1
|
Hernández-Zepeda C, Brown JK. Disease Tolerance in 'Anaheim' Pepper to PepGMV-D Strain Involves Complex Interactions Between the Movement Protein Putative Promoter Region and Unknown Host Factors. Viruses 2025; 17:268. [PMID: 40007023 PMCID: PMC11861509 DOI: 10.3390/v17020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Pepper golden mosaic virus (PepGMV) is a bipartite begomovirus of pepper and tomato from North America. In 'Anaheim' pepper plants PepGMV-Mo strain (Mo) causes systemic yellow foliar mosaic symptoms, while PepGMV-D strain (D) causes distortion of 1st-6th expanding leaves, and asymptomatic infection of subsequently developing leaves, like other known 'recovery' phenotypes. Infections established with DNA-A Mo and D components expressing red-shifted green fluorescent protein in place of coat protein and in situ hybridization, showed PepGMV-Mo localized to phloem and mesophyll cells, while -D was mesophyll restricted. Alignment of PepGMV-Mo and -D DNA-B components revealed three indels upstream of the BC1 gene that encodes the movement protein (MP). To determine if this non-coding region (*BC1) D-strain MP putative promoter contributed to 'recovery', plants were inoculated with chimeric DNA-B Mo/D components harboring reciprocally exchanged *BC1, and wild-type DNA-A Mo and D components. Symptoms were reminiscent but not identical to wild-type -Mo or -D infection, respectively, suggesting 'recovery' cannot be attributed solely to the *BC1. Both BC1 and D*BC1 were targeted by post-transcriptional gene silencing; however, 'recovered' leaves accumulated fewer transcripts and 21-24 nt vsiRNAs. Thus, inefficient in planta movement of PepGMV-D is associated with a non-pepper-adapted 'defective' BC1 that facilitates hyper-efficient PTGS, leading to BC1 transcript degradation that in turn limits virus spread, thereby recapitulating disease 'tolerance'.
Collapse
Affiliation(s)
- Cecilia Hernández-Zepeda
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Cancún 77500, Mexico;
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Breves SS, Silva FA, Euclydes NC, Saia TFF, Jean-Baptiste J, Andrade Neto ER, Fontes EPB. Begomovirus-Host Interactions: Viral Proteins Orchestrating Intra and Intercellular Transport of Viral DNA While Suppressing Host Defense Mechanisms. Viruses 2023; 15:1593. [PMID: 37515277 PMCID: PMC10384534 DOI: 10.3390/v15071593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.
Collapse
Affiliation(s)
- Sâmera S Breves
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Fredy A Silva
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Nívea C Euclydes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Thainá F F Saia
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - James Jean-Baptiste
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Eugenio R Andrade Neto
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology/Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa 36570.000, MG, Brazil
| |
Collapse
|
3
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
4
|
Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9. Curr Genomics 2021; 22:214-231. [PMID: 34975291 PMCID: PMC8640848 DOI: 10.2174/1389202922666210412102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ulhas S. Kadam
- Address correspondenceto this author at the Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany; E-mail: ,
‡Present Address: Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyenongsang National University, Jinju-si, Republic of Korea; E-mail:
| |
Collapse
|
5
|
Liu X, Huang W, Zhai Z, Ye T, Yang C, Lai J. Protein modification: A critical modulator in the interaction between geminiviruses and host plants. PLANT, CELL & ENVIRONMENT 2021; 44:1707-1715. [PMID: 33506956 DOI: 10.1111/pce.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Geminiviruses are a large group of single-stranded DNA viruses that infect plants and cause severe agricultural losses worldwide. Given geminiviruses only have small genomes that encode a few proteins, viral factors have to interact with host components to establish an environment suitable for virus infection, whilst the host immunity system recognizes and targets these viral components during infection. Post-translational protein modifications, such as phosphorylation, lipidation, ubiquitination, SUMOylation, acetylation and methylation, have been reported to be critical during the interplay between host plants and geminiviruses. Here we summarize the research progress, including phosphorylation and lipidation which usually control the activity and localization of viral factors; as well as ubiquitination and histone modification which are predominantly interfered with by viral components. We also discuss the dynamic competition on protein modifications between host defence and geminivirus efficient infection, as well as potential applications of protein modifications in geminivirus resistance. The summary and perspective of this topic will improve our understanding on the mechanism of geminivirus-plant interaction and contribute to further protection of plants from virus infection.
Collapse
Affiliation(s)
- Xiaoshi Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Zhenqian Zhai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Tushu Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Lee HY, Back K. Melatonin Regulates Chloroplast Protein Quality Control via a Mitogen-Activated Protein Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10040511. [PMID: 33806011 PMCID: PMC8064490 DOI: 10.3390/antiox10040511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Serotonin N-acetyltransferase 1 (SNAT1), the penultimate enzyme for melatonin biosynthesis has shown N-acetyltransferase activity toward multiple substrates, including histones, serotonin, and plastid proteins. Under two different light conditions such as 50 or 100 μmol m−2 s−1, a SNAT1-knockout (snat1) mutant of Arabidopsis thaliana ecotype Columbia (Col-0) exhibited small size phenotypes relative over wild-type (WT) Arabidopsis Col-0. Of note, the small phenotype is stronger when growing at the 50 μmol m−2 s−1, exhibiting a dwarfism phenotype and delayed flowering. The snat1 Arabidopsis Col-0 accumulated less starch than the WT Col-0. Moreover, snat1 exhibited lower Lhcb1, Lhcb4, and RBCL protein levels, compared with the WT Col-0, but no changes in the corresponding transcripts, suggesting the involvement of melatonin in chloroplast protein quality control (CPQC). Accordingly, caseinolytic protease (Clp) and chloroplast heat shock proteins (CpHSPs), two key proteins involved in CPQC, as well as ROS defense were suppressed in snat1. In contrast, exogenous melatonin treatment induced expression of Clp, CpHSP, APX1, and GST, but not other growth-related genes such as DWF4, KS, and IAA1. Finally, the induction of ClpR1, APX1, and GST1 in response to melatonin was inhibited in the mitogen-activated protein kinase (MAPK) knockdown Arabidopsis (mpk3/6), suggesting that melatonin-mediated CPQC was mediated, in part, by the MAPK signaling cascade. These results suggest that melatonin is involved in CPQC, which plays a pivotal role in starch synthesis in plants.
Collapse
|
7
|
Martins LGC, Raimundo GAS, Ribeiro NGA, Silva JCF, Euclydes NC, Loriato VAP, Duarte CEM, Fontes EPB. A Begomovirus Nuclear Shuttle Protein-Interacting Immune Hub: Hijacking Host Transport Activities and Suppressing Incompatible Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:398. [PMID: 32322262 PMCID: PMC7156597 DOI: 10.3389/fpls.2020.00398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/19/2020] [Indexed: 05/21/2023]
Abstract
Begomoviruses (Geminiviridae family) represent a severe constraint to agriculture worldwide. As ssDNA viruses that replicate in the nuclei of infected cells, the nascent viral DNA has to move to the cytoplasm and then to the adjacent cell to cause disease. The begomovirus nuclear shuttle protein (NSP) assists the intracellular transport of viral DNA from the nucleus to the cytoplasm and cooperates with the movement protein (MP) for the cell-to-cell translocation of viral DNA to uninfected cells. As a facilitator of intra- and intercellular transport of viral DNA, NSP is predicted to associate with host proteins from the nuclear export machinery, the intracytoplasmic active transport system, and the cell-to-cell transport complex. Furthermore, NSP functions as a virulence factor that suppresses antiviral immunity against begomoviruses. In this review, we focus on the protein-protein network that converges on NSP with a high degree of centrality and forms an immune hub against begomoviruses. We also describe the compatible host functions hijacked by NSP to promote the nucleocytoplasmic and intracytoplasmic movement of viral DNA. Finally, we discuss the NSP virulence function as a suppressor of the recently described NSP-interacting kinase 1 (NIK1)-mediated antiviral immunity. Understanding the NSP-host protein-protein interaction (PPI) network will probably pave the way for strategies to generate more durable resistance against begomoviruses.
Collapse
|
8
|
Kumar RV. Plant Antiviral Immunity Against Geminiviruses and Viral Counter-Defense for Survival. Front Microbiol 2019; 10:1460. [PMID: 31297106 PMCID: PMC6607972 DOI: 10.3389/fmicb.2019.01460] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
The family Geminiviridae includes plant-infecting viruses whose genomes are composed of one or two circular non-enveloped ssDNAs(+) of about 2.5-5.2 kb each in size. These insect-transmissible geminiviruses cause significant crop losses across continents and pose a serious threat to food security. Under the control of promoters generally located within the intergenic region, their genomes encode five to eight ORFs from overlapping viral transcripts. Most proteins encoded by geminiviruses perform multiple functions, such as suppressing defense responses, hijacking ubiquitin-proteasomal pathways, altering hormonal responses, manipulating cell cycle regulation, and exploiting protein-signaling cascades. Geminiviruses establish complex but coordinated interactions with several host elements to spread and facilitate successful infection cycles. Consequently, plants have evolved several multilayered defense strategies against geminivirus infection and distribution. Recent studies on the evasion of host-mediated resistance factors by various geminivirus proteins through novel mechanisms have provided new insights into the development of antiviral strategies against geminiviruses. This review summarizes the current knowledge concerning virus movement within and between cells, as well as the recent advances in our understanding of the biological roles of virus-encoded proteins in manipulating host-mediated responses and insect transmission. This review also highlights unexplored areas that may increase our understanding of the biology of geminiviruses and how to combat these important plant pathogens.
Collapse
Affiliation(s)
- R. Vinoth Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
9
|
Jeevalatha A, Siddappa S, Kumar A, Kaundal P, Guleria A, Sharma S, Nagesh M, Singh BP. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res 2017; 232:22-33. [PMID: 28115198 DOI: 10.1016/j.virusres.2017.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 12/13/2022]
Abstract
Apical leaf curl disease, caused by tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) is one of the most important viral diseases of potato in India. Genetic resistance source for ToLCNDV in potato is not identified so far. However, the cultivar Kufri Bahar is known to show lowest seed degeneration even under high vector levels. Hence, microarray analysis was performed to identify differentially regulated genes during ToLCNDV-[potato] infection in a resistant (Kufri Bahar) and a susceptible cultivar (Kufri Pukhraj). Under artificial inoculation conditions, in Kufri Pukhraj, symptom expressions started at 15days after inoculation (DAI) and then progressed to severe symptoms, whereas no or only very mild symptoms were observed in Kufri Bahar up to 35 DAI. Correspondingly, qPCR assay indicated a high viral load in Kufri Pukhraj and a very low viral load in Kufri Bahar. Microarray analysis showed that a total of 1111 genes and 2588 genes were differentially regulated (|log2 (Fold Change)|>2) in Kufri Bahar and Kufri Pukhraj, respectively, following ToLCNDV-[potato] infection. Gene ontology and mapman analyses revealed that these altered transcripts were involved in various biological & metabolic processes. Several genes with unknown functions were 5 to 100 fold expressed after virus infection and further experiments are necessary to ascertain their role in disease resistance or susceptibility. This study gives an insight into differentially regulated genes in response to ToLCNDV-[potato] infection in resistant and susceptible cultivars and could serve as the basis for the development of new strategies for disease management.
Collapse
Affiliation(s)
- Arjunan Jeevalatha
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India.
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Ashwani Kumar
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Priyanka Kaundal
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Anupama Guleria
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Mandadi Nagesh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| | - Bir Pal Singh
- ICAR-Central Potato Research Institute, Shimla 171 001, Himachal Pradesh, India
| |
Collapse
|
10
|
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 2013; 11:777-88. [DOI: 10.1038/nrmicro3117] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Levy A, Zheng JY, Lazarowitz SG. The tobamovirus Turnip Vein Clearing Virus 30-kilodalton movement protein localizes to novel nuclear filaments to enhance virus infection. J Virol 2013; 87:6428-40. [PMID: 23536678 PMCID: PMC3648121 DOI: 10.1128/jvi.03390-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 03/21/2013] [Indexed: 11/20/2022] Open
Abstract
Plant viruses overcome the barrier of the plant cell wall by encoding cell-to-cell movement proteins (MPs), which direct newly replicated viral genomes to, and across, the wall. The paradigm for how a single MP regulates and coordinates these activities is the Tobacco mosaic virus (TMV) 30-kDa protein (MP(TMV)). Detailed studies demonstrate that TMV multiplies exclusively in the cytoplasm and have documented associations of MP(TMV) with endoplasmic reticulum (ER) membrane, microtubules, and plasmodesmata throughout the course of infection. As TMV poorly infects Arabidopsis thaliana, Turnip vein clearing virus (TVCV) is the tobamovirus of choice for studies in this model plant. A key problem, which has contributed to confusion in the field, is the unproven assumption that the TVCV and TMV life cycles are identical. We engineered an infectious TVCV replicon that expressed a functional fluorescence-tagged MP(TVCV) and report here the unexpected discovery that MP(TVCV), beyond localizing to ER membrane and plasmodesmata, targeted to the nucleus in a nuclear localization signal (NLS)-dependent manner, where it localized to novel F-actin-containing filaments that associated with chromatin. The MP(TVCV) NLS appeared to be conserved in the subgroup 3 tobamoviruses, and our mutational analyses showed that nuclear localization of MP(TVCV) was necessary for efficient TVCV cell-to-cell movement and systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. Our studies identify a novel nuclear stage in TVCV infection and suggest that nuclear MP encoded by TVCV and other subgroup 3 tobamoviruses interacts with F-actin and chromatin to modulate host defenses or cellular physiology to favor virus movement and infection.
Collapse
Affiliation(s)
- Amit Levy
- Cornell University, Department of Plant Pathology and Plant-Microbe Biology, Ithaca, New York, USA
| | | | | |
Collapse
|
12
|
Krenz B, Jeske H, Kleinow T. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. FRONTIERS IN PLANT SCIENCE 2012; 3:291. [PMID: 23293643 PMCID: PMC3530832 DOI: 10.3389/fpls.2012.00291] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/06/2012] [Indexed: 05/20/2023]
Abstract
Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids. Despite considerable progress in understanding the importance of certain cytoskeleton elements and motor proteins for stromule maintenance, their function within the cell has yet to be unraveled. Several viruses cause a remodulation of plastid structures and stromule biogenesis within their host plants. For RNA-viruses these interactions were demonstrated to be relevant to the infection process. An involvement of plastids and stromules is assumed in the DNA-virus life cycle as well, but their functional role needs to be determined. Recent findings support a participation of heat shock cognate 70 kDa protein (cpHSC70-1)-containing stromules induced by a DNA-virus infection (Abutilon mosaic virus, AbMV, Geminiviridae) in intra- and intercellular molecule exchange. The chaperone cpHSC70-1 was shown to interact with the AbMV movement protein (MP). Bimolecular fluorescence complementation confirmed the interaction of cpHSC70-1 and MP, and showed a homo-oligomerization of either protein in planta. The complexes were detected at the cellular margin and co-localized with plastids. In healthy plant tissues cpHSC70-1-oligomers occurred in distinct spots at chloroplasts and in small filaments extending from plastids to the cell periphery. AbMV-infection induced a cpHSC70-1-containing stromule network that exhibits elliptical dilations and transverses whole cells. Silencing of the cpHSC70 gene revealed an impact of cpHSC70 on chloroplast stability and restricted AbMV movement, but not viral DNA accumulation. Based on these data, a model is suggested in which these stromules function in molecule exchange between plastids and other organelles and perhaps other cells. AbMV may utilize cpHSC70-1 for trafficking along plastids and stromules into a neighboring cell or from plastids into the nucleus. Experimental approaches to investigate this hypothesis are discussed.
Collapse
Affiliation(s)
- Björn Krenz
- Plant Pathology and Plant-Microbe Biology, Cornell UniversityIthaca, NY, USA
| | - Holger Jeske
- Molecular Biology and Plant Virology, Institute of Biology, Universität StuttgartStuttgart, Germany
| | - Tatjana Kleinow
- Molecular Biology and Plant Virology, Institute of Biology, Universität StuttgartStuttgart, Germany
| |
Collapse
|
13
|
Nawaz-ul-Rehman MS, Briddon RW, Fauquet CM. A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS One 2012; 7:e40050. [PMID: 22899988 PMCID: PMC3416816 DOI: 10.1371/journal.pone.0040050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/31/2012] [Indexed: 11/19/2022] Open
Abstract
CLCuD in southern Asia is caused by a complex of multiple begomoviruses (whitefly transmitted, single-stranded [ss]DNA viruses) in association with a specific ssDNA satellite; Cotton leaf curl Multan betasatellite (CLCuMuB). A further single ssDNA molecule, for which the collective name alphasatellites has been proposed, is also frequently associated with begomovirus-betasatellite complexes. Multan is in the center of the cotton growing area of Pakistan and has seen some of the worst problems caused by CLCuD. An exhaustive analysis of the diversity of begomoviruses and their satellites occurring in 15 Gossypium species (including G. hirsutum, the mainstay of Pakistan's cotton production) that are maintained in an orchard in the vicinity of Multan has been conducted using φ29 DNA polymerase-mediated rolling-circle amplification, cloning and sequence analysis. The non-cultivated Gossypium species, including non-symptomatic plants, were found to harbor a much greater diversity of begomoviruses and satellites than found in the cultivated G. hirsutum. Furthermore an African cassava mosaic virus (a virus previously only identified in Africa) DNA-A component and a Jatropha curcas mosaic virus (a virus occurring only in southern India) DNA-B component were identified. Consistent with earlier studies of cotton in southern Asia, only a single species of betasatellite, CLCuMuB, was identified. The diversity of alphasatellites was much greater, with many previously unknown species, in the non-cultivated cotton species than in G. hirsutum. Inoculation of newly identified components showed them to be competent for symptomatic infection of Nicotiana benthamiana plants. The significance of the findings with respect to our understanding of the role of host selection in virus diversity in crops and the geographical spread of viruses by human activity are discussed.
Collapse
Affiliation(s)
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Claude M. Fauquet
- Danforth Plant Science Center, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yang Y, Jin H, Chen Y, Lin W, Wang C, Chen Z, Han N, Bian H, Zhu M, Wang J. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 193:81-95. [PMID: 21916894 DOI: 10.1111/j.1469-8137.2011.03867.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• A protein encoded by At1g32080 was consistently identified in proteomic studies of Arabidopsis chloroplast envelope membranes, but its function remained unclear. The protein, designated AtLrgB, may have evolved from a gene fusion of lrgA and lrgB. In bacteria, two homologous operons, lrgAB and cidAB, participate in an emerging mechanism to control cell death and lysis. • We aim to characterize AtLrgB using reverse genetics and cell biological and biochemical analysis. • AtLrgB is expressed in leaves, but not in roots. T-DNA insertion mutation of AtLrgB produced plants with interveinal chlorotic and premature necrotic leaves. Overexpression of full-length AtLrgB (or its LrgA and LrgB domains, separately), under the control of CaMV 35S promoter, produced plants exhibiting veinal chlorosis and delayed greening. At the end of light period, the T-DNA mutant had high starch and low sucrose contents in leaves, while the 35S:AtLrgB plants had low starch and high sucrose contents. Metabolite profiling revealed that AtLrgB appeared not to directly transport triose phosphate or hexose phosphates. In yeast cells, AtLrgB could augment nystatin-induced membrane permeability. • Our work indicates that AtLrgB is a new player in chloroplast development, carbon partitioning and leaf senescence, although its molecular mechanism remains to be established.
Collapse
Affiliation(s)
- Yanjun Yang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Haiyan Jin
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yong Chen
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Weiqiang Lin
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chaoqun Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhehao Chen
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Ning Han
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Hongwu Bian
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Muyuan Zhu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Junhui Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
15
|
Poornima Priyadarshini CG, Ambika MV, Tippeswamy R, Savithri HS. Functional characterization of coat protein and V2 involved in cell to cell movement of Cotton leaf curl Kokhran virus-Dabawali. PLoS One 2011; 6:e26929. [PMID: 22110597 PMCID: PMC3217939 DOI: 10.1371/journal.pone.0026929] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/06/2011] [Indexed: 02/06/2023] Open
Abstract
The functional attributes of coat protein (CP) and V2 of the monopartite begomovirus, Cotton leaf curl Kokhran virus- Dabawali were analyzed in vitro and in vivo by their overexpression in E. coli, insect cells and transient expression in the plant system. Purified recombinant V2 and CP proteins were shown to interact with each other using ELISA and surface plasmon resonance. Confocal microscopy of Sf21 cells expressing V2 and CP proteins revealed that V2 localized to the cell periphery and CP to the nucleus. Deletion of the N terminal nuclear localization signal of CP restricted its distribution to the cytoplasm. GFP-V2 and YFP-CP transiently expressed in N. benthamiana plants by agroinfiltration substantiated the localization of V2 to the cell periphery and CP predominantly to the nucleus. Interestingly, upon coinfiltration, CP was found both in the nucleus and in the cytoplasm along with V2. These results suggest that the interaction of V2 and CP may have important implications in the cell to cell movement.
Collapse
Affiliation(s)
| | - M. V. Ambika
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - R. Tippeswamy
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - H. S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Zhou Y, Rojas MR, Park MR, Seo YS, Lucas WJ, Gilbertson RL. Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J Virol 2011; 85:11821-32. [PMID: 21900168 PMCID: PMC3209288 DOI: 10.1128/jvi.00082-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022] Open
Abstract
Geminiviruses are plant-infecting viruses with small circular single-stranded DNA genomes. These viruses utilize nuclear shuttle proteins (NSPs) and movement proteins (MPs) for trafficking of infectious DNA through the nuclear pore complex and plasmodesmata, respectively. Here, a biochemical approach was used to identify host factors interacting with the NSP and MP of the geminivirus Bean dwarf mosaic virus (BDMV). Based on these studies, we identified and characterized a host nucleoprotein, histone H3, which interacts with both the NSP and MP. The specific nature of the interaction of histone H3 with these viral proteins was established by gel overlay and in vitro and in vivo coimmunoprecipitation (co-IP) assays. The NSP and MP interaction domains were mapped to the N-terminal region of histone H3. These experiments also revealed a direct interaction between the BDMV NSP and MP, as well as interactions between histone H3 and the capsid proteins of various geminiviruses. Transient-expression assays revealed the colocalization of histone H3 and NSP in the nucleus and nucleolus and of histone H3 and MP in the cell periphery and plasmodesmata. Finally, using in vivo co-IP assays with a Myc-tagged histone H3, a complex composed of histone H3, NSP, MP, and viral DNA was recovered. Taken together, these findings implicate the host factor histone H3 in the process by which an infectious geminiviral DNA complex forms within the nucleus for export to the cell periphery and cell-to-cell movement through plasmodesmata.
Collapse
Affiliation(s)
- Yanchen Zhou
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Maria R. Rojas
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Mi-Ri Park
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Young-Su Seo
- Department of Plant Pathology, University of California, Davis, California 95616
| | - William J. Lucas
- Department of Plant Biology, University of California, Davis, California 95616
| | - Robert L. Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616
| |
Collapse
|
17
|
Sardo L, Wege C, Kober S, Kocher C, Accotto GP, Noris E. RNA viruses and their silencing suppressors boost Abutilon mosaic virus, but not the Old World Tomato yellow leaf curl Sardinia virus. Virus Res 2011; 161:170-80. [PMID: 21843560 DOI: 10.1016/j.virusres.2011.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/19/2022]
Abstract
Mixed viral infections can induce different changes in symptom development, genome accumulation and tissue tropism. These issues were investigated for two phloem-limited begomoviruses, Abutilon mosaic virus (AbMV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) in Nicotiana benthamiana plants doubly infected by either the potyvirus Cowpea aphid-borne mosaic virus (CABMV) or the tombusvirus Artichoke mottled crinkle virus (AMCV). Both RNA viruses induced an increase of the amount of AbMV, led to its occasional egress from the phloem and induced symptom aggravation, while the amount and tissue tropism of TYLCSV were almost unaffected. In transgenic plants expressing the silencing suppressors of CABMV (HC-Pro) or AMCV (P19), AbMV was supported to a much lesser extent than in the mixed infections, with the effect of CABMV HC-Pro being superior to that of AMCV P19. Neither of the silencing suppressors influenced TYLCSV accumulation. These results demonstrate that begomoviruses differentially respond to the invasion of other viruses and to silencing suppression.
Collapse
Affiliation(s)
- Luca Sardo
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Pallas V, García JA. How do plant viruses induce disease? Interactions and interference with host components. J Gen Virol 2011; 92:2691-2705. [PMID: 21900418 DOI: 10.1099/vir.0.034603-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant viruses are biotrophic pathogens that need living tissue for their multiplication and thus, in the infection-defence equilibrium, they do not normally cause plant death. In some instances virus infection may have no apparent pathological effect or may even provide a selective advantage to the host, but in many cases it causes the symptomatic phenotypes of disease. These pathological phenotypes are the result of interference and/or competition for a substantial amount of host resources, which can disrupt host physiology to cause disease. This interference/competition affects a number of genes, which seems to be greater the more severe the symptoms that they cause. Induced or repressed genes belong to a broad range of cellular processes, such as hormonal regulation, cell cycle control and endogenous transport of macromolecules, among others. In addition, recent evidence indicates the existence of interplay between plant development and antiviral defence processes, and that interference among the common points of their signalling pathways can trigger pathological manifestations. This review provides an update on the latest advances in understanding how viruses affect substantial cellular processes, and how plant antiviral defences contribute to pathological phenotypes.
Collapse
Affiliation(s)
- Vicente Pallas
- Instituto de Biología Molecular y Celular de las Plantas, CSIC-Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
19
|
Lozano-Durán R, Rosas-Díaz T, Luna AP, Bejarano ER. Identification of host genes involved in geminivirus infection using a reverse genetics approach. PLoS One 2011; 6:e22383. [PMID: 21818318 PMCID: PMC3144222 DOI: 10.1371/journal.pone.0022383] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 06/20/2011] [Indexed: 12/17/2022] Open
Abstract
Geminiviruses, like all viruses, rely on the host cell machinery to establish a successful infection, but the identity and function of these required host proteins remain largely unknown. Tomato yellow leaf curl Sardinia virus (TYLCSV), a monopartite geminivirus, is one of the causal agents of the devastating Tomato yellow leaf curl disease (TYLCD). The transgenic 2IRGFP N. benthamiana plants, used in combination with Virus Induced Gene Silencing (VIGS), entail an important potential as a tool in reverse genetics studies to identify host factors involved in TYLCSV infection. Using these transgenic plants, we have made an accurate description of the evolution of TYLCSV replication in the host in both space and time. Moreover, we have determined that TYLCSV and Tobacco rattle virus (TRV) do not dramatically influence each other when co-infected in N. benthamiana, what makes the use of TRV-induced gene silencing in combination with TYLCSV for reverse genetic studies feasible. Finally, we have tested the effect of silencing candidate host genes on TYLCSV infection, identifying eighteen genes potentially involved in this process, fifteen of which had never been implicated in geminiviral infections before. Seven of the analyzed genes have a potential anti-viral effect, whereas the expression of the other eleven is required for a full infection. Interestingly, almost half of the genes altering TYLCSV infection play a role in postranslational modifications. Therefore, our results provide new insights into the molecular mechanisms underlying geminivirus infections, and at the same time reveal the 2IRGFP/VIGS system as a powerful tool for functional reverse genetics studies.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Tábata Rosas-Díaz
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Ana P. Luna
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Eduardo R. Bejarano
- Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| |
Collapse
|
20
|
Hohn T, Vazquez F. RNA silencing pathways of plants: silencing and its suppression by plant DNA viruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:588-600. [PMID: 21683815 DOI: 10.1016/j.bbagrm.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
RNA silencing refers to processes that depend on small (s)RNAs to regulate the expression of eukaryotic genomes. In plants, these processes play critical roles in development, in responses to a wide array of stresses, in maintaining genome integrity and in defense against viral and bacterial pathogens. We provide here an updated view on the array of endogenous sRNA pathways, including microRNAs (miRNAs), discovered in the model plant Arabidopsis, which are also the basis for antiviral silencing. We emphasize the current knowledge as well as the recent advances made on understanding the defense and counter-defense strategies evolved in the arms race between plants and DNA viruses on both the nuclear and the cytoplasmic front. This article is part of a Special Issue entitled: MicroRNA's in viral gene regulation.
Collapse
Affiliation(s)
- Thomas Hohn
- Institute of Botany, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
21
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
22
|
Fu HC, Hu JM, Hung TH, Su HJ, Yeh HH. Unusual events involved in Banana bunchy top virus strain evolution. PHYTOPATHOLOGY 2009; 99:812-822. [PMID: 19522579 DOI: 10.1094/phyto-99-7-0812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Banana bunchy top virus (BBTV) can be transmitted by aphids and consists of at least six integral components (DNA-R, -U3, -S, -M, -C, and -N). Several additional replication-competent components (additional Reps) are associated with some BBTV isolates. A collected BBTV strain (TW3) that causes mild symptoms was selected to study the processes in BBTV evolution. Southern blot hybridization, polymerase chain reaction (PCR), and real-time PCR did not detect DNA-N in TW3. Real-time PCR quantification of BBTV components revealed that, except for the copy number of TW3 DNA-U3, each detected integral component of BBTV TW3 was at least two orders lower than that of the severe strains. No infection was observed in plants inoculated with aphids, which were first given acquisition access to the TW3-infected banana leaves. Recombination analysis revealed recombination between the integral component TW3 DNA-U3 and the additional Rep DNA-Y. All BBTV integral components contain a replication initiation region (stem-loop common region) that share high sequence identity. Sequence alignment revealed that TW3 DNA-R, -S, -M, and -C all have a stem-loop common region containing a characteristic 9-nucleotide deletion found only in all reported DNA-N. Our data suggest that the additional Rep DNAs can serve as sources of additional genetic diversity for integral BBTV components.
Collapse
Affiliation(s)
- Hui-Chuan Fu
- Department of Plant Pathology and Microbiology, College of Agriculture, National Taiwan University, 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Abstract
Plant pathogenic geminiviruses have been proliferating worldwide and have, therefore, attracted considerable scientific interest during the past three decades. Current knowledge concerning their virion and genome structure, their molecular biology of replication, recombination, transcription, and silencing, as well as their transport through plants and dynamic competition with host responses are summarized. The topics are chosen to provide a comprehensive introduction for animal virologists, emphasizing similarities and differences to the closest functional relatives, polyomaviruses and circoviruses.
Collapse
|
24
|
|
25
|
Carvalho CM, Fontenelle MR, Florentino LH, Santos AA, Zerbini FM, Fontes EPB. A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:869-80. [PMID: 18489709 DOI: 10.1111/j.1365-313x.2008.03556.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
SUMMARY In contrast to the accumulated data on nuclear transport mechanisms of macromolecules, little is known concerning the regulated release of nuclear-exported complexes and their subsequent trans-cytoplasmic movement. The bipartite begomovirus nuclear shuttle protein (NSP) facilitates the nuclear export of viral DNA and cooperates with the movement protein (MP) to transport viral DNA across the plant cell wall. Here, we identified a cellular NSP-interacting GTPase (NIG) with biochemical properties consistent with a nucleocytoplasmic transport role. We show that NIG is a cytosolic GTP-binding protein that accumulates around the nuclear envelope and possesses intrinsic GTPase activity. NIG interacts with NSP in vitro and in vivo (under transient expression), and redirects the viral protein from the nucleus to the cytoplasm. We propose that NIG acts as a positive contributor to geminivirus infection by modulating NSP nucleocytoplasmic shuttling and hence facilitating MP-NSP interaction in the cortical cytoplasm. In support of this, overexpression of NIG in Arabidopsis enhances susceptibility to geminivirus infection. In addition to highlighting the relevance of NIG as a cellular co-factor for NSP function, our findings also have implications for general nucleocytoplasmic trafficking of cellular macromolecules.
Collapse
Affiliation(s)
- Claudine M Carvalho
- Departamento de Bioquímica e Biologia Molecular, Vicosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. PLANT PHYSIOLOGY 2008; 148:436-54. [PMID: 18650403 PMCID: PMC2528102 DOI: 10.1104/pp.108.121038] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 07/21/2008] [Indexed: 05/18/2023]
Abstract
Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle.
Collapse
Affiliation(s)
- José Trinidad Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Peretz Y, Mozes-Koch R, Akad F, Tanne E, Czosnek H, Sela I. A universal expression/silencing vector in plants. PLANT PHYSIOLOGY 2007; 145:1251-63. [PMID: 17905866 PMCID: PMC2151717 DOI: 10.1104/pp.107.108217] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 09/17/2007] [Indexed: 05/17/2023]
Abstract
A universal vector (IL-60 and auxiliary constructs), expressing or silencing genes in every plant tested to date, is described. Plants that have been successfully manipulated by the IL-60 system include hard-to-manipulate species such as wheat (Triticum duram), pepper (Capsicum annuum), grapevine (Vitis vinifera), citrus, and olive (Olea europaea). Expression or silencing develops within a few days in tomato (Solanum lycopersicum), wheat, and most herbaceous plants and in up to 3 weeks in woody trees. Expression, as tested in tomato, is durable and persists throughout the life span of the plant. The vector is, in fact, a disarmed form of Tomato yellow leaf curl virus, which is applied as a double-stranded DNA and replicates as such. However, the disarmed virus does not support rolling-circle replication, and therefore viral progeny single-stranded DNA is not produced. IL-60 does not integrate into the plant's genome, and the construct, including the expressed gene, is not heritable. IL-60 is not transmitted by the Tomato yellow leaf curl virus's natural insect vector. In addition, artificial satellites were constructed that require a helper virus for replication, movement, and expression. With IL-60 as the disarmed helper "virus," transactivation occurs, resulting in an inducible expressing/silencing system. The system's potential is demonstrated by IL-60-derived suppression of a viral-silencing suppressor of Grapevine virus A, resulting in Grapevine virus A-resistant/tolerant plants.
Collapse
Affiliation(s)
- Yuval Peretz
- Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Institute for Plant Sciences and Genetics, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Vanderschuren H, Stupak M, Fütterer J, Gruissem W, Zhang P. Engineering resistance to geminiviruses--review and perspectives. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:207-20. [PMID: 17309676 DOI: 10.1111/j.1467-7652.2006.00217.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Following the conceptual development of virus resistance strategies ranging from coat protein-mediated interference of virus propagation to RNA-mediated virus gene silencing, much progress has been achieved to protect plants against RNA and DNA virus infections. Geminiviruses are a major threat to world agriculture, and breeding resistant crops against these DNA viruses is one of the major challenges faced by plant virologists and biotechnologists. In this article, we review the most recent transgene-based approaches that have been developed to achieve durable geminivirus resistance. Although most of the strategies have been tested in model plant systems, they are ready to be adopted for the protection of crop plants. Furthermore, a better understanding of geminivirus gene and protein functions, as well as the native immune system which protects plants against viruses, will allow us to develop novel tools to expand our current capacity to stabilize crop production in geminivirus epidemic zones.
Collapse
Affiliation(s)
- Hervé Vanderschuren
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Culver JN, Padmanabhan MS. Virus-induced disease: altering host physiology one interaction at a time. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:221-43. [PMID: 17417941 DOI: 10.1146/annurev.phyto.45.062806.094422] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus infections are the cause of numerous plant disease syndromes that are generally characterized by the induction of disease symptoms such as developmental abnormalities, chlorosis, and necrosis. How viruses induce these disease symptoms represents a long-standing question in plant pathology. Recent studies indicate that symptoms are derived from specific interactions between virus and host components. Many of these interactions have been found to contribute to the successful completion of the virus life-cycle, although the role of other interactions in the infection process is not yet known. However, all share the potential to disrupt host physiology. From this information we are beginning to decipher the progression of events that lead from specific virus-host interactions to the establishment of disease symptoms. This review highlights our progress in understanding the mechanisms through which virus-host interactions affect host physiology. The emerging picture is one of complexity involving the individual effects of multiple virus-host interactions.
Collapse
Affiliation(s)
- James N Culver
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
31
|
Shen W, Hanley-Bowdoin L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. PLANT PHYSIOLOGY 2006; 142:1642-55. [PMID: 17041027 PMCID: PMC1676070 DOI: 10.1104/pp.106.088476] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Geminivirus Rep-interacting kinase 1 (GRIK1) and GRIK2 constitute a small protein kinase family in Arabidopsis (Arabidopsis thaliana). An earlier study showed that a truncated version of GRIK1 binds to the geminivirus replication protein AL1. We show here both full-length GRIK1 and GRIK2 interact with AL1 in yeast two-hybrid studies. Using specific antibodies, we showed that both Arabidopsis kinases are elevated in infected leaves. Immunoblot analysis of healthy plants revealed that GRIK1 and GRIK2 are highest in young leaf and floral tissues and low or undetectable in mature tissues. Immunohistochemical staining showed that the kinases accumulate in the shoot apical meristem, leaf primordium, and emerging petiole. Unlike the protein patterns, GRIK1 and GRIK2 transcript levels only show a small increase during infection and do not change significantly during development. Treating healthy seedlings and infected leaves with the proteasome inhibitor MG132 resulted in higher GRIK1 and GRIK2 protein levels, whereas treatment with the translation inhibitor cycloheximide reduced both kinases, demonstrating that their accumulation is modulated by posttranscriptional processes. Phylogenetic comparisons indicated that GRIK1, GRIK2, and related kinases from Medicago truncatula and rice (Oryza sativa) are most similar to the yeast kinases PAK1, TOS3, and ELM1 and the mammalian kinase CaMKK, which activate the yeast kinase SNF1 and its mammalian homolog AMPK, respectively. Complementation studies using a PAK1/TOS3/ELM1 triple mutant showed that GRIK1 and GRIK2 can functionally replace the yeast kinases, suggesting that the Arabidopsis kinases mediate one or more processes during early plant development and geminivirus infection by activating SNF1-related kinases.
Collapse
Affiliation(s)
- Wei Shen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | |
Collapse
|