1
|
Sharma S, Prasad M. Diverse roles of phytohormonal signaling in modulating plant-virus interactions. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1921-1940. [PMID: 39548750 DOI: 10.1093/jxb/erae468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Virus infection brings about changes in the transcriptome, proteome, and metabolome status of the infected plant, wherein substantial alterations in the abundance of phytohormones and associated components involved in their signaling pathways have been observed. In recent years, extensive research in the field of plant virology has showcased the indisputable significance of phytohormone signaling during plant-virus interactions. Apart from acting as growth regulators, phytohormones elicit a robust immune response, which restricts viral multiplication within the plant and propagation by vectors. Interestingly, these pathways have been shown to act not only as isolated mechanisms but also as complex intertwined regulatory cascades where the crosstalk among different phytohormones and with other antiviral pathways takes place during plant-virus interaction. Viruses disrupt phytohormone homeostasis via their multifunctional effectors, which seems to be a 'smart' approach adopted by viruses to circumvent phytohormone-mediated plant immune responses. In this review, we summarize current understanding of role of phytohormone signaling pathways during plant-virus interactions in activating plant antiviral immune responses and how viruses exploit these signaling pathways to favor their pathogenesis.
Collapse
Affiliation(s)
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
2
|
Kumar G, Dasgupta I. Revolutionizing viral resistance strategies in rice: Evolution from RNAi to precision genome editing. Virology 2025; 604:110449. [PMID: 39961261 DOI: 10.1016/j.virol.2025.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 02/06/2025] [Indexed: 05/09/2025]
Abstract
Rice viruses are a major threat to global food security, causing significant yield losses in key rice growing regions. RNA interference (RNAi) has been crucial in engineering viral resistance in rice by silencing essential viral genes. However, the advent of genome editing, especially CRISPR/Cas, has transformed this field by allowing precise alterations of viral susceptibility genes, offering more durable and targeted resistance. This review examines the advances in RNAi strategies and the shift toward CRISPR/Cas technologies, highlighting how genome editing addresses RNAi's limitations, such as broader viral strain coverage and stronger resistance. These tools, integrated with advanced breeding methods, promise to develop rice varieties with durable, broad-spectrum virus resistance, contributing to sustainable rice production and food security.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Botany, Bareilly College, Bareilly, UP, 243001, India
| | - Indranil Dasgupta
- Department of Botany, Bareilly College, Bareilly, UP, 243001, India.
| |
Collapse
|
3
|
Premchand U, Mesta RK, Basavarajappa MP, Venkataravanappa V, Narasimha Reddy LRC, Shankarappa KS. Epidemiological studies on the incidence of papaya ringspot disease under Indian sub-continent conditions. Sci Rep 2025; 15:6973. [PMID: 40011697 PMCID: PMC11865278 DOI: 10.1038/s41598-025-91612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Papaya (Carica papaya L.) is a commercially important fruit crop cultivated worldwide due to its nutritional and medicinal values. Papaya ringspot disease (PRSD), caused by the papaya ringspot virus (PRSV), poses a significant threat to papaya cultivation, resulting in substantial yield losses. In this study, two independent field experiments were conducted at Bagalkote located in the Northern Dry Zone of Karnataka state of India. The first experiment aimed to identify the optimal planting month for papaya to effectively manage PRSV disease. The second experiment was conducted to determine the susceptible papaya growth stage for PRSV infection. The results revealed that early planting of papaya in June or late planting in March were identified as the most optimal planting times across the majority of growth stages, as they exhibited the lowest disease incidence along with superior growth and yield characteristics compared to other planting months. In contrast, planting during the winter season (September to January) resulted in high disease severity due to an increased aphid population. Conversely, planting during periods of low aphid activity (spring season) delayed disease onset until the monsoon. By the time the aphid population increased, the plants had already progressed beyond the flowering and fruit-bearing stages. In the second experiment, the severity and frequency of foliar symptoms on PRSV-inoculated papaya plants were significantly higher in those inoculated at the early growth stage compared to those inoculated at a later growth stage. This indicates that the early growth stage (up to 180 days after transplanting) is a critical period for PRSV infection, necessitating the implementation of effective disease management measures during this time to minimize disease spread and enhance growth and yield. Furthermore, plants inoculated at the early stage exhibited a higher viral titer, more severe symptoms, and a higher percent transmission rate compared to those inoculated at a later stage. These findings were supported by qRT-PCR analysis, which demonstrated a highly significant and positive correlation between early inoculation and disease severity.
Collapse
Affiliation(s)
- U Premchand
- ICAR- Krishi Vigyan Kendra, Indi (Vijayapura II), University of Agricultural Sciences, Dharwad, 586209, India.
| | - Raghavendra K Mesta
- Department of Plant Pathology, College of Horticulture, Bagalkote, University of Horticultural Sciences, Bagalkote, 587104, India.
| | - Mantapla Puttappa Basavarajappa
- Department of Plant Pathology, College of Horticulture, Bagalkote, University of Horticultural Sciences, Bagalkote, 587104, India
| | | | | | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture, Bangalore, University of Horticultural Sciences, Bagalkote, 560065, India
| |
Collapse
|
4
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
5
|
Li L, Chen J, Sun Z. Exploring the shared pathogenic strategies of independently evolved effectors across distinct plant viruses. Trends Microbiol 2024; 32:1021-1033. [PMID: 38521726 DOI: 10.1016/j.tim.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
Plants have developed very diverse strategies to defend themselves against viral pathogens, among which plant hormones play pivotal roles. In response, some viruses have also deployed multifunctional viral effectors that effectively hijack key component hubs to counter or evade plant immune surveillance. Although significant progress has been made toward understanding counter-defense strategies that manipulate plant hormone regulatory molecules, these efforts have often been limited to an individual virus or specific host target/pathway. This review provides new insights into broad-spectrum antiviral responses in rice triggered by key components of phytohormone signaling, and highlights the common features of counter-defense strategies employed by distinct rice-infecting RNA viruses. These strategies involve the secretion of multifunctional virulence effectors that target the sophisticated phytohormone system, dampening immune responses by engaging with the same host targets. Additionally, the review provides an in-depth exploration of various viral effectors, emphasizing tertiary structure-based research and shared host targets. Understanding these conserved characteristics in detail may pave the way for molecular drug design, opening new opportunities to enhance broad-spectrum antiviral trials through precise engineering.
Collapse
Affiliation(s)
- Lulu Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Deng S, Jiang S, Liu B, Zhong T, Liu Q, Liu J, Liu Y, Yin C, Sun C, Xu M. ZmGDIα-hel counters the RBSDV-induced reduction of active gibberellins to alleviate maize rough dwarf virus disease. Nat Commun 2024; 15:7576. [PMID: 39217146 PMCID: PMC11365956 DOI: 10.1038/s41467-024-51726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Maize rough dwarf disease (MRDD) threatens maize production globally. The P7-1 effector of the rice black-streaked dwarf virus (RBSDV) targets maize Rab GDP dissociation inhibitor alpha (ZmGDIα) to cause MRDD. However, P7-1 has difficulty recruiting a ZmGDIα variant with an alternative helitron-derived exon 10 (ZmGDIα-hel), resulting in recessive resistance. Here, we demonstrate that P7-1 can recruit another maize protein, gibberellin 2-oxidase 13 (ZmGA2ox7.3), which also exhibits tighter binding affinity for ZmGDIα than ZmGDIα-hel. The oligomerization of ZmGA2ox7.3 is vital for its function in converting bioactive gibberellins into inactive forms. Moreover, the enzymatic activity of ZmGA2ox7.3 oligomers increases when forming hetero-oligomers with P7-1/ZmGDIα, but decreases when ZmGDIα-hel replaces ZmGDIα. Viral infection significantly promotes ZmGA2ox7.3 expression and oligomerization in ZmGDIα-containing susceptible maize, resulting in reduced bioactive GA1/GA4 levels. This causes an auxin/cytokinin imbalance and ultimately manifests as MRDD syndrome. Conversely, in resistant maize, ZmGDIα-hel counters these virus-induced changes, thereby mitigating MRDD severity.
Collapse
Affiliation(s)
- Suining Deng
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Siqi Jiang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, PR China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Qingcai Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Jianju Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Yuanliang Liu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China
| | - Can Yin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, PR China
| | - Chen Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, PR China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Kang Y, Jiang Z, Meng C, Ning X, Pan G, Yang X, Zhong M. A multifaceted crosstalk between brassinosteroid and gibberellin regulates the resistance of cucumber to Phytophthora melonis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38829920 DOI: 10.1111/tpj.16855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
Cucumber plants are highly susceptible to the hemibiotroph oomycete Phytophthora melonis. However, the mechanism of resistance to cucumber blight remains poorly understood. Here, we demonstrated that cucumber plants with impairment in the biosynthesis of brassinosteroids (BRs) or gibberellins (GAs) were more susceptible to P. melonis. By contrast, increasing levels of endogenous BRs or exogenously application of 24-epibrassinolide enhanced the resistance of cucumber plants against P. melonis. Furthermore, we found that both knockout and overexpression of the BR biosynthesis gene CYP85A1 reduced the endogenous GA3 content compared with that of wild-type plants under the condition of inoculation with P. melonis, and the enhancement of disease resistance conferred by BR was inhibited in plants with silencing of the GA biosynthetic gene GA20ox1 or KAO. Together, these findings suggest that GA homeostasis is an essential factor mediating BRs-induced disease resistance. Moreover, BZR6, a key regulator of BR signaling, was found to physically interact with GA20ox1, thereby suppressing its transcription. Silencing of BZR6 promoted endogenous GA biosynthesis and compromised GA-mediated resistance. These findings reveal multifaceted crosstalk between BR and GA in response to pathogen infection, which can provide a new approach for genetically controlling P. melonis damage in cucumber production.
Collapse
Affiliation(s)
- Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Zhongli Jiang
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Chen Meng
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Xianpeng Ning
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Gengzheng Pan
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| | - Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
8
|
Zhang C, Wang D, Li Y, Wang Z, Wu Z, Zhang Q, Jia H, Dong X, Qi L, Shi J, Shang Z. Gibberellin Positively Regulates Tomato Resistance to Tomato Yellow Leaf Curl Virus (TYLCV). PLANTS (BASEL, SWITZERLAND) 2024; 13:1277. [PMID: 38732492 PMCID: PMC11085062 DOI: 10.3390/plants13091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato's defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes.
Collapse
Affiliation(s)
- Chenwei Zhang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Modern Agricultural Science and Technology Laboratory, Shijiazhuang University, Shijiazhuang 050035, China
| | - Dandan Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Yan Li
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zifan Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zhiming Wu
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, China;
| | - Qingyin Zhang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Hongwei Jia
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
- College of Agricultural and Forestry Technology, Hebei North University, Zhangjiakou 075000, China;
| | - Xiaoxu Dong
- College of Agricultural and Forestry Technology, Hebei North University, Zhangjiakou 075000, China;
| | - Lianfen Qi
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Jianhua Shi
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zhonglin Shang
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
9
|
Wu J, Zhang Y, Li F, Zhang X, Ye J, Wei T, Li Z, Tao X, Cui F, Wang X, Zhang L, Yan F, Li S, Liu Y, Li D, Zhou X, Li Y. Plant virology in the 21st century in China: Recent advances and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:579-622. [PMID: 37924266 DOI: 10.1111/jipb.13580] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.
Collapse
Affiliation(s)
- Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Ye
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Taiyun Wei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yi Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Gnanasekaran P, Zhai Y, Kamal H, Smertenko A, Pappu HR. A plant virus protein, NIa-pro, interacts with Indole-3-acetic acid-amido synthetase, whose levels positively correlate with disease severity. FRONTIERS IN PLANT SCIENCE 2023; 14:1112821. [PMID: 37767296 PMCID: PMC10519798 DOI: 10.3389/fpls.2023.1112821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
Potato virus Y (PVY) is an economically important plant pathogen that reduces the productivity of several host plants. To develop PVY-resistant cultivars, it is essential to identify the plant-PVY interactome and decipher the biological significance of those molecular interactions. We performed a yeast two-hybrid (Y2H) screen of Nicotiana benthamiana cDNA library using PVY-encoded NIa-pro as the bait. The N. benthamiana Indole-3-acetic acid-amido synthetase (IAAS) was identified as an interactor of NIa-pro protein. The interaction was confirmed via targeted Y2H and bimolecular fluorescence complementation (BiFC) assays. NIa-pro interacts with IAAS protein and consequently increasing the stability of IAAS protein. Also, the subcellular localization of both NIa-pro and IAAS protein in the nucleus and cytosol was demonstrated. By converting free IAA (active form) to conjugated IAA (inactive form), IAAS plays a crucial regulatory role in auxin signaling. Transient silencing of IAAS in N. benthamiana plants reduced the PVY-mediated symptom induction and virus accumulation. Conversely, overexpression of IAAS enhanced symptom induction and virus accumulation in infected plants. In addition, the expression of auxin-responsive genes was found to be downregulated during PVY infection. Our findings demonstrate that PVY NIa-pro protein potentially promotes disease development via modulating auxin homeostasis.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
11
|
Jiang T, Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2830. [PMID: 37570983 PMCID: PMC10421249 DOI: 10.3390/plants12152830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production.
Collapse
Affiliation(s)
| | - Tao Zhou
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
13
|
Malavika M, Prakash V, Chakraborty S. Recovery from virus infection: plant's armory in action. PLANTA 2023; 257:103. [PMID: 37115475 DOI: 10.1007/s00425-023-04137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION This review focuses on different factors involved in promoting symptom recovery in plants post-virus infection such as epigenetics, transcriptional reprogramming, phytohormones with an emphasis on RNA silencing as well as role of abiotic factors such as temperature on symptom recovery. Plants utilize several different strategies to defend themselves in the battle against invading viruses. Most of the viral proteins interact with plant proteins and interfere with molecular dynamics in a cell which eventually results in symptom development. This initial symptom development is countered by the plant utilizing various factors including the plant's adaptive immunity to develop a virus tolerant state. Infected plants can specifically target and impede the transcription of viral genes as well as degrade the viral transcripts to restrict their proliferation by the production of small-interfering RNA (siRNA) generated from the viral nucleic acid, known as virus-derived siRNA (vsiRNA). To further escalate the degradation of viral nucleic acid, secondary siRNAs are generated. The production of virus-activated siRNA (vasiRNA) from the host genome causes differential regulation of the host transcriptome which plays a major role in establishing a virus tolerant state within the infected plant. The systemic action of vsiRNAs, vasiRNA, and secondary siRNAs with the help of defense hormones like salicylic acid can curb viral proliferation, and thus the newly emerged leaves develop fewer symptoms, maintaining a state of tolerance.
Collapse
Affiliation(s)
- M Malavika
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
14
|
Jiang T, Du K, Xie J, Sun G, Wang P, Chen X, Cao Z, Wang B, Chao Q, Li X, Fan Z, Zhou T. Activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms. Cell Rep 2023; 42:112333. [PMID: 37018076 DOI: 10.1016/j.celrep.2023.112333] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Mosaic symptoms are commonly observed in virus-infected plants. However, the underlying mechanism by which viruses cause mosaic symptoms as well as the key regulator(s) involved in this process remain unclear. Here, we investigate maize dwarf mosaic disease caused by sugarcane mosaic virus (SCMV). We find that the manifestation of mosaic symptoms in SCMV-infected maize plants requires light illumination and is correlated with mitochondrial reactive oxidative species (mROS) accumulation. The transcriptomic and metabolomic analyses results together with the genetic and cytopathological evidence indicate that malate and malate circulation pathways play essential roles in promoting mosaic symptom development. Specifically, at the pre-symptomatic infection stage or infection front, SCMV infection elevates the enzymatic activity of pyruvate orthophosphate dikinase by decreasing the phosphorylation of threonine527 under light, resulting in malate overproduction and subsequent mROS accumulation. Our findings indicate that activated malate circulation contributes to the manifestation of light-dependent mosaic symptoms via mROS.
Collapse
Affiliation(s)
- Tong Jiang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Kaitong Du
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jipeng Xie
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Geng Sun
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Pei Wang
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xi Chen
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Baichen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Xiangdong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Zaifeng Fan
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tao Zhou
- State Key Laboratory of Maize Bio-breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Ji X, Xin Z, Yuan Y, Wang M, Lu X, Li J, Zhang Y, Niu L, Jiang CZ, Sun D. A petunia transcription factor, PhOBF1, regulates flower senescence by modulating gibberellin biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad022. [PMID: 37786859 PMCID: PMC10541524 DOI: 10.1093/hr/uhad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 10/04/2023]
Abstract
Flower senescence is commonly enhanced by the endogenous hormone ethylene and suppressed by the gibberellins (GAs) in plants. However, the detailed mechanisms for the antagonism of these hormones during flower senescence remain elusive. In this study, we characterized one up-regulated gene PhOBF1, belonging to the basic leucine zipper transcription factor family, in senescing petals of petunia (Petunia hybrida). Exogenous treatments with ethylene and GA3 provoked a dramatic increase in PhOBF1 transcripts. Compared with wild-type plants, PhOBF1-RNAi transgenic petunia plants exhibited shortened flower longevity, while overexpression of PhOBF1 resulted in delayed flower senescence. Transcript abundances of two senescence-related genes PhSAG12 and PhSAG29 were higher in PhOBF1-silenced plants but lower in PhOBF1-overexpressing plants. Silencing and overexpression of PhOBF1 affected expression levels of a few genes involved in the GA biosynthesis and signaling pathways, as well as accumulation levels of bioactive GAs GA1 and GA3. Application of GA3 restored the accelerated petal senescence to normal levels in PhOBF1-RNAi transgenic petunia lines, and reduced ethylene release and transcription of three ethylene biosynthetic genes PhACO1, PhACS1, and PhACS2. Moreover, PhOBF1 was observed to specifically bind to the PhGA20ox3 promoter containing a G-box motif. Transient silencing of PhGA20ox3 in petunia plants through tobacco rattle virus-based virus-induced gene silencing method led to accelerated corolla senescence. Our results suggest that PhOBF1 functions as a negative regulator of ethylene-mediated flower senescence by modulating the GA production.
Collapse
Affiliation(s)
- Xiaotong Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ziwei Xin
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyi Lu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Kumar R, Dasgupta I. Geminiviral C4/AC4 proteins: An emerging component of the viral arsenal against plant defence. Virology 2023; 579:156-168. [PMID: 36693289 DOI: 10.1016/j.virol.2023.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Virus infection triggers a plethora of defence reactions in plants to incapacitate the intruder. Viruses, in turn, have added additional functions to their genes so that they acquire capabilities to neutralize the above defence reactions. In plant-infecting viruses, the family Geminiviridae comprises members, majority of whom encode 6-8 genes in their small single-stranded DNA genomes. Of the above genes, one which shows the most variability in its amino acid sequence is the C4/AC4. Recent studies have uncovered evidence, which point towards a wide repertoire of functions performed by C4/AC4 revealing its role as a major player in suppressing plant defence. This review summarizes the various plant defence mechanisms against viruses and highlights how C4/AC4 has evolved to counter most of them.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
17
|
Li L, Zhang H, Yang Z, Wang C, Li S, Cao C, Yao T, Wei Z, Li Y, Chen J, Sun Z. Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice. Nat Commun 2022; 13:6920. [PMID: 36376330 PMCID: PMC9663503 DOI: 10.1038/s41467-022-34649-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Plant viruses adopt diverse virulence strategies to inhibit host antiviral defense. However, general antiviral defense directly targeted by different types of plant viruses have rarely been studied. Here, we show that the single rice DELLA protein, SLENDER RICE 1 (SLR1), a master negative regulator in Gibberellin (GA) signaling pathway, is targeted by several different viral effectors for facilitating viral infection. Viral proteins encoded by different types of rice viruses all directly trigger the rapid degradation of SLR1 by promoting association with the GA receptor OsGID1. SLR1-mediated broad-spectrum resistance was subverted by these independently evolved viral proteins, which all interrupted the functional crosstalk between SLR1 and jasmonic acid (JA) signaling. This decline of JA antiviral further created the advantage of viral infection. Our study reveals a common viral counter-defense strategy in which different types of viruses convergently target SLR1-mediated broad-spectrum resistance to benefit viral infection in the monocotyledonous crop rice.
Collapse
Affiliation(s)
- Lulu Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zihang Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chen Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shanshan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chen Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Tongsong Yao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Dai L, Lu X, Shen L, Guo L, Zhang G, Gao Z, Zhu L, Hu J, Dong G, Ren D, Zhang Q, Zeng D, Qian Q, Li Q. Genome-wide association study reveals novel QTLs and candidate genes for seed vigor in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1005203. [PMID: 36388599 PMCID: PMC9645239 DOI: 10.3389/fpls.2022.1005203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Highly seed vigor (SV) is essential for rice direct seeding (DS). Understanding the genetic mechanism of SV-related traits could contribute to increasing the efficiency of DS. However, only a few genes responsible for SV have been determined in rice, and the regulatory network of SV remains obscure. In this study, the seed germination rate (GR), seedling shoot length (SL), and shoot fresh weight (FW) related to SV traits were measured, and a genome-wide association study (GWAS) was conducted to detect high-quality loci responsible for SV using a panel of 346 diverse accessions. A total of 51 significant SNPs were identified and arranged into six quantitative trait locus (QTL) regions, including one (qGR1-1), two (qSL1-1, qSL1-2), and three (qFW1-1, qFW4-1, and qFW7-1) QTLs associated with GR, SL, and FW respectively, which were further validated using chromosome segment substitution lines (CSSLs). Integrating gene expression, gene annotation, and haplotype analysis, we found 21 strong candidate genes significantly associated with SV. In addition, the SV-related functions of LOC_Os01g11270 and LOC_Os01g55240 were further verified by corresponding CRISPR/Cas9 gene-edited mutants. Thus, these results provide clues for elucidating the genetic basis of SV control. The candidate genes or QTLs would be helpful for improving DS by molecular marker-assisted selection (MAS) breeding in rice.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xueli Lu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Shen
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Guangheng Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenyu Gao
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Li Zhu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Deyong Ren
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Zhang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
19
|
Wang P, Liu J, Lyu Y, Huang Z, Zhang X, Sun B, Li P, Jing X, Li H, Zhang C. A Review of Vector-Borne Rice Viruses. Viruses 2022; 14:v14102258. [PMID: 36298813 PMCID: PMC9609659 DOI: 10.3390/v14102258] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022] Open
Abstract
Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.
Collapse
Affiliation(s)
- Pengyue Wang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianjian Liu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Hubei Engineering Research Center for Pest Forewarning and Management, College of Agronomy, Yangtze University, Jingzhou 434025, China
| | - Yajing Lyu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Co-Construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziting Huang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoli Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjian Sun
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbai Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinxin Jing
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Honglian Li
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Zhang
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| |
Collapse
|
20
|
Huang Y, Chen I, Kao Y, Hsu Y, Tsai C. The gibberellic acid derived from the plastidial MEP pathway is involved in the accumulation of Bamboo mosaic virus. THE NEW PHYTOLOGIST 2022; 235:1543-1557. [PMID: 35524450 PMCID: PMC9543464 DOI: 10.1111/nph.18210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
A gene upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) infection was revealed as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (NbDXR). DXR is the key enzyme in the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway that catalyzes the conversion of 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol-4-phosphate. Knockdown and overexpression of NbDXR followed by BaMV inoculation revealed that NbDXR is involved in BaMV accumulation. Treating leaves with fosmidomycin, an inhibitor of DXR function, reduced BaMV accumulation. Subcellular localization confirmed that DXR is a chloroplast-localized protein by confocal microscopy. Furthermore, knockdown of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase, one of the enzymes in the MEP pathway, also reduced BaMV accumulation. The accumulation of BaMV increased significantly in protoplasts treated with isopentenyl pyrophosphate. Thus, the metabolites of the MEP pathway could be involved in BaMV infection. To identify the critical components involved in BaMV accumulation, we knocked down the crucial enzyme of isoprenoid synthesis, NbGGPPS11 or NbGGPPS2. Only NbGGPPS2 was involved in BaMV infection. The geranylgeranyl pyrophosphate (GGPP) synthesized by NbGGPPS2 is known for gibberellin synthesis. We confirmed this result by supplying gibberellic acid exogenously on leaves, which increased BaMV accumulation. The de novo synthesis of gibberellic acid could assist BaMV accumulation.
Collapse
Affiliation(s)
- Ying‐Ping Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - I‐Hsuan Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Yu‐Shun Kao
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung402Taiwan
| | - Ching‐Hsiu Tsai
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung402Taiwan
| |
Collapse
|
21
|
Yao S, Kang J, Guo G, Yang Z, Huang Y, Lan Y, Zhou T, Wang L, Wei C, Xu Z, Li Y. The key micronutrient copper orchestrates broad-spectrum virus resistance in rice. SCIENCE ADVANCES 2022; 8:eabm0660. [PMID: 35776788 PMCID: PMC10883364 DOI: 10.1126/sciadv.abm0660] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Copper is a critical regulator of plant growth and development. However, the mechanisms by which copper responds to virus invasion are unclear. We previously showed that SPL9-mediated transcriptional activation of miR528 adds a previously unidentified regulatory layer to the established ARGONAUTE (AGO18)-miR528-L-ascorbate oxidase (AO) antiviral defense. Here, we report that rice promotes copper accumulation in shoots by inducing copper transporter genes, including HMA5 and COPT, to counteract viral infection. Copper suppresses the transcriptional activation of miR528 by inhibiting the protein level of SPL9, thus alleviating miR528-mediated cleavage of AO transcripts to strengthen the antiviral response. Loss-of-function mutations in HMA5, COPT1, and COPT5 caused a significant reduction in copper accumulation and plant viral resistance because of the increased SPL9-mediated miR528 transcription. Gain in viral susceptibility was mitigated when SPL9 was mutated in the hma5 mutant background. Our study elucidates the molecular mechanisms and regulatory networks of copper homeostasis and the SPL9-miR528-AO antiviral pathway.
Collapse
Affiliation(s)
- Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinrui Kang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ge Guo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Huang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Liying Wang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chunhong Wei
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhihong Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Li M, Zhang H, He D, Damaris RN, Yang P. A stress-associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2420-2433. [PMID: 35084453 DOI: 10.1093/jxb/erac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Gibberellic acid (GA) is a vital phytohormone for plant growth and development. GA biosynthesis is a complex pathway regulated by various transcription factors. Here we report a stress-associated protein 8 (OsSAP8), negatively involved in GA biosynthesis. Overexpression of OsSAP8 in rice resulted in a semi-dwarfism phenotype and reduced endogenous GA3 content. In contrast, an OsSAP8 knockout mutant exhibited higher endogenous GA3 content and slightly increased plant height. Sub-cellular localization analysis of OsSAP8 showed that it could enter the nucleus. Based on electrophoretic mobility shift assay and yeast one hybrid experiments, OsSAP8 was found to bind to the cis-acting regulatory element GADOWNAT of ent-kaurene oxidases (KO2, KO3, KO5). The results from dual-luciferase reporter assays showed that OsSAP8 does not activate LUC reporter gene expression. However, it could interact with basic leucine zipper 58 (OsbZIP58), which has strong transcriptional activation potential on OsKO2. Moreover, the interaction between OsSAP8, rice lesion simulating disease 1-like 1 (OsLOL1), and OsbZIP58 could reduce the promotive effect of transcription factor OsbZIP58 on OsKO2. These results provide some new insights on the regulation of GA biosynthesis in rice.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
23
|
14-3-3 gene of Zostera japonica ZjGRF1 participates in gibberellin signaling pathway. Mol Biol Rep 2022; 49:4795-4803. [DOI: 10.1007/s11033-022-07330-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
|
24
|
Li P, Guo L, Lang X, Li M, Wu G, Wu R, Wang L, Zhao M, Qing L. Geminivirus C4 proteins inhibit GA signaling via prevention of NbGAI degradation, to promote viral infection and symptom development in N. benthamiana. PLoS Pathog 2022; 18:e1010217. [PMID: 35390110 PMCID: PMC9060335 DOI: 10.1371/journal.ppat.1010217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
The phytohormone gibberellin (GA) is a vital plant signaling molecule that regulates plant growth and defense against abiotic and biotic stresses. To date, the molecular mechanism of the plant responses to viral infection mediated by GA is still undetermined. DELLA is a repressor of GA signaling and is recognized by the F-box protein, a component of the SCFSLY1/GID2 complex. The recognized DELLA is degraded by the ubiquitin-26S proteasome, leading to the activation of GA signaling. Here, we report that ageratum leaf curl Sichuan virus (ALCScV)-infected N. benthamiana plants showed dwarfing symptoms and abnormal flower development. The infection by ALCScV significantly altered the expression of GA pathway-related genes and decreased the content of endogenous GA in N. benthamiana. Furthermore, ALCScV-encoded C4 protein interacts with the DELLA protein NbGAI and interferes with the interaction between NbGAI and NbGID2 to prevent the degradation of NbGAI, leading to inhibition of the GA signaling pathway. Silencing of NbGAI or exogenous GA3 treatment significantly reduces viral accumulation and disease symptoms in N. benthamiana plants. The same results were obtained from experiments with the C4 protein encoded by tobacco curly shoot virus (TbCSV). Therefore, we propose a novel mechanism by which geminivirus C4 proteins control viral infection and disease symptom development by interfering with the GA signaling pathway. Gibberellins (GAs) are plant hormones essential for many developmental processes in plants. Plant virus infection can induce abnormal flower development and influence the GA pathway, resulting in plant dwarfing symptoms, but the underlying mechanisms are still not well described. Here, we demonstrate that the geminivirus-encoded C4 protein regulates the GA signaling pathway to promote viral accumulation and disease symptom development. By directly interacting with NbGAI, the C4 protein interferes with the interaction between NbGAI and NbGID2, which inhibits the degradation of NbGAI. As a result, the GA signaling pathway is blocked, and the infected plants display symptoms of typical dwarfing and delayed flowering. Our results reveal a novel mechanism by which geminivirus C4 proteins influence viral pathogenicity by interfering with the GA signaling pathway and provide new insights into the interaction between the virus and host.
Collapse
Affiliation(s)
- Pengbai Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Liuming Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Xinyuan Lang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Rui Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Lyuxin Wang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Meisheng Zhao
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- National Citrus Engineering Research Center, Southwest University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
25
|
Gupta K, Rishishwar R, Dasgupta I. The interplay of plant hormonal pathways and geminiviral proteins: partners in disease development. Virus Genes 2022; 58:1-14. [PMID: 35034268 DOI: 10.1007/s11262-021-01881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Viruses belonging to the family Geminiviridae infect plants and are responsible for a number of diseases of crops in the tropical and sub-tropical regions of the World. The innate immune response of the plant assists in its defense against such viral pathogens by the recognition of pathogen/microbe-associated molecular patterns through pattern-recognition receptors. Phytohormone signalling pathways play a vital role in plant defense responses against these devastating viruses. Geminiviruses, however, have developed counter-defense strategies that prevail over the above defense pathways. The proteins encoded by geminiviruses act as suppressors of plant immunity by interacting with the signalling components of several hormones. In this review we focus on the molecular interplay of phytohormone pathways and geminiviral infection and try to find interesting parallels with similar mechanisms known in other plant-infecting viruses and strengthen the argument that this interplay is necessary for disease development.
Collapse
Affiliation(s)
- Kanika Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India
| | - Rashmi Rishishwar
- Department of Botany, Bhagat Singh Government P.G. College, Jaora, Ratlam, Madhya Pradesh, 457226, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, -110021, India.
| |
Collapse
|
26
|
Hao X, Song S, Zhong Q, Hajano JUD, Guo J, Wu Y. Rescue of an Infectious cDNA Clone of Barley Yellow Dwarf Virus-GAV. PHYTOPATHOLOGY 2021; 111:2383-2391. [PMID: 33961494 DOI: 10.1094/phyto-11-20-0522-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Barley yellow dwarf virus-GAV (BYDV-GAV) is one of the most prevalent viruses causing yellow dwarf disease in wheat in China. The biology and pathology of BYDV-GAV are well studied; however, gene functions and molecular mechanisms of BYDV-GAV disease development are unclear because of the lack of a reverse genetics system. In this study, a full-length complementary DNA (cDNA) clone of BYDV-GAV was constructed and expressed via Agrobacterium-mediated inoculation of Nicotiana benthamiana. Virions produced by BYDV-GAV in N. benthamiana were transmitted to wheat by an aphid vector after acquisition via a sandwich feeding method. Infectivity of the cDNA clone in wheat was verified via reverse transcription PCR and western blot assays, and the recombinant virus elicited typical reddening symptoms in oats and was transmitted between wheat plants. These results confirm the production of biologically active transmissible virions. Using the BYDV-GAV infectious clone, we demonstrate that viral protein P4 was involved in cell-to-cell movement and stunting symptoms in wheat. This is the first report describing the development of an infectious full-length cDNA clone of BYDV-GAV and provides a useful tool for virus-host-vector interaction studies.
Collapse
Affiliation(s)
- Xingan Hao
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Shuang Song
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qinrong Zhong
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Jamal-U-Ddin Hajano
- Sindh Agriculture University, Faculty of Crop Protection, Department of Plant Pathology, Tandojam 70600, Pakistan
| | - Jie Guo
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- Northwest A&F University, College of Plant Protection, Yangling, Shaanxi 712100, China
| |
Collapse
|
27
|
Yan B, Yu X, Dai R, Li Z, Yang M. Chromosome-Level Genome Assembly of Nephotettix cincticeps (Uhler, 1896) (Hemiptera: Cicadellidae: Deltocephalinae). Genome Biol Evol 2021; 13:evab236. [PMID: 34677607 PMCID: PMC8598198 DOI: 10.1093/gbe/evab236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
The green rice leafhopper, Nephotettix cincticeps (Uhler), is an important rice pest and a vector of the rice dwarf virus in Asia. Here, we produced a high-quality chromosome-level genome assembly of 753.23 Mb using PacBio (∼110×) and Hi-C data (∼94×). It contained 163 scaffolds and 950 contigs, whose scaffold/contig N50 lengths reached 85.36/2.57 Mb. And 731.19 Mb (97.07%) of the assembly was anchored into eight pseudochromosomes. Genome completeness was attained to 97.0% according to the insect reference Benchmarking Universal Single-Copy Orthologs (BUSCO) gene set (n = 1,367). We masked 347.10 Mb (46.08%) of the genome as repetitive elements. Nine hundred sixty-two noncoding RNAs were identified and 14,337 protein-coding genes were predicted. We also assigned GO term and KEGG pathway annotations for 10,049 and 9,251 genes, respectively. Significantly expanded gene families were primarily involved in immunity, cuticle, digestion, detoxification, and embryonic development. This study provided a crucial genomic resource for better understanding on the biology and evolution in family Cicadellidae.
Collapse
Affiliation(s)
- Bin Yan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Xiaofei Yu
- College of Tobacco Science, Guizhou University, Guiyang, China
| | - Renhuai Dai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Zizhong Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maofa Yang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- College of Tobacco Science, Guizhou University, Guiyang, China
| |
Collapse
|
28
|
Rahman A, Sinha KV, Sopory SK, Sanan-Mishra N. Influence of virus-host interactions on plant response to abiotic stress. PLANT CELL REPORTS 2021; 40:2225-2245. [PMID: 34050797 DOI: 10.1007/s00299-021-02718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant-virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.
Collapse
Affiliation(s)
- Adeeb Rahman
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kumari Veena Sinha
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
29
|
Müllender M, Varrelmann M, Savenkov EI, Liebe S. Manipulation of auxin signalling by plant viruses. MOLECULAR PLANT PATHOLOGY 2021; 22:1449-1458. [PMID: 34420252 PMCID: PMC8518663 DOI: 10.1111/mpp.13122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Compatible plant-virus interactions result in dramatic changes of the plant transcriptome and morphogenesis, and are often associated with rapid alterations in plant hormone homeostasis and signalling. Auxin controls many aspects of plant organogenesis, development, and growth; therefore, plants can rapidly perceive and respond to changes in the cellular auxin levels. Auxin signalling is a tightly controlled process and, hence, is highly vulnerable to changes in the mRNA and protein levels of its components. There are several core nuclear components of auxin signalling. In the nucleus, the interaction of auxin response factors (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins is essential for the control of auxin-regulated pathways. Aux/IAA proteins are negative regulators, whereas ARFs are positive regulators of the auxin response. The interplay between both is essential for the transcriptional regulation of auxin-responsive genes, which primarily regulate developmental processes but also modulate the plant immune system. Recent studies suggest that plant viruses belonging to different families have developed various strategies to disrupt auxin signalling, namely by (a) changing the subcellular localization of Aux/IAAs, (b) preventing degradation of Aux/IAAs by stabilization, or (c) inhibiting the transcriptional activity of ARFs. These interactions perturb auxin signalling and experimental evidence from various studies highlights their importance for virus replication, systemic movement, interaction with vectors for efficient transmission, and symptom development. In this microreview, we summarize and discuss the current knowledge on the interaction of plant viruses with auxin signalling components of their hosts.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| | - Eugene I. Savenkov
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsalaSweden
| | - Sebastian Liebe
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| |
Collapse
|
30
|
Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9. Curr Genomics 2021; 22:214-231. [PMID: 34975291 PMCID: PMC8640848 DOI: 10.2174/1389202922666210412102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ulhas S. Kadam
- Address correspondenceto this author at the Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany; E-mail: ,
‡Present Address: Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyenongsang National University, Jinju-si, Republic of Korea; E-mail:
| |
Collapse
|
31
|
The Application of Phytohormones as Biostimulants in Corn Smut Infected Hungarian Sweet and Fodder Corn Hybrids. PLANTS 2021; 10:plants10091822. [PMID: 34579355 PMCID: PMC8472417 DOI: 10.3390/plants10091822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
The main goal of this research was to investigate the effects of corn smut (Ustilago maydis DC. Corda) infection on the morphological (plant height, and stem diameter), and biochemical parameters of Zea mays L. plants. The biochemical parameters included changes in the relative chlorophyll, malondialdehyde (MDA), and photosynthesis pigments' contents, as well as the activities of antioxidant enzymes-ascorbate peroxidase (APX), guaiacol peroxidase (POD), and superoxide dismutase (SOD). The second aim of this study was to evaluate the impact of phytohormones (auxin, cytokinin, gibberellin, and ethylene) on corn smut-infected plants. The parameters were measured 7 and 11 days after corn smut infection (DACSI). Two hybrids were grown in a greenhouse, one fodder (Armagnac) and one a sweet corn (Desszert 73). The relative and the absolute amount of photosynthetic pigments were significantly lower in the infected plants in both hybrids 11 DACSI. Activities of the antioxidant enzymes and MDA content were higher in both infected hybrids. Auxin, cytokinin, and gibberellin application diminished the negative effects of the corn smut infection (CSI) in the sweet corn hybrid. Phytohormones i.e., auxin, gibberellin, and cytokinin can be a new method in protection against corn smut.
Collapse
|
32
|
Pan L, Miao H, Wang Q, Walling LL, Liu S. Virus-induced phytohormone dynamics and their effects on plant-insect interactions. THE NEW PHYTOLOGIST 2021; 230:1305-1320. [PMID: 33555072 PMCID: PMC8251853 DOI: 10.1111/nph.17261] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Attacks on plants by both viruses and their vectors is common in nature. Yet the dynamics of the plant-virus-vector tripartite system, in particular the effects of viral infection on plant-insect interactions, have only begun to emerge in the last decade. Viruses can modulate the interactions between insect vectors and plants via the jasmonate, salicylic acid and ethylene phytohormone pathways, resulting in changes in fitness and viral transmission capacity of their insect vectors. Virus infection of plants may also modulate other phytohormones, such as auxin, gibberellins, cytokinins, brassinosteroids and abscisic acid, with yet undefined consequences on plant-insect interactions. Moreover, virus infection in plants may incur changes to other plant traits, such as nutrition and secondary metabolites, that potentially contribute to virus-associated, phytohormone-mediated manipulation of plant-insect interactions. In this article, we review the research progress, discuss issues related to the complexity and variability of the viral modulation of plant interactions with insect vectors, and suggest future directions of research in this field.
Collapse
Affiliation(s)
- Li‐Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of Insect SciencesZhejiang UniversityHangzhou310058China
| | - Huiying Miao
- Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of AgricultureDepartment of HorticultureZhejiang UniversityHangzhou310058China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementMinistry of AgricultureDepartment of HorticultureZhejiang UniversityHangzhou310058China
| | - Linda L. Walling
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of CaliforniaRiverside, CA92521‐0124USA
| | - Shu‐Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and InsectsInstitute of Insect SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
33
|
Ghosh D, Chakraborty S. Molecular interplay between phytohormones and geminiviruses: a saga of a never-ending arms race. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2903-2917. [PMID: 33577676 DOI: 10.1093/jxb/erab061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/06/2021] [Indexed: 05/14/2023]
Abstract
Geminiviruses can infect a wide range of plant hosts worldwide and have hence become an emerging global agroeconomic threat. The association of these viruses with satellite molecules and highly efficient insect vectors such as whiteflies further prime their devastating impacts. Plants elicit a strong antiviral immune response to restrict the invasion of these destructive pathogens. Phytohormones help plants to mount this response and occupy a key position in combating these biotrophs. These defense hormones not only inhibit geminiviral propagation but also hamper viral transmission by compromising the performance of their insect vectors. Nonetheless, geminiviruses have co-evolved to have a few multitasking virulence factors that readily remodel host cellular machineries to circumvent the phytohormone-mediated manifestation of the immune response. Furthermore, these obligate parasites exploit plant growth hormones to produce a cellular environment permissive for virus replication. In this review, we outline the current understanding of the roles and regulation of phytohormones in geminiviral pathogenesis.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
34
|
Zheng L, Zhang M, Zhuo Z, Wang Y, Gao X, Li Y, Liu W, Zhang W. Transcriptome profiling analysis reveals distinct resistance response of cucumber leaves infected with powdery mildew. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:327-340. [PMID: 33176053 DOI: 10.1111/plb.13213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Powdery mildew is the main disease affecting cucumber cultivation and causes severe economic loss. So far, research on cucumber resistance to powdery mildew has not yielded feasible solutions. This study selected two inbred cucumber lines, XY09-118 (resistant) and Q10 (susceptible) and investigated their responses to powdery mildew infection (harvested 24 and 48 h after inoculation) using RNA sequencing. More than 20,000 genes were detected in cucumber leaves both with and without powdery mildew infection at the above two time points. Among these, 5478 genes were identified as differently expressed genes (DEGs) between XY09-118 and Q10. Based on the databases GO and KEGG, the functions of DEGs were analysed. Moreover, the complex regulatory network for powdery mildew resistance was assessed, which involves plant hormone signal transduction, phenylpropanoid biosynthesis, plant-pathogen interaction and the MAPK signalling pathway. In particular, genes encoding WRKY, NAC and TCP were highlighted. In addition, genes involved in plant hormone biosynthesis, metabolism and signal transduction, pathogen resistance and abiotic stress response were analysed. Co-expression analysis indicated that the transcription factors correlated with plant hormone signal pathway and metabolism, defence and abiotic response. The expression of several genes was validated by qRT-PCR. The pathogen resistance regulatory network was identified by comparing resistant and susceptible inbred lines infected with powdery mildew. The transcriptome data provide novel insights into cucumber response to powdery mildew infection and the identified pathogen resistance genes will be highly useful for breeding efforts to enhance the resistance of cucumber to powdery mildew.
Collapse
Affiliation(s)
- L Zheng
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
- College of Life and Environment Sciences, Huanshan University, Huangshan, China
| | - M Zhang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - Z Zhuo
- College of Forestry, Hainan University, Haikou, China
| | - Y Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - X Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - Y Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| | - W Liu
- College of Agricultural Sciences and Technology, Shandong Agriculture and Engineering University, Jinan, China
| | - W Zhang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Shandong Academy of Agricultural Sciences, Institute of Vegetables and Flowers, Jinan, China
| |
Collapse
|
35
|
Abstract
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.
Collapse
|
36
|
A transcriptomic analysis of sugarcane response to Leifsonia xyli subsp. xyli infection. PLoS One 2021; 16:e0245613. [PMID: 33529190 PMCID: PMC7853508 DOI: 10.1371/journal.pone.0245613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Sugarcane ratoon stunting disease (RSD) caused by Leifsonia xyli subsp. xyli (Lxx) is a common destructive disease that occurs around the world. Lxx is an obligate pathogen of sugarcane, and previous studies have reported some physiological responses of RSD-affected sugarcane. However, the molecular understanding of sugarcane response to Lxx infection remains unclear. In the present study, transcriptomes of healthy and Lxx-infected sugarcane stalks and leaves were studied to gain more insights into the gene activity in sugarcane in response to Lxx infection. RNA-Seq analysis of healthy and diseased plants transcriptomes identified 107,750 unigenes. Analysis of these unigenes showed a large number of differentially expressed genes (DEGs) occurring mostly in leaves of infected plants. Sugarcane responds to Lxx infection mainly via alteration of metabolic pathways such as photosynthesis, phytohormone biosynthesis, phytohormone action-mediated regulation, and plant-pathogen interactions. It was also found that cell wall defense pathways and protein phosphorylation/dephosphorylation pathways may play important roles in Lxx pathogeneis. In Lxx-infected plants, significant inhibition in photosynthetic processes through large number of differentially expressed genes involved in energy capture, energy metabolism and chloroplast structure. Also, Lxx infection caused down-regulation of gibberellin response through an increased activity of DELLA and down-regulation of GID1 proteins. This alteration in gibberellic acid response combined with the inhibition of photosynthetic processes may account for the majority of growth retardation occurring in RSD-affected plants. A number of genes associated with plant-pathogen interactions were also differentially expressed in Lxx-infected plants. These include those involved in secondary metabolite biosynthesis, protein phosphorylation/dephosphorylation, cell wall biosynthesis, and phagosomes, implicating an active defense response to Lxx infection. Considering the fact that RSD occurs worldwide and a significant cause of sugarcane productivity, a better understanding of Lxx resistance-related processes may help develop tools and technologies for producing RSD-resistant sugarcane varieties through conventional and/or molecular breeding.
Collapse
|
37
|
Zhao S, Wu Y, Wu J. Arms race between rice and viruses: a review of viral and host factors. Curr Opin Virol 2021; 47:38-44. [PMID: 33530035 DOI: 10.1016/j.coviro.2021.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022]
Abstract
Much is known about the molecular interactions between positive-strand RNA viruses and dicotyledon plants. However, many important viral pathogens of the monocotyledon rice crop contain negative-strand or double-strand RNA genomes. Recent studies have shown that virus-derived small-interfering RNAs (siRNAs), host microRNAs and phytohormones regulate antiviral responses in rice plants and that rice-infecting RNA viruses encode a diverse repertoire of multifunctional proteins with counter-defensive activities. Moreover, the interactions between viral virulence proteins and host susceptibility factors also shape the virus-rice arms race. This review will focus on these recent advances and discuss strategies and challenges in the translation of discoveries made on molecular virus-rice interactions into practical virus control measures.
Collapse
Affiliation(s)
- Shanshan Zhao
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuansheng Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
38
|
M. T. APL, Ramchander S, K. K. K, Muthamilarasan M, Pillai MA. Assessment of efficacy of mutagenesis of gamma-irradiation in plant height and days to maturity through expression analysis in rice. PLoS One 2021; 16:e0245603. [PMID: 33449977 PMCID: PMC7810314 DOI: 10.1371/journal.pone.0245603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction of semi-dwarfism and early maturity in rice cultivars is important to achieve improved plant architecture, lodging resistance and high yield. Gamma rays induced mutations are routinely used to achieve these traits. We report the development of a semi-dwarf, early maturing and high-yielding mutant of rice cultivar ‘Improved White Ponni’, a popular cosmopolitan variety in south India preferred for its superior grain quality traits. Through gamma rays induced mutagenesis, several mutants were developed and subjected to selection up to six generations (M6) until the superior mutants were stabilized. In the M6 generation, significant reduction in days to flowering (up to 11.81% reduction) and plant height (up to 40% reduction) combined with an increase in single plant yield (up to 45.73% increase) was observed in the mutant population. The cooking quality traits viz., linear elongation ratio, breadthwise expansion ratio, gel consistency and gelatinization temperature of the mutants were similar to the parent variety Improved White Ponni. The genetic characterization with SSR markers showed variability between the semi-dwarf-early mutants and the Improved White Ponni. Gibberellin responsiveness study and quantitative real-time PCR showed a faulty gibberellin pathway and epistatic control between the genes such as OsKOL4 and OsBRD2 causing semi-dwarfism in a mutant. These mutants have potential as new rice varieties and can be used as new sources of semi-dwarfism and earliness for improving high grain quality rice varieties.
Collapse
Affiliation(s)
- Andrew-Peter-Leon M. T.
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, Tamil Nadu, India
| | - S. Ramchander
- Visiting Scientist (SERB–National Post-Doctoral Fellow), IRRI-South Asia Hub, ICRISAT, Patancheru, Hyderabad, India
| | - Kumar K. K.
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - M. Arumugam Pillai
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tuticorin, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
39
|
Kim S, Park SI, Kwon H, Cho MH, Kim BG, Chung JH, Nam MH, Song JS, Kim KH, Yoon IS. The Rice Abscisic Acid-Responsive RING Finger E3 Ligase OsRF1 Targets OsPP2C09 for Degradation and Confers Drought and Salinity Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:797940. [PMID: 35095969 PMCID: PMC8792764 DOI: 10.3389/fpls.2021.797940] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 05/18/2023]
Abstract
Drought and salinity are major important factors that restrain growth and productivity of rice. In plants, many really interesting new gene (RING) finger proteins have been reported to enhance drought and salt tolerance. However, their mode of action and interacting substrates are largely unknown. Here, we identified a new small RING-H2 type E3 ligase OsRF1, which is involved in the ABA and stress responses of rice. OsRF1 transcripts were highly induced by ABA, salt, or drought treatment. Upregulation of OsRF1 in transgenic rice conferred drought and salt tolerance and increased endogenous ABA levels. Consistent with this, faster transcriptional activation of key ABA biosynthetic genes, ZEP, NCED3, and ABA4, was observed in OsRF1-OE plants compared with wild type in response to drought stress. Yeast two-hybrid assay, BiFC, and co-immunoprecipitation analysis identified clade A PP2C proteins as direct interacting partners with OsRF1. In vitro ubiquitination assay indicated that OsRF1 exhibited E3 ligase activity, and that it targeted OsPP2C09 protein for ubiquitination and degradation. Cell-free degradation assay further showed that the OsPP2C09 protein is more rapidly degraded by ABA in the OsRF1-OE rice than in the wild type. The combined results suggested that OsRF1 is a positive player of stress responses by modulating protein stability of clade A PP2C proteins, negative regulators of ABA signaling.
Collapse
Affiliation(s)
- Suyeon Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Seong-Im Park
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Hyeokjin Kwon
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Mi Hyeon Cho
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA), Jeonju, South Korea
| | - Joo Hee Chung
- Seoul Center, Korea Basic Science (KBSI), Seoul, South Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science (KBSI), Seoul, South Korea
| | - Ji Sun Song
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - Kyung-Hwan Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
| | - In Sun Yoon
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Jeonju, South Korea
- *Correspondence: In Sun Yoon,
| |
Collapse
|
40
|
Qin Q, Li G, Jin L, Huang Y, Wang Y, Wei C, Xu Z, Yang Z, Wang H, Li Y. Auxin response factors (ARFs) differentially regulate rice antiviral immune response against rice dwarf virus. PLoS Pathog 2020; 16:e1009118. [PMID: 33264360 PMCID: PMC7735678 DOI: 10.1371/journal.ppat.1009118] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/14/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022] Open
Abstract
There are 25 auxin response factors (ARFs) in the rice genome, which play critical roles in regulating myriad aspects of plant development, but their role (s) in host antiviral immune defense and the underneath mechanism remain largely unknown. By using the rice-rice dwarf virus (RDV) model system, here we report that auxin signaling enhances rice defense against RDV infection. In turn, RDV infection triggers increased auxin biosynthesis and accumulation in rice, and that treatment with exogenous auxin reduces OsIAA10 protein level, thereby unleashing a group of OsIAA10-interacting OsARFs to mediate downstream antiviral responses. Strikingly, our genetic data showed that loss-of-function mutants of osarf12 or osarf16 exhibit reduced resistance whereas osarf11 mutants display enhanced resistance to RDV. In turn, OsARF12 activates the down-stream OsWRKY13 expression through direct binding to its promoter, loss-of-function mutants of oswrky13 exhibit reduced resistance. These results demonstrated that OsARF 11, 12 and 16 differentially regulate rice antiviral defense. Together with our previous discovery that the viral P2 protein stabilizes OsIAA10 protein via thwarting its interaction with OsTIR1 to enhance viral infection and pathogenesis, our results reveal a novel auxin-IAA10-ARFs-mediated signaling mechanism employed by rice and RDV for defense and counter defense responses. The phytohormone auxin is often critical for plant growth and orchestrates many developmental processes. Here we find that rice accumulates more auxin upon RDV infection and treatment with exogenous auxin enhances rice tolerance to RDV infection. Auxin treatment reduces the protein level of OsIAA10, thus releasing a group of OsIAA10-interacting OsARFs to mediate downstream antiviral responses. Among the 25 ARFs in the rice genome, their functions on regulation of rice antiviral defense are diversified. Our findings elucidate a novel auxin-OsIAA10-ARFs-mediated signaling mechanism employed by rice and RDV for defense and counter defense responses. These findings significantly deepen our understanding of virus-host interactions and provide novel targets for molecular breeding (or engineering) rice cultivars resistant to RDV.
Collapse
Affiliation(s)
- Qingqing Qin
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Lian Jin
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yu Huang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yu Wang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chunhong Wei
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhihong Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- * E-mail: (ZY); (HW); (YL)
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- * E-mail: (ZY); (HW); (YL)
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- * E-mail: (ZY); (HW); (YL)
| |
Collapse
|
41
|
Effect of virus infection on the secondary metabolite production and phytohormone biosynthesis in plants. 3 Biotech 2020; 10:547. [PMID: 33269181 DOI: 10.1007/s13205-020-02541-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Plants have evolved according to their environmental conditions and continuously interact with different biological entities. These interactions induce many positive and negative effects on plant metabolism. Many viruses also associate with various plant species and alter their metabolism. Further, virus-plant interaction also alters the expression of many plant hormones. To overcome the biotic stress imposed by the virus's infestation, plants produce different kinds of secondary metabolites that play a significant role in plant defense against the viral infection. In this review, we briefly highlight the mechanism of virus infection, their influence on the plant secondary metabolites and phytohormone biosynthesis in response to the virus-plant interactions.
Collapse
|
42
|
Gao F, Zhao S, Men S, Kang Z, Hong J, Wei C, Hong W, Li Y. A non-structural protein encoded by Rice Dwarf Virus targets to the nucleus and chloroplast and inhibits local RNA silencing. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1703-1713. [PMID: 32303960 DOI: 10.1007/s11427-019-1648-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.
Collapse
Affiliation(s)
- Feng Gao
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Shanshan Zhao
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- College of Plant Protection, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Shuzhen Men
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhensheng Kang
- Department of Plant Protection, Northwestern Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Hong
- College of Agriculture, Zhejiang University, Hangzhou, 310029, China
| | - Chunhong Wei
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wei Hong
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Yi Li
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
43
|
Vinutha T, Vanchinathan S, Bansal N, Kumar G, Permar V, Watts A, Ramesh SV, Praveen S. Tomato auxin biosynthesis/signaling is reprogrammed by the geminivirus to enhance its pathogenicity. PLANTA 2020; 252:51. [PMID: 32940767 DOI: 10.1007/s00425-020-03452-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/27/2020] [Indexed: 05/25/2023]
Abstract
Tomato leaf curl New Delhi virus-derived AC4 protein interacts with host proteins involved in auxin biosynthesis and reprograms auxin biosynthesis/signaling to help in viral replication and manifestation of the disease-associated symptoms. Perturbations of phytohormone-mediated gene regulatory network cause growth and developmental defects. Furthermore, plant viral infections cause characteristic disease symptoms similar to hormone-deficient mutants. Tomato leaf curl New Delhi Virus (ToLCNDV)-encoded AC4 is a small protein that attenuates the host transcriptional gene silencing, and aggravated disease severity in tomato is correlated with transcript abundance of AC4. Hence, investigating the role of AC4 in pathogenesis divulged that ToLCNDV-AC4 interacted with host TAR1 (tryptophan amino transferase 1)-like protein, CYP450 monooxygenase-the key enzyme of indole acetic acid (IAA) biosynthesis pathway-and with a protein encoded by senescence-associated gene involved in jasmonic acid pathway. Also, ToLCNDV infection resulted in the upregulation of host miRNAs, viz., miR164, miR167, miR393 and miR319 involved in auxin signaling and leaf morphogenesis concomitant with the decline in endogenous IAA levels. Ectopic overexpression of ToLCNDV-derived AC4 in tomato recapitulated the transcriptomic and disruption of auxin biosynthesis/signaling features of the infected leaves. Furthermore, exogenous foliar application of IAA caused remission of the characteristic disease-related symptoms in tomato. The roles of ToLCNDV-AC4 in reprogramming auxin biosynthesis, signaling and cross-talk with JA pathway to help viral replication and manifest the disease-associated symptoms during ToLCNDV infection are discussed.
Collapse
Affiliation(s)
- T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Vanchinathan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Navita Bansal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gaurav Kumar
- Division of Biochemistry, ICAR-National Rice Research Institute, Cuttack, Orissa, 753006, India
| | - Vipin Permar
- Division of Plant Pathology-Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Archana Watts
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S V Ramesh
- ICAR-Division of Physiology, Biochemistry and PHT, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India.
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
44
|
Hu J, Huang J, Xu H, Wang Y, Li C, Wen P, You X, Zhang X, Pan G, Li Q, Zhang H, He J, Wu H, Jiang L, Wang H, Liu Y, Wan J. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLoS Pathog 2020; 16:e1008801. [PMID: 32866183 PMCID: PMC7485985 DOI: 10.1371/journal.ppat.1008801] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 09/11/2020] [Accepted: 07/12/2020] [Indexed: 01/23/2023] Open
Abstract
Rice stripe virus (RSV) is one of the most destructive viral diseases affecting rice production. However, so far, only one RSV resistance gene has been cloned, the molecular mechanisms underlying host-RSV interaction are still poorly understood. Here, we show that increasing levels or signaling of brassinosteroids (BR) and jasmonic acid (JA) can significantly enhance the resistance against RSV. On the contrary, plants impaired in BR or JA signaling are more susceptible to RSV. Moreover, the enhancement of RSV resistance conferred by BR is impaired in OsMYC2 (a key positive regulator of JA response) knockout plants, suggesting that BR-mediated RSV resistance requires active JA pathway. In addition, we found that RSV infection suppresses the endogenous BR levels to increase the accumulation of OsGSK2, a key negative regulator of BR signaling. OsGSK2 physically interacts with OsMYC2, resulting in the degradation of OsMYC2 by phosphorylation and reduces JA-mediated defense to facilitate virus infection. These findings not only reveal a novel molecular mechanism mediating the crosstalk between BR and JA in response to virus infection and deepen our understanding about the interaction of virus and plants, but also suggest new effective means of breeding RSV resistant crops using genetic engineering. Brassinosteroids (BR) and jasmonic acid (JA) play critical roles in responding to various stresses. However, the roles of BR and JA, particularly, the crosstalk between these two phytohormones in viral resistance is still very limited. In this work, we found that both BR and JA positively regulate RSV resistance, and JA pathway is necessary for BR-mediated RSV resistance in rice. RSV infection significantly inhibits the BR signaling pathway and increases the accumulation of OsGSK2. OsGSK2 interacts with and phosphorylates OsMYC2, resulting in the degradation of OsMYC2 and suppression of the JA-mediated RSV resistance response to facilitate virus infection. These findings revealed the molecular mechanism of crosstalk between the BR and JA in response to virus infection and deepen our understanding about the mechanism of RSV resistance.
Collapse
Affiliation(s)
- Jinlong Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haosen Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yongsheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Peizheng Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Gen Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hongliang Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Hongming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
- * E-mail: (YL); (JW)
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (YL); (JW)
| |
Collapse
|
45
|
Zong T, Yin J, Jin T, Wang L, Luo M, Li K, Zhi H. A DnaJ protein that interacts with soybean mosaic virus coat protein serves as a key susceptibility factor for viral infection. Virus Res 2020; 281:197870. [PMID: 31962064 DOI: 10.1016/j.virusres.2020.197870] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/11/2022]
Abstract
Soybean mosaic virus (SMV)-disease is one of the most serious and widespread diseases in soybean (Glycine max). In the present study, a DnaJ protein in soybean designated GmCPIP (SMV coat protein-interacting protein) was screened by the QIS-Seq (quantitative interactor screening with next-generation sequencing) method, and the interaction between SMV CP and GmCPIP was confirmed by the yeast two-hybrid (Y2H) system and bimolecular fluorescence complementation (BiFC) assay. Subcellular localization analysis indicated that both proteins are localized in the cytoplasm, cytomembrane and nucleus. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that infection with SMV-SC4 temporarily increased the transcription of GmCPIP. Virus-induced gene silencing (VIGS) down-regulated the GmCPIP gene by 82%, and the accumulation of SMV was decreased by 88.6% in GmCPIP-silenced plants inoculated with SMV-SC4. The interaction of GmCPIP with SMV CP seems to contribute to SMV infection in soybean.
Collapse
Affiliation(s)
- Tingxuan Zong
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Jinlong Yin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Tongtong Jin
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Liqun Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Minxuan Luo
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, China.
| | - Haijian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, China.
| |
Collapse
|
46
|
Zhang H, Li L, He Y, Qin Q, Chen C, Wei Z, Tan X, Xie K, Zhang R, Hong G, Li J, Li J, Yan C, Yan F, Li Y, Chen J, Sun Z. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection. Proc Natl Acad Sci U S A 2020; 117:9112-9121. [PMID: 32253321 PMCID: PMC7183187 DOI: 10.1073/pnas.1918254117] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.
Collapse
Affiliation(s)
- Hehong Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Lulu Li
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Yuqing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Qingqing Qin
- College of Life Sciences, Peking University, 100871 Beijing, China
| | - Changhai Chen
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Xiaoxiang Tan
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Kaili Xie
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Ruifang Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Gaojie Hong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Jing Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Junmin Li
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Chengqi Yan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Yi Li
- College of Life Sciences, Peking University, 100871 Beijing, China
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China;
| | - Zongtao Sun
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China;
| |
Collapse
|
47
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
48
|
Liu J, Fan H, Wang Y, Han C, Wang X, Yu J, Li D, Zhang Y. Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses 2020; 12:E310. [PMID: 32178444 PMCID: PMC7150760 DOI: 10.3390/v12030310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.
Collapse
Affiliation(s)
- Junying Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
- Laboratory of Phytopathology, College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Huiyan Fan
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| |
Collapse
|
49
|
Transcriptome Profiling Analysis Reveals Co-regulation of Hormone Pathways in Foxtail Millet during Sclerospora graminicola Infection. Int J Mol Sci 2020; 21:ijms21041226. [PMID: 32059399 PMCID: PMC7072888 DOI: 10.3390/ijms21041226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022] Open
Abstract
Sclerospora graminicola (Sacc.) Schroeter is a biotrophic pathogen of foxtail millet (Setaria italica) and increasingly impacts crop production. We explored the main factors for symptoms such as dwarfing of diseased plants and the “hedgehog panicle” by determining panicle characteristics of varieties infected with S. graminicola and analyzing the endogenous hormone-related genes in leaves of Jingu 21. Results indicated that different varieties infected by S. graminicola exhibited various symptoms. Transcriptome analysis revealed that the ent-copalyl diphosphate synthetase (CPS) encoded by Seita.2G144900 and ent-kaurene synthase (KS) encoded by Seita.2G144400 were up-regulated 4.7-fold and 2.8-fold, respectively. Results showed that the biosynthesis of gibberellin might be increased, but the gibberellin signal transduction pathway might be blocked. The abscisic acid (ABA) 8′-hydroxylase encoded by Seita.6G181300 was continuously up-regulated by 4.2-fold, 2.7-fold, 14.3-fold, and 12.9-fold from TG1 to TG4 stage, respectively. Seita.2G144900 and Seita.2G144400 increased 79-fold and 51-fold, respectively, at the panicle development stage, promoting the formation of a “hedgehog panicle”. Jasmonic acid-related synthesis enzymes LOX2s, AOS, and AOC were up-regulated at the early stage of infection, indicating that jasmonic acid played an essential role in early response to S. graminicola infection. The expression of YUC-related genes of the auxin synthesis was lower than that of the control at TG3 and TG4 stages, but the amidase encoded by Seita.2G313400 was up-regulated by more than 30-fold, indicating that the main biosynthesis pathway of auxin had changed. The results suggest that there was co-regulation of the hormone pathways during the infection of foxtail millet by S. graminicola.
Collapse
|
50
|
Zhang H, Li M, He D, Wang K, Yang P. Mutations on ent-kaurene oxidase 1 encoding gene attenuate its enzyme activity of catalyzing the reaction from ent-kaurene to ent-kaurenoic acid and lead to delayed germination in rice. PLoS Genet 2020; 16:e1008562. [PMID: 31923187 PMCID: PMC6977763 DOI: 10.1371/journal.pgen.1008562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/23/2020] [Accepted: 12/11/2019] [Indexed: 01/01/2023] Open
Abstract
Rice seed germination is a critical step that determines its entire life circle, with seeds failing to germinate or pre-harvest sprouting both reduce grain yield. Nevertheless, the mechanisms underlying this complex biological event remain unclear. Previously, gibberellin has been shown to promote seed germination. In this study, a delayed seed germination rice mutant was obtained through screening of the EMS induced mutants. Besides of delayed germination, it also shows semi-dwarfism phenotype, which could be recovered by exogenous GA. Through re-sequencing on the mutant, wild-type and their F2 populations, we identified two continuous mutated sites on ent-kaurene oxidase 1 (OsKO1) gene, which result in the conversion from Thr to Met in the cytochrome P450 domain. Genetic complementary analysis and enzyme assay verified that the mutations in OsKO1 gene block the biosynthesis of GA and result in the defect phenotypes. Further analyses proved that OsKO1 could catalyze the reaction from ent-kaurene into ent-kaurenoic acid in GA biosynthesis mainly at seed germination and seedling stages, and the mutations decrease its activity to catalyze the step from ent-kaurenol to ent-kaurenoic acid in this reaction. Transcriptomic and proteomic data indicate that the defect on GA biosynthesis decreases its ability to mobilize starch and attenuate ABA signaling, therefore delay the germination process. The results provide some new insights into both GA biosynthesis and seed germination regulatory pathway in rice.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kun Wang
- School of Life Sciences, Wuhan University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|