RB, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Magee KD, Michael A, Ullah H, Dutta SK. Dechlorination of PCB in the presence of plant nitrate reductase. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:144-147. [PMID: 21783850 DOI: 10.1016/j.etap.2007.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The dechlorination of PCB, specifically the noncoplanar congener PCB 153, has been observed in the presence of a crude nitrate reductase extract from Medicago sativa leaves. These observations were further confirmed using a commercially available and pure nitrate reductase from Zea mays. The presence of nitrate reductase increased PCB 153 dechlorination. Then, the addition of molybdenum, the enzyme's cofactor, enhanced dechlorination of the environmental contaminant. The ability of plant nitrate reductase to dechlorinate PCB is a new observation.
Collapse
Affiliation(s)
- Kristie D Magee
- Molecular Genetics Laboratory, Department of Biology, Howard University, 415 College Street, NW, Washington, DC 20059, USA
| | | | | | | |
Collapse
|
42
|
Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 2008; 26:146-52. [DOI: 10.1016/j.tibtech.2007.11.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/14/2007] [Accepted: 11/21/2007] [Indexed: 11/18/2022]
|
43
|
Meyer AJ, Fricker MD. Imaging Thiol-Based Redox Processes in Live Cells. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakière B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:640-57. [PMID: 17877712 DOI: 10.1111/j.1365-313x.2007.03263.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photorespiration is a light-dependent source of H(2)O(2) in the peroxisomes, where concentrations of this signalling molecule are regulated by catalase. Growth of Arabidopsis knock-out mutants for CATALASE2 (cat2) in ambient air caused severely decreased rosette biomass, intracellular redox perturbation and activation of oxidative signalling pathways. These effects were absent when cat2 was grown at high CO(2) levels to inhibit photorespiration, but were re-established following a subsequent transfer to air. Growth of cat2 in air at different daylengths revealed that photoperiod is a critical determinant of the oxidative stress response. Decreased growth was observed in 8-h, 12-h and 16-h photoperiods, but lesion development was dependent on long days. Experiments at different light fluence rates showed that cell death in cat2 was linked to long days and not to total light exposure or the severity of oxidative stress. Perturbed intracellular redox state and oxidative signalling pathway induction were more prominent in short days than in long days, as evidenced by glutathione status and induction of defence genes and oxidative stress-responsive transcripts. Similar daylength-dependent effects were observed in the response of mature plants transferred from short days in high CO(2) conditions to ambient air conditions. Prior growth of plants with short days in air alleviated the cat2 cell-death phenotype in long days. Together, the data reveal the influence of photoperiodic events on redox signalling, and define distinct photoperiod-dependent strategies in the acclimation versus cell-death decision in stress conditions.
Collapse
Affiliation(s)
- Guillaume Queval
- Institut de Biotechnologie des Plantes, Université de Paris Sud XI, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yoon JM, Oliver DJ, Shanks JV. Phytotoxicity and phytoremediation of 2,6-dinitrotoluene using a model plant, Arabidopsis thaliana. CHEMOSPHERE 2007; 68:1050-7. [PMID: 17368510 DOI: 10.1016/j.chemosphere.2007.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 05/14/2023]
Abstract
Biochemical and genetic studies of xenobiotic metabolism in the model plant Arabidopsis have significant potential in providing information for phytoremediation. This paper presents the toxicity of 2,6-dinitrotoluene (2,6-DNT) to Arabidopsis under axenic conditions, the fate and transformation of 2,6-DNT after uptake by the plant, and the effect of a putative glutathione S-transferase (GST), which is highly induced by 2,4,6-trinitrotoluene (TNT) in the previous study, on the detoxification of 2,6-DNT. 2,6-DNT had toxic effects on the growth of Arabidopsis based on whole seedling as well as root growth assays. Using [U- 14C]2,6-DNT, the recovery was over 87% and less than 2% accounted for the mineralization of 2,6-DNT in axenic liquid cultures during the 14d of exposure. About half (48.3%) of the intracellular radioactivity was located in the root tissues in non-sterile hydroponic cultures. 2-Amino-6-nitrotoluene (2A6NT) and two unknown metabolites were produced as transformation products of 2,6-DNT in the liquid media. The metabolites were further characterized by proton NMR spectra and the UV-chromatograms when the plant was fed with either 2,6-DNT or 2A6NT. In addition, polar unknown metabolites were detected at short retention times from radiochromatograms of plant tissue extracts. The GST gene of the wild-type of Arabidopsis in response to 2,6-DNT was induced by 4.7-fold. However, the uptake rates and the tolerance at different concentrations of 2,6-DNT and TNT were not significantly different between the wild-type and the gst mutant indicating that induction of the GST gene is not related to the detoxification of 2,6-DNT.
Collapse
Affiliation(s)
- Jong Moon Yoon
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
46
|
Smets BF, Yin H, Esteve-Nuñez A. TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 2007; 76:267-77. [PMID: 17534614 DOI: 10.1007/s00253-007-1008-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
Our understanding of the genetics and biochemistry of microbial 2,4,6-trinitrotoluene (TNT) biotransformation has advanced significantly during the past 10 years, and biotreatment technologies have developed. In this review, we summarize this new knowledge. A number of enzyme classes involved in TNT biotransformation include the type I nitroreductases, the old yellow enzyme family, a respiration-associated nitroreductase, and possibly ring hydroxylating dioxygenases. Several strains harbor dual pathways: nitroreduction (reduction of the nitro group in TNT to a hydroxylamino and/or amino group) and denitration (reduction of the aromatic ring of TNT to Meisenheimer complexes with nitrite release). TNT can serve as a nitrogen source for some strains, and the postulated mechanism involves ammonia release from hydroxylamino intermediates. Field biotreatment technologies indicate that both stimulation of microbial nitroreduction and phytoremediation result in significant and permanent immobilization of TNT via its metabolites. While the possibility for TNT mineralization was rekindled with the discovery of TNT denitration and oxygenolytic and respiration-associated pathways, further characterization of responsible enzymes and their reaction mechanisms are required.
Collapse
Affiliation(s)
- Barth F Smets
- Institute of Environment and Resources, Technical University of Denmark, Bygningstorvet, Bldg 115, 2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
47
|
Eapen S, Singh S, D'Souza SF. Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 2007; 25:442-51. [PMID: 17553651 DOI: 10.1016/j.biotechadv.2007.05.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Phytoremediation-the use of plants for cleaning up of xenobiotic compounds-has received much attention in the last few years and development of transgenic plants tailored for remediation will further enhance their potential. Although plants have the inherent ability to detoxify some xenobiotic pollutants, they generally lack the catabolic pathway for complete degradation/mineralization of these compounds compared to microorganisms. Hence, transfer of genes involved in xenobiotic degradation from microbes/other eukaryotes to plants will further enhance their potential for remediation of these dangerous groups of compounds. Transgenic plants with enhanced potential for detoxification of xenobiotics such as trichloro ethylene, pentachlorophenol, trinitro toluene, glycerol trinitrate, atrazine, ethylene dibromide, metolachlor and hexahydro-1,3,5-trinitro-1,3,5-triazine are a few successful examples of utilization of transgenic technology. As more genes involved in xenobiotic metabolism in microorganisms/eukaryotes are discovered, it will lead to development of novel transgenic plants with improved potential for degradation of recalcitrant contaminants. Selection of suitable candidate plants, field testing and risk assessment are important considerations to be taken into account while developing transgenic plants for phytoremediation of this group of pollutants. Taking advantage of the advances in biotechnology and 'omic' technologies, development of novel transgenic plants for efficient phytoremediation of xenobiotic pollutants, field testing and commercialization will soon become a reality.
Collapse
Affiliation(s)
- Susan Eapen
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | | | | |
Collapse
|
48
|
Zhang Q, Xu F, Lambert KN, Riechers DE. Safeners coordinately induce the expression of multiple proteins and MRP transcripts involved in herbicide metabolism and detoxification inTriticum tauschii seedling tissues. Proteomics 2007; 7:1261-78. [PMID: 17380533 DOI: 10.1002/pmic.200600423] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemicals called safeners protect cereal crops from herbicide toxicity. Proteomic methods (2-D PAGE and LC-MS/MS) were utilized to identify safener- and/or herbicide-regulated proteins in three tissues (root, leaf, and coleoptile) of Triticum tauschii seedlings to better understand a safener's mechanism of action. Growth experiments showed that the safener cloquintocet-mexyl protected seedlings from injury by the herbicide dimethenamid. In total, 29 safener-induced and 10 herbicide-regulated proteins were identified by LC-MS/MS. These proteins were classified into two major categories based on their expression patterns, and were further classified into several functional groups. Surprisingly, mutually exclusive sets of proteins were identified following herbicide or safener treatment, suggesting that different signaling pathways may be recruited. Safener-responsive proteins, mostly involved in xenobiotic detoxification, also included several new proteins that had not been previously identified as safener-responsive, whereas herbicide-regulated proteins belonged to several classes involved in general stress responses. Quantitative RT-PCR revealed that multidrug resistance-associated protein (MRP) transcripts were highly induced by safeners and two MRP genes were differentially expressed. Our results indicate that safeners protect T. tauschii seedlings from herbicide toxicity by coordinately inducing proteins involved in an entire herbicide detoxification pathway mainly in the coleoptile and root, thereby protecting new leaves from herbicide injury.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
49
|
Tanaka S, Brentner LB, Merchie KM, Schnoor JL, Yoon JM, Van Aken B. Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:15-30. [PMID: 18246712 DOI: 10.1080/15226510601139375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Poplar plants (Populus deltoides x nigra, DN34) growing under hydroponic conditions were exposed to 50 mg L(-1) of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) for 24 h. The expression of genes potentially involved in the metabolism of toxic explosives was analyzed by reverse-transcriptase (RT) real-time PCR. Genes under study were selected by reference to corresponding genes that were previously shown to be upregulated in the model plant Arabidopsis thaliana by exposure to 2,4,6-trinitrotoluene (TNT) (Ekman et al., 2003. Plant Physiol., 133, 1397-1406). The target genes investigated include several genes encoding for enzymes known to be involved in the detoxification of xenobiotic pollutants, such as glutathione S-transferases (GSTs), cytochrome P-450s (CYPs), NADPH-dependent reductases, and peroxidases. Starting from A. thaliana TNT-inducible genes, corresponding Populus sequences were retrieved from the JGI Poplar Genome Project database and were used to design gene-specific primers. 18S ribosomal DNA (rDNA) was used as an internal standard and recorded gene expression levels were normalized by reference to nonexposed plants. In three separate experiments, five genes were found to be significantly amplified in leaf tissues by exposure to RDX, including GST (9.7 fold), CYP (1.6 fold), reductases (1.6-1.7 fold), and peroxidase (1.7 fold). In root tissues, only a single GST gene was found to be significantly amplified by exposure to RDX (2.0 fold). These results show, for the first time, that the exposure of poplar plants to RDX results in the induction of several genes that are potentially involved in explosive detoxification.
Collapse
Affiliation(s)
- Sachiyo Tanaka
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
50
|
Alferez F, Zhong GY, Burns JK. A citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:2451-62. [PMID: 17556766 DOI: 10.1093/jxb/erm111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The mechanisms of negative effects of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP), a pyrazole-derived plant growth regulator used as a citrus abscission agent, were explored in Arabidopsis by integrating transcriptomic, physiological, and ultrastructural analyses. CMNP promoted starch degradation and senescence-related symptoms, such as chloroplast membrane disruption, electrolyte leakage, and decreased chlorophyll and protein content. Symptoms of plant decline were evident 12 h after CMNP treatment. Microarray analysis revealed that CMNP influenced genes associated with stress, including those related to anoxia, senescence, and detoxification. Sucrose treatment arrested CMNP-induced plant decline. The results demonstrate that the plant response to CMNP shares common elements with various stresses and senescence at physiological and molecular levels.
Collapse
Affiliation(s)
- Fernando Alferez
- Horticultural Sciences Department, University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|