1
|
Jia Y, Huang D, Lan X, Sun X, Lin W, Sun W, Wang Y. Community structure and metabolic potentials of keystone taxa and their associated bacteriophages within rice root endophytic microbiome in response to metal(loid)s contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126028. [PMID: 40064231 DOI: 10.1016/j.envpol.2025.126028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Heavy metal (HM) contamination of agricultural products is of global environmental concern as it directly threatened the food safety. Plant-associated microbiome, particularly endophytic microbiome, hold the potential for mitigating HM stress as well as promoting plant growth. The metabolic potentials of the endophytes, especially those under the HM stresses, have not been well addressed. Rice, a major staple food worldwide, is more vulnerable to HM contamination compared to other crops and therefore requires special attentions. Therefore, this study selected rice as the target plants. Geochemical analysis and amplicon sequencing were combined to characterize the rice root endophytic bacterial communities and identify keystone taxa in two HM-contaminated rice fields. Metagenomic analysis was employed to investigate the metabolic potentials of these keystone taxa. Burkholderiales and Rhizobiales were identified as predominant keystone taxa. The metagenome-assembled genome (MAG)s associated with these keystone populations suggested that they possessed diverse genetic potentials related to metal resistance and transformation (e.g., As resistance and cycling, V reduction, Cr efflux and reduction), and plant growth promotion (nitrogen fixation, phosphate solubilization, oxidative stress resistance, indole-3-acetic acid, and siderophore production). Moreover, bacteriophages encoding auxiliary metabolism genes (AMGs) associated with the HM resistance as well as nitrogen and phosphate acquisition were identified, suggesting that these phages may contribute to these crucial biogeochemical processes within rice roots. The current findings revealed the beneficial roles of rice endophytic keystone taxa and their associated bacteriophages within HM-contaminated rice root endophytic microbiome, which may provide valuable insights on future applications of employing root microbiome for safety management of agriculture productions.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China; School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang, 550002, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China.
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yize Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Baimirzayeva Z, Korazbekova K, Yuksekdag Z, Akhanov U. Growth Effect of Pseudomonas Isolates on Tomato in Greenhouse Production. Pak J Biol Sci 2025; 28:236-245. [PMID: 40329753 DOI: 10.3923/pjbs.2025.236.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
<b>Background and Objective:</b> Greenhouse tomato production faces various challenges, including soilborne diseases and nutrient limitations, which can impact plant growth and yield. Beneficial rhizobacteria, particularly <i>Pseudomonas</i> spp., have emerged as promising biological solutions for enhancing plant growth and resilience. This study investigates the growth-promoting effects of different <i>Pseudomonas</i> isolates taken from greenhouse soil in Kazakhstan on tomato (<i>Solanum lycopersicum</i> L.) under controlled conditions. <b>Materials and Methods:</b> Soil samples were collected from inside (No. 1) and outside (No. 2) of the greenhouse in the Turkestan Region. <i>Pseudomonas</i> isolates were obtained on selective <i>Pseudomonas</i> Agar medium. Four isolates (P1-1, P1-2, P1-3 and P1-4) were selected for further analysis. To evaluate their effects on plant growth, tomato seeds were inoculated with <i>Pseudomonas</i> suspensions at concentrations of 10<sup>4</sup>, 10<sup>6</sup> and 10<sup>8</sup> CFU/mL and incubated on Kovrovtsev's medium at 30°C for 14 days. Statistical analysis, including regression analysis, were performed using Excel software at 95% confidence level. <b>Results:</b> The highest root elongation and maximum germination rate were observed at 1×10<sup>6</sup> and 1×10<sup>8</sup> CFU/mL, respectively, suggesting these concentrations may be optimal for plant growth. Growth parameters exhibit a positive correlation with isolate concentration, but with varying degrees of response strength. <b>Conclusion:</b> The findings highlight the potential of <i>Pseudomonas</i> isolates as bioinoculants for sustainable greenhouse tomato cultivation, offering an eco-friendly alternative to chemical fertilizers and growth stimulants. Further research is needed to optimize application methods and assess the long-term effects on crop productivity and soil health.
Collapse
|
3
|
Fang T, Lo SC, Yu YN, Sou NL, Hung SHW, Peng JH, Chiang EPI, Huang CC. Development of an Engineered Bacterial Endophyte: Promoting Plant Growth Through Pyrroloquinoline Quinone (PQQ) Synthesis. Microorganisms 2025; 13:293. [PMID: 40005660 PMCID: PMC11858353 DOI: 10.3390/microorganisms13020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Endophytic bacteria are a group of microorganisms that can intercellularly colonize plant hosts without causing apparent damage or disease. Our previous works found that a pyrroloquinoline quinone (PQQ)-producing endophyte could promote plant growth and systemic tolerance. To demonstrate this PQQ-producing endophyte's beneficial role in plants, a set of five PQQ synthesis genes from Gluconobacter oxydans was introduced into both Escherichia coli JM109 and Bacillus subtilis RM125, a BsuM-deficient mutant of laboratory strain B. subtilis 168. Interestingly, both strains harboring the PQQ synthesis genes exhibited significantly higher optimal optical density than control strains. In a carbon flux analysis, both strains showed a noticeable increase in their citric acid, alpha-ketoglutaric acid, and succinic acid levels. Conversely, in E. coli, pyruvic acid, malic acid, and fumaric acid levels decreased. These results suggest that PQQ impacts various host species differently. Furthermore, the presence of PQQ in fermentation broth was also confirmed in the RM125 PQQ synthesis recombinant strain. Subsequent experiments by inoculating those Bacillus strains revealed that the laboratory host strain could function as an endophyte, and the PQQ transgenic strain could further promote the growth of Arabidopsis thaliana and increase the number of siliques. These findings confirm PQQ's vital role in endophyte-mediated plant growth promotion and also suggest the potential of B. subtilis transformed with PQQ genes as an engineered endophyte for studying PQQ's biological functions in plants. This research is a step forward in understanding how specific substances can beneficially influence plant growth and systemic tolerance through endophytic mechanisms.
Collapse
Affiliation(s)
- Ti Fang
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan; (T.F.); (S.-C.L.); (Y.-N.Y.); (S.-H.W.H.)
- Biotechnology Program of Industry-Academia Collaboration, National Chung Hsing University, Taichung 402, Taiwan
| | - Shou-Chen Lo
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan; (T.F.); (S.-C.L.); (Y.-N.Y.); (S.-H.W.H.)
| | - Yu-Ning Yu
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan; (T.F.); (S.-C.L.); (Y.-N.Y.); (S.-H.W.H.)
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (N.-L.S.); (J.-H.P.); (E.-P.I.C.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center (APFCBC), National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Hsun Walter Hung
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan; (T.F.); (S.-C.L.); (Y.-N.Y.); (S.-H.W.H.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Jian-Hau Peng
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (N.-L.S.); (J.-H.P.); (E.-P.I.C.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center (APFCBC), National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (N.-L.S.); (J.-H.P.); (E.-P.I.C.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center (APFCBC), National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chieh-Chen Huang
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan; (T.F.); (S.-C.L.); (Y.-N.Y.); (S.-H.W.H.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center (APFCBC), National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
4
|
Song YJ, Zhao NL, Dai DR, Bao R. Prospects of Pseudomonas in Microbial Fuel, Bioremediation, and Sustainability. CHEMSUSCHEM 2025; 18:e202401324. [PMID: 39117578 DOI: 10.1002/cssc.202401324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Microbial applications in agriculture and industry have gained significant attention due to their potential to address environmental challenges and promote sustainable development. Among these, the genus Pseudomonas stands out as a promising candidate for various biotechnological uses, thanks to its metabolic flexibility, resilience, and adaptability to diverse environments. This review provides a comprehensive overview of the current state and future prospects of microbial fuel production, bioremediation, and sustainable development, focusing on the pivotal role of Pseudomonas species. We emphasize the importance of microbial fuel as a renewable energy source and discuss recent advancements in enhancing biofuel generation using Pseudomonas strains. Additionally, we explore the critical role of Pseudomonas in bioremediation processes, highlighting its ability to degrade a wide spectrum of pollutants, including hydrocarbons, pesticides, and heavy metals, thereby reducing environmental contamination. Despite significant progress, several challenges remain. These include refining microbial strains for optimal process efficiency and addressing ecological considerations. Nonetheless, the diverse capabilities of Pseudomonas offer promising avenues for innovative solutions to pressing environmental issues, supporting the transition to a more sustainable future.
Collapse
Affiliation(s)
- Ying-Jie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ning-Lin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - De-Rong Dai
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Yu K, Wang Z, Yang W, Li S, Wu D, Zheng H, Ye Z, Yang S, Liu D. Application of Biochar-Immobilized Bacillus megaterium for Enhancing Phosphorus Uptake and Growth in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:214. [PMID: 39861565 PMCID: PMC11768149 DOI: 10.3390/plants14020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of Bacillus megaterium. Inoculating rice husk biochar-immobilized with Bacillus megaterium (BMB) resulted in dissolved inorganic and organic P levels of 39.55 and 31.97 mL L-1, respectively. Subsequently, rice pot experiments were conducted to investigate the response of soil microbial P mobilization and P uptake in rice to fertilizer inputs. The organic fertilizer (OF) combined with BMB treatment (MOF) showed the highest soil available phosphorus (AP) at 38 days, with a value of 7.83 mg kg-1, as well as increased the pqqC abundance while decreasing the abundance of phoD bacterial communities compared with the control. Furthermore, the bioavailable P reservoir (H2O-Pi and NaHCO3-Pi) in soil was greatly increased through the fertilizer input and microbial turnover, with the highest H2O-Pi (3.66 mg kg-1) in OF treatment and the highest NaHCO3-Pi (52.65 mg kg-1) in MOF treatment. Additionally, carbon utilization analysis was applied using the commercial Biolog system, revealing that the MOF treatment significantly increased the utilization of carbohydrates, polymers, and amino acid carbon sources. Moreover, compared to the control, MOF treatment significantly increased the shoot (0.469%) and root P (0.516%) content while promoting root development and thereby supporting rice growth. Our study demonstrates that the MOF treatment displayed higher P levels in both soil and rice plants, providing a theoretical basis for further understanding the role of biochar-based bacterial agents in rice P management.
Collapse
Affiliation(s)
- Keru Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- School of Environmental and Resources, Zhejiang A&F University, Hangzhou 311300, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhenyu Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenyan Yang
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Shuai Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Dongtao Wu
- Soil Fertilizer and Plant Protection and Energy Sources Station of Lishui City, Hangzhou 323000, China;
| | - Hongtao Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengqian Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - Shaona Yang
- Zhoushan Agricultural Technology Extension Center, Zhoushan 316021, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China (Z.W.); (S.L.); (H.Z.); (Z.Y.)
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
de Oliveira RS, Gonçalves AR, Ajulo AA, Oliveira LR, Lanna AC, de Filippi MCC. Survey and genomic characterization of Serratia marcescens on endophytism, biofilm, and phosphorus solubilization in rice plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65834-65848. [PMID: 39604718 DOI: 10.1007/s11356-024-35554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Serratia marcescens, isolated from the rhizosphere of rice crops, has the potential to improve the acquisition of scarce minerals and provide plant growth. Rice seeds microbiolized with S. marcescens and non-microbiolized seeds were sown in a culture medium enriched with non-labile phosphorus, and the roots were analyzed in WinRhizo. The plant segments were documented by scanning electron microscopy (SEM) and incubated in an NBRIP culture medium. DNAs from endophytic colonies were extracted and analyzed by PCR. The genome of S. marcescens was annotated using subsystem technology to detect genes involved in phosphorus solubilization, biofilm production, and growth promotion. The root system increased in area, volume, and length by 61.5, 31.5, and 101%, respectively. Halos were formed around segments of microbiolized plants, indicating the solubilization of non-labile phosphorus. SEM detected the presence of biofilms and microcolonies, identified as S. marcescens by the molecular markers. Genome annotation found genes with potential functions in plant growth promotion, including genes involved in the biosynthesis of indole-3-acetic acid, phosphate solubilization, and biofilm production. In the low phosphorus crop, the treated plants showed a 181% increase in total biomass. S. marcescens solubilizes non-labile phosphorus, colonizes endophytes, modifies the architecture of the root system, and promotes the growth of rice plants, and can be considered a biofertilizer for growing upland rice.
Collapse
Affiliation(s)
- Rodrigo Silva de Oliveira
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Ariany Rosa Gonçalves
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Akintunde Abiodun Ajulo
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Lorena Resende Oliveira
- Agronomy School, Federal University of Goiás, Goiânia, Goiás, 74001-970, Brazil
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Anna Cristina Lanna
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil
| | - Marta Cristina Corsi de Filippi
- Agricultural Microbiology Laboratory, Brazilian Agricultural Research Corporation Rice and Beans (Embrapa Arroz E Feijão), Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural, Caixa Postal: 179, Santo Antônio de Goiás, Goiás, CEP: 75375-000, Brazil.
| |
Collapse
|
7
|
Moffat AD, Höing L, Santos-Aberturas J, Markwalder T, Malone JG, Teufel R, Truman AW. Understanding the biosynthesis, metabolic regulation, and anti-phytopathogen activity of 3,7-dihydroxytropolone in Pseudomonas spp. mBio 2024; 15:e0102224. [PMID: 39207110 PMCID: PMC11481866 DOI: 10.1128/mbio.01022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The genus Pseudomonas is a prolific source of specialized metabolites with significant biological activities, including siderophores, antibiotics, and plant hormones. These molecules play pivotal roles in environmental interactions, influencing pathogenicity, inhibiting microorganisms, responding to nutrient limitation and abiotic challenges, and regulating plant growth. These properties mean that pseudomonads are suitable candidates as biological control agents against plant pathogens. Multiple transposon-based screens have identified a Pseudomonas biosynthetic gene cluster (BGC) associated with potent antibacterial and antifungal activities, which produces 7-hydroxytropolone (7-HT). In this study, we show that this BGC also makes 3,7-dihydroxytropolone (3,7-dHT), which has strong antimicrobial activity toward Streptomyces scabies, a potato pathogen. Through metabolomics and reporter assays, we unveil the involvement of cluster-situated genes in generating phenylacetyl-coenzyme A, a key precursor for tropolone biosynthesis via the phenylacetic acid catabolon. The clustering of these phenylacetic acid genes within tropolone BGCs is unusual in other Gram-negative bacteria. Our findings support the interception of phenylacetic acid catabolism via an enoyl-CoA dehydratase encoded in the BGC, as well as highlighting an essential role for a conserved thioesterase in biosynthesis. Biochemical assays were used to show that this thioesterase functions after a dehydrogenation-epoxidation step catalyzed by a flavoprotein. We use this information to identify diverse uncharacterized BGCs that encode proteins with homology to flavoproteins and thioesterases involved in tropolone biosynthesis. This study provides insights into tropolone biosynthesis in Pseudomonas, laying the foundation for further investigations into the ecological role of tropolone production.IMPORTANCEPseudomonas bacteria produce various potent chemicals that influence interactions in nature, such as metal-binding molecules, antibiotics, or plant hormones. This ability to synthesize bioactive molecules means that Pseudomonas bacteria may be useful as biological control agents to protect plants from agricultural pathogens, as well as a source of antibiotic candidates. We have identified a plant-associated Pseudomonas strain that can produce 3,7-dihydroxytropolone, which has broad biological activity and can inhibit the growth of Streptomyces scabies, a bacterium that causes potato scab. Following the identification of this molecule, we used a combination of genetic, chemical, and biochemical experiments to identify key steps in the production of tropolones in Pseudomonas species. Understanding this biosynthetic process led to the discovery of an array of diverse pathways that we predict will produce new tropolone-like molecules. This work should also help us shed light on the natural function of antibiotics in nature.
Collapse
Affiliation(s)
- Alaster D. Moffat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lars Höing
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Tim Markwalder
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Robin Teufel
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
8
|
He W, Yang P, Huang T, Liu Y, Zhang Y, Zhang W, Zhang T, Zheng M, Ma L, Zhao C, Li H, Liao Y, Wu A, Zhang J. Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2395-2409. [PMID: 38593377 PMCID: PMC11331793 DOI: 10.1111/pbi.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes.
Collapse
Affiliation(s)
- Wei‐Jie He
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Peng Yang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Jiangsu Ruihua Agricultural Science and Technology Co., Ltd.SuqianChina
| | - Tao Huang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Fan Liu
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Wei Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wen‐Min Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tian‐Tian Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Meng‐Ru Zheng
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ling Ma
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chang‐Xing Zhao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - He‐Ping Li
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu‐Cai Liao
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ai‐Bo Wu
- SIBS‐UGENT‐SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing‐Bo Zhang
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
9
|
Anzuay MS, Chiatti MH, Intelangelo AB, Ludueña LM, Viso NP, Angelini JG, Taurian T. Employment of pqqE gene as molecular marker for the traceability of Gram negative phosphate solubilizing bacteria associated to plants. Curr Genet 2024; 70:12. [PMID: 39093429 DOI: 10.1007/s00294-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Insoluble phosphorous compounds solubilization by soil bacteria is of great relevance since it puts available the phosphorus to be used by plants. The production of organic acids is the main microbiological mechanism by which insoluble inorganic phosphorus compounds are solubilized. In Gram negative bacteria, gluconic acid is synthesized by the activity of the holoenzyme glucose dehydrogenase-pyrroloquinoline quinine named GDH-PQQ. The use of marker genes is a very useful tool to evaluate the persistence of the introduced bacteria and allow to follow-up the effect of biotic and abiotic factors on these beneficial microorganisms in the soil. In previous studies we detected the presence of the pqqE gene in a great percentage of both non-culturable and culturable native soil bacteria. The objective of this study was to analyze the phylogeny of the sequence of pqqE gene and its potential for the study of phosphate solubilizing bacteria from pure and mixed bacterial cultures and rhizospheric soil samples. For this, the presence of the pqqE gene in the genome of phosphate solubilizing bacteria that belong to several bacteria was determined by PCR. Also, this gene was analyzed from mixed bacterial cultures and rhizospheric soil associated to peanut plants inoculated or not with phosphate solubilizing bacteria. For this, degenerate primers designed from several bacterial genera and specific primers for the genus Pseudomonas spp., designed in this study, were used. DNA template used from simple or mixed bacterial cultures and from rhizospheric soil samples was obtained using two different DNA extraction techniques. Results indicated that pqqE gene amplification product was found in the genome of all Gram negative phosphate solubilizing bacteria analyzed. It was possible to detect this gene in the DNA obtained from mixed cultures where these bacteria grew in interaction with other microorganisms and in that obtained from rhizospheric soil samples inoculated or not with these bacteria. The phylogenetic analysis indicated that pqqE gene is a conserved gene within related genera. In conclusion, pqqE gene could be a potential marker for the study of phosphate solubilizing bacterial populations.
Collapse
Affiliation(s)
- María Soledad Anzuay
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto, Argentina
| | - Mario Hernán Chiatti
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto, Argentina
| | | | | | - Natalia Pin Viso
- Instituto de Microbiología y Zoología Agrícola, IMyZA, IABiMo, INTA, Hurlingham, Buenos Aires, Argentina
| | | | - Tania Taurian
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto, Argentina.
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, Río Cuarto, Córdoba, 5800, Argentina.
| |
Collapse
|
10
|
Kim I, Woo H, Chhetri G, Park S, Seo T. A novel exopolysaccharide-producing bacterium, Pseudescherichia liriopis sp. nov. isolated from Liriope platyphylla, enhances the growth of Daucus carota subsp. sativus under drought and salinity stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1417639. [PMID: 39081520 PMCID: PMC11286387 DOI: 10.3389/fpls.2024.1417639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024]
Abstract
Biological and abiotic stresses in plant growth are associated with reduced crop yields. Therefore, improving plant stress resistance can be a crucial strategy to improve crop production. To overcome these problems, plant growth-promoting bacteria are emphasized as one of the alternative tools for sustainable agriculture. This study found a novel strain (L3T) of a plant growth-promoting bacterium in fermented Liriope platyphylla fruit. Strain L3T showed the ability to promote plant growth. The L3T strain promoted plant growth of D. carota subsp. sativus, increasing the length (increase rate compared to the control group, 36.98%), diameter (47.06%), and weight of carrots (81.5%), ultimately increasing the edible area. In addition, we confirmed that plant growth was improved even in situations that inhibited plant growth, such as salinity and drought stress. Strain L3T performed indole production, siderophore production, phosphate solubilization, and nitrogen fixation, all characteristics of a strain that promotes plant growth. Genome analysis revealed genes involved in the growth promotion effects of strain L3T. Additionally, the properties of exopolysaccharides were identified and characterized using FTIR, TGA, and UHPLC. Our results demonstrated that L3 isolated from fermented L. platyphylla fruit can be used to simultaneously alleviate drought and NaCl stress.
Collapse
Affiliation(s)
| | | | | | | | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
11
|
Kim J, Yun H, Tahmasebi A, Nam J, Pham H, Kim YH, Min HJ, Lee CW. Paramixta manurensis gen. nov., sp. nov., a novel member of the family Erwiniaceae producing indole-3-acetic acid isolated from mushroom compost. Sci Rep 2024; 14:15542. [PMID: 38969698 PMCID: PMC11226699 DOI: 10.1038/s41598-024-65803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
There are numerous species in the Erwiniaceae family that are important for agricultural and clinical purposes. Here we described the Erwiniaceae bacterium PD-1 isolated from mushroom (Pleurotus eryngii) compost. Comparative genomic and phylogenetic analyses showed that the strain PD-1 was assigned to a new genus and species, Paramixta manurensis gen. nov., sp. nov. in the family Erwiniaceae. From the average amino acid index, we identified the five AroBEKAC proteins in the shikimate pathway as a minimal set of molecular markers to reconstruct the phylogenetic tree of the Erwiniaceae species. The strain PD-1 containing annotated genes for ubiquinone and menaquinone produced a higher level of ubiquinone (Q8) than demethylmenaquinone (DMK8) and menaquinone (MK8) in anaerobic condition compared to aerobic condition, as similarly did the reference strains from the genera Mixta and Erwinia. Results from fatty acid methyl ester and numerical analyses of strain PD-1 showed a similarity to species of the genera Mixta and Winslowiella. This study revealed that the strain's ability to utilize polyols, such as glycerol, erythritol, and D-arabitol, distinguished the strain PD-1 from the nearest relative and other type strains. The analyzed genetic markers and biochemical properties of the strain PD-1 suggest its potential role in the process of mushroom compost through the degradation of carbohydrates and polysaccharides derived from fungi and plants. Additionally, it can produce a high concentration of indole-3-acetic acid as a plant growth-promoting agent.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center, DAESANG InnoPark, Gangseo-gu, Seoul, 07789, Republic of Korea
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Aminallah Tahmasebi
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Jiyoung Nam
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ha Pham
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea.
| | - Hye Jung Min
- Department of Cosmetic Science, Gwangju Women's University, Gwangju, 62396, Republic of Korea.
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
12
|
Sharma M, Sood G, Chauhan A. Assessment of Plant Growth Promotion Potential of Endophytic Bacterium B. subtilis KU21 Isolated from Rosmarinus officinalis. Curr Microbiol 2024; 81:207. [PMID: 38831110 DOI: 10.1007/s00284-024-03734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.
Collapse
Affiliation(s)
- Minakshi Sharma
- Division of Soil Science and Agricultural Chemistry, Indian Agricultural Research Institute, New Delhi, India.
| | - Gaurav Sood
- Department of Soil Science and Water Management, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Anjali Chauhan
- Department of Soil Science and Water Management, Dr YS Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| |
Collapse
|
13
|
Chen LB, OuYang YT, Liu L, Jin PJ, Huang RR, Pan WY, Wang Y, Xing JY, She TT, Jiao JY, Wang S, Li WJ. Methylobacterium nigriterrae sp. nov., isolated from black soil. Antonie Van Leeuwenhoek 2024; 117:83. [PMID: 38806744 DOI: 10.1007/s10482-024-01981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
An aerobic, Gram-stain-negative, motile rod bacterium, designated as SYSU BS000021T, was isolated from a black soil sample in Harbin, Heilongjiang province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Methylobacterium, and showed the highest sequence similarity to Methylobacterium segetis KCTC 62267 T (98.51%) and Methylobacterium oxalidis DSM 24028 T (97.79%). Growth occurred at 20-37℃ (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and in the presence of 0% (w/v) NaCl. Polar lipids comprised of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified polar lipid. The major cellular fatty acids (> 5%) were C18:0 and C18:1 ω7c and/or C18:1 ω6c. The predominant respiratory quinone was Q-10. The genomic G + C content was 68.36% based on the whole genome analysis. The average nucleotide identity (≤ 83.5%) and digital DNA-DNA hybridization (≤ 27.3%) values between strain SYSU BS000021T and other members of the genus Methylobacterium were all lower than the threshold values recommended for distinguishing novel prokaryotic species. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain SYSU BS000021T represents a novel species of the genus Methylobacterium, for which the name Methylobacterium nigriterrae sp. nov. is proposed. The type strain of the proposed novel species is SYSU BS000021T (= GDMCC 1.3814 T = KCTC 8051 T).
Collapse
Affiliation(s)
- Le-Bin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Ting OuYang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Pin-Jiao Jin
- Heilongjiang Academy of Black Soil Conservation & Utilization/Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province/Heilongjiang Fertilizer Engineering Research Center, Harbin, 150086, People's Republic of China
| | - Rong-Rong Huang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen-Yi Pan
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jia-Ying Xing
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ting-Ting She
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation & Utilization/Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province/Heilongjiang Fertilizer Engineering Research Center, Harbin, 150086, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
14
|
Lam M, Leung KM, Lai GKK, Leung FCC, Griffin SDJ. Complete genome sequence of Gluconobacter frateurii ML.ISBL3, an endophytic strain isolated from aerial roots of Syngonium podophyllum. Microbiol Resour Announc 2024; 13:e0110623. [PMID: 38470266 PMCID: PMC11008163 DOI: 10.1128/mra.01106-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/02/2024] [Indexed: 03/13/2024] Open
Abstract
The endophytic strain Gluconobacter frateurii ML.ISBL3 was isolated from aerial roots of Syngonium podophyllum in Hong Kong. Its complete genome, established through hybrid assembly, comprises a single chromosome of 3,309,710 bp (56.30% G+C).
Collapse
Affiliation(s)
- M. Lam
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - K. M. Leung
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - G. K. K. Lai
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - F. C. C. Leung
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| | - S. D. J. Griffin
- Shuyuan Molecular Biology Laboratory, The Independent Schools Foundation Academy, Hong Kong SAR, China
| |
Collapse
|
15
|
Sohaib H, Fays M, Khatib A, Rivière J, El Aouad N, Desoignies N. Contribution to the characterization of the seed endophyte microbiome of Argania spinosa across geographical locations in Central Morocco using metagenomic approaches. Front Microbiol 2024; 15:1310395. [PMID: 38601940 PMCID: PMC11005822 DOI: 10.3389/fmicb.2024.1310395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Microbial endophytes are microorganisms that live inside plants, and some of them play important yet understudied roles in plant health, growth, and adaptation to environmental conditions. Their diversity within plants has traditionally been underestimated due to the limitations of culture-dependent techniques. Metagenomic profiling provides a culture-independent approach to characterize entire microbial communities. The argan tree (Argania spinosa) is ecologically and economically important in Morocco, yet its seed endophyte microbiome remains unexplored. This study aimed to compare the bacterial and fungal endophyte communities associated with argan seeds collected from six sites across Morocco using Illumina MiSeq sequencing of the 16S rRNA gene and ITS regions, respectively. Bacterial DNA was extracted from surface-sterilized seeds and amplified using universal primers, while fungal DNA was isolated directly from seeds. Bioinformatics analysis of sequencing data identified taxonomic profiles at the phylum to genus levels. The results indicated that bacterial communities were dominated by the genus Rhodoligotrophos, while fungal communities exhibited varying degrees of dominance between Ascomycota and Basidiomycota depending on site, with Penicillium being the most abundant overall. Distinct site-specific profiles were observed, with Pseudomonas, Bacillus, and Aspergillus present across multiple locations. Alpha diversity indices revealed variation in endophyte richness between seed sources. In conclusion, this first exploration of the argan seed endophyte microbiome demonstrated environmental influence on community structure. While facing limitations due to small sample sizes and lack of ecological metadata, it provides a foundation for future mechanistic investigations into how specific endophyte-host interactions shape argan adaptation across Morocco's diverse landscapes.
Collapse
Affiliation(s)
- Hourfane Sohaib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Morgan Fays
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
| | - Abderrezzak Khatib
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - John Rivière
- Laboratory of Biotechnology and Applied Biology, Haute Ecole Provinciale de Hainaut-Condorcet, Ath, Hainaut, Belgium
| | - Noureddine El Aouad
- Laboratory of Life and Health Sciences, Faculty of Medicine and Pharmacy of Tangier, University Abdelmalek Essaâdi, Tetouan, Morocco
| | - Nicolas Desoignies
- Phytopathology, Microbial and Molecular Farming Lab, Centre D’Etudes et Recherche Appliquée-Haute Ecole Provinciale du Hainaut Condorcet, Ath, Belgium
- University of Liege - Gembloux Agro-Bio Tech, TERRA - Teaching and Research Center, Plant Sciences Axis, Gembloux, Belgium
| |
Collapse
|
16
|
Zhu W, Iavarone AT, Klinman JP. Hydrogen-Deuterium Exchange Mass Spectrometry Identifies Local and Long-Distance Interactions within the Multicomponent Radical SAM Enzyme, PqqE. ACS CENTRAL SCIENCE 2024; 10:251-263. [PMID: 38435514 PMCID: PMC10906245 DOI: 10.1021/acscentsci.3c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024]
Abstract
Interactions among proteins and peptides are essential for many biological activities including the tailoring of peptide substrates to produce natural products. The first step in the production of the bacterial redox cofactor pyrroloquinoline quinone (PQQ) from its peptide precursor is catalyzed by a radical SAM (rSAM) enzyme, PqqE. We describe the use of hydrogen-deuterium exchange mass spectrometry (HDX-MS) to characterize the structure and conformational dynamics in the protein-protein and protein-peptide complexes necessary for PqqE function. HDX-MS-identified hotspots can be discerned in binary and ternary complex structures composed of the peptide PqqA, the peptide-binding chaperone PqqD, and PqqE. Structural conclusions are supported by size-exclusion chromatography coupled to small-angle X-ray scattering (SEC-SAXS). HDX-MS further identifies reciprocal changes upon the binding of substrate peptide and S-adenosylmethionine (SAM) to the PqqE/PqqD complex: long-range conformational alterations have been detected upon the formation of a quaternary complex composed of PqqA/PqqD/PqqE and SAM, spanning nearly 40 Å, from the PqqA binding site in PqqD to the PqqE active site Fe4S4. Interactions among the various regions are concluded to arise from both direct contact and distal communication. The described experimental approach can be readily applied to the investigation of protein conformational communication among a large family of peptide-modifying rSAM enzymes.
Collapse
Affiliation(s)
- Wen Zhu
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
| | - Judith P. Klinman
- California
Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Wang L, Wang J, Yuan J, Tang Z, Wang J, Zhang Y. Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the pqqC- and phoD-Harboring Bacterial Communities. MICROBIAL ECOLOGY 2023; 86:2716-2732. [PMID: 37528183 DOI: 10.1007/s00248-023-02279-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
The pqqC and phoD genes encode pyrroloquinoline quinone synthase and alkaline phosphomonoesterase (ALP), respectively. These genes play a crucial role in regulating the solubilization of inorganic phosphorus (Pi) and the mineralization of organic phosphorus (Po), making them valuable markers for P-mobilizing bacterial. However, there is limited understanding of how the interplay between soil P-mobilizing bacterial communities and abiotic factors influences P transformation and availability in the context of long-term fertilization scenarios. We used real-time polymerase chain reaction and high-throughput sequencing to explore the characteristics of soil P-mobilizing bacterial communities and their relationships with key physicochemical properties and P fractions under long-term fertilization scenarios. In a 38-year fertilization experiment, six fertilization treatments were selected. These treatments were sorted into three groups: the non-P-amended group, including no fertilization and mineral NK fertilizer; the sole mineral-P-amended group, including mineral NP and NPK fertilizer; and the organically amended group, including sole organic fertilizer and organic fertilizer plus mineral NPK fertilizer. The organically amended group significantly increased soil labile P (Ca2-P and enzyme-P) and Olsen-P content and proportion but decreased non-labile P (Ca10-P) proportion compared with the sole mineral-P-amended group, indicating enhanced P availability in the soil. Meanwhile, the organically amended group significantly increased soil ALP activity and pqqC and phoD gene abundances, indicating that organic fertilization promotes the activity and abundance of microorganisms involved in P mobilization processes. Interestingly, the organically amended group dramatically reshaped the community structure of P-mobilizing bacteria and increased the relative abundance of Acidiphilium, Panacagrimonas, Hansschlegelia, and Beijerinckia. These changes had a greater positive impact on ALP activity, labile P, and Olsen-P content compared to the abundance of P-mobilizing genes alone, indicating their importance in driving P mobilization processes. Structural equation modeling indicated that soil organic carbon and Po modulated the relationship between P-mobilizing bacterial communities and labile P and Olsen-P, highlighting the influence of SOC and Po on the functioning of P-mobilizing bacteria and their impact on P availability. Overall, our study demonstrates that organic fertilization has the potential to reshape the structure of P-mobilizing bacterial communities, leading to increased P mobilization and availability in the soil. These findings contribute to our understanding of the mechanisms underlying P cycling in agricultural systems and provide valuable insights for enhancing microbial P mobilization through organic fertilization.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Wang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, Xuzhou, 221131, China
| | - Jie Yuan
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences of Xuhuai District of Jiangsu Province, Xuzhou, 221131, China
| | - Jidong Wang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Yongchun Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Environment, Luhe, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
18
|
Bandyopadhyay NC, Gautam S. Programmed cell death in Xanthomonas axonopodis pv. glycines is associated with modulation of gene expression resulting in altered states of motility, biofilm and virulence. Res Microbiol 2023; 174:104137. [PMID: 37716444 DOI: 10.1016/j.resmic.2023.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
One of the foremost report of apoptosis-like programmed cell death (PCD) came from Xanthomonas axonopodis pv. glycines (Xag), which displayed rapid post-exponential cell death in PCD inducing media (PIM) but not in a non-inducing media (PNIM). The current study aims to decipher for the first time, the advantages of the existence of PCD in this phytopathogenic microorganism. Analysis of RNA-seq under inducing and non-inducing conditions, revealed differential expression of a number of genes related to key physiology of Xag, such as, motility, xanthan biosynthesis and export as well as virulence. A PCD negative mutant Xag M42 displayed diminished virulence and a contrasting transcriptome pattern. In vitro experiments revealed that under PCD inducing condition, Xag produced negligible xanthan gum as well as extracellular amylase, displayed enhanced swarming motility, released copious e-DNA and formed scanty biofilm. Lack of 'diffusible signalling factor' production was eliminated as possible reason for PCD-induction. Altogether, it appears that, in planta existence of the pathogen metabolically resembles PNIM, and on being transferred to PIM, the cells experience oxidative stress and circumvents it by adopting PCD as an altruistic response. Survival of the remaining population is encouraged by upregulating motility, detachment from the fragile biofilm to achieve dispersal.
Collapse
Affiliation(s)
- Nilantana C Bandyopadhyay
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
19
|
Lo SC, Tsai SY, Chang WH, Wu IC, Sou NL, Hung SHW, Chiang EPI, Huang CC. Characterization of the Pyrroloquinoline Quinone Producing Rhodopseudomonas palustris as a Plant Growth-Promoting Bacterium under Photoautotrophic and Photoheterotrophic Culture Conditions. Int J Mol Sci 2023; 24:14080. [PMID: 37762380 PMCID: PMC10531626 DOI: 10.3390/ijms241814080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.
Collapse
Affiliation(s)
- Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Shang-Yieng Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Wei-Hsiang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - I-Chen Wu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
| | - Shih-Hsun Walter Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402202, Taiwan; (N.-L.S.); (E.-P.I.C.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (S.-C.L.); (S.-Y.T.); (W.-H.C.); (I.-C.W.); (S.-H.W.H.)
- Program in Microbial Genomics, National Chung Hsing University, Taichung 402202, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
20
|
Xiao Y, Wu K, Batool SS, Wang Q, Chen H, Zhai X, Yu Z, Huang J. Enzymatic properties of alcohol dehydrogenase PedE_M.s. derived from Methylopila sp. M107 and its broad metal selectivity. Front Microbiol 2023; 14:1191436. [PMID: 37560521 PMCID: PMC10409515 DOI: 10.3389/fmicb.2023.1191436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
As an important metabolic enzyme in methylotrophs, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases play significant roles in the global carbon and nitrogen cycles. In this article, a calcium (Ca2+)-dependent alcohol dehydrogenase PedE_M.s., derived from the methylotroph Methylopila sp. M107 was inserted into the modified vector pCM80 and heterologously expressed in the host Methylorubrum extorquens AM1. Based on sequence analysis, PedE_M.s., a PQQ-dependent dehydrogenase belonging to a methanol/ethanol family, was successfully extracted and purified. Showing by biochemical results, its enzymatic activity was detected as 0.72 U/mg while the Km value was 0.028 mM while employing ethanol as optimal substrate. The activity of PedE_M.s. could be enhanced by the presence of potassium (K+) and calcium (Ca2+), while acetonitrile and certain common detergents have been found to decrease the activity of PedE_M.s.. In addition, its optimum temperature and pH were 30°C and pH 9.0, respectively. Chiefly, as a type of Ca2+-dependent alcohol dehydrogenase, PedE_M.s. maintained 60-80% activity in the presence of 10 mM lanthanides and displayed high affinity for ethanol compared to other PedE-type enzymes. The 3D structure of PedE_M.s. was predicted by AlphaFold, and it had an 8-bladed propeller-like super-barrel. Meanwhile, we could speculate that PedE_M.s. contained the conserved residues Glu213, Asn300, and Asp350 through multiple sequence alignment by Clustal and ESpript. The analysis of enzymatic properties of PedE_M.s. enriches our knowledge of the methanol/ethanol family PQQ-dependent dehydrogenase. This study provides new ideas to broaden the application of alcohol dehydrogenase in alcohol concentration calculation, biosensor preparation, and other industries.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qingqun Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xingyu Zhai
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Sun X, Kong T, Huang D, Chen Z, Kolton M, Yang J, Huang Y, Cao Y, Gao P, Yang N, Li B, Liu H, Sun W. Arsenic (As) oxidation by core endosphere microbiome mediates As speciation in Pteris vittata roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131458. [PMID: 37099912 DOI: 10.1016/j.jhazmat.2023.131458] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Pteris vittata is an arsenic(As)-hyperaccumulator that may be employed in phytoremediation of As-contaminated soils. P. vittata-associated microbiome are adapted to elevated As and may be important for host survival under stresses. Although P. vittata root endophytes could be critical for As biotransformation in planta, their compositions and metabolisms remain elusive. The current study aims to characterize the root endophytic community composition and As-metabolizing potentials in P. vittata. High As(III) oxidase gene abundances and rapid As(III) oxidation activity indicated that As(III) oxidation was the dominant microbial As-biotransformation processes compared to As reduction and methylization in P. vittata roots. Members of Rhizobiales were the core microbiome and the dominant As(III) oxidizers in P. vittata roots. Acquasition of As-metabolising genes, including both As(III) oxidase and As(V) detoxification reductase genes, through horizontal gene transfer was identified in a Saccharimonadaceae genomic assembly, which was another abundant population residing in P. vittata roots. Acquisition of these genes might improve the fitness of Saccharimonadaceae population to elevated As concentrations in P. vittata. Diverse plant growth promoting traits were encoded by the core root microbiome populations Rhizobiales. We propose that microbial As(III) oxidation and plant growth promotion are critical traits for P. vittata survival in hostile As-contaiminated sites.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Max Kolton
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Jinchan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yue Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
22
|
Joshi S, Gangola S, Jaggi V, Sahgal M. Functional characterization and molecular fingerprinting of potential phosphate solubilizing bacterial candidates from Shisham rhizosphere. Sci Rep 2023; 13:7003. [PMID: 37117212 PMCID: PMC10147649 DOI: 10.1038/s41598-023-33217-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
Phosphate solubilizing bacteria (PSB) are important role players in plant growth promotion. In the present study, we aimed to screen the functionally active phosphate solubilizing bacteria (PSB) associated with Dalbergia sissoo Roxb. (Shisham) from different provenances. Screening for phosphate solubilization was done on Pikovskaya's agar, and 18 bacteria positive for the tri-calcium phosphate (Ca3(PO4)2 solubilization showing visible dissolution halo zones were identified. All 18 isolates showed zinc solubilization, indole acetic acid (IAA), siderophore, and hydrogen cyanide (HCN) production. The morphological and biochemical characterization with 16S rDNA gene-based phylogenetic analysis identified bacterial strains as belonging to the genus Pseudomonas, Klebsiella, Streptomyces, Pantoea, Kitasatospora, Micrococcus, and Staphylococcus. Among all the isolates, one of the isolates named L4, from Lacchiwala region was the most efficient P solubilizer with a high P solubilization index (4.75 ± 0.06) and quantitative P solubilization activity (891.38 ± 18.55 μg mL-1). The validation of phosphate solubilization activity of PSB isolates was done by amplification of the Pyrroloquinoline quinone (PQQ) genes, pqqA and pqqC. Based on this study, we have selected the bacterial strains which are efficient phosphate solubilizers and could be economical and eco-friendly in plant growth promotion, disease suppression, as an antioxidant, and for subsequent enhancement of yield.
Collapse
Affiliation(s)
- Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, India
| | - Vandana Jaggi
- Department of Microbiology, GB Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Manvika Sahgal
- Department of Microbiology, GB Pant University of Agriculture and Technology, Pantnagar, 263145, India.
| |
Collapse
|
23
|
Li HP, Han QQ, Liu QM, Gan YN, Rensing C, Rivera WL, Zhao Q, Zhang JL. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiol Res 2023; 272:127375. [PMID: 37058784 DOI: 10.1016/j.micres.2023.127375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Phosphorus (P), an essential macronutrient for all life on Earth, has been shown to be a vital limiting nutrient element for plant growth and yield. P deficiency is a common phenomenon in terrestrial ecosystems across the world. Chemical phosphate fertilizer has traditionally been employed to solve the problem of P deficiency in agricultural production, but its application has been limited by the non-renewability of raw materials and the adverse influence on the ecological health of the environment. Therefore, it is imperative to develop efficient, economical, environmentally friendly and highly stable alternative strategies to meet the plant P demand. Phosphate-solubilizing bacteria (PSB) are able to improve plant productivity by increasing P nutrition. Pathways to fully and effectively use PSB to mobilize unavailable forms of soil P for plants has become a hot research topic in the fields of plant nutrition and ecology. Here, the biogeochemical P cycling in soil systems are summarized, how to make full use of soil legacy P via PSB to alleviate the global P resource shortage are reviewed. We highlight the advances in multi-omics technologies that are helpful for exploring the dynamics of nutrient turnover and the genetic potential of PSB-centered microbial communities. Furthermore, the multiple roles of PSB inoculants in sustainable agricultural practices are analyzed. Finally, we project that new ideas and techniques will be continuously infused into fundamental and applied research to achieve a more integrated understanding of the interactive mechanisms of PSB and rhizosphere microbiota/plant to maximize the efficacy of PSB as P activators.
Collapse
Affiliation(s)
- Hui-Ping Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qing-Qing Han
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiong-Mei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Gan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Windell L Rivera
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, The Philippines
| | - Qi Zhao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jin-Lin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
24
|
Świątczak J, Kalwasińska A, Wojciechowska A, Brzezinska MS. Physiological properties and genomic insights into the plant growth-promoting rhizobacterium Brevibacillus laterosporus K75 isolated from maize rhizosphere. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1432-1441. [PMID: 36181696 DOI: 10.1002/jsfa.12238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/20/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND When looking for a safer alternative to pesticides that are potentially harmful to living organisms, one of the directions worth looking at are plant growth-promoting rhizobacteria. The purpose of the research was a comprehensive characterization of Brevibacillus laterosporus K75, a strain isolated from maize rhizosphere. Many studies have proved B. laterosporus to be a biocontrol agent; however, little is known about B. laterosporus as a plant growth-promoting rhizobacterium. RESULTS Ninety strains were screened for plant growth-promoting activities. Four strains with the best plant growth-promoting traits (Rhodococcus qingshengii K8, Bacillus subtilis subsp. stercoris K73, Brevibacillus laterosporus K75, and Brevibacillus laterosporus K89) were used to research their effect on maize growth. Under sterile conditions, B. laterosporus K75 showed the best stimulatory effect, significantly improving the weight of roots, shoots and leaves, and considerably increasing content of chlorophyll. In unsterilized soil, B. laterosporus K75 significantly improved length of roots and weight of leaves compared to the K73, K89, and untreated control. Moreover, B. laterosporus K75 significantly increased specific leaf area compared to the untreated control and to other inoculant treatments. The genome of B. laterosporus K75 was compared to the recently published B. laterosporus MG64. Genome-mining displayed differences in identified plant growth-promoting genes and biosynthetic gene clusters of secondary metabolites. The B. laterosporus K75 genome possessed additional genes involved in indole-3-acetic acid production and phosphate solubilization that could be attributed to its ability to enhance maize growth. CONCLUSION Our study demonstrated that B. laterosporus K75 is a promising candidate for use in inoculant formulation, effectively facilitating maize growth. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joanna Świątczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Anna Wojciechowska
- Department of Geobotany and Landscape Planning, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
25
|
Adaptive evolutionary strategy coupled with an optimized biosynthesis process for the efficient production of pyrroloquinoline quinone from methanol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:11. [PMID: 36658601 PMCID: PMC9851590 DOI: 10.1186/s13068-023-02261-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Pyrroloquinoline quinone (PQQ), a cofactor for bacterial dehydrogenases, is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. Due to the extremely high cost of chemical synthesis and low yield of microbial synthesis, the election of effective strains and the development of dynamic fermentation strategies for enhancing PQQ production are meaningful movements to meet the large-scale industrial requirements. RESULTS A high-titer PQQ-producing mutant strain, Hyphomicrobium denitrificans FJNU-A26, was obtained by integrating ARTP (atmospheric and room‑temperature plasma) mutagenesis, adaptive laboratory evolution and high-throughput screening strategies. Afterward, the systematic optimization of the fermentation medium was conducted using a one-factor-at-a-time strategy and response surface methodology to increase the PQQ concentration from 1.02 to 1.37 g/L. The transcriptional analysis using qRT-PCR revealed that the expression of genes involved in PQQ biosynthesis were significantly upregulated when the ARTP-ALE-derived mutant was applied. Furthermore, a novel two-stage pH control strategy was introduced to address the inconsistent effects of the pH value on cell growth and PQQ production. These combined strategies led to a 148% increase in the PQQ concentration compared with that of the initial strain FJNU-6, reaching 1.52 g/L with a yield of 40.3 mg/g DCW after 144 h of fed-batch fermentation in a 5-L fermenter. CONCLUSION The characteristics above suggest that FJNU-A26 represents an effective candidate as an industrial PQQ producer, and the integrated strategies can be readily extended to other microorganisms for the large-scale production of PQQ.
Collapse
|
26
|
Girard L, Lood C, De Mot R, van Noort V, Baudart J. Genomic diversity and metabolic potential of marine Pseudomonadaceae. Front Microbiol 2023; 14:1071039. [PMID: 37168120 PMCID: PMC10165715 DOI: 10.3389/fmicb.2023.1071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 05/13/2023] Open
Abstract
Recent changes in the taxonomy of the Pseudomonadaceae family have led to the delineation of three new genera (Atopomonas, Halopseudomonas and Stutzerimonas). However, the genus Pseudomonas remains the most densely populated and displays a broad genetic diversity. Pseudomonas are able to produce a wide variety of secondary metabolites which drives important ecological functions and have a great impact in sustaining their lifestyles. While soilborne Pseudomonas are constantly examined, we currently lack studies aiming to explore the genetic diversity and metabolic potential of marine Pseudomonas spp. In this study, 23 Pseudomonas strains were co-isolated with Vibrio strains from three marine microalgal cultures and rpoD-based phylogeny allowed their assignment to the Pseudomonas oleovorans group (Pseudomonas chengduensis, Pseudomonas toyotomiensis and one new species). We combined whole genome sequencing on three selected strains with an inventory of marine Pseudomonas genomes to assess their phylogenetic assignations and explore their metabolic potential. Our results revealed that most strains are incorrectly assigned at the species level and half of them do not belong to the genus Pseudomonas but instead to the genera Halopseudomonas or Stutzerimonas. We highlight the presence of 26 new species (Halopseudomonas (n = 5), Stutzerimonas (n = 7) and Pseudomonas (n = 14)) and describe one new species, Pseudomonas chaetocerotis sp. nov. (type strain 536T = LMG 31766T = DSM 111343T). We used genome mining to identify numerous BGCs coding for the production of diverse known metabolites (i.e., osmoprotectants, photoprotectants, quorum sensing molecules, siderophores, cyclic lipopeptides) but also unknown metabolites (e.g., ARE, hybrid ARE-DAR, siderophores, orphan NRPS gene clusters) awaiting chemical characterization. Finally, this study underlines that marine environments host a huge diversity of Pseudomonadaceae that can drive the discovery of new secondary metabolites.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Léa Girard,
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Julia Baudart
- Laboratoire de Biodiversité et Biotechnologie Microbiennes, Sorbonne Université, CNRS, Observatoire Océanologique, Banyuls-sur-Mer, France
- *Correspondence: Julia Baudart,
| |
Collapse
|
27
|
Meena M, Mehta T, Nagda A, Yadav G, Sonigra P. PGPR-mediated synthesis and alteration of different secondary metabolites during plant-microbe interactions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:229-255. [DOI: 10.1016/b978-0-323-91875-6.00002-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
28
|
Seshadri R, Roux S, Huber KJ, Wu D, Yu S, Udwary D, Call L, Nayfach S, Hahnke RL, Pukall R, White JR, Varghese NJ, Webb C, Palaniappan K, Reimer LC, Sardà J, Bertsch J, Mukherjee S, Reddy T, Hajek PP, Huntemann M, Chen IMA, Spunde A, Clum A, Shapiro N, Wu ZY, Zhao Z, Zhou Y, Evtushenko L, Thijs S, Stevens V, Eloe-Fadrosh EA, Mouncey NJ, Yoshikuni Y, Whitman WB, Klenk HP, Woyke T, Göker M, Kyrpides NC, Ivanova NN. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. CELL GENOMICS 2022; 2:100213. [PMID: 36778052 PMCID: PMC9903846 DOI: 10.1016/j.xgen.2022.100213] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/19/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
The phylum Actinobacteria includes important human pathogens like Mycobacterium tuberculosis and Corynebacterium diphtheriae and renowned producers of secondary metabolites of commercial interest, yet only a small part of its diversity is represented by sequenced genomes. Here, we present 824 actinobacterial isolate genomes in the context of a phylum-wide analysis of 6,700 genomes including public isolates and metagenome-assembled genomes (MAGs). We estimate that only 30%-50% of projected actinobacterial phylogenetic diversity possesses genomic representation via isolates and MAGs. A comparison of gene functions reveals novel determinants of host-microbe interaction as well as environment-specific adaptations such as potential antimicrobial peptides. We identify plasmids and prophages across isolates and uncover extensive prophage diversity structured mainly by host taxonomy. Analysis of >80,000 biosynthetic gene clusters reveals that horizontal gene transfer and gene loss shape secondary metabolite repertoire across taxa. Our observations illustrate the essential role of and need for high-quality isolate genome sequences.
Collapse
Affiliation(s)
- Rekha Seshadri
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Corresponding author
| | - Simon Roux
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Katharina J. Huber
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dongying Wu
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Sora Yu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dan Udwary
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lee Call
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Stephen Nayfach
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Richard L. Hahnke
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Rüdiger Pukall
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Neha J. Varghese
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Cody Webb
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - Lorenz C. Reimer
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Joaquim Sardà
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jonathon Bertsch
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | | | - T.B.K. Reddy
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Patrick P. Hajek
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Marcel Huntemann
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I-Min A. Chen
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alex Spunde
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Alicia Clum
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Nicole Shapiro
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Zong-Yen Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Beijing, China
| | - Lyudmila Evtushenko
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, All-Russian Collection of Microorganisms (VKM), Pushchino, Russia
| | - Sofie Thijs
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Vincent Stevens
- Center for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Emiley A. Eloe-Fadrosh
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J. Mouncey
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido 060-8589, Japan
| | | | - Hans-Peter Klenk
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany,Corresponding author
| | - Nikos C. Kyrpides
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Natalia N. Ivanova
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,Corresponding author
| |
Collapse
|
29
|
Kamran M, Imran QM, Ahmed MB, Falak N, Khatoon A, Yun BW. Endophyte-Mediated Stress Tolerance in Plants: A Sustainable Strategy to Enhance Resilience and Assist Crop Improvement. Cells 2022; 11:cells11203292. [PMID: 36291157 PMCID: PMC9600683 DOI: 10.3390/cells11203292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biotic and abiotic stresses severely affect agriculture by affecting crop productivity, soil fertility, and health. These stresses may have significant financial repercussions, necessitating a practical, cost-effective, and ecologically friendly approach to lessen their negative impacts on plants. Several agrochemicals, such as fertilizers, pesticides, and insecticides, are used to improve plant health and protection; however, these chemical supplements have serious implications for human health. Plants being sessile cannot move or escape to avoid stress. Therefore, they have evolved to develop highly beneficial interactions with endophytes. The targeted use of beneficial plant endophytes and their role in combating biotic and abiotic stresses are gaining attention. Therefore, it is important to experimentally validate these interactions and determine how they affect plant fitness. This review highlights research that sheds light on how endophytes help plants tolerate biotic and abiotic stresses through plant–symbiont and plant–microbiota interactions. There is a great need to focus research efforts on this vital area to achieve a system-level understanding of plant–microbe interactions that occur naturally.
Collapse
Affiliation(s)
- Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, M310, 35 Stirling Hwy, Perth, WA 6009, Australia
- Correspondence: (M.K.); (B.-W.Y.)
| | - Qari Muhammad Imran
- Department of Medical Biochemistry & Biophysics, Umea University, 90187 Umea, Sweden
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Noreen Falak
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
| | - Amna Khatoon
- Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Division of Plant Biosciences, College of Agriculture and & Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (M.K.); (B.-W.Y.)
| |
Collapse
|
30
|
Sagnon A, Iwasaki S, Tibiri EB, Zongo NA, Compaore E, Bonkoungou IJO, Nakamura S, Traore M, Barro N, Tiendrebeogo F, Sarr PS. Amendment with Burkina Faso phosphate rock-enriched composts alters soil chemical properties and microbial structure, and enhances sorghum agronomic performance. Sci Rep 2022; 12:13945. [PMID: 35978091 PMCID: PMC9386011 DOI: 10.1038/s41598-022-18318-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Low soil available phosphorus (P) severely limits crop production in sub-Saharan Africa. The present study evaluated phosphate rock-enriched composts as locally available low-cost fertilizers for sorghum production. The treatments consisted of sorghum straw, compost (COMP), phosphate rock (BPR), BPR-enriched compost (P-COMP), BPR-rhizosphere soil-enriched compost (P-COMP-SOIL), nitrogen-phosphorus-potassium treatment (NPK, 60–39–25), and control (NK, 60–25). Sorghum straw and compost were applied at 1.34 tons ha−1. N, P, and K in all treatments, excluding the control, were adjusted to 60, 39, and 25 kg ha−1, with urea, BPR, and KCl, respectively. Sorghum vr. kapelga was cultivated and soil samples were collected at the S5, S8, and S9 growth stages. P-COMP-SOIL and NPK yielded better sorghum yields than the other treatments. The rhizosphere soil of P-COMP-SOIL had high abundance of soil bacteria and AMF, and genes involved in P solubilization, such as: acid phosphatase (aphA), phosphonatase (phnX), glucose dehydrogenase (gcd), pyrroloquinoline quinone (pqqE), phosphate-specific transporter (pstS). The superior performance of the P-COMP-SOIL was associated with its higher available P content and microbial abundance. Multivariate analysis also revealed vital contributions of N, carbon, and exchangeable cations to sorghum growth. Soils could be amended with phosphate rock-rhizosphere soil-enriched composts, as an alternative to chemical fertilizers.
Collapse
Affiliation(s)
- Adama Sagnon
- Laboratory of Molecular Biology, Epidemiology and Monitoring of Bacteria and Virus Transmitted by Food (LaBESTA), University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso.,Laboratory of Virology and Plant Biotechnology, Institute of Environment and Agricultural Research (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Shinya Iwasaki
- Rural Development Division, Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | - Ezechiel Bionimian Tibiri
- Laboratory of Virology and Plant Biotechnology, Institute of Environment and Agricultural Research (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nongma Armel Zongo
- Department of Natural Resources Management and Production Systems, Institute of Environment and Agricultural Research (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Emmanuel Compaore
- Department of Natural Resources Management and Production Systems, Institute of Environment and Agricultural Research (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Isidore Juste O Bonkoungou
- Laboratory of Molecular Biology, Epidemiology and Monitoring of Bacteria and Virus Transmitted by Food (LaBESTA), University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Satoshi Nakamura
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan
| | - Mamoudou Traore
- Department of Natural Resources Management and Production Systems, Institute of Environment and Agricultural Research (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Nicolas Barro
- Laboratory of Molecular Biology, Epidemiology and Monitoring of Bacteria and Virus Transmitted by Food (LaBESTA), University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Fidele Tiendrebeogo
- Laboratory of Virology and Plant Biotechnology, Institute of Environment and Agricultural Research (INERA), 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Papa Saliou Sarr
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, 305-8686, Japan.
| |
Collapse
|
31
|
Díaz M, Bach T, González Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008 T. FRONTIERS IN PLANT SCIENCE 2022; 13:894985. [PMID: 35968096 PMCID: PMC9369656 DOI: 10.3389/fpls.2022.894985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. strain 1008 was isolated from the rhizosphere of field grown wheat plants at the tillering stage in an agricultural plot near Pergamino city, Argentina. Based on its in vitro phosphate solubilizing capacity and the production of IAA, strain 1008 was formulated as an inoculant for bacterization of wheat seeds and subjected to multiple field assays within the period 2010-2017. Pseudomonas sp. strain 1008 showed a robust positive impact on the grain yield (+8% on average) across a number of campaigns, soil properties, seed genotypes, and with no significant influence of the simultaneous seed treatment with a fungicide, strongly supporting the use of this biostimulant bacterium as an agricultural input for promoting the yield of wheat. Full genome sequencing revealed that strain 1008 has the capacity to access a number of sources of inorganic and organic phosphorus, to compete for iron scavenging, to produce auxin, 2,3-butanediol and acetoin, and to metabolize GABA. Additionally, the genome of strain 1008 harbors several loci related to rhizosphere competitiveness, but it is devoid of biosynthetic gene clusters for production of typical secondary metabolites of biocontrol representatives of the Pseudomonas genus. Finally, the phylogenomic, phenotypic, and chemotaxonomic comparative analysis of strain 1008 with related taxa strongly suggests that this wheat rhizospheric biostimulant isolate is a representative of a novel species within the genus Pseudomonas, for which the name Pseudomonas pergaminensis sp. nov. (type strain 1008T = DSM 113453T = ATCC TSD-287T) is proposed.
Collapse
Affiliation(s)
- Marisa Díaz
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Teresa Bach
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Gustavo González Anta
- Escuela de Ciencias Agrarias, Exactas y Naturales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Departamento de Ciencias Naturales y Exactas, Universidad Nacional de San Antonio de Areco (UNSAdA), Buenos Aires, Argentina
- Indrasa Biotecnología S.A., Córdoba, Argentina
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | | | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| |
Collapse
|
32
|
Microbiome engineering for sustainable agriculture: using synthetic biology to enhance nitrogen metabolism in plant-associated microbes. Curr Opin Microbiol 2022; 68:102172. [PMID: 35717707 DOI: 10.1016/j.mib.2022.102172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Plants benefit from symbiotic relationships with their microbiomes. Modifying these microbiomes to further promote plant growth and improve stress tolerance in crops is a promising strategy. However, such efforts have had limited success, perhaps because the original microbiomes quickly re-establish. Since the complex biological networks involved are little understood, progress through conventional means is time-consuming. Synthetic biology, with its practical successes in multiple industries, could speed up this research considerably. Some fascinating candidates for production by synthetic microbiomes are organic nitrogen metabolites and related pyridoxal-5'-phosphate-dependent enzymes, which have pivotal roles in microbe-microbe and plant-microbe interactions. This review summarizes recent studies of these metabolites and enzymes and discusses prospective synthetic biology platforms for sustainable agriculture.
Collapse
|
33
|
Sequential uptake of aldoses over fructose and enhanced phosphate solubilization in Rhizobium sp. RM. Appl Microbiol Biotechnol 2022; 106:4251-4268. [DOI: 10.1007/s00253-022-11997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
34
|
Genome mining of Burkholderia ambifaria strain T16, a rhizobacterium able to produce antimicrobial compounds and degrade the mycotoxin fusaric acid. World J Microbiol Biotechnol 2022; 38:114. [PMID: 35578144 DOI: 10.1007/s11274-022-03299-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.
Collapse
|
35
|
Xu S, Zhao Y, Peng Y, Shi Y, Xie X, Chai A, Li B, Li L. Comparative Genomics Assisted Functional Characterization of Rahnella aceris ZF458 as a Novel Plant Growth Promoting Rhizobacterium. Front Microbiol 2022; 13:850084. [PMID: 35444623 PMCID: PMC9015054 DOI: 10.3389/fmicb.2022.850084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Many Rahnella strains have been widely described as plant growth-promoting rhizobacteria with the potential to benefit plant growth and protect plants from pathogens. R. aceris ZF458 is a beneficial plant bacterium isolated from swamp soil with the potential for biocontrol. Strain ZF458 has shown broad-spectrum antagonistic activities against a variety of plant pathogens and exhibited a dramatic effect on controlling Agrobacterium tumefaciens in sunflowers. The R. aceris ZF458 genome sequence contained a 4,861,340-bp circular chromosome and two plasmids, with an average G + C content of 52.20%. Phylogenetic analysis demonstrated that R. aceris ZF458 was closely related to R. aceris SAP-19. Genome annotation and comparative genomics identified the conservation and specificity of large numbers of genes associated with nitrogen fixation, plant growth hormone production, organic acid biosynthesis and pyrroloquinoline quinone production that specific to benefiting plants in strain ZF458. In addition, numerous conserved genes associated with environmental adaption, including the bacterial secretion system, selenium metabolism, two-component system, flagella biosynthesis, chemotaxis, and acid resistance, were also identified in the ZF458 genome. Overall, this was the first study to systematically analyze the genes linked with plant growth promotion and environmental adaption in R. aceris. The aim of this study was to derive genomic information that would provide an in-depth insight of the mechanisms of plant growth-promoting rhizobacteria, and could be further exploited to improve the application of R. aceris ZF458 in the agriculture field.
Collapse
Affiliation(s)
- Shuai Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yurong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Good NM, Lee HD, Hawker ER, Su MZ, Gilad AA, Martinez-Gomez NC. Hyperaccumulation of Gadolinium by Methylorubrum extorquens AM1 Reveals Impacts of Lanthanides on Cellular Processes Beyond Methylotrophy. Front Microbiol 2022; 13:820327. [PMID: 35369483 PMCID: PMC8969499 DOI: 10.3389/fmicb.2022.820327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Lanthanides (Ln) are a new group of life metals, and many questions remain regarding how they are acquired and used in biology. Methylotrophic bacteria can acquire, transport, biomineralize, and use Ln as part of a cofactor complex with pyrroloquinoline quinone (PQQ) in alcohol dehydrogenases. For most methylotrophic bacteria use is restricted to the light Ln, which range from lanthanum to samarium (atomic numbers 57–62). Understanding how the cell differentiates between light and heavy Ln, and the impacts of these metals on the metabolic network, will advance the field of Ln biochemistry and give insights into enzyme catalysis, stress homeostasis, and metal biomineralization and compartmentalization. We report robust methanol growth with the heavy Ln gadolinium by a genetic variant of the model methylotrophic bacterium Methylorubrum extorquens AM1, named evo-HLn, for “evolved for Heavy Lanthanides.” A non-synonymous single nucleotide polymorphism in a cytosolic hybrid histidine kinase/response regulator allowed for sweeping transcriptional alterations to heavy metal stress response, methanol oxidation, and central metabolism. Increased expression of genes for Ln acquisition and uptake, production of the Ln-chelating lanthanophore, PQQ biosynthesis, and phosphate transport and metabolism resulted in gadolinium hyperaccumulation of 36-fold with a trade-off for light Ln accumulation. Gadolinium was hyperaccumulated in an enlarged acidocalcisome-like compartment. This is the first evidence of a bacterial intracellular Ln-containing compartment that we name the “lanthasome.” Carotenoid and toblerol biosynthesis were also upregulated. Due to its unique capabilities, evo-HLn can be used to further magnetic resonance imaging (MRI) and bioremediation technologies. In this regard, we show that gadolinium hyperaccumulation was sufficient to produce MRI contrast in whole cells, and that evo-HLn was able to readily acquire the metal from the MRI contrast agent gadopentetic acid. Finally, hyperaccumulation of gadolinium, differential uptake of light and heavy Ln, increased PQQ levels, and phosphate transport provide new insights into strategies for Ln recovery.
Collapse
Affiliation(s)
- Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Division of Synthetic Biology, The Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
| | - Emily R. Hawker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Morgan Z. Su
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Division of Synthetic Biology, The Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - N. Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: N. Cecilia Martinez-Gomez,
| |
Collapse
|
37
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
38
|
Wang L, Liu C, Li L, Wang X, Sun R, Zhou M, Wang H. Visible‐Light‐Promoted
[3 + 2] Cycloaddition of
2
H
‐Azirines
with Quinones: Access to Substituted Benzo[
f
]isoindole‐4,9‐diones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lijia Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Chuang Liu
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Lei Li
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Xin Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ran Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - He Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| |
Collapse
|
39
|
Pacheco-Moreno A, Stefanato FL, Ford JJ, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon AD, Ambrosetti L, Nepogodiev SA, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG, Truman AW. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021; 10:71900. [PMID: 34792466 PMCID: PMC8719888 DOI: 10.7554/elife.71900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs. Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques – for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.
Collapse
Affiliation(s)
- Alba Pacheco-Moreno
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Christine Trippel
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Simon Uszkoreit
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Laura Ferrafiat
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Lucia Grenga
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Ruth Dickens
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Nathan Kelly
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alexander Dh Kingdon
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Liana Ambrosetti
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Sergey A Nepogodiev
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Kim C Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | - Jacob G Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
40
|
Wang A, Shi K, Ning D, Cheng H, Wang H, Liu W, Gao S, Li Z, Han J, Liang B, Zhou J. Electrical selection for planktonic sludge microbial community function and assembly. WATER RESEARCH 2021; 206:117744. [PMID: 34653795 DOI: 10.1016/j.watres.2021.117744] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Electrostimulated hydrolysis acidification (eHA) has been used as an efficient biological pre-treatment of refractory industrial wastewater. However, the effects of electrostimulation on the function and assembly of planktonic anaerobic sludge microbial communities are poorly understood. Using 16S rRNA gene and metagenomic sequencing, we investigated planktonic sludge microbial community structure, composition, function, assembly, and microbial interactions in response to electrostimulation. Compared with a conventional hydrolysis acidification (HA) reactor, the planktonic sludge microbial communities selected by electrostimulation promoted biotransformation of the azo dye Alizarin Yellow R. The taxonomic and functional structure and composition were significantly shifted upon electrostimulation with azo dyes degraders (e.g. Acinetobacter and Dechloromonas) and electroactive bacteria (e.g. Pseudomonas) being enriched. More microbial interactions between fermenters and decolorizing and electroactive bacteria, as well as fewer interactions between different fermenters evolved in the eHA microbial communities. Moreover, the decolorizing bacteria were linked to the higher abundance of genes encoding for azo- and nitro-reductases and redox mediator (e.g. ubiquinone) biosynthesis involved in the transformation of azo dye. Microbial community assembly was more driven by deterministic processes upon electrostimulation. This study offers new insights into the effects of electrostimulation on planktonic sludge microbial community function and assembly, and provides a promising strategy for the manipulation of anaerobic sludge microbiomes in HA engineering systems.
Collapse
Affiliation(s)
- Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Haoyi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hongcheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
41
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
42
|
Hassen AI, Khambani LS, Swanevelder ZH, Mtsweni NP, Bopape FL, van Vuuren A, van der Linde EJ, Morey L. Elucidating key plant growth-promoting (PGPR) traits in Burkholderia sp. Nafp2/4-1b (=SARCC-3049) using gnotobiotic assays and whole-genome-sequence analysis. Lett Appl Microbiol 2021; 73:658-671. [PMID: 34426983 DOI: 10.1111/lam.13556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022]
Abstract
Burkholderia sp. Nafp2/4-1b (=SARCC-3049) is a plant growth-promoting rhizobacteria (PGPR) initially isolated from the rhizosphere of pristine grassland in South Africa, and its ability to enhance growth was previously evaluated on maize (Zea mays L.). Here, the bacterium was tested with the aim of investigating its role in improving the nodulation and growth of the forage legume lucerne (Medicago sativa L.) when it is co-inoculated with the rhizobial symbionts of this legume in the glasshouse. When the co-inoculation resulted in a statistically significant (P = 0·05) increase in the number of nodules and improved plant biomass compared with single inoculation, we sequenced and analysed its genome to gain a better understanding of the genetic determinants responsible for the observed PGPR traits. The Illumina HiSeq 2500-sequenced genome resulted in 92 scaffolds, with an N50 of 322 407 bp, a total draft genome size of 7 788 045 bp and GC content of 66·2%. Analysis of the genome sequence confirmed the presence of a number of essential genes that code for various PGPR traits. The main plant beneficial genes associated with PGPR traits in Burkholderia sp. Nafp2/4-1b include pyoverdine siderophores biosynthesis gene (PvdF); acdS that codes for 1-aminocyclopropane-1-carboxylate (ACC) deaminase; the tryptophan synthase genes involved in auxin biosynthesis (TSA1, TSB1) and the pqqABCDE operon related to phosphate solubilization. This study generated valuable information on the potential of the PGPR Burkholderia sp. strain Nafp2/4-1b as an effective commercial inoculant, which warrants further formulation and field application studies before developing it into a low cost, environmentally safe and effective biofertilizer.
Collapse
Affiliation(s)
- A I Hassen
- Agricultural Research Council, Plant Health and Protection, Pretoria, Queenswood, South Africa
| | - L S Khambani
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Z H Swanevelder
- Agricultural Research Council, Biotechnology Platform, Onderstepoort, South Africa
| | - N P Mtsweni
- Agricultural Research Council, Plant Health and Protection, Pretoria, Queenswood, South Africa
| | - F L Bopape
- Agricultural Research Council, Plant Health and Protection, Pretoria, Queenswood, South Africa
| | - A van Vuuren
- Agricultural Research Council, Plant Health and Protection, Pretoria, Queenswood, South Africa
| | - E J van der Linde
- Agricultural Research Council, Plant Health and Protection, Pretoria, Queenswood, South Africa
| | - L Morey
- ARC-Biometry, Central Office, Pretoria, South Africa
| |
Collapse
|
43
|
Berrios L. Complete Genome Sequence of the Plant-Growth-Promoting Bacterium Caulobacter segnis CBR1. Curr Microbiol 2021; 78:2935-2942. [PMID: 34047832 DOI: 10.1007/s00284-021-02548-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022]
Abstract
Genomic sequencing has vastly expedited our understanding of bacterial functions. However, the genomes of many plant-growth-promoting bacteria (PGPB) have yet to be sequenced and contextualized. To this end, I report the sequenced genome of a PGPB-Caulobacter segnis CBR1-and contextualize its genomic features with the genomic features of sequenced Caulobacter strains. Moreover, I demonstrate that the CBR1 genome harbors genomic features that have been shown to be necessary for select Caulobacter strains to enhance the growth and development of Arabidopsis plants. Together, these findings will help guide future investigations that seek to understand the molecular factors undergirding the positive interactions between plants and microbes.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
44
|
Good NM, Martinez-Gomez NC. Expression, purification and testing of lanthanide-dependent enzymes in Methylorubrum extorquens AM1. Methods Enzymol 2021; 650:97-118. [PMID: 33867027 DOI: 10.1016/bs.mie.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With mounting evidence of the importance of lanthanide metals in biology and among diverse bacterial phyla, a platform for high-throughput microbial growth for expression and purification of lanthanide-dependent enzymes is increasingly important. Presented in this chapter is a stream-lined approach for growth of the model methylotrophic bacterium Methylorubrum extorquens AM1 for the expression of lanthanide-dependent enzymes. Growth is optimized for both high-throughput phenotypic characterization facilitating in vivo studies, as well as for scaled-up batch cultivation for enzyme purification allowing for in vitro enzymatic studies. Both approaches have been shown to be important to understanding the function and structure of these enzymes. Expression systems have been designed for production of enzymes with and without lanthanide metals, allowing for detection of lanthanide dependence. The protocol described herein is expected to accelerate the discovery of novel lanthanide-dependent enzymes and our understanding of the role of these metals in the greater biological world.
Collapse
Affiliation(s)
- Nathan M Good
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - N Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
45
|
GENOME ANALYSIS OF Pseudomonas brassicacearum S-1 – AN ANTAGONIST OF CROP PATHOGENS. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The strain Pseudomonas brassicacearum S-1 is the basis of the biopesticide “Ecogreen”, which is used to control pathogens infecting vegetable and green spicy crops in small-scale hydroponics. Aim. The purpose of this work was to sequence and analyze the nucleotide sequence of the genome of strain P. brassicacearum S-1 (GenBank accession number CP045701). Methods. Whole-genome sequencing was performed by both MiSeq (Illuminа) and MinION (Oxford Nanopore). Analysis of the genome sequence was performed with a number of bioinformatics programs. Results. The genome of the P. brassicacearum S-1 strain comprising a single circular 6 577 561-bp chromosome with GC content of 60.8 %. Genome analysis revealed genes that constitute valuable biotechnological potential of the S-1 strain and determine synthesis of a wide range of secondary metabolites. Moreover, mobile genetic elements, prophages and short repetitive sequences were identified in the S-1 genome. Conclusions. Detected genetic determinants, which are responsible for the synthesis of practically valuable compounds, indicate a significant potential of the P. brassicacearum S-1 strain as a biocontrol agent.
Collapse
|
46
|
Pahlavan Yali M, Hajmalek M. Interactions Between Brassicae napus and Pseudomonas putida (Strain ATCC12633) and Characterization of Volatile Organic Compounds Produced by the Bacterium. Curr Microbiol 2021; 78:679-687. [PMID: 33403487 DOI: 10.1007/s00284-020-02335-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
Brassica napus L. is a main oilseed crop cultivated around the world. Plant growth-promoting rhizobacteria (PGPR) are generally applied to a wide range of agricultural crops for the growth enhancement. In this study, an I-plate technique was used to investigate the plant growth-promoting activity of Pseudomonas putida (strain ATCC12633) on B. napus plants. The volatile organic compounds (VOCs) produced by P. putida were determined by gas chromatography-mass spectrometric (GC-MS) analysis. Furthermore, P. putida were evaluated for its efficacy to induce resistance-related enzymes like peroxidase (POD), phenylalanine ammonia-lyase (PAL), catalase (CAT), and other biochemical compounds such as proline (Pro) and hydrogen peroxide (H2O2) in B. napus plants. According to the results, P. putida significantly increased the growth of B. napus compared to control. The major VOCs released by P. putida were 2-Butynedioic acid, dimethyl ester, Dimethyl ester of 4,7-dimethylnaphthalene-1,2-dicarboxylic acid, N-[3-Methylaminopropyl]aziridine, Cyclododecane, and Hexadecanoic acid. B. napus seeds treatment with P. putida caused enhanced activities of POD, PAL, CAT, Pro, and H2O2 compared to control. So, the results of the present study showed that inoculation of B. napus with P. putida could serve as a useful tool for promoting the plant growth and inducing systemic resistance.
Collapse
Affiliation(s)
- Maryam Pahlavan Yali
- Faculty of Agriculture, Department of Plant Protection, Shahid Bahonar University, Kerman, Iran.
| | - Maryam Hajmalek
- Faculty of Agriculture, Department of Plant Protection, Tehran University, Tehran, Iran
| |
Collapse
|
47
|
Choudhary P, Bhowmik A, Chakdar H, Khan MA, Selvaraj C, Singh SK, Murugan K, Kumar S, Saxena AK. Understanding the biological role of PqqB in Pseudomonas stutzeri using molecular dynamics simulation approach. J Biomol Struct Dyn 2020; 40:4237-4249. [PMID: 33287678 DOI: 10.1080/07391102.2020.1854860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phosphate solubilization is an important and widely studied plant growth promoting trait exhibited by many bacteria. Pyrroloquinoline quinone (PQQ), a redox cofactor of methanol and glucose dehydrogenases has been well established as essential for phosphate solubilization. PQQ operon has been well studied in growth promoting rhizobacteria like Pseudomonas spp., Gluconobacter oxydans, Klebsiella pneumoniae, etc. However, the role of PqqB is quite ambiguous as its functional role has been contradicted in many studies. In the present study, we selected Pseudomonas stutzeri - a well-known P solubilizing bacterium as a representative species of the Pseudomonas genus on the basis of phylogenetic and statistical analyses of PqqB proteins. A 3 D model was generated for this protein. Docking of PqqB with PQQ showed good interaction with a theoretical binding affinity of -7.4 kcal/mol. On the other hand, docking of PqqC with 3a-(2-amino-2-carboxy-ethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydro-quinoline-7,9-dicarboxylic acid (AHQQ, immediate precursor of PQQ) showed strong interaction (-10.4 kcal/mol) but the same was low with PQQ (-6.4 kcal/mol). Molecular dynamic simulation of both the complexes showed stable conformation. The binding energy of PqqB-PQQ complex (-182.710 ± 16.585 kJ/mol) was greater than PqqC-PQQ complex (-166.114 ± 12.027 kJ/mol). The results clearly indicated that kinetically there is a possibility that after cyclization of AHQQ to PQQ by PqqC, PQQ can be taken up by PqqB and transported to periplasm for the oxidation of glucose. To the best of our knowledge, this is the first attempt to understand the biological role of PqqB on the basis of molecular interactions and dynamics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prassan Choudhary
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, India
| | - Arpan Bhowmik
- ICAR-Indian Agricultural Statistics Research Institute (IASRI), New Delhi, India
| | - Hillol Chakdar
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, India
| | | | | | | | - Kumar Murugan
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, India
| | - Sunil Kumar
- Centre for Agricultural Bioinformatics (CABIN), ICAR - Indian Agricultural Statistics Research Institute (IASRI), New Delhi, India
| | - Anil Kumar Saxena
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, Mau Nath Bhanjan, India
| |
Collapse
|
48
|
Gao L, Wu X, Xia X, Jin Z. Fine-tuning ethanol oxidation pathway enzymes and cofactor PQQ coordinates the conflict between fitness and acetic acid production by Acetobacter pasteurianus. Microb Biotechnol 2020; 14:643-655. [PMID: 33174682 PMCID: PMC7936290 DOI: 10.1111/1751-7915.13703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/23/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022] Open
Abstract
The very high concentrations required for industrial production of free acetic acid create toxicity and low pH values, which usually conflict with the host cell growth, leading to a poor productivity. Achieving a balance between cell fitness and product synthesis is the key challenge to improving acetic acid production efficiency in metabolic engineering. Here, we show that the synergistic regulation of alcohol/aldehyde dehydrogenase expression and cofactor PQQ level could not only efficiently relieve conflict between increased acetic acid production and compromised cell fitness, but also greatly enhance acetic acid tolerance of Acetobacter pasteurianus to a high initial concentration (3% v/v) of acetic acid. Combinatorial expression of adhA and pqqABCDE greatly shortens the duration of starting‐up process from 116 to 99 h, leading to a yield of 69 g l‐1 acetic acid in semi‐continuous fermentation. As a final result, average acetic acid productivity has been raised to 0.99 g l‐1 h‐1, which was 32% higher than the parental A. pasteurianus. This study is of great significance for decreasing cost of semi‐continuous fermentation for producing high‐strength acetic acid industrially. We envisioned that this strategy will be useful for production of many other desired organic acids, especially those involving cofactor reactions.
Collapse
Affiliation(s)
- Ling Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xiaodan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaole Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
49
|
Efficient Optimization of Gluconobacter oxydans Based on Protein Scaffold-Trimeric CutA to Enhance the Chemical Structure Stability of Enzymes for the Direct Production of 2-Keto-L-gulonic Acid. J CHEM-NY 2020. [DOI: 10.1155/2020/5429409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
2-Keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C, is produced by a two-step fermentation route from D-sorbitol in industry. However, this route is a complicated mix-culture system which involves three bacteria. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. The one-step fermentation of 2-keto-L-gulonic acid (2-KLG) has been achieved in our previous study; 32.4 g/L of 2-KLG production was obtained by the one-step strain G. oxydans/pGUC-tufB-sdh-GGGGS-sndh after 168 h. In this study, L-sorbose dehydrogenase (SDH) and L-sorbosone dehydrogenase (SNDH) were expressed in G. oxydans after the codon optimization. Furthermore, the trimeric protein CutA was used to improve the chemical structure stability of SDH and SNDH. The recombinant strain G. oxydans/pGUC-tufB-SH3-sdh-GGGGS-sndh-tufB-SH3lig-(GGGGS)2-cutA produced 40.3 g/L of 2-KLG after 168 h. In addition, the expression levels of the cofactor PQQ were enhanced to further improve 2-KLG production. With the stepwise metabolic engineering of G. oxydans, the final 2-KLG production was improved to 42.6 g/L. The efficient one-step production of 2-KLG was achieved, and the final one-step industrial-scale production of 2-KLG is drawing near.
Collapse
|
50
|
Geetha Thanuja K, Annadurai B, Thankappan S, Uthandi S. Non-rhizobial endophytic (NRE) yeasts assist nodulation of Rhizobium in root nodules of blackgram (Vigna mungo L.). Arch Microbiol 2020; 202:2739-2749. [PMID: 32737540 DOI: 10.1007/s00203-020-01983-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The signal orchestration between legumes and the rhizobia attribute to symbiotic nitrogen fixation through nodule formation. Root nodules serve as a nutrient-rich reservoir and harbor diverse microbial communities. However, the existence of non-rhizobial endophytes (NRE) and their role inside the root nodules are being explored; there is no evidence on yeast microflora inhabiting nodule niche. This study focused on unraveling the presence of yeast in the root nodules and their possible function in either nodulation or signal exchange. From the root nodules of blackgram, two yeast strains were isolated and identified as Candida glabrata VYP1 and Candida tropicalis VYW1 based on 18S rRNA gene sequencing and phylogeny. These strains possessed plant growth-promoting traits viz., IAA, ACC deaminase, siderophore, ammonia, and polyamine production. The functional capacity of endophytic yeast strains, and their interaction with Rhizobium sp. was further unveiled via profiling volatile organic compounds (VOC). Among the VOCs, α-glucopyranoside and pyrroloquinoline pitches a pivotal role in activating lectin pathways and phosphorous metabolism. Further, lectin pathways are crucial for nodulating bacterium, and our study showed that these endophytic yeasts assist nodulation by Rhizobium sp. via activating the nod factors. The plant growth-promoting traits of NRE yeast strains coupled with their metabolite production, could recruit them as potential drivers in the plant-microbe interaction.
Collapse
Affiliation(s)
- Kalyanasundaram Geetha Thanuja
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Brundha Annadurai
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Sugitha Thankappan
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| |
Collapse
|