1
|
Chen X, Zhao C, Yang S, Yang Y, Wang Y, Zhang R, Wang K, Qian J, Long L. In Situ Selective Determination of Cysteine in Crops Employing a Novel Colorimetric and NIR-Emitting Ratiometric Fluorescent Probe along with a Smartphone-Assisted Portable Detection Device. Anal Chem 2025; 97:9291-9301. [PMID: 40270116 DOI: 10.1021/acs.analchem.4c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cysteine (Cys) is the first organic sulfur nutrient produced by crops. There is an urgent need to construct a reliable analytical method to quantitatively detect Cys in crops. Herein, a colorimetric and NIR-emitting ratiometric fluorescent probe for in situ quantitative detection of Cys in crops has been developed. The probe presented highly specific response to Cys over other biothiols including Hcy and GSH. The fluorescence ratios (I545/I655) exhibited a linearity with Cys concentration in the range of 0.113-300 μM, and the detection limit was measured to be 0.034 μM (S/N = 3). Importantly, the specific sensing reaction between the probe and Cys is achieved through a unique two-step recognition process. The probe was employed to detect Cys in living cells through fluorescence imaging. Additionally, alterations in Cys levels within Gynura cusimbua leaves, triggered by atmospheric H2S, have been monitored. Furthermore, the probe has been utilized to trace changes in the Cys concentration in G. cusimbua roots under external Cd stress. Notably, to facilitate in situ quantitative detection of Cys in crops, a smartphone-assisted portable detection device was made up. The probe and portable detection device were successfully employed for in situ quantitative detection of Cys in cabbage and apple.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
- College of Food Science and Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, P. R. China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 233100, Anhui, P. R. China
| | - Chenglu Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Sanxiu Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Yunfei Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Yuqing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Rumeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
2
|
Tian T, Zhu J, Li Z, Wang W, Bao M, Qiu X, Yao P, Bi Z, Sun C, Li Y, Liu Z, Liu Y. Comprehensive Analysis of the OASTL Gene Family in Potato ( Solanum tuberosum L.) and Its Expression Under Abiotic Stress. Int J Mol Sci 2024; 25:13170. [PMID: 39684880 DOI: 10.3390/ijms252313170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
O-acetylserine (thiol) lyase is a pivotal enzyme in plant cysteine biosynthesis, which is crucial for promoting plant growth, development, and resisting abiotic stress. However, the related studies on the potato OASTL gene family (StOASTL) have not been reported. In the present study, we identified 11 members of the StOASTL gene family, conducting a thorough analysis encompassing chromosome distribution, protein physicochemical properties, gene structure, protein-conserved motifs, and gene replication events. Phylogenetic scrutiny delineated these 11 StOASTLs into five distinct subfamilies. Using RNA-seq from the Potato Genome Sequencing Consortium (PGSC), we investigated the expression profile of StOASTLs in different tissues of DM (double-monoploid) potato and under abiotic/biotic stress, hormone treatment, and biostimulant treatment. The results showed that one of the StOASTLs (Soltu09G024390) was differentially expressed under different abiotic stresses and hormone treatments. Our findings showcased the differential response of one StOASTL (Soltu09G024390) to a spectrum of abiotic stresses and hormone treatments. Soltu09G024390 was earmarked as a candidate gene and successfully cloned. Functional validation through yeast stress assays demonstrated that the heterologous expression of Soltu09G024390 bolstered yeast tolerance to salt and cadmium stresses. This study provides a theoretical basis for revealing the role of the StOASTL family in potato response to abiotic stress and valuable insights for further study of the biological functions of StOASTL.
Collapse
Affiliation(s)
- Ting Tian
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Weilu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Minmin Bao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoqiang Qiu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Liu T, Chen H, Luo S, Xue S. Hydrogen sulphide alleviates root growth inhibition induced by phosphate starvation. PLANT, CELL & ENVIRONMENT 2024; 47:5265-5279. [PMID: 39175420 DOI: 10.1111/pce.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Phosphorus (P) has crucial roles in plant growth and development. Hydrogen sulphide (H2S) has multiple functions in plants, particularly having the ability to promote tolerance to a variety of adversity stresses. However, it is unclear whether H2S has a function when plants suffer Pi-deficiency stress. DES1, encoding L-cysteine desulfhydrase1, is a crucial source of H2S in Arabidopsis thaliana by catalysing the substrate L-cysteine. Under phosphate starvation, the des1 mutant had a significantly shorter primary root length than the wild-type Col-0, and exogenous application of H2S donor NaHS could compensate for the root growth-sensitive phenotype. In contrast, the transgenic lines DES1ox overexpressing DES1 exhibited less sensitivity to phosphate starvation in terms of longer roots compared to the Col-0. These results demonstrate that H2S is involved in the regulation of Arabidopsis root growth under phosphate starvation. Moreover, using quantitative real-time polymerase chain reaction experiments to analyse the changes in genes induced by phosphate starvation in des1 mutant and Col-0, we screened to find that the expression of the Sulfoquinovosyl diacylglycerol 1 (SQD1) gene was significantly downregulated in the des1 mutant. Consistently, exogenous H2S significantly promoted SQD1 expression levels in roots of Col-0. Taken together, we demonstrate that DES1-mediated H2S participates in alleviating root growth inhibition by promoting the expression of SQD1 under Pi starvation.
Collapse
Affiliation(s)
- Tong Liu
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sheng Luo
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Wang X, Liu C, Li T, Zhou F, Sun H, Li F, Ma Y, Jia H, Zhang X, Shi W, Gong C, Li J. Hydrogen sulfide antagonizes cytokinin to change root system architecture through persulfidation of CKX2 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:1377-1390. [PMID: 39279035 DOI: 10.1111/nph.20122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule, which has been shown to play an important role in plant growth and development by coupling with various phytohormones. However, the relationship between H2S and cytokinin (CTK) and the mechanisms by which H2S and CTK affect root growth remain poorly understood. Endogenous CTK was analyzed by UHPLC-ESI-MS/MS. Persulfidation of cytokinin oxidase/dehydrogenases (CKXs) was analyzed by mass spectrometry (MS). ckx2/CKX2wild-type (WT), OE CKX2 and ckx2/CKX2Cys(C)62alanine(A) transgenic lines were isolated with the ckx2 background. H2S is linked to CTK content by CKX2, which regulates root system architecture (RSA). Persulfidation at cysteine (Cys)62 residue of CKX2 enhances CKX2 activity, resulting in reduced CTK content. We utilized 35S-LCD/oasa1 transgenic lines to investigate the effect of endogenous H2S on RSA, indicating that H2S reduces the gravitropic set-point angle (GSA), shortens root hairs, and increases the number of lateral roots (LRs). The persulfidation of CKX2Cys62 changes the elongation of cells on the upper and lower flanks of LR elongation zone, confirming that Cys62 of CKX2 is the specificity target of H2S to regulate RSA in vivo. In conclusion, this study demonstrated that H2S negatively regulates CTK content and affects RSA by persulfidation of CKX2Cys62 in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiuyu Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cuixia Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangyu Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haotian Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaoyue Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Bekele-Alemu A, Girma-Tola D, Ligaba-Osena A. The Potential of CRISPR/Cas9 to Circumvent the Risk Factor Neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid Limiting Wide Acceptance of the Underutilized Grass Pea ( Lathyrus sativus L.). Curr Issues Mol Biol 2024; 46:10570-10589. [PMID: 39329978 PMCID: PMC11430654 DOI: 10.3390/cimb46090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Grass pea (Lathyrus sativus L.) is a protein-rich crop that is resilient to various abiotic stresses, including drought. However, it is not cultivated widely for human consumption due to the neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) and its association with neurolathyrism. Though some varieties with low β-ODAP have been developed through classical breeding, the β-ODAP content is increasing due to genotype x environment interactions. This review covers grass pea nutritional quality, β-ODAP biosynthesis, mechanism of paralysis, traditional ways to reduce β-ODAP, candidate genes for boosting sulfur-containing amino acids, and the potential and targets of gene editing to reduce β-ODAP content. Recently, two key enzymes (β-ODAP synthase and β-cyanoalanine synthase) have been identified in the biosynthetic pathway of β-ODAP. We proposed four strategies through which the genes encoding these enzymes can be targeted and suppressed using CRISPR/Cas9 gene editing. Compared to its homology in Medicago truncatula, the grass pea β-ODAP synthase gene sequence and β-cyanoalanine synthase showed 62.9% and 95% similarity, respectively. The β-ODAP synthase converts the final intermediate L-DAPA into toxic β-ODAP, whist β-cyanoalanine synthase converts O-Acetylserine into β-isoxazolin-5-on-2-yl-alanine. Since grass pea is low in methionine and cysteine amino acids, improvement of these amino acids is also needed to boost its protein content. This review contains useful resources for grass pea improvement while also offering potential gene editing strategies to lower β-ODAP levels.
Collapse
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Deribew Girma-Tola
- Department of Biology, College of Natural Sciences, Salale University, Fitche P.O. Box 245, Ethiopia
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
6
|
Xu X, Wang Q, Yang L, Chen Z, Zhou Y, Feng H, Zhang P, Wang J. Effects of Exocellobiohydrolase CBHA on Fermentation of Tobacco Leaves. J Microbiol Biotechnol 2024; 34:1727-1737. [PMID: 39049482 PMCID: PMC11380505 DOI: 10.4014/jmb.2404.04028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The quality of tobacco is directly affected by macromolecular content, fermentation is an effective method to improve biochemical properties. In this study, we utilized CBHA (cellobiohydrolase A) glycosylase, which was expressed by Pichia pastoris, as an additive for fermentation. The contents of main chemical components of tobacco leaves after fermentation were determined, and the changes of microbial community structure and abundance in tobacco leaves during fermentation were analyzed. The relationship between chemical composition and changes in microbial composition was investigated, and the function of bacteria and fungi in fermentation was predicted to identify possible metabolic pathways. After 48 h of CBHA fermentation, the contents of starch, cellulose and total nitrogen in tobacco leaf decreased by 17.60%, 28.91% and 16.05%, respectively. The microbial community structure changed significantly, with Aspergillus abundance decreasing significantly, while Filobasidum, Cladosporium, Bullera, Komagataella, etc., increased in CBHA treated group. Soluble sugar was most affected by microbial community in tobacco leaves, which was negatively correlated with starch, cellulose and total nitrogen. During the fermentation process, the relative abundance of metabolism-related functional genes increased, and the expressions of cellulase and endopeptidase also increased. The results showed that the changes of bacterial community and dominant microbial community on tobacco leaves affected the content of chemical components in tobacco leaves, and adding CBHA for fermentation had a positive effect on improving the quality of tobacco leaves.
Collapse
Affiliation(s)
- Xueqin Xu
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Qianqian Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Longyan Yang
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Zhiyan Chen
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Yun Zhou
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Hui Feng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Peng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
7
|
Ali MF, Muday GK. Reactive oxygen species are signaling molecules that modulate plant reproduction. PLANT, CELL & ENVIRONMENT 2024; 47:1592-1605. [PMID: 38282262 DOI: 10.1111/pce.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Reactive oxygen species (ROS) can serve as signaling molecules that are essential for plant growth and development but abiotic stress can lead to ROS increases to supraoptimal levels resulting in cellular damage. To ensure efficient ROS signaling, cells have machinery to locally synthesize ROS to initiate cellular responses and to scavenge ROS to prevent it from reaching damaging levels. This review summarizes experimental evidence revealing the role of ROS during multiple stages of plant reproduction. Localized ROS synthesis controls the formation of pollen grains, pollen-stigma interactions, pollen tube growth, ovule development, and fertilization. Plants utilize ROS-producing enzymes such as respiratory burst oxidase homologs and organelle metabolic pathways to generate ROS, while the presence of scavenging mechanisms, including synthesis of antioxidant proteins and small molecules, serves to prevent its escalation to harmful levels. In this review, we summarized the function of ROS and its synthesis and scavenging mechanisms in all reproductive stages from gametophyte development until completion of fertilization. Additionally, we further address the impact of elevated temperatures induced ROS on impairing these reproductive processes and of flavonol antioxidants in maintaining ROS homeostasis to minimize temperature stress to combat the impact of global climate change on agriculture.
Collapse
Affiliation(s)
- Mohammad Foteh Ali
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
8
|
Jia D, Li Z, Ma H, Ji H, Qi H, Zhang C. Near-Infrared Fluorescence Probe with a New Recognition Moiety for the Specific Detection of Cysteine to Study the Corresponding Physiological Processes in Cells, Zebrafish, and Arabidopsis thaliana. Anal Chem 2024; 96:6030-6036. [PMID: 38569068 DOI: 10.1021/acs.analchem.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Cysteine (Cys), as one of the biological thiols, is related to many physiological and pathological processes in humans and plants. Therefore, it is necessary to develop a sensitive and selective method for the detection and imaging of Cys in biological organisms. In this work, a novel near-infrared (NIR) fluorescent probe, Probe-Cys, was designed by connecting furancarbonyl, as a new recognition moiety, with Fluorophore-OH via the decomposition of IR-806. The use of the furan moiety is anticipated to produce more effective fluorescence quenching because of the electron-donating ability of the O atom. Probe-Cys has outstanding properties, such as a new recognition group, an emission wavelength in the infrared region at 710 nm, a linear range (0-100 μM), a low detection limit of 0.035 μM, good water solubility, excellent sensitivity, and selectivity without the interference of Hcy, GSH, and HS-. More importantly, Probe-Cys could achieve the detection of endogenous Cys by reacting with the stimulant 1,4-dimercaptothreitol (DTT) and the inhibitor N-ethylmaleimide (NEM) in HepG2 cells and zebrafish. Ultimately, it was successfully applied to obtain images of Arabidopsis thaliana, revealing that the content of Cys in the meristematic zone was higher than that in the elongation zone, which was the first time that the NIR fluorescence probe was used to obtain images of Cys in A. thaliana. The superior properties of the probe exhibit its great potential for use in biosystems to explore the physiological and pathological processes associated with Cys.
Collapse
Affiliation(s)
- Dongli Jia
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Hongyu Ma
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Haiyang Ji
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
9
|
Meng Y, Cui Y, Peng F, Guo L, Cui R, Xu N, Huang H, Han M, Fan Y, Zhang M, Sun Y, Wang L, Yang Z, Liu M, Chen W, Ni K, Wang D, Zhao L, Lu X, Chen X, Wang J, Wang S, Ye W. GhCYS2 governs the tolerance against cadmium stress by regulating cell viability and photosynthesis in cotton. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115386. [PMID: 37598545 DOI: 10.1016/j.ecoenv.2023.115386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes.
Collapse
Affiliation(s)
- Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde 415101, Hunan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Ruifeng Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Yupin Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, Anyang Institute of Technology, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Anyang 455000, Henan, China.
| |
Collapse
|
10
|
Sun SK, Chen J, Zhao FJ. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3286-3299. [PMID: 36861339 DOI: 10.1093/jxb/erad074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/08/2023]
Abstract
Soil contamination with trace metals and metalloids can cause toxicity to plants and threaten food safety and human health. Plants have evolved sophisticated mechanisms to cope with excess trace metals and metalloids in soils, including chelation and vacuolar sequestration. Sulfur-containing compounds, such as glutathione and phytochelatins, play a crucial role in their detoxification, and sulfur uptake and assimilation are regulated in response to the stress of toxic trace metals and metalloids. This review focuses on the multi-level connections between sulfur homeostasis in plants and responses to such stresses, especially those imposed by arsenic and cadmium. We consider recent progress in understanding the regulation of biosynthesis of glutathione and phytochelatins and of the sensing mechanism of sulfur homeostasis for tolerance of trace metals and metalloids in plants. We also discuss the roles of glutathione and phytochelatins in controlling the accumulation and distribution of arsenic and cadmium in plants, and possible strategies for manipulating sulfur metabolism to limit their accumulation in food crops.
Collapse
Affiliation(s)
- Sheng-Kai Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Khan MN, Siddiqui MH, Mukherjee S, AlSolami MA, Alhussaen KM, AlZuaibr FM, Siddiqui ZH, Al-Amri AA, Alsubaie QD. Melatonin involves hydrogen sulfide in the regulation of H +-ATPase activity, nitrogen metabolism, and ascorbate-glutathione system under chromium toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121173. [PMID: 36740162 DOI: 10.1016/j.envpol.2023.121173] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Contamination of soils with chromium (Cr) jeopardized agriculture production globally. The current study was planned with the aim to better comprehend how melatonin (Mel) and hydrogen sulfide (H2S) regulate antioxidant defense system, potassium (K) homeostasis, and nitrogen (N) metabolism in tomato seedlings under Cr toxicity. The data reveal that application of 30 μM Mel to the seedlings treated with 25 μM Cr has a positive effect on H2S metabolism that resulted in a considerable increase in H2S. Exogenous Mel improved phytochelatins content and H+-ATPase activity with an associated increase in K content as well. Use of tetraethylammonium chloride (K+-channel blocker) and sodium orthovanadate (H+-ATPase inhibitor) showed that Mel maintained K homeostasis through regulating H+-ATPase activity under Cr toxicity. Supplementation of the stressed seedlings with Mel substantially scavenged excess reactive oxygen species (ROS) that maintained ROS homeostasis. Reduced electrolyte leakage and lipid peroxidation were additional signs of Mel's ROS scavenging effects. In addition, Mel also maintained normal functioning of nitrogen (N) metabolism and ascorbate-glutathione (AsA-GSH) system. Improved level of N fulfilled its requirement for various enzymes that have induced resilience during Cr stress. Additionally, the AsA-GSH cycle's proper operation maintained redox equilibrium, which is necessary for the biological system to function normally. Conversely, 1 mM hypotaurine (H2S scavenger) abolished the Mel-effect and again Cr-induced impairment on the above-mentioned parameters was observed even in presence of Mel. Therefore, based on the observed findings, we concluded that Mel needs endogenous H2S to alleviate Cr-induced impairments in tomato seedlings.
Collapse
Affiliation(s)
- M Nasir Khan
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Jangipur, India
| | - Mazen A AlSolami
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Khalaf M Alhussaen
- Department of Biology, College of Haql, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Fahad M AlZuaibr
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Zahid H Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
12
|
Mukherjee S, Corpas FJ. H 2 O 2 , NO, and H 2 S networks during root development and signalling under physiological and challenging environments: Beneficial or toxic? PLANT, CELL & ENVIRONMENT 2023; 46:688-717. [PMID: 36583401 PMCID: PMC10108057 DOI: 10.1111/pce.14531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur CollegeUniversity of KalyaniWest BengalIndia
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signalling in PlantsEstación Experimental del Zaidín (Spanish National Research Council, CSIC)GranadaSpain
| |
Collapse
|
13
|
de Bont L, Donnay N, Couturier J, Rouhier N. Redox regulation of enzymes involved in sulfate assimilation and in the synthesis of sulfur-containing amino acids and glutathione in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:958490. [PMID: 36051294 PMCID: PMC9426629 DOI: 10.3389/fpls.2022.958490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfur is essential in plants because of its presence in numerous molecules including the two amino acids, cysteine, and methionine. Cysteine serves also for the synthesis of glutathione and provides sulfur to many other molecules including protein cofactors or vitamins. Plants absorb sulfate from their environment and assimilate it via a reductive pathway which involves, respectively, a series of transporters and enzymes belonging to multigenic families. A tight control is needed to adjust each enzymatic step to the cellular requirements because the whole pathway consumes energy and produces toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to regulate the activity of some intermediate enzymes. In particular, it provides electrons to adenosine 5'-phosphosulfate reductases but also regulates the activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent proteomic data suggest a more extended post-translational redox control of the sulfate assimilation pathway enzymes and of some associated reactions, including the synthesis of both sulfur-containing amino acids, cysteine and methionine, and of glutathione. We have summarized in this review the known oxidative modifications affecting cysteine residues of the enzymes involved. In particular, a prominent regulatory role of protein persulfidation seems apparent, perhaps because sulfide produced by this pathway may react with oxidized thiol groups. However, the effect of persulfidation has almost not yet been explored.
Collapse
Affiliation(s)
- Linda de Bont
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Natacha Donnay
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
- Institut Universitaire de France, F-75000, Paris, France
| | | |
Collapse
|
14
|
Mondal R, Madhurya K, Saha P, Chattopadhyay SK, Antony S, Kumar A, Roy S, Roy D. Expression profile, transcriptional and post-transcriptional regulation of genes involved in hydrogen sulphide metabolism connecting the balance between development and stress adaptation in plants: a data-mining bioinformatics approach. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:602-617. [PMID: 34939301 DOI: 10.1111/plb.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Recent research focused on novel aspects of sulphur and sulphur-containing molecules in fundamental plant processes has highlighted the importance of these compounds. Currently, the focus has shifted to the efficacy of hydrogen sulphide (H2 S) as signalling compounds that regulate different development and stress mitigation in plants. Accordingly, we used an in silico approach to study the differential expression patterns of H2 S metabolic genes at different growth/development stages and their tissue-specific expression patterns under a range of abiotic stresses. Moreover, to understand the multilevel regulation of genes involved in H2 S metabolism, we performed computation-based promoter analysis, alternative splice variant analysis, prediction of putative miRNA targets and co-expression network analysis. Gene expression analysis suggests that H2 S biosynthesis is highly influenced by developmental and stress stimuli. The functional annotation of promoter structures reveales a wide range of plant hormone and stress responsive cis-regulatory elements (CREs) that regulate H2 S metabolism. Co-expression analysis suggested that genes involved in H2 S metabolism are also associated with different metabolic processes. In this data-mining study, the primary focus was to understand the genetic architecture governing pathways of H2 S metabolism in different cell compartments under various developmental and stress signalling cascades. The present study will help to understand the genetic architecture of H2 S metabolism via cysteine metabolism and the functional roles of these genes in development and stress tolerance mechanisms.
Collapse
Affiliation(s)
- R Mondal
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - K Madhurya
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - P Saha
- Department of Botany, Durgapur Government College, Durgapur, India
| | - S K Chattopadhyay
- Directorate of Distance Education, Vidyasagar University Midnapore (West), Midnapore, India
| | - S Antony
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - A Kumar
- Host Plant Division, Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textile, Govt. of India, Jorhat, India
| | - S Roy
- Department of Botany, Santipur College, Nadia, India
| | - D Roy
- Department of Botany, Seth Anandram Jaipuria College, Kolkata, India
| |
Collapse
|
15
|
Rakpenthai A, Apodiakou A, Whitcomb SJ, Hoefgen R. In silico analysis of cis-elements and identification of transcription factors putatively involved in the regulation of the OAS cluster genes SDI1 and SDI2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1286-1304. [PMID: 35315155 DOI: 10.1111/tpj.15735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis thaliana sulfur deficiency-induced 1 and sulfur deficiency-induced 2 (SDI1 and SDI2) are involved in partitioning sulfur among metabolite pools during sulfur deficiency, and their transcript levels strongly increase in this condition. However, little is currently known about the cis- and trans-factors that regulate SDI expression. We aimed at identifying DNA sequence elements (cis-elements) and transcription factors (TFs) involved in regulating expression of the SDI genes. We performed in silico analysis of their promoter sequences cataloging known cis-elements and identifying conserved sequence motifs. We screened by yeast-one-hybrid an arrayed library of Arabidopsis TFs for binding to the SDI1 and SDI2 promoters. In total, 14 candidate TFs were identified. Direct association between particular cis-elements in the proximal SDI promoter regions and specific TFs was established via electrophoretic mobility shift assays: sulfur limitation 1 (SLIM1) was shown to bind SURE cis-element(s), the basic domain/leucine zipper (bZIP) core cis-element was shown to be important for HY5-homolog (HYH) binding, and G-box binding factor 1 (GBF1) was shown to bind the E box. Functional analysis of GBF1 and HYH using mutant and over-expressing lines indicated that these TFs promote a higher transcript level of SDI1 in vivo. Additionally, we performed a meta-analysis of expression changes of the 14 TF candidates in a variety of conditions that alter SDI expression. The presented results expand our understanding of sulfur pool regulation by SDI genes.
Collapse
Affiliation(s)
- Apidet Rakpenthai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Anastasia Apodiakou
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sarah J Whitcomb
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
16
|
The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022; 23:ijms23084272. [PMID: 35457090 PMCID: PMC9032328 DOI: 10.3390/ijms23084272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) serves as an important gaseous signaling molecule that is involved in intra- and intercellular signal transduction in plant–environment interactions. In plants, H2S is formed in sulfate/cysteine reduction pathways. The activation of endogenous H2S and its exogenous application has been found to be highly effective in ameliorating a wide variety of stress conditions in plants. The H2S interferes with the cellular redox regulatory network and prevents the degradation of proteins from oxidative stress via post-translational modifications (PTMs). H2S-mediated persulfidation allows the rapid response of proteins in signaling networks to environmental stimuli. In addition, regulatory crosstalk of H2S with other gaseous signals and plant growth regulators enable the activation of multiple signaling cascades that drive cellular adaptation. In this review, we summarize and discuss the current understanding of the molecular mechanisms of H2S-induced cellular adjustments and the interactions between H2S and various signaling pathways in plants, emphasizing the recent progress in our understanding of the effects of H2S on the PTMs of proteins. We also discuss future directions that would advance our understanding of H2S interactions to ultimately mitigate the impacts of environmental stresses in the plants.
Collapse
|
17
|
Yuan Y, Song T, Yu J, Zhang W, Hou X, Kong Ling Z, Cui G. Genome-Wide Investigation of the Cysteine Synthase Gene Family Shows That Overexpression of CSase Confers Alkali Tolerance to Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 12:792862. [PMID: 35058952 PMCID: PMC8765340 DOI: 10.3389/fpls.2021.792862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Alfalfa is widely grown worldwide as a perennial high-quality legume forage and as a good ecological landcover. The cysteine synthase (CSase) gene family is actively involved in plant growth and development and abiotic stress resistance but has not been systematically investigated in alfalfa. We identified 39 MsCSase genes on 4 chromosomes of the alfalfa genome. Phylogenetic analysis demonstrated that these genes were clustered into six subfamilies, and members of the same subfamily had similar physicochemical properties and sequence structures. Overexpression of the CSase gene in alfalfa increased alkali tolerance. Compared with control plants, the overexpression lines presented higher proline, soluble sugars, and cysteine and reduced glutathione contents and superoxide dismutase and peroxidase activities as well as lower hydrogen peroxide and superoxide anion contents after alkali stress. The relative expression of γ-glutamyl cysteine synthetase gene (a downstream gene of CSase) in the overexpression lines was much higher than that in the control line. The CSase gene enhanced alkalinity tolerance by regulating osmoregulatory substances and improving antioxidant capacity. These results provide a reference for studying the CSase gene family in alfalfa and expanding the alkali tolerance gene resources of forage plants.
Collapse
|
18
|
Riyazuddin R, Nisha N, Ejaz B, Khan MIR, Kumar M, Ramteke PW, Gupta R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2021; 12:43. [PMID: 35053191 PMCID: PMC8774178 DOI: 10.3390/biom12010043] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022] Open
Abstract
Heavy metal (HM) toxicity has become a global concern in recent years and is imposing a severe threat to the environment and human health. In the case of plants, a higher concentration of HMs, above a threshold, adversely affects cellular metabolism because of the generation of reactive oxygen species (ROS) which target the key biological molecules. Moreover, some of the HMs such as mercury and arsenic, among others, can directly alter the protein/enzyme activities by targeting their -SH group to further impede the cellular metabolism. Particularly, inhibition of photosynthesis has been reported under HM toxicity because HMs trigger the degradation of chlorophyll molecules by enhancing the chlorophyllase activity and by replacing the central Mg ion in the porphyrin ring which affects overall plant growth and yield. Consequently, plants utilize various strategies to mitigate the negative impact of HM toxicity by limiting the uptake of these HMs and their sequestration into the vacuoles with the help of various molecules including proteins such as phytochelatins, metallothionein, compatible solutes, and secondary metabolites. In this comprehensive review, we provided insights towards a wider aspect of HM toxicity, ranging from their negative impact on plant growth to the mechanisms employed by the plants to alleviate the HM toxicity and presented the molecular mechanism of HMs toxicity and sequestration in plants.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Kozep fasor 52, H-6726 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School in Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Science, Plant Protection Institute, Szent István University, 2100 Godollo, Hungary;
| | - Bushra Ejaz
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - M. Iqbal R. Khan
- Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (M.I.R.K.)
| | - Manu Kumar
- Department of Life Science, Dongguk University, Seoul 10326, Korea;
| | - Pramod W. Ramteke
- Department of Life Sciences, Mandsaur University, Mandsaur 458001, India;
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
19
|
Siddiqui MH, Alamri S, Mukherjee S, Al-Amri AA, Alsubaie QD, Al-Munqedhi BMA, Ali HM, Kalaji HM, Fahad S, Rajput VD, Narayan OP. Molybdenum and hydrogen sulfide synergistically mitigate arsenic toxicity by modulating defense system, nitrogen and cysteine assimilation in faba bean (Vicia faba L.) seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117953. [PMID: 34438168 DOI: 10.1016/j.envpol.2021.117953] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 05/10/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a potential gasotransmitter in plants with a beneficial role in stress amelioration. Despite the various known functions of H2S in plants, not much information is available to explain the associative role of molybdenum (Mo) and hydrogen sulfide (H2S) signaling in plants under arsenic toxicity. In view to address such lacunae in our understanding of the integrative roles of these biomolecules, the present work attempts to decipher the roles of Mo and H2S in mitigation of arsenate (AsV) toxicity in faba bean (Vicia faba L.) seedlings. AsV-stressed seedlings supplemented with exogenous Mo and/or NaHS treatments (H2S donor) showed resilience to AsV toxicity manifested by reduction of apoptosis, reactive oxygen species (ROS) content, down-regulation of NADPH oxidase and GOase activity followed by upregulation of antioxidative enzymes in leaves. Fluorescent localization of ROS in roots reveals changes in its intensity and spatial distribution in response to MO and NaHS supplementation during AsV stress. Under AsV toxicity conditions, seedlings subjected to Mo + NaHS showed an increased rate of nitrogen metabolism evident by elevation in nitrate reductase, nitrite reductase and glutamine synthetase activity. Furthermore, the application of Mo and NaHS in combination positively upregulates cysteine and hydrogen sulfide biosynthesis in the absence and presence of AsV stress. Mo plus NaHS-supplemented seedlings exposed to AsV toxicity showed a substantial reduction in oxidative stress manifested by reduced ELKG, lowered MDA content and higher accumulation of proline in leaves. Taken together, the present findings provide substantial evidence on the synergetic role of Mo and H2S in mitigating AsV stress in faba bean seedlings. Thus, the application of Mo and NaHS reveals their agronomic importance to encounter heavy metal stress for management of various food crops.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia.
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Qasi D Alsubaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland; Institute of Technology and Life Sciences, National Research Institute, Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical, Bio Resource, College of Tropical Crops, Hainan University, Haikou, 570228, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | | |
Collapse
|
20
|
Aksoy E, Uncu AT, Filiz E, Orman Ş, Çetin D, Akbudak MA. Genes involved in mRNA surveillance are induced in Brachypodium distachyon under cadmium toxicity. Mol Biol Rep 2021; 49:5303-5313. [PMID: 34812999 DOI: 10.1007/s11033-021-06952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cd accumulation in plant cells results in dramatic problems including oxidative stress and inhibition of vital enzymes. It also affects mineral uptakes by disrupting membrane permeability. Interaction among Cd and other plant nutrient elements changes the nutritional contents of crops and reduces their yield. METHODS AND RESULTS In the present study, Cd stress in Brachypodium distachyon led to the upregulation of some heavy metal transport genes (influx or efflux) encoding cation-efflux proteins, heavy metal-associated proteins and NRAMP proteins. The Arabidopsis orthologs of the differentially expressed B. distachyon genes (DEGs) under Cd toxicity were identified, which exhibited Bradi4g26905 was an ortholog of AtALY1-2. Detailed co-expression network and gene ontology analyses found the potential involvement of the mRNA surveillance pathway in Cd tolerance in B. distachyon. These genes were shown to be downregulated by sulfur (S) deficiency. CONCLUSIONS This is the first transcriptomic study investigating the effect of Cd toxicity in B. distachyon, a model plant for genomic studies in Poaceae (Gramineae) species. The results are expected to provide valuable information for more comprehensive research related to heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Emre Aksoy
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ali Tevfik Uncu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Turkey
| | - Ertugrul Filiz
- Department of Agricultural Production, Duzce University, Cilimli Vocational School, Duzce, Turkey
| | - Şule Orman
- Department of Soil Science and Plant Nutrition, Akdeniz University, Antalya, Turkey
| | - Durmuş Çetin
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - M Aydın Akbudak
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
21
|
Lv H, Hu L, Xu J, Bo T, Wang W. Identification and functional analysis of the mitochondrial cysteine synthase TtCsa2 from Tetrahymena thermophila. J Cell Biochem 2021; 122:1817-1831. [PMID: 34427342 DOI: 10.1002/jcb.30136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023]
Abstract
Cysteine is a crucial component for all organisms and plays a critical role in the structure, stability, and catalytic functions of many proteins. Tetrahymena has reverse transsulfuration and de novo pathways for cysteine biosynthesis. Cysteine synthase is involved in the de novo cysteine biosynthesis and catalyzes the production of cysteine from O-acetylserine. The novel cysteine synthase TtCSA2 was identified from Tetrahymena thermophila. The TtCSA2 showed high expression levels at the log-phase and the sexual development stage. The TtCsa2 was localized on the outer mitochondrial membrane throughout different developmental stages. However, the truncated N-terminal signal peptide mutant TtCsa2-ΔN23 was localized into the mitochondria. His-TtCsa2 was expressed in Escherichia coli and purified using affinity chromatography. The His-TtCsa2 showed O-acetylserine sulfhydrylase and serine sulfhydrylase activities. Cysteine and glutathione contents decreased in the csa2KD mutant. Furthermore, mutant cells were sensitive to cadmium and copper stresses. This study indicated that the TtCSA2 was involved in the cysteine synthesis in mitochondria and related to heavy metal stresses resistance in Tetrahymena.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Lina Hu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
22
|
Watanabe M, Chiba Y, Hirai MY. Metabolism and Regulatory Functions of O-Acetylserine, S-Adenosylmethionine, Homocysteine, and Serine in Plant Development and Environmental Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:643403. [PMID: 34025692 PMCID: PMC8137854 DOI: 10.3389/fpls.2021.643403] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 05/19/2023]
Abstract
The metabolism of an organism is closely related to both its internal and external environments. Metabolites can act as signal molecules that regulate the functions of genes and proteins, reflecting the status of these environments. This review discusses the metabolism and regulatory functions of O-acetylserine (OAS), S-adenosylmethionine (AdoMet), homocysteine (Hcy), and serine (Ser), which are key metabolites related to sulfur (S)-containing amino acids in plant metabolic networks, in comparison to microbial and animal metabolism. Plants are photosynthetic auxotrophs that have evolved a specific metabolic network different from those in other living organisms. Although amino acids are the building blocks of proteins and common metabolites in all living organisms, their metabolism and regulation in plants have specific features that differ from those in animals and bacteria. In plants, cysteine (Cys), an S-containing amino acid, is synthesized from sulfide and OAS derived from Ser. Methionine (Met), another S-containing amino acid, is also closely related to Ser metabolism because of its thiomethyl moiety. Its S atom is derived from Cys and its methyl group from folates, which are involved in one-carbon metabolism with Ser. One-carbon metabolism is also involved in the biosynthesis of AdoMet, which serves as a methyl donor in the methylation reactions of various biomolecules. Ser is synthesized in three pathways: the phosphorylated pathway found in all organisms and the glycolate and the glycerate pathways, which are specific to plants. Ser metabolism is not only important in Ser supply but also involved in many other functions. Among the metabolites in this network, OAS is known to function as a signal molecule to regulate the expression of OAS gene clusters in response to environmental factors. AdoMet regulates amino acid metabolism at enzymatic and translational levels and regulates gene expression as methyl donor in the DNA and histone methylation or after conversion into bioactive molecules such as polyamine and ethylene. Hcy is involved in Met-AdoMet metabolism and can regulate Ser biosynthesis at an enzymatic level. Ser metabolism is involved in development and stress responses. This review aims to summarize the metabolism and regulatory functions of OAS, AdoMet, Hcy, and Ser and compare the available knowledge for plants with that for animals and bacteria and propose a future perspective on plant research.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukako Chiba
- Graduate School of Life Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
23
|
A molecular switch in sulfur metabolism to reduce arsenic and enrich selenium in rice grain. Nat Commun 2021; 12:1392. [PMID: 33654102 PMCID: PMC7925690 DOI: 10.1038/s41467-021-21282-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway. Contamination of paddy soils can lead to toxic arsenic accumulation in rice grains and low levels of the micronutrient selenium. Here the authors show that a gain of function mutant affecting an O-acetylserine (thiol) lyase enhances sulfur and selenium assimilation while reducing arsenic accumulation in grains.
Collapse
|
24
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
25
|
Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses. J Adv Res 2020; 27:199-209. [PMID: 33318878 PMCID: PMC7728587 DOI: 10.1016/j.jare.2020.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background Sulfur and diverse sulfur-containing compounds constitute important components of plant defences against a wide array of microbial pathogens. Among them, hydrogen sulfide (H2S) occupies a prominent position as a gaseous signalling molecule that plays multiple roles in regulation of plant growth, development and plant responses to stress conditions. Although the production of H2S in plant cells has been discovered several decades ago, the underlying pathways of H2S biosynthesis, metabolism and signalling were only recently uncovered. Aim of the review Here we review the current knowledge on the biosynthesis of H2S in plant cells, with special attention to L-cysteine desulfhydrase (DES) as the key enzyme controlling H2S levels biosynthesis in the cytosol of plant cells during plant growth, development and diverse abiotic and biotic stress conditions. Key Scientific Concepts of Review Recent advances have revealed molecular mechanisms of DES properties, functions and regulation involved in modulations of H2S production during plant responses to abiotic and biotic stress stimuli. Studies on des mutants of the model plant Arabidopsis thaliana uncovered molecular mechanisms of H2S action as a signalling and defence molecule in plant-pathogen interactions. Signalling pathways of H2S include S-persulfidation of protein cysteines, a redox-based post-translational modification leading to activation of downstream components of H2S signalling. Accumulated evidence shows DES and H2S implementation into salicylic acid signalling and activation of pathogenesis-related proteins and autophagy within plant immunity. Obtained knowledge on molecular mechanisms of H2S action in plant defence responses opens new prospects in the search for crop varieties with increased resistance to bacterial and fungal pathogens.
Collapse
|
26
|
Wang D, Peng C, Zheng X, Chang L, Xu B, Tong Z. Secretome Analysis of the Banana Fusarium Wilt Fungi Foc R1 and Foc TR4 Reveals a New Effector OASTL Required for Full Pathogenicity of Foc TR4 in Banana. Biomolecules 2020; 10:E1430. [PMID: 33050283 PMCID: PMC7601907 DOI: 10.3390/biom10101430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Banana Fusarium wilt (BFW), which is one of the most important banana diseases worldwide, is mainly caused by Fusarium oxysporum f. sp. cubense tropic race 4 (Foc TR4). In this study, we conducted secretome analysis of Foc R1 and Foc TR4 and discovered a total of 120 and 109 secretory proteins (SPs) from Foc R1 cultured alone or with banana roots, respectively, and 129 and 105 SPs respectively from Foc TR4 cultured under the same conditions. Foc R1 and Foc TR4 shared numerous SPs associated with hydrolase activity, oxidoreductase activity, and transferase activity. Furthermore, in culture with banana roots, Foc R1 and Foc TR4 secreted many novel SPs, of which approximately 90% (Foc R1; 57/66; Foc TR4; 50/55) were unconventional SPs without signal peptides. Comparative analysis of SPs in Foc R1 and Foc TR4 revealed that Foc TR4 not only generated more specific SPs but also had a higher proportion of SPs involved in various metabolic pathways, such as phenylalanine metabolism and cysteine and methionine metabolism. The cysteine biosynthesis enzyme O-acetylhomoserine (thiol)-lyase (OASTL) was the most abundant root inducible Foc TR4-specific SP. In addition, knockout of the OASTL gene did not affect growth of Foc TR4; but resulted in the loss of pathogenicity in banana 'Brazil'. We speculated that OASTL functions in banana by interfering with the biosynthesis of cysteine, which is the precursor of an enormous number of sulfur-containing defense compounds. Overall, our studies provide a basic understanding of the SPs in Foc R1 and Foc TR4; including a novel effector in Foc TR4.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Cunzhi Peng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xingmei Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lili Chang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingqiang Xu
- Haikou Experimental Station (Institute of Tropical Fruit Tree Research) Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Key Laboratory of Banana Genetics and Improvement, Haikou 571101, China
| | - Zheng Tong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.W.); (C.P.); (X.Z.); (L.C.)
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
27
|
Wang C, Zheng L, Tang Z, Sun S, Ma JF, Huang XY, Zhao FJ. OASTL-A1 functions as a cytosolic cysteine synthase and affects arsenic tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3678-3689. [PMID: 32129444 DOI: 10.1093/jxb/eraa113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) contamination in paddy soil can cause phytotoxicity and elevated As accumulation in rice grains. Arsenic detoxification is closely linked to sulfur assimilation, but the genes involved have not been described in rice. In this study, we characterize the function of OASTL-A1, an O-acetylserine(thiol) lyase, in cysteine biosynthesis and detoxification of As in rice. Tissue expression analysis revealed that OsOASTL-A1 is mainly expressed in roots at the vegetative growth stage and in nodes at the reproductive stage. Furthermore, the expression of OsOASTL-A1 in roots was strongly induced by As exposure. Transgenic rice plants expressing pOsOASTL-A1::GUS (β-glucuronidase) indicated that OsOASTL-A1 was strongly expressed in the outer cortex and the vascular cylinder in the root mature zone. Subcellular localization using OsOASTL-A1:eGFP (enhanced green fluorescent protein) fusion protein showed that OsOASTL-A1 was localized to the cytosol. In vivo and in vitro enzyme activity assays showed that OsOASTL-A1 possessed the O-acetylserine(thiol) lyase activity. Knockout of OsOASTL-A1 led to significantly lower levels of cysteine, glutathione, and phytochelatins in roots and increased sensitivity to arsenate stress. Furthermore, the osoastl-a1 knockout mutants reduced As accumulation in the roots, but increased As accumulation in shoots. We conclude that OsOASTL-A1 is the cytosolic O-acetylserine(thiol) lyase that plays an important role in non-protein thiol biosynthesis in roots for As detoxification.
Collapse
Affiliation(s)
- Chengcheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lihua Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shengkai Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Japan
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Ding H, Wu Y, Yuan G, Mo S, Chen Q, Xu X, Wu X, Ge C. In-depth proteome analysis reveals multiple pathways involved in tomato SlMPK1-mediated high-temperature responses. PROTOPLASMA 2020; 257:43-59. [PMID: 31359223 DOI: 10.1007/s00709-019-01419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
High temperature (HT) is one of the major environmental factors which limits plant growth and yield. The mitogen-activated protein kinase (MAPK) plays vital roles in environmental stress responses. However, the mechanisms triggered by MAPKs in plants in response to HT are still extremely limited. In this study, the proteomic data of differences between SlMPK1 RNA-interference mutant (SlMPK1i) and wild type and of tomato (Solanum lycopersicum) plants under HT stress using isobaric tags for relative and absolute quantitation (iTRAQ) was re-analyzed in depth. In total, 168 differently expressed proteins (DEPs) were identified in response to HT stress, including 38 DEPs only found in wild type, and 84 DEPs specifically observed in SlMPK1i after HT treatment. The majority of higher expression of 84 DEPs were annotated into photosynthesis, oxidation-reduction process, protein folding, translation, proteolysis, stress response, and amino acid biosynthetic process. More importantly, SlMPK1-mediated photosynthesis was confirmed by the physiological characterization of SlMPK1i with a higher level of photosynthetic capacity under HT stress. Overall, the results reveal a set of potential candidate proteins helping to further understand the intricate regulatory network regulated by SlMPK1 in response to HT.
Collapse
Affiliation(s)
- Haidong Ding
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Wu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Guibo Yuan
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangrong Mo
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Cailin Ge
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
Li Z, Yong B, Cheng B, Wu X, Zhang Y, Zhang X, Peng Y. Nitric oxide, γ-aminobutyric acid, and mannose pretreatment influence metabolic profiles in white clover under water stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1255-1273. [PMID: 30609265 DOI: 10.1111/jipb.12770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Nitric oxide (NO), γ-aminobutyric acid (GABA), and mannose (MAS) could be important regulators of plant growth and adaptation to water stress. The application of sodium nitroprusside (SNP, a NO donor), GABA, and MAS improved plant growth under water-sufficient conditions and effectively mitigated water stress damage to white clover. The metabonomic analysis showed that both SNP and GABA application resulted in a significant increase in myo-inositol content; the accumulation of mannose was commonly regulated by SNP and MAS; GABA and MAS induced the accumulation of aspartic acid, quinic acid, trehalose, and glycerol under water deficit. In addition, citric acid was uniquely up-regulated by SNP associated with tricarboxylic acid (TCA) cycle under water stress. GABA specially induced the accumulation of GABA, glycine, methionine, and aconitic acid related to GABA shunt, amino acids metabolism, and TCA cycle in response to water stress. MAS uniquely enhanced the accumulation of asparagine, galactose, and D-pinitol in association with amino acids and sugars metabolism under water stress. SNP-, GABA-, and MAS-induced changes of metabolic profiles and associated metabolic pathways could contribute to enhanced stress tolerance via involvement in the TCA cycle for energy supply, osmotic adjustment, antioxidant defense, and signal transduction for stress defense in white clover.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Yong
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xing Wu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
30
|
Li Z, Cheng B, Yong B, Liu T, Peng Y, Zhang X, Ma X, Huang L, Liu W, Nie G. Metabolomics and physiological analyses reveal β-sitosterol as an important plant growth regulator inducing tolerance to water stress in white clover. PLANTA 2019; 250:2033-2046. [PMID: 31542810 DOI: 10.1007/s00425-019-03277-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 09/08/2019] [Indexed: 05/27/2023]
Abstract
β-sitosterol influences amino acids, carbohydrates, organic acids, and other metabolite metabolism and homeostasis largely contributing to better tolerance to water stress in white clover. β-sitosterol (BS) could act as an important plant growth regulator when plants are subjected to harsh environmental conditions. Objective of this study was to examine effects of BS on growth and water stress tolerance in white clover based on physiological responses and metabolomics. White clover was pretreated with or without BS and then subjected to water stress for 7 days in controlled growth chambers. Physiological analysis demonstrated that exogenous application of BS (120 μM) could significantly improve stress tolerance associated with better growth performance and photosynthesis, higher leaf relative water content, and less oxidative damage in white clover in response to water stress. Metabolic profiling identified 78 core metabolites involved in amino acids, organic acids, sugars, sugar alcohols, and other metabolites in leaves of white clover. For sugars and sugar alcohol metabolism, the BS treatment enhanced the accumulation of fructose, glucose, maltose, and myo-inositol contributing to better antioxidant capacity, growth maintenance, and osmotic adjustment in white clover under water stress. The application of BS was inclined to convert glutamic acid into proline, 5-oxoproline, and chlorophyll instead of going to pyruvate and alanine; the BS treatment did not significantly affect intermediates of tricarboxylic acid cycle (citrate, aconitate, and malate), but promoted the accumulation of other organic acids including lactic acid, glycolic acid, glyceric acid, shikimic acid, galacturonic acid, and quinic acid in white clover subjected to water stress. In addition, cysteine, an important antioxidant metabolite, was also significantly improved by BS in white clover under water stress. These altered amino acids and organic acids metabolism could play important roles in growth maintenance and modulation of osmotic and redox balance against water stress in white clover. Current findings provide a new insight into BS-induced metabolic homeostasis related to growth and water stress tolerance in plants.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Yong
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
31
|
Liu D, Lu J, Li H, Wang J, Pei Y. Characterization of the O-acetylserine(thiol)lyase gene family in Solanum lycopersicum L. PLANT MOLECULAR BIOLOGY 2019; 99:123-134. [PMID: 30535734 DOI: 10.1007/s11103-018-0807-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/03/2018] [Indexed: 05/04/2023]
Abstract
This research demonstrated the conservation and diversification of the functions of the O-acetylserine-(thiol) lyase gene family genes in Solanum lycopersicum L. Cysteine is the first sulfur-containing organic molecule generated by plants and is the precursor of many important biomolecules and defense compounds. Cysteine and its derivatives are also essential in various redox signaling-related processes. O-acetylserine(thiol)lyase (OASTL) proteins catalyze the last step of cysteine biosynthesis. Previously, researches focused mainly on OASTL proteins which were the most abundant or possessed the authentic OASTL activity, whereas few studies have ever given a comprehensive view of the functions of all the OASTL members in one specific species. Here, we characterized 8 genes belonging to the OASTL gene family from tomato genome (SlOAS2 to SlOAS9), including the sequence analyses, subcellular localization, enzymatic activity assays, expression patterns, as well as the interaction property with SATs. Apart from SlOAS3, all the other genes encoded OASTL-like proteins. Tomato OASTLs were differentially expressed during the development of tomato plants, and their encoded proteins had diverse compartmental distributions and functions. SlOAS5 and SlOAS6 catalyzed the biogenesis of cysteine in chloroplasts and in the cytosol, respectively, and this was in consistent with their interaction abilities with SlSATs. SlOAS4 catalyzed the generation of hydrogen sulfide, similar to its Arabidopsis ortholog, DES1. SlOAS2 also functioned as an L-cysteine desulfhydrase, but its expression pattern was very different from that of SlOAS4. Additionally, SlOAS8 might be a β-cyanoalanine synthase in mitochondria, and the S-sulfocysteine synthase activity appeared lost in tomato plants. SlOAS7 exhibited a transactivational ability in yeast; while the subcellular localization of SlOAS9 was in the peroxisome and correlated with the process of leaf senescence, indicating that these two genes might have novel roles.
Collapse
Affiliation(s)
- Danmei Liu
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Juanjuan Lu
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Hui Li
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Juanjuan Wang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, China
| | - Yanxi Pei
- College of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
32
|
Redox poise and metabolite changes in bread wheat seeds are advanced by priming with hot steam. Biochem J 2018; 475:3725-3743. [PMID: 30401685 DOI: 10.1042/bcj20180632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Fast and uniform germination is key to agricultural production and can be achieved by seed 'priming' techniques. Here, we characterised the responses of bread wheat (Triticum aestivum L.) seeds to a hot steam treatment ('BioFlash'), which accelerated water uptake, resulting in faster germination and seedling growth, typical traits of primed seed. Before the completion of germination, metabolite profiling of seeds revealed advanced accumulation of several amino acids (especially cysteine and serine), sugars (ribose, glucose), and organic acids (glycerate, succinate) in hot steam-treated seeds, whereas sugar alcohols (e.g. arabitol, mannitol) and trehalose decreased in all seeds. Tocochromanols (the 'vitamin E family') rose independently of the hot steam treatment. We further assessed shifts in the half-cell reduction potentials of low-molecular-weight (LMW) thiol-disulfide redox couples [i.e. glutathione disulfide (GSSG)/glutathione (GSH) and cystine/cysteine], alongside the activities of the reactive oxygen species (ROS)-processing enzyme superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Upon the first 4 h of imbibition, a rapid conversion of LMW disulfides to thiols occurred. Completion of germination was associated with a re-oxidation of the LMW thiol-disulfide cellular redox environment, before more reducing conditions were re-established during seedling growth, accompanied by an increase in all ROS-processing enzyme activities. Furthermore, changes in the thiol-disulfide cellular redox state were associated to specific stages of wheat seed germination. In conclusion, the priming effect of the hot steam treatment advanced the onset of seed metabolism, including redox shifts associated with germination and seedling growth.
Collapse
|
33
|
Roblin G, Octave S, Faucher M, Fleurat-Lessard P, Berjeaud JM. Cysteine: A multifaceted amino acid involved in signaling, plant resistance and antifungal development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:77-89. [PMID: 29852365 DOI: 10.1016/j.plaphy.2018.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Early effects induced by cysteine were monitored using the model of Mimosa pudica pulvinar cells. Rapid dose-dependent membrane depolarization (within seconds) and modification of proton secretion (within minutes) were triggered at cysteine concentrations higher than 0.1 mM. These effects did not result from a modification of the plasma membrane H+-ATPase activity nor from a protonophore effect as shown by assays on plasma membrane vesicles isolated from pulvinar tissues. In a 0.5-10 mM range, cysteine inhibited the ion-driven turgor-mediated seismonastic reaction of Mimosa pudica primary pulvini and the dark-induced movement of Cassia fasciculata leaflets. At concentrations higher than 1 mM, it induced a long-lasting leaflet necrosis dependent on the concentration and treatment duration. Electron microscopy showed that cysteine induced important damage in the nucleus, mitochondria, endoplasmic reticulum and Golgi of the M. pudica motor cell. Cysteine inhibited in a concentration-dependent manner, from 0.5 to 20 mM, both the mycelial growth and the spore germination of the fungal pathogens Phaeomoniella chlamydospora and Phaeoacremonium minimum implicated in esca disease of grapevines. Using [35S] cysteine, we showed that the amino acid was absorbed following leaf spraying, translocated from leaves to other parts of grapevine cuttings and accumulated within trunks and roots. Therefore, cysteine showed relevant properties to be a candidate able to control fungal diseases either by acting as an early signal directing plant host reaction or/and by acting directly on fungal development.
Collapse
Affiliation(s)
- Gabriel Roblin
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France
| | - Stéphane Octave
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France; Current address: Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7025, Génie Enzymatique et Cellulaire, Rue du Docteur Schweitzer CS 60319, 60203 Compiègne Cedex, France
| | - Mireille Faucher
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France
| | - Pierrette Fleurat-Lessard
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France
| | - Jean-Marc Berjeaud
- Université de Poitiers, Ecologie & Biologie des Interactions, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 Poitiers cedex 9, France.
| |
Collapse
|
34
|
Ran X, Liu J, Qi M, Wang Y, Cheng J, Zhang Y. GSHR, a Web-Based Platform Provides Gene Set-Level Analyses of Hormone Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:23. [PMID: 29416546 PMCID: PMC5787578 DOI: 10.3389/fpls.2018.00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
Phytohormones regulate diverse aspects of plant growth and environmental responses. Recent high-throughput technologies have promoted a more comprehensive profiling of genes regulated by different hormones. However, these omics data generally result in large gene lists that make it challenging to interpret the data and extract insights into biological significance. With the rapid accumulation of theses large-scale experiments, especially the transcriptomic data available in public databases, a means of using this information to explore the transcriptional networks is needed. Different platforms have different architectures and designs, and even similar studies using the same platform may obtain data with large variances because of the highly dynamic and flexible effects of plant hormones; this makes it difficult to make comparisons across different studies and platforms. Here, we present a web server providing gene set-level analyses of Arabidopsis thaliana hormone responses. GSHR collected 333 RNA-seq and 1,205 microarray datasets from the Gene Expression Omnibus, characterizing transcriptomic changes in Arabidopsis in response to phytohormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene, gibberellins, jasmonic acid, salicylic acid, and strigolactones. These data were further processed and organized into 1,368 gene sets regulated by different hormones or hormone-related factors. By comparing input gene lists to these gene sets, GSHR helped to identify gene sets from the input gene list regulated by different phytohormones or related factors. Together, GSHR links prior information regarding transcriptomic changes induced by hormones and related factors to newly generated data and facilities cross-study and cross-platform comparisons; this helps facilitate the mining of biologically significant information from large-scale datasets. The GSHR is freely available at http://bioinfo.sibs.ac.cn/GSHR/.
Collapse
Affiliation(s)
- Xiaojuan Ran
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meifang Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuejun Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingfei Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Majid NA, Phang IC, Darnis DS. Characteristics of Pelargonium radula as a mercury bioindicator for safety assessment of drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22827-22838. [PMID: 28150147 DOI: 10.1007/s11356-017-8484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Identification of Pelargonium radula as bioindicator for mercury (Hg) detection confers a new hope for monitoring the safety of drinking water consumption. Hg, like other non-essential metals, inflicts the deterioration of biological functions in human and other creatures. In the present study, effects of Hg on the physiology and biochemical content of P. radula were undertaken to understand the occurrence of the morphological changes observed. Young leaves of P. radula were treated with different concentrations of Hg-containing solution (0.5, 1.0 and 2.0 ppb) along with controls for 4 h, prior to further analysis. Elevated Hg concentration in treatment solution significantly prompted an increased accumulation of Hg in the leaf tissues. Meanwhile, total protein, chlorophyll and low molecular mass thiol contents (cysteine, glutathione and oxidized glutathione) decreased as Hg accumulation increased. However, phytochelatin 2 productions were induced in the treated leaves, in comparison to the control. Based on these findings, it is postulated that as low as 0.5 ppb of Hg interferes with the metabolic processes of plant cells, which was reflected from the morphological changes exhibited on P. radula leaves-the colour of the Hg-treated leaves changed from green to yellowish-brown, became chlorosis and wilted. Changes in the tested characteristics of plant are closely related to the Hg-induced morphological changes on P. radula leaves, a potential bioindicator for detecting Hg in drinking water.
Collapse
Affiliation(s)
- N A Majid
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - I C Phang
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
| | - D S Darnis
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| |
Collapse
|
36
|
Rehman HM, Shah ZH, Nawaz MA, Ahmad MQ, Yang SH, Kho KH, Chung G. RETRACTED ARTICLE: Beta-cyanoalanine synthase pathway as a homeostatic mechanism for cyanide detoxification as well as growth and development in higher plants. PLANTA 2017; 245:235. [PMID: 27744484 DOI: 10.1007/s00425-016-2606-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, King Abdul-Aziz University, Jeddah, 21577, Saudi Arabia
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Muhammad Qadir Ahmad
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 6000, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Kang Hee Kho
- Department of Aquatic Biology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, South Korea.
| |
Collapse
|
37
|
Daher Z, Recorbet G, Solymosi K, Wienkoop S, Mounier A, Morandi D, Lherminier J, Wipf D, Dumas-Gaudot E, Schoefs B. Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature. PHYSIOLOGIA PLANTARUM 2017; 159:13-29. [PMID: 27558913 DOI: 10.1111/ppl.12505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
During arbuscular mycorrhizal symbiosis, arbuscule-containing root cortex cells display a proliferation of plastids, a feature usually ascribed to an increased plant anabolism despite the lack of studies focusing on purified root plastids. In this study, we investigated mycorrhiza-induced changes in plastidic pathways by performing a label-free comparative subcellular quantitative proteomic analysis targeted on plastid-enriched fractions isolated from Medicago truncatula roots, coupled to a cytological analysis of plastid structure. We identified 490 root plastid protein candidates, among which 79 changed in abundance upon mycorrhization, as inferred from spectral counting. According to cross-species sequence homology searches, the mycorrhiza-responsive proteome was enriched in proteins experimentally localized in thylakoids, whereas it was depleted of proteins ascribed predominantly to amyloplasts. Consistently, the analysis of plastid morphology using transmission electron microscopy indicated that starch depletion associated with the proliferation of membrane-free and tubular membrane-containing plastids was a feature specific to arbusculated cells. The loss of enzymes involved in carbon/nitrogen assimilation and provision of reducing power, coupled to macromolecule degradation events in the plastid-enriched fraction of mycorrhizal roots that paralleled lack of starch accumulation in arbusculated cells, lead us to propose that arbuscule functioning elicits a nutrient starvation and an oxidative stress signature that may prime arbuscule breakdown.
Collapse
Affiliation(s)
- Zeina Daher
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Katalin Solymosi
- Department of Plant Anatomy, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Stefanie Wienkoop
- Department of Molecular System Biology, University of Vienna, Vienna 1090, Austria
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Dominique Morandi
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Jeannine Lherminier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Eliane Dumas-Gaudot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, Dijon cedex 21065, France
| | - Benoît Schoefs
- MicroMar, Mer, Molécules, Santé, UBL, Université du Maine, Le Mans Cedex 9 72085, France
| |
Collapse
|
38
|
Hydrogen sulfide - cysteine cycle system enhances cadmium tolerance through alleviating cadmium-induced oxidative stress and ion toxicity in Arabidopsis roots. Sci Rep 2016; 6:39702. [PMID: 28004782 PMCID: PMC5177925 DOI: 10.1038/srep39702] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/25/2016] [Indexed: 11/28/2022] Open
Abstract
Cadmium (Cd2+) is a common toxic heavy metal ion. We investigated the roles of hydrogen sulfide (H2S) and cysteine (Cys) in plant responses to Cd2+ stress. The expression of H2S synthetic genes LCD and DES1 were induced by Cd2+ within 3 h, and endogenous H2S was then rapidly released. H2S promoted the expression of Cys synthesis-related genes SAT1 and OASA1, which led to endogenous Cys accumulation. The H2S and Cys cycle system was stimulated by Cd2+ stress, and it maintained high levels in plant cells. H2S inhibited the ROS burst by inducing alternative respiration capacity (AP) and antioxidase activity. H2S weakened Cd2+ toxicity by inducing the metallothionein (MTs) genes expression. Cys promoted GSH accumulation and inhibited the ROS burst, and GSH induced the expression of phytochelatin (PCs) genes, counteracting Cd2+ toxicity. In summary, the H2S and Cys cycle system played a key role in plant responses to Cd2+ stress. The Cd2+ tolerance was weakened when the cycle system was blocked in lcddes1-1 and oasa1 mutants. This paper is the first to describe the role of the H2S and Cys cycle system in Cd2+ stress and to explore the relevant and specificity mechanisms of H2S and Cys in mediating Cd2+ stress.
Collapse
|
39
|
Tahir J, Dijkwel P. β-Substituting alanine synthases: roles in cysteine metabolism and abiotic and biotic stress signalling in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:307-323. [PMID: 32480463 DOI: 10.1071/fp15272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 06/11/2023]
Abstract
Cysteine is required for the synthesis of proteins and metabolites, and is therefore an indispensable compound for growth and development. The β-substituting alanine synthase (BSAS) gene family encodes enzymes known as O-acetylserine thiol lyases (OASTLs), which carry out cysteine biosynthesis in plants. The functions of the BSAS isoforms have been reported to be crucial in assimilation of S and cysteine biosynthesis, and homeostasis in plants. In this review we explore the functional variation in this classic pyridoxal-phosphate-dependent enzyme family of BSAS isoforms. We discuss how specialisation and divergence in BSAS catalytic activities makes a more dynamic set of biological routers that integrate cysteine metabolism and abiotic and biotic stress signalling in Arabidopsis thaliana (L.) Heynh. and also other species. Our review presents a universal scenario in which enzymes modulating cysteine metabolism promote survival and fitness of the species by counteracting internal and external stress factors.
Collapse
Affiliation(s)
- Jibran Tahir
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
40
|
Hernández LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Cáceres ML, Ortega-Villasante C, Escobar C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2901-11. [PMID: 25750419 DOI: 10.1093/jxb/erv063] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation.
Collapse
Affiliation(s)
- Luis E Hernández
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Juan Sobrino-Plata
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - M Belén Montero-Palmero
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| | - Sandra Carrasco-Gil
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain † Present address: Aula Dei Experimental Research Station-CSIC, Avd. Montañana, ES- 50059 Zaragoza, Spain
| | - M Laura Flores-Cáceres
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, Cantoblanco, ES-28049 Madrid, Spain
| | - Carolina Escobar
- Department of Environmental Sciences, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, ES-45070 Toledo, Spain
| |
Collapse
|
41
|
Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. FRONTIERS IN PLANT SCIENCE 2015; 6:210. [PMID: 25904923 PMCID: PMC4387935 DOI: 10.3389/fpls.2015.00210] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/16/2015] [Indexed: 05/18/2023]
Abstract
Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO4 (2-)), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO4 (2-)-activation and yields activated high-energy compound adenosine-5(')-phosphosulfate that is reduced to sulfide (S(2-)) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes.
Collapse
Affiliation(s)
- Naser A. Anjum
- Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, AveiroPortugal
| | - Ritu Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, RohtakIndia
| | - Manjeri Kaushik
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, RohtakIndia
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, DhakaBangladesh
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, AveiroPortugal
| | - Iqbal Ahmad
- Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, AveiroPortugal
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, AveiroPortugal
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New DelhiIndia
| | - Sarvajeet S. Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, RohtakIndia
- *Correspondence: Sarvajeet S. Gill, Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, India
| |
Collapse
|
42
|
Distéfano AM, Valiñas MA, Scuffi D, Lamattina L, ten Have A, García-Mata C, Laxalt AM. Phospholipase D δ knock-out mutants are tolerant to severe drought stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1089371. [PMID: 26340512 PMCID: PMC4883880 DOI: 10.1080/15592324.2015.1089371] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phospholipase D (PLD) is involved in different plant processes, ranging from responses to abiotic and biotic stress to plant development. Phospholipase Dδ (PLDδ) is activated in dehydration and salt stress, producing the lipid second messenger phosphatidic acid. In this work we show that pldδ Arabidopsis mutants were more tolerant to severe drought than wild-type plants. PLDδ has been shown to be required for ABA regulation of stomatal closure of isolated epidermal peels. However, there was no significant difference in stomatal conductance at the whole plant level between wild-type and pldδ mutants. Since PLD hydrolyses structural phospholipids, then we looked at membrane integrity. Ion leakage measurements showed that during dehydration of leaf discs pldδ mutant has less membrane degradation compared to the wild-type. We further analyzed the mutants and showed that pldδ have higher mRNA levels of RAB18 and RD29A compared to wild-type plants under normal growth conditions. Transient expression of AtPLDδ in Nicotiana benthamiana plants induced a wilting phenotype. These findings suggest that, in wt plants PLDδ disrupt membranes in severe drought stress and, in the absence of the protein (PLDδ knock-out) might drought-prime the plants, making them more tolerant to severe drought stress. The results are discussed in relation to PLDδ role in guard cell signaling and drought tolerance.
Collapse
Affiliation(s)
- Ayelen M Distéfano
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Matías A Valiñas
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Arjen ten Have
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas-CONICET; Universidad Nacional de Mar del Plata; Mar del Plata, Argentina
- Correspondence to: Ana M Laxalt;
| |
Collapse
|
43
|
Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García-Mata C. Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. PLANT PHYSIOLOGY 2014; 166:2065-76. [PMID: 25266633 PMCID: PMC4256879 DOI: 10.1104/pp.114.245373] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/23/2014] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a well-studied regulator of stomatal movement. Hydrogen sulfide (H2S), a small signaling gas molecule involved in key physiological processes in mammals, has been recently reported as a new component of the ABA signaling network in stomatal guard cells. In Arabidopsis (Arabidopsis thaliana), H2S is enzymatically produced in the cytosol through the activity of l-cysteine desulfhydrase (DES1). In this work, we used DES1 knockout Arabidopsis mutant plants (des1) to study the participation of DES1 in the cross talk between H2S and nitric oxide (NO) in the ABA-dependent signaling network in guard cells. The results show that ABA did not close the stomata in isolated epidermal strips of des1 mutants, an effect that was restored by the application of exogenous H2S. Quantitative reverse transcription polymerase chain reaction analysis demonstrated that ABA induces DES1 expression in guard cell-enriched RNA extracts from wild-type Arabidopsis plants. Furthermore, stomata from isolated epidermal strips of Arabidopsis ABA receptor mutant pyrabactin-resistant1 (pyr1)/pyrabactin-like1 (pyl1)/pyl2/pyl4 close in response to exogenous H2S, suggesting that this gasotransmitter is acting downstream, although acting independently of the ABA receptor cannot be ruled out with this data. However, the Arabidopsis clade-A PROTEIN PHOSPHATASE2C mutant abscisic acid-insensitive1 (abi1-1) does not close the stomata when epidermal strips were treated with H2S, suggesting that H2S required a functional ABI1. Further studies to unravel the cross talk between H2S and NO indicate that (1) H2S promotes NO production, (2) DES1 is required for ABA-dependent NO production, and (3) NO is downstream of H2S in ABA-induced stomatal closure. Altogether, data indicate that DES1 is a unique component of ABA signaling in guard cells.
Collapse
Affiliation(s)
- Denise Scuffi
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Consolación Álvarez
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Natalia Laspina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Cecilia Gotor
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 7600 Mar del Plata, Argentina (D.S., N.L., L.L., C.G.-M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Seville, Spain (C.Á., C.G.)
| |
Collapse
|
44
|
Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, Eppel A, Fluhr R, Sagi M. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. PLANT PHYSIOLOGY 2014; 165:1505-1520. [PMID: 24987017 PMCID: PMC4119034 DOI: 10.1104/pp.114.241356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/30/2014] [Indexed: 05/03/2023]
Abstract
Sulfite reductase (SiR) is an essential enzyme of the sulfate assimilation reductive pathway, which catalyzes the reduction of sulfite to sulfide. Here, we show that tomato (Solanum lycopersicum) plants with impaired SiR expression due to RNA interference (SIR Ri) developed early leaf senescence. The visual chlorophyll degradation in leaves of SIR Ri mutants was accompanied by a reduction of maximal quantum yield, as well as accumulation of hydrogen peroxide and malondialdehyde, a product of lipid peroxidation. Interestingly, messenger RNA transcripts and proteins involved in chlorophyll breakdown in the chloroplasts were found to be enhanced in the mutants, while transcripts and their plastidic proteins, functioning in photosystem II, were reduced in these mutants compared with wild-type leaves. As a consequence of SiR impairment, the levels of sulfite, sulfate, and thiosulfate were higher and glutathione levels were lower compared with the wild type. Unexpectedly, in a futile attempt to compensate for the low glutathione, the activity of adenosine-5'-phosphosulfate reductase was enhanced, leading to further sulfite accumulation in SIR Ri plants. Increased sulfite oxidation to sulfate and incorporation of sulfite into sulfoquinovosyl diacylglycerols were not sufficient to maintain low basal sulfite levels, resulting in accumulative leaf damage in mutant leaves. Our results indicate that, in addition to its biosynthetic role, SiR plays an important role in prevention of premature senescence. The higher sulfite is likely the main reason for the initiation of chlorophyll degradation, while the lower glutathione as well as the higher hydrogen peroxide and malondialdehyde additionally contribute to premature senescence in mutant leaves.
Collapse
Affiliation(s)
- Dmitry Yarmolinsky
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Galina Brychkova
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Assylay Kurmanbayeva
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Aizat Bekturova
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Yvonne Ventura
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Inna Khozin-Goldberg
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Amir Eppel
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Robert Fluhr
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| | - Moshe Sagi
- The Jacob Blaustein Institute for Desert Research, Albert Katz Department of Dryland Biotechnologies, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (D.Y., G.B., A.K., A.B., Y.V., I.K.-G., A.E., M.S.); andDepartment of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel (R.F.)
| |
Collapse
|
45
|
Signaling in the plant cytosol: cysteine or sulfide? Amino Acids 2014; 47:2155-64. [DOI: 10.1007/s00726-014-1786-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
46
|
Cernadas RA, Doyle EL, Niño-Liu DO, Wilkins KE, Bancroft T, Wang L, Schmidt CL, Caldo R, Yang B, White FF, Nettleton D, Wise RP, Bogdanove AJ. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 2014; 10:e1003972. [PMID: 24586171 PMCID: PMC3937315 DOI: 10.1371/journal.ppat.1003972] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/17/2014] [Indexed: 12/17/2022] Open
Abstract
Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting. Many crop and ornamental plants suffer losses due to bacterial pathogens in the genus Xanthomonas. Pathogen manipulation of host gene expression by injected proteins called TAL effectors is important in many of these diseases. A TAL effector finds its gene target(s) by virtue of structural repeats in the protein that differ one from another at two amino acids that together identify one DNA base. The number of repeats and those amino acids thereby code for the DNA sequence the protein binds. This code allows target prediction and engineering TAL effectors for custom gene activation. By combining genome-wide analysis of gene expression with TAL effector binding site prediction and verification using designer TAL effectors, we identified 19 targets of TAL effectors in bacterial leaf streak of rice, a disease of growing importance worldwide caused by X. oryzae pv. oryzicola. Among these was a sulfate transport gene that plays a major role. Comparison of true vs. false predictions using machine learning yielded a classifier that will streamline TAL effector target identification in the future. Probing the diversity and functions of such plant genes is critical to expand our knowledge of disease and defense mechanisms, and open new avenues for effective disease control.
Collapse
Affiliation(s)
- Raul A. Cernadas
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Erin L. Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - David O. Niño-Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Katherine E. Wilkins
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Timothy Bancroft
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Li Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Clarice L. Schmidt
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Rico Caldo
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Bing Yang
- Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Roger P. Wise
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa, United States of America
| | - Adam J. Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Cernadas RA, Doyle EL, Niño-Liu DO, Wilkins KE, Bancroft T, Wang L, Schmidt CL, Caldo R, Yang B, White FF, Nettleton D, Wise RP, Bogdanove AJ. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 2014. [PMID: 24586171 DOI: 10.1371/journal.ppat.1003972ppathogens-d-13-02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting.
Collapse
Affiliation(s)
- Raul A Cernadas
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Erin L Doyle
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
| | - David O Niño-Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Katherine E Wilkins
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Timothy Bancroft
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Li Wang
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Clarice L Schmidt
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Rico Caldo
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Bing Yang
- Genetics Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Roger P Wise
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa, United States of America
| | - Adam J Bogdanove
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America ; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
48
|
Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C. Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:264-76. [PMID: 24285094 DOI: 10.1093/mp/sst168] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cysteine occupies a central position in plant metabolism because it is a reduced sulfur donor molecule involved in the synthesis of essential biomolecules and defense compounds. Moreover, cysteine per se and its derivative molecules play roles in the redox signaling of processes occurring in various cellular compartments. Cysteine is synthesized during the sulfate assimilation pathway via the incorporation of sulfide to O-acetylserine, catalyzed by O-acetylserine(thiol)lyase (OASTL). Plant cells contain OASTLs in the mitochondria, chloroplasts, and cytosol, resulting in a complex array of isoforms and subcellular cysteine pools. In recent years, significant progress has been made in Arabidopsis, in determining the specific roles of the OASTLs and the metabolites produced by them. Thus, the discovery of novel enzymatic activities of the less-abundant, like DES1 with L-cysteine desulfhydrase activity and SCS with S-sulfocysteine synthase activity, has provided new perspectives on their roles, besides their metabolic functions. Thereby, the research has been demonstrated that cytosolic sulfide and chloroplastic S-sulfocysteine act as signaling molecules regulating autophagy and protecting the photosystems, respectively. In the cytosol, cysteine plays an essential role in plant immunity; in the mitochondria, this molecule plays a central role in the detoxification of cyanide, which is essential for root hair development and plant responses to pathogens.
Collapse
Affiliation(s)
- Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
49
|
García I, Rosas T, Bejarano ER, Gotor C, Romero LC. Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response. PLANT PHYSIOLOGY 2013; 162:2015-27. [PMID: 23784464 PMCID: PMC3729779 DOI: 10.1104/pp.113.219436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system.
Collapse
Affiliation(s)
- Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, E-41092 Seville, Spain.
| | | | | | | | | |
Collapse
|
50
|
Gotor C, Romero LC. S-sulfocysteine synthase function in sensing chloroplast redox status. PLANT SIGNALING & BEHAVIOR 2013; 8:e23313. [PMID: 23333972 PMCID: PMC3676497 DOI: 10.4161/psb.23313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/17/2012] [Indexed: 05/27/2023]
Abstract
The minor chloroplastic O-acetylserine(thiol)lyase isoform encoded by the CS26 gene in Arabidopsis thaliana has been described as an S-sulfocysteine synthase enzyme that plays an important role in chloroplast function. This enzyme is located in the thylakoid lumen, and its S-sulfocysteine activity is essential for the proper photosynthetic performance of the chloroplast under long-day growth conditions. Based on the present knowledge of this enzyme, we suggest that S-sulfocysteine synthase functions as a protein sensor to detect the accumulation of thiosulfate as a result of the inadequate detoxification of reactive oxygen species generated under conditions of excess light to produce the S-sulfocysteine molecule that triggers protection mechanisms of the photosynthetic apparatus.
Collapse
|