1
|
Niu L, Xie W, Li Q, Wang Y, Zhang X, Shi M, Zeng J, Li M, Wang Y, Shao J, Yu F, An L. BEACH domain-containing protein SPIRRIG facilitates microtubule cytoskeleton-associated trichome morphogenesis in Arabidopsis. PLANTA 2024; 260:115. [PMID: 39400709 DOI: 10.1007/s00425-024-04545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
MAIN CONCLUSION Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.
Collapse
Affiliation(s)
- Linyu Niu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Wenjuan Xie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Qian Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Yali Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Xuanyu Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Muyang Shi
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Jingyu Zeng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Mengxiang Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Yanling Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Wang Q, Wu J, Qi M, Zhang C, Huang Y, Wang G, Wang H, Tian J, Yu Y, Chen D, Li Y, Wang D, Zhang Y, Xue Y, Kong Z. A legume kinesin controls vacuole morphogenesis for rhizobia endosymbiosis. NATURE PLANTS 2022; 8:1275-1288. [PMID: 36316454 DOI: 10.1038/s41477-022-01261-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Symbioses between legumes and rhizobia require establishment of the plant-derived symbiosome membrane, which surrounds the rhizobia and accommodates the symbionts by providing an interface for nutrient and signal exchange. The host cytoskeleton and endomembrane trafficking systems play central roles in the formation of a functional symbiotic interface for rhizobia endosymbiosis; however, the underlying mechanisms remain largely unknown. Here we demonstrate that the nodulation-specific kinesin-like calmodulin-binding protein (nKCBP), a plant-specific microtubule-based kinesin motor, controls central vacuole morphogenesis in symbiotic cells in Medicago truncatula. Phylogenetic analysis further indicated that nKCBP duplication occurs solely in legumes of the clade that form symbiosomes. Knockout of nKCBP results in central vacuole deficiency, defective symbiosomes and abolished nitrogen fixation. nKCBP decorates linear particles along microtubules, and crosslinks microtubules with the actin cytoskeleton, to control central vacuole formation by modulating vacuolar vesicle fusion in symbiotic cells. Together, our findings reveal that rhizobia co-opted nKCBP to achieve symbiotic interface formation by regulating cytoskeletal assembly and central vacuole morphogenesis during nodule development.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Chen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yige Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dasong Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Dong Wang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Yijing Zhang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi Agricultural University, Taiyuan, China.
| |
Collapse
|
3
|
Petrova DP, Khabudaev KV, Bedoshvili YD, Likhoshway YV. Phylogeny and structural peculiarities of the EB proteins of diatoms. J Struct Biol 2021; 213:107775. [PMID: 34364984 DOI: 10.1016/j.jsb.2021.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
The end-binding proteins are a family of microtubule-associated proteins; this family belongs to plus-end-tracking proteins (+TIPs) that regulate microtubule growth and stabilisation. Although the genes encoding EB proteins are found in all eukaryotic genomes, most studies of them have centred on one or another taxonomic group, without a broad comparative analysis. Here, we present a first phylogenetic analysis and a comparative analysis of domain structures of diatom EB proteins in comparison with other phyla of Chromista, red and green algae, as well as model organisms A. thaliana and H. sapiens. Phylogenetically, diatom EB proteins are separated into six clades, generally corresponding to the phylogeny of their respective organisms. The domain structure of this family is highly variable, but the CH and EBH domains responsible for binding tubulin and other MAPs are mostly conserved. Homologous modelling of the F. cylindrus EB protein shows that conserved motifs of the CH domain are positioned on the protein surface, which is necessary for their functioning. We hypothesise that high variance of the diatom C-terminal domain is caused by previously unknown interactions with a CAP-GLY motif of dynactin subunit p150. Our findings contribute to wider possibilities for further investigations of the cytoskeleton in diatoms.
Collapse
Affiliation(s)
- Darya P Petrova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Kirill V Khabudaev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | | | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| |
Collapse
|
4
|
Ali I, Yang WC. Why are ATP-driven microtubule minus-end directed motors critical to plants? An overview of plant multifunctional kinesins. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:524-536. [PMID: 32336322 DOI: 10.1071/fp19177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
In plants, microtubule and actin cytoskeletons are involved in key processes including cell division, cell expansion, growth and development, biotic and abiotic stress, tropisms, hormonal signalling as well as cytoplasmic streaming in growing pollen tubes. Kinesin enzymes have a highly conserved motor domain for binding microtubule cytoskeleton assisting these motors to organise their own tracks, the microtubules by using chemical energy of ATP hydrolysis. In addition to this conserved binding site, kinesins possess non-conserved variable domains mediating structural and functional interaction of microtubules with other cell structures to perform various cellular jobs such as chromosome segregation, spindle formation and elongation, transport of organelles as well as microtubules-actins cross linking and microtubules sliding. Therefore, how the non-motor variable regions specify the kinesin function is of fundamental importance for all eukaryotic cells. Kinesins are classified into ~17 known families and some ungrouped orphans, of which ~13 families have been recognised in plants. Kinesin-14 family consisted of plant specific microtubules minus end-directed motors, are much diverse and unique to plants in the sense that they substitute the functions of animal dynein. In this review, we explore the functions of plant kinesins, especially from non-motor domains viewpoint, focussing mainly on recent work on the origin and functional diversity of motors that drive microtubule minus-end trafficking events.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; and The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences, Beijing 100049, China; and Corresponding author.
| |
Collapse
|
5
|
Liang S, Yang X, Deng M, Zhao J, Shao J, Qi Y, Liu X, Yu F, An L. A New Allele of the SPIKE1 Locus Reveals Distinct Regulation of Trichome and Pavement Cell Development and Plant Growth. FRONTIERS IN PLANT SCIENCE 2019; 10:16. [PMID: 30733726 PMCID: PMC6353857 DOI: 10.3389/fpls.2019.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
The single-celled trichomes of Arabidopsis thaliana have long served as an elegant model for elucidating the mechanisms of cell differentiation and morphogenesis due to their unique growth patterns. To identify new components in the genetic network that governs trichome development, we carried out exhaustive screens for additional Arabidopsis mutants with altered trichome morphology. Here, we report one mutant, aberrantly branched trichome1-1 (abt1-1), with a reduced trichome branching phenotype. After positional cloning, a point mutation in the SPIKE1 (SPK1) gene was identified in abt1-1. Further genetic complementation experiments confirmed that abt1-1 is a new allele of SPK1, so abt1-1 was renamed as spk1-7 according to the literatures. spk1-7 and two other spk1 mutant alleles, covering a spectrum of phenotypic severity, highlighted the distinct responses of developmental programs to different SPK1 mutations. Although null spk1 mutants are lethal and show defects in plant stature, trichome and epidermal pavement cell development, only trichome branching is affected in spk1-7. Surprisingly, we found that SPK1 is involved in the positioning of nuclei in the trichome cells. Lastly, through double mutant analysis, we found the coordinated regulation of trichome branching between SPK1 and two other trichome branching regulators, ANGUSTIFOLIA (AN) and ZWICHEL (ZWI). SPK1 might serve for the precise positioning of trichome nuclei, while AN and ZWI contribute to the formation of branch points through governing the cMTs dynamics. In summary, this study presented a fully viable new mutant allele of SPK1 and shed new light on the regulation of trichome branching and other developmental processes by SPK1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fei Yu
- *Correspondence: Fei Yu, Lijun An,
| | - Lijun An
- *Correspondence: Fei Yu, Lijun An,
| |
Collapse
|
6
|
Abstract
Adding to its varied repertoire of functions in cell morphogenesis and cell division, a molecular motor protein of the kinesin-14 class has recently been implicated in rapid retrograde transport along cellular tracks in moss.
Collapse
|
7
|
Hepler PK. The Cytoskeleton and Its Regulation by Calcium and Protons. PLANT PHYSIOLOGY 2016; 170:3-22. [PMID: 26722019 PMCID: PMC4704593 DOI: 10.1104/pp.15.01506] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/28/2015] [Indexed: 05/18/2023]
Abstract
Calcium and protons exert control over the formation and activity of the cytoskeleton, usually by modulating an associated motor protein or one that affects the structural organization of the polymer.
Collapse
Affiliation(s)
- Peter K Hepler
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
8
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
9
|
Tian J, Han L, Feng Z, Wang G, Liu W, Ma Y, Yu Y, Kong Z. Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 2015; 4. [PMID: 26287478 PMCID: PMC4574192 DOI: 10.7554/elife.09351] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/18/2015] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) and actin filaments (F-actin) function cooperatively to regulate plant cell morphogenesis. However, the mechanisms underlying the crosstalk between these two cytoskeletal systems, particularly in cell shape control, remain largely unknown. In this study, we show that introduction of the MyTH4-FERM tandem into KCBP (kinesin-like calmodulin-binding protein) during evolution conferred novel functions. The MyTH4 domain and the FERM domain in the N-terminal tail of KCBP physically bind to MTs and F-actin, respectively. During trichome morphogenesis, KCBP distributes in a specific cortical gradient and concentrates at the branching sites and the apexes of elongating branches, which lack MTs but have cortical F-actin. Further, live-cell imaging and genetic analyses revealed that KCBP acts as a hub integrating MTs and actin filaments to assemble the required cytoskeletal configuration for the unique, polarized diffuse growth pattern during trichome cell morphogenesis. Our findings provide significant insights into the mechanisms underlying cytoskeletal regulation of cell shape determination.
Collapse
Affiliation(s)
- Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhidi Feng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yinping Ma
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Isayenkov SV, Sekan AS, Sorochinsky BV, Blume YB. Molecular aspects of endosomal cellular transport. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271503007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Humphrey TV, Haasen KE, Aldea-Brydges MG, Sun H, Zayed Y, Indriolo E, Goring DR. PERK-KIPK-KCBP signalling negatively regulates root growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:71-83. [PMID: 25262228 PMCID: PMC4265151 DOI: 10.1093/jxb/eru390] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Arabidopsis proline-rich, extensin-like receptor-like kinases (PERKs) are a small group of receptor-like kinases that are thought to act as sensors at the cell wall through their predicted proline-rich extracellular domains. In this study, we focused on the characterization of a subclade of three Arabidopsis predicted PERK genes, PERK8, -9, and -10, for which no functions were known. Yeast two-hybrid interaction studies were conducted with the PERK8,- 9, and -10 cytosolic kinase domains, and two members of the Arabidopsis AGC VIII kinase family were identified as interacting proteins: AGC1-9 and the closely related kinesin-like calmodulin-binding protein (KCBP)-interacting protein kinase (KIPK). As KIPK has been identified previously as an interactor of KCBP, these interactions were also examined further and confirmed in this study. Finally, T-DNA mutants for each gene were screened for altered phenotypes under different conditions, and from these screens, a role for the PERK, KIPK, and KCBP genes in negatively regulating root growth was uncovered.
Collapse
Affiliation(s)
- Tania V Humphrey
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Katrina E Haasen
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | | | - He Sun
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Yara Zayed
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Emily Indriolo
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| |
Collapse
|
12
|
Gao H, Lai X, Kong J, Wang W, Meng X, Yan B, Cai S. Cloning of Hsp21 gene and its expression in Chinese shrimp Fenneropenaeus chinensis in response to WSSV challenge. J Appl Genet 2014; 55:231-8. [DOI: 10.1007/s13353-013-0191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022]
|
13
|
Shi K, Cui L, Jiang H, Yang L, Xue L. Characterization of the microtubule-binding activity of kinesin-like calmodulin binding protein from Dunaliella salina. Res Microbiol 2013; 164:1028-34. [PMID: 24036153 DOI: 10.1016/j.resmic.2013.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/28/2013] [Indexed: 12/17/2022]
Abstract
Although the C-terminal motor and the N-terminal myosin-like domains of KCBP in Dunaliella salina (DsKCBP) are implicated in interaction with the microtubules, its microtubule binding property has not been addressed. It has been shown that several calmodulin isoforms suppress the microtubule binding activity of KCBP, but whether the calmodulin-like protein (CLP) has this ability remains unknown. The results of our previous study showed that there are two microtubule binding sites in DsKCBP, motor domain at the C-terminus and MyTH4-FREM at the N-terminus. In the present study, MyTH4, without the companion of FERM, was identified as the minimal domain responsible for interaction with the microtubules in the N-terminal of DsKCBP. CLP interacted with the calmodulin-binding domain of DsKCBP in the presence of Ca(2+), and inhibited the microtubule-binding activity of motor domain but not MyTH4 domain. Furthermore, MyTH4 domain in the N-terminus of DsKCBP was responsible for binding to the microtubules, and had 10-fold weaker affinity to the microtubules than the motor domain.
Collapse
Affiliation(s)
- Ke Shi
- Laboratory for Cell Biology, The First Affiliated Hospital, Zhengzhou University, Henan 450052, China; Henan Province Academician & Expert workstation, Clinical Research Centre, People's Hospital of Zhengzhou, China
| | | | | | | | | |
Collapse
|
14
|
Lazzaro MD, Marom EY, Reddy ASN. Polarized cell growth, organelle motility, and cytoskeletal organization in conifer pollen tube tips are regulated by KCBP, the calmodulin-binding kinesin. PLANTA 2013; 238:587-97. [PMID: 23784715 DOI: 10.1007/s00425-013-1919-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/11/2013] [Indexed: 05/07/2023]
Abstract
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin 14 family, is a minus end directed C-terminal motor unique to plants and green algae. Its motor activity is negatively regulated by calcium/calmodulin binding, and its tail region contains a secondary microtubule-binding site. It has been identified but not functionally characterized in the conifer Picea abies. Conifer pollen tubes exhibit polarized growth as organelles move into the tip in an unusual fountain pattern directed by microfilaments but uniquely organized by microtubules. We demonstrate here that PaKCBP and calmodulin regulate elongation and motility. PaKCBP is a 140 kDa protein immunolocalized to the elongating tip, coincident with microtubules. This localization is lost when microtubules are disrupted with oryzalin, which also reorganizes microfilaments into bundles. Colocalization of PaKCBP along microtubules is enhanced when microfilaments are disrupted with latrunculin B, which also disrupts the fine network of microtubules throughout the tip while preserving thicker microtubule bundles. Calmodulin inhibition by W-12 perfusion reversibly slows pollen tube elongation, alters organelle motility, promotes microfilament bundling, and microtubule bundling coincident with increased PaKCBP localization. The constitutive activation of PaKCBP by microinjection of an antibody that displaces calcium/calmodulin and activates microtubule bundling repositions vacuoles in the tip before rapidly stopping organelle streaming and pollen tube elongation. We propose that PaKCBP is one of the target proteins in conifer pollen modulated by calmodulin inhibition leading to microtubule bundling, which alters microtubule and microfilament organization, repositions vacuoles and slows organelle motility and pollen tube elongation.
Collapse
Affiliation(s)
- Mark D Lazzaro
- Department of Biology, College of Charleston, Charleston, SC, USA.
| | | | | |
Collapse
|
15
|
Vinogradova MV, Malanina GG, Waitzman JS, Rice SE, Fletterick RJ. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization. PLoS One 2013; 8:e66669. [PMID: 23805258 PMCID: PMC3689661 DOI: 10.1371/journal.pone.0066669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/13/2013] [Indexed: 11/30/2022] Open
Abstract
Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca2+ signaling since Ca2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface.
Collapse
Affiliation(s)
- Maia V. Vinogradova
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Galina G. Malanina
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Joshua S. Waitzman
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States of America
| | - Sarah E. Rice
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States of America
| | - Robert J. Fletterick
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Shi K, Li J, Han K, Jiang H, Xue L. The degradation of kinesin-like calmodulin binding protein of D. salina (DsKCBP) is mediated by the ubiquitin-proteasome system. Mol Biol Rep 2012; 40:3113-21. [PMID: 23271117 DOI: 10.1007/s11033-012-2385-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022]
Abstract
Kinesin-like calmodulin binding protein (KCBP) is a member of kinesin-14 subfamily with unconventional domains distinct from other kinesins. This unique kinesin has the myosin tail homology 4 domain (MyTH4) and band4.1, ezrin, radixin and moesin domain (FERM) at the N-terminal which interact with several cytoskeleton proteins. Although KCBP is implicated in several microtubule-related cellular processes, studies on the KCBP of Dunaliella salina (DsKCBP) have not been reported. In this study, the roles of DsKCBP in flagella and cytoskeleton were investigated and the results showed that DsKCBP was present in flagella and upregulated during flagellar assembly indicting that it may be a flagellar kinesin and plays a role in flagellar assembly. A MyTH4-FERM domain of the DsKCBP was identified as a microtubule and actin interacting site. The interaction of DsKCBP with both microtubules and actin microfilaments suggests that this kinesin may be employed to coordinate these two cytoskeleton elements in algal cells. To gain more insights into the cellular function of the kinesin, DsKCBP-interacting proteins were examined using yeast two-hybrid screen. A 26S proteasome subunit Rpn8 was identified as a novel interacting partner of DsKCBP and the MyTH4-FERM domain was necessary for the interaction of DsKCBP with Rpn8. Furthermore, the DsKCBP was polyubiquitinated and up-regulated by proteasome inhibitor and degraded by ubiquitin-proteasome system indicating that proteasome is related to kinesin degradation.
Collapse
Affiliation(s)
- Ke Shi
- Laboratory for Cell Biology, The First Affiliated Hospital, Zhengzhou University, 40 Daxue Road, Henan 450052, China
| | | | | | | | | |
Collapse
|
17
|
The Preprophase Band and Division Site Determination in Land Plants. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Umezu N, Umeki N, Mitsui T, Kondo K, Maruta S. Characterization of a novel rice kinesin O12 with a calponin homology domain. J Biochem 2011; 149:91-101. [PMID: 21047815 DOI: 10.1093/jb/mvq122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genomic analysis predicted that the rice (Oryza sativa var. japonica) genome encodes at least 41 kinesin-like proteins including the novel kinesin O12, which is classified as a kinesin-14 family member. O12 has a calponin homology (CH) domain that is known as an actin-binding domain. In this study, we expressed the functional domains of O12 in Escherichia coli and determined its enzymatic characteristics compared with other kinesins. The microtubule-dependent ATPase activity of recombinant O12 containing the motor and CH domains was significantly reduced in the presence of actin. Interestingly, microtubule-dependent ATPase activity of the motor domain was also affected by actin in the absence of the CH domain. Our findings suggest that the motor activity of the rice plant-specific kinesin O12 may be regulated by actin.
Collapse
Affiliation(s)
- Nozomi Umezu
- Division of Bioengineering, Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | |
Collapse
|
19
|
Frey N, Klotz J, Nick P. Dynamic bridges--a calponin-domain kinesin from rice links actin filaments and microtubules in both cycling and non-cycling cells. PLANT & CELL PHYSIOLOGY 2009; 50:1493-506. [PMID: 19561334 DOI: 10.1093/pcp/pcp094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Interaction and cross-talk between microtubules and actin microfilaments are important for the cell axis and polarity during plant cell growth and development, but little is known about the molecular components of this interaction. Plant kinesins with a calponin-homology domain (KCHs) were recently identified and associated with a putative role in microtubule-microfilament cross-linking. KCHs belong to a distinct branch of the minus end-directed kinesin subfamily and so far have only been identified in land plants including the mosses. Here we report the identification of a new KCH from rice (Oryza sativa), OsKCH1, and show that OsKCH1 is associated with cortical microtubules and actin microfilaments in vivo. Furthermore, OsKCH1 is shown to bind to micro-tubules and actin microfilaments in vitro in a domain-dependent way. Additionally, this unique type of kinesin is shown to oligomerize both in vivo and in vitro. These findings are discussed with respect to a general role for KCHs as linkers between actin filaments and microtubules in both cell elongation and division.
Collapse
Affiliation(s)
- Nicole Frey
- Institute of Botany 1 and Center for Functional Nanostructures (CFN), University of Karlsruhe, Kaiserstrasse 2, D-76131 Karlsruhe, Germany
| | | | | |
Collapse
|
20
|
Li WM, Webb SE, Chan CM, Miller AL. Multiple roles of the furrow deepening Ca2+ transient during cytokinesis in zebrafish embryos. Dev Biol 2008; 316:228-48. [PMID: 18313658 DOI: 10.1016/j.ydbio.2008.01.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/16/2023]
Abstract
The generation of a required series of localized Ca(2+) transients during cytokinesis in zebrafish embryos suggests that Ca(2+) plays a necessary role in regulating this process. Here, we report that cortical actin remodeling, characterized by the reorganization of the contractile band and the formation during furrow deepening of pericleavage F-actin enrichments (PAEs), requires a localized increase in intracellular Ca(2+), which is released from IP(3)-sensitive stores. We demonstrate that VAMP-2 vesicle fusion at the deepening furrow also requires Ca(2+) released via IP(3) receptors, as well as the presence of PAEs and the action of calpains. Finally, by expressing a dominant-negative form of the kinesin-like protein, kif23, we demonstrate that its recruitment to the furrow region is required for VAMP-2 vesicle transport; and via FRAP analysis, that kif23 localization is also Ca(2+)-dependent. Collectively, our data demonstrate that a localized increase in intracellular Ca(2+) is involved in regulating several key events during furrow deepening and subsequent apposition.
Collapse
Affiliation(s)
- Wai Ming Li
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
21
|
Abstract
Kinesins, a superfamily of microtubule motor proteins, are implicated in regulating a number of fundamental cellular and developmental processes including intracellular transport of vesicles and organelles, mitotic and meiotic spindle formation and elongation, chromosome segregation, germplasm aggregation, microtubule (MT) organization and dynamics, and intraflagellar transport. Analysis of all the completed genomes of eukaryotes has revealed that Arabidopsis, a flowering plant, has more kinesins than any other organism. Although a complete inventory of kinesins in a number of organisms has been reported, the function and regulation of kinesins in general and plant kinesins in particular are poorly understood. In our screen of an expression library with a labeled calmodulin, we isolated a novel plant kinesin (kinesin-like calmodulin-binding protein, KCBP) from plants, which interacts with calmodulin in a calcium-dependent manner. This chapter describes the methods used in elucidating the regulation of this motor protein by calcium/calmodulin.
Collapse
|
22
|
Waters ER, Rioflorido I. Evolutionary analysis of the small heat shock proteins in five complete algal genomes. J Mol Evol 2007; 65:162-74. [PMID: 17684698 DOI: 10.1007/s00239-006-0223-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 04/04/2007] [Indexed: 11/29/2022]
Abstract
Small heat shock proteins (sHSPs) are chaperones that are crucial in the heat shock response but also have important nonstress roles within the cell. sHSPs are found in all three domains of life (Bacteria, Archaea, and Eukarya). These proteins are particularly diverse within land plants and the evolutionary origin of the land plant sHSP families is still an open question. Here we describe the identification of 17 small sHSPs from the complete genome sequences of five diverse algae: Chlamydomonas reinhardtii, Cyanidioschyzon merolae, Ostreococcus lucimarinus, Ostreococcus tauri, and Thalassiosira pseudonana. Our analysis indicates that the number and diversity of algal sHSPs are not correlated with adaptation to extreme conditions. While all of the algal sHSPs identified are members of this large and important superfamily, none of these sHSPs are members of the diverse land plant sHSP families. The evolutionary relationships among the algal sHSPs and homologues from bacteria and other eukaryotes are consistent with the hypothesis that the land plant chloroplast and mitochondrion sHSPs did not originate from the endosymbionts of the chloroplast and mitochondria. In addition the evolutionary history of the sHSPs is very different from that of the HSP70s. Finally, our analysis of the algal sHSPs sequences in light of the known sHSP crystal structures and functional data suggests that the sHSPs possess considerable structural and functional diversity.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA.
| | | |
Collapse
|
23
|
|
24
|
Dymek EE, Goduti D, Kramer T, Smith EF. A kinesin-like calmodulin-binding protein in Chlamydomonas: evidence for a role in cell division and flagellar functions. J Cell Sci 2006; 119:3107-16. [PMID: 16835274 DOI: 10.1242/jcs.03028] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Kinesin-like calmodulin-binding protein, KCBP, is a novel member of the C-kinesin superfamily first discovered in flowering plants. This minus-end-directed kinesin exhibits Ca(2+)-calmodulin-sensitive motor activity in vitro and has been implicated in trichome morphogenesis and cell division. A homologue of KCBP is also found in the unicellular, biflagellate green alga Chlamydomonas reinhardtii (CrKCBP). Unlike plant cells, Chlamydomonas cells do not form trichomes and do not assemble a phragmoplast before cell division. To test whether CrKCBP is involved in additional microtubule-based processes not observed in plants, we generated antibodies against the putative calmodulin-binding domain and used these antibodies in biochemical and localization studies. In interphase cells CrKCBP primarily localizes near the base of the flagella, although surprisingly, a small fraction also localizes along the length of the flagella. CrKCBP is bound to isolated axonemes in an ATP-dependent fashion and is not a component of the dynein arms, radial spokes or central apparatus. During mitosis, CrKCBP appears concentrated at the centrosomes during prophase and metaphase. However, during telophase and cytokinesis CrKCBP co-localizes with the microtubules associated with the phycoplast. These studies implicate CrKCBP in flagellar functions as well as cell division.
Collapse
Affiliation(s)
- Erin E Dymek
- Dartmouth College, Department of Biological Sciences, 301 Gilman, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
25
|
Richardson DN, Simmons MP, Reddy ASN. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 2006; 7:18. [PMID: 16448571 PMCID: PMC1434745 DOI: 10.1186/1471-2164-7-18] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/31/2006] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved approximately 350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. RESULTS We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. CONCLUSION The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the functional diversification of kinesins. Results from our gene-tree analyses indicate that there was tremendous lineage-specific duplication and diversification of kinesins in eukaryotes. Since the functions of only a few plant kinesins are reported in the literature, this comprehensive comparative analysis will be useful in designing functional studies with photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Dale N Richardson
- Department of Biology, Colorado State University, Fort Collins, CO, USA, 80523
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO, USA, 80523
| | - Anireddy SN Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA, 80523
| |
Collapse
|