1
|
Roitman M, Eshel D. Similar chilling response of dormant buds in potato tuber and woody perennials. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6076-6092. [PMID: 38758594 DOI: 10.1093/jxb/erae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Bud dormancy is a survival strategy that plants have developed in their native habitats. It helps them endure harsh seasonal changes by temporarily halting growth and activity until conditions become more favorable. Research has primarily focused on bud dormancy in tree species and the ability to halt growth in vegetative tissues, particularly in meristems. Various plant species, such as potato, have developed specialized storage organs, enabling them to become dormant during their yearly growth cycle. Deciduous trees and potato tubers exhibit a similar type of bud endodormancy, where the bud meristem will not initiate growth, even under favorable environmental conditions. Chilling accumulation activates C-repeat/dehydration responsive element binding (DREB) factors (CBFs) transcription factors that modify the expression of dormancy-associated genes. Chilling conditions shorten the duration of endodormancy by influencing plant hormones and sugar metabolism, which affect the timing and rate of bud growth. Sugar metabolism and signaling pathways can interact with abscisic acid, affecting the symplastic connection of dormant buds. This review explores how chilling affects endodormancy duration and explores the similarity of the chilling response of dormant buds in potato tubers and woody perennials.
Collapse
Affiliation(s)
- Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO), The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Namba J, Harada M, Shibata R, Toda Y, Maruta T, Ishikawa T, Shigeoka S, Yoshimura K, Ogawa T. AtDREB2G is involved in the regulation of riboflavin biosynthesis in response to low-temperature stress and abscisic acid treatment in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112196. [PMID: 39025268 DOI: 10.1016/j.plantsci.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Riboflavin (RF) serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide, which are crucial cofactors in various metabolic processes. Strict regulation of cellular flavin homeostasis is imperative, yet information regarding the factors governing this regulation remains largely elusive. In this study, we first examined the impact of external flavin treatment on the Arabidopsis transcriptome to identify novel regulators of cellular flavin levels. Our analysis revealed alterations in the expression of 49 putative transcription factors. Subsequent reverse genetic screening highlighted a member of the dehydration-responsive element binding (DREB) family, AtDREB2G, as a potential regulator of cellular flavin levels. Knockout mutants of AtDREB2G (dreb2g) exhibited reduced flavin levels and decreased expression of RF biosynthetic genes compared to wild-type plants. Conversely, conditional overexpression of AtDREB2G led to an increase in the expression of RF biosynthetic genes and elevated flavin levels. In wild-type plants, exposure to low temperatures and abscisic acid treatment stimulated enhanced flavin levels and upregulated the expression of RF biosynthetic genes, concomitant with the induction of AtDREB2G. Notably, these responses were significantly attenuated in dreb2g mutants. Our findings establish AtDREB2G is involved in the positive regulation of flavin biosynthesis in Arabidopsis, particularly under conditions of low temperature and abscisic acid treatment.
Collapse
Affiliation(s)
- Junya Namba
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Miho Harada
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Rui Shibata
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yuina Toda
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan; Experimental Farm, Kindai University, Yuasa, Wakayama 643-0004, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
3
|
Huang G, Wan R, Zou L, Ke J, Zhou L, Tan S, Li T, Chen L. The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco. PLANT CELL REPORTS 2024; 43:143. [PMID: 38750149 DOI: 10.1007/s00299-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.
Collapse
Affiliation(s)
- Gang Huang
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Renjing Wan
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Liping Zou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jie Ke
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Lihong Zhou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.
| | - Tiantian Li
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Lihong Chen
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
4
|
Deng D, Guo Y, Guo L, Li C, Nie Y, Wang S, Wu W. Functional Divergence in Orthologous Transcription Factors: Insights from AtCBF2/3/1 and OsDREB1C. Mol Biol Evol 2024; 41:msae089. [PMID: 38723179 PMCID: PMC11119335 DOI: 10.1093/molbev/msae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Despite traditional beliefs of orthologous genes maintaining similar functions across species, growing evidence points to their potential for functional divergence. C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are critical in cold acclimation, with their overexpression enhancing stress tolerance but often constraining plant growth. In contrast, a recent study unveiled a distinctive role of rice OsDREB1C in elevating nitrogen use efficiency (NUE), photosynthesis, and grain yield, implying functional divergence within the CBF/DREB1 orthologs across species. Here, we delve into divergent molecular mechanisms of OsDREB1C and AtCBF2/3/1 by exploring their evolutionary trajectories across rice and Arabidopsis genomes, regulatomes, and transcriptomes. Evolutionary scrutiny shows discrete clades for OsDREB1C and AtCBF2/3/1, with the Poaceae-specific DREB1C clade mediated by a transposon event. Genome-wide binding profiles highlight OsDREB1C's preference for GCCGAC compared to AtCBF2/3/1's preference for A/GCCGAC, a distinction determined by R12 in the OsDREB1C AP2/ERF domain. Cross-species multiomic analyses reveal shared gene orthogroups (OGs) and underscore numerous specific OGs uniquely bound and regulated by OsDREB1C, implicated in NUE, photosynthesis, and early flowering, or by AtCBF2/3/1, engaged in hormone and stress responses. This divergence arises from gene gains/losses (∼16.7% to 25.6%) and expression reprogramming (∼62.3% to 66.2%) of OsDREB1C- and AtCBF2/3/1-regulated OGs during the extensive evolution following the rice-Arabidopsis split. Our findings illustrate the regulatory evolution of OsDREB1C and AtCBF2/3/1 at a genomic scale, providing insights on the functional divergence of orthologous transcription factors following gene duplications across species.
Collapse
Affiliation(s)
- Deyin Deng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yixin Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyang Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Zhang X, Yu J, Qu G, Chen S. The cold-responsive C-repeat binding factors in Betula platyphylla Suk. positively regulate cold tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112012. [PMID: 38311248 DOI: 10.1016/j.plantsci.2024.112012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Cold stress is one of the most destructive abiotic stresses limiting plant growth and development. CBF (C-repeat binding factor) transcription factors and their roles in cold response have been identified in Arabidopsis as well as several other plant species. However, the biological functions and related molecular mechanisms of CBFs in birch (Betula platyphylla Suk.) remain undetermined. In this study, five cold-responsive BpCBF genes, BpCBF1, BpCBF2, BpCBF7, BpCBF10 and BpCBF12 were cloned. Via protoplast transformation, BpCBF7 was found to be localized in nucleus. The result of yeast one hybrid assay validated the binding of BpCBF7 to the CRT/DRE (C-repeat/dehydration responsive element) elements in the promoter of BpERF1.1 gene. By overexpressing and repressing BpCBFs in birch plants, it was proven that BpCBFs play positive roles in the cold tolerance. At the metabolic level, BpCBFs OE lines had lower ROS accumulation, as well as higher activities of antioxidant enzymes (SOD, POD and CAT) and higher accumulation of protective substances (soluble sugar, soluble protein and proline). Via yeast one hybrid and co-transformation of effector and reporter vectors assay, it was proven that BpCBF7 can regulate the expression of BpERF5 and BpZAT10 genes by directly binding to their promoters. An interacting protein of BpCBF7, BpWRKY17, was identified by yeast two hybrid library sequencing and the interaction was validated with in vivo methods. These results indicates that BpCBFs can increase the cold tolerance of birch plants, partly by gene regulation and protein interaction. This study provides a reference for the research on CBF transcription factors and genetic improvement of forest trees upon abiotic stresses.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
| |
Collapse
|
6
|
Zhang X, Yu F, Lyu X, Chen J, Zeng H, Xu N, Wu Y, Zhu Q. Transcriptome profiling of Bergenia purpurascens under cold stress. BMC Genomics 2023; 24:754. [PMID: 38062379 PMCID: PMC10702111 DOI: 10.1186/s12864-023-09850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Bergenia purpurascens is an important medicinal, edible and ornamental plant. It generally grows in high-altitude areas with complex climates. There have been no reports about how B. purpurascens survives under cold stress. Here, the B. purpurascens under low temperature were subjected to transcriptomics analysis to explore the candidate genes and pathways that involved in the cold tolerance of B. purpurascens. Compared with the control treatment, we found 9,600 up-regulated differentially expressed genes (DEGs) and 7,055 down-regulated DEGs. A significant number of DEGs were involved in the Ca2+ signaling pathway, mitogen-activated protein kinase (MAPK) cascade, plant hormone signaling pathway, and lipid metabolism. A total of 400 transcription factors were found to respond to cold stress, most of which belonged to the MYB and AP2/ERF families. Five novel genes were found to be potential candidate genes involved in the cold tolerance of B. purpurascens. The study provide insights into further investigation of the molecular mechanism of how B. purpurascens survives under cold stress.
Collapse
Affiliation(s)
- Xuebin Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Fang Yu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xin Lyu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingyu Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hongyan Zeng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nuomei Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yufeng Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiankun Zhu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
7
|
Identification and Analysis of the CBF Gene Family in Three Species of Acer under Cold Stress. Int J Mol Sci 2023; 24:ijms24032088. [PMID: 36768411 PMCID: PMC9916880 DOI: 10.3390/ijms24032088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The C-Repeat Binding Factor (CBF) gene family has been identified and characterized in multiple plant species, and it plays a crucial role in responding to low temperatures. Presently, only a few studies on tree species demonstrate the mechanisms and potential functions of CBFs associated with cold resistance, while our study is a novel report on the multi-aspect differences of CBFs among three tree species, compared to previous studies. In this study, genome-wide identification and analysis of the CBF gene family in Acer truncatum, Acer pseudosieboldianum, and Acer yangbiense were performed. The results revealed that 16 CBF genes (five ApseCBFs, four AcyanCBFs, and seven AtruCBFs) were unevenly distributed across the chromosomes, and most CBF genes were mapped on chromosome 2 (Chr2) and chromosome 11 (Chr11). The analysis of phylogenetic relationships, gene structure, and conserved motif showed that 16 CBF genes could be clustered into three subgroups; they all contained Motif 1 and Motif 5, and most of them only spanned one exon. The cis-acting elements analysis showed that some CBF genes might be involved in hormone and abiotic stress responsiveness. In addition, CBF genes exhibited tissue expression specificity. High expressions of ApseCBF1, ApseCBF3, AtruCBF1, AtruCBF4, AtruCBF6, AtruCBF7, and ApseCBF3, ApseCBF4, ApseCBF5 were detected on exposure to low temperature for 3 h and 24 h. Low expressions of AtruCBF2, AtruCBF6, AtruCBF7 were detected under cold stress for 24 h, and AtruCBF3 and AtruCBF5 were always down-regulated under cold conditions. Taken together, comprehensive analysis will enhance our understanding of the potential functions of the CBF genes on cold resistance, thereby providing a reference for the introduction of Acer species in our country.
Collapse
|
8
|
Vergara A, Haas JC, Aro T, Stachula P, Street NR, Hurry V. Norway spruce deploys tissue-specific responses during acclimation to cold. PLANT, CELL & ENVIRONMENT 2022; 45:427-445. [PMID: 34873720 DOI: 10.1111/pce.14241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change in the conifer-dominated boreal forest is expected to lead to warmer but more dynamic winter air temperatures, reducing the depth and duration of snow cover and lowering winter soil temperatures. To gain insight into the mechanisms that have enabled conifers to dominate extreme cold environments, we performed genome-wide RNA-Seq analysis from needles and roots of non-dormant two-year Norway spruce (Picea abies (L.) H. Karst), and contrasted these response to herbaceous model Arabidopsis We show that the main transcriptional response of Norway spruce needles exposed to cold was delayed relative to Arabidopsis, and this delay was associated with slower development of freezing tolerance. Despite this difference in timing, Norway spruce principally utilizes early response transcription factors (TFs) belonging to the same gene families as Arabidopsis, indicating broad evolutionary conservation of cold response networks. In keeping with their different metabolic and developmental states, needles and root of Norway spruce showed contrasting results. Regulatory network analysis identified both conserved TFs with known roles in cold acclimation (e.g. homologs of ICE1, AKS3, and of the NAC and AP2/ERF superfamilies), but also a root-specific bHLH101 homolog, providing functional insights into cold stress response strategies in Norway spruce.
Collapse
Affiliation(s)
- Alexander Vergara
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Julia C Haas
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Tuuli Aro
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Paulina Stachula
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Vaughan Hurry
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
9
|
Zhang M, Cheng W, Yuan X, Wang J, Cheng T, Zhang Q. Integrated transcriptome and small RNA sequencing in revealing miRNA-mediated regulatory network of floral bud break in Prunus mume. FRONTIERS IN PLANT SCIENCE 2022; 13:931454. [PMID: 35937373 PMCID: PMC9355595 DOI: 10.3389/fpls.2022.931454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 05/08/2023]
Abstract
MicroRNAs is one class of small non-coding RNAs that play important roles in plant growth and development. Though miRNAs and their target genes have been widely studied in many plant species, their functional roles in floral bud break and dormancy release in woody perennials is still unclear. In this study, we applied transcriptome and small RNA sequencing together to systematically explore the transcriptional and post-transcriptional regulation of floral bud break in P. mume. Through expression profiling, we identified a few candidate genes and miRNAs during different developmental stage transitions. In total, we characterized 1,553 DEGs associated with endodormancy release and 2,084 DEGs associated with bud flush. Additionally, we identified 48 known miRNAs and 53 novel miRNAs targeting genes enriched in biological processes such as floral organ morphogenesis and hormone signaling transudation. We further validated the regulatory relationship between differentially expressed miRNAs and their target genes combining computational prediction, degradome sequencing, and expression pattern analysis. Finally, we integrated weighted gene co-expression analysis and constructed miRNA-mRNA regulatory networks mediating floral bud flushing competency. In general, our study revealed the miRNA-mediated networks in modulating floral bud break in P. mume. The findings will contribute to the comprehensive understanding of miRNA-mediated regulatory mechanism governing floral bud break and dormancy cycling in wood perennials.
Collapse
|
10
|
Li D, He Y, Li S, Shi S, Li L, Liu Y, Chen H. Genome-wide characterization and expression analysis of AP2/ERF genes in eggplant (Solanum melongena L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:492-503. [PMID: 34425394 DOI: 10.1016/j.plaphy.2021.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 05/20/2023]
Abstract
The AP2/ERF (APETALA2/Ethylene Response Factor) transcription factor superfamily plays crucial roles in a slew of physiological processes, such as plant growth and development, stress response, and secondary metabolites biosynthesis. Eggplant, especially the one rich with anthocyanins, is an economically important horticultural vegetable cultivated worldwide. In this study, we comprehensively analyzed the putative AP2/ERF gene family members and their response to abiotic stress in eggplant. As per the phylogenetic, conserved domains, and motif analysis, 178 AP2/ERF genes in this study belonged to five subfamilies. Chromosomal distributions analysis elucidated stochastic distribution of 178 putative SmAP2/ERF genes across the twelve chromosomes of eggplant. Expression profiles of sixteen selected AP2/ERF genes response to low temperature, drought, salt, abscisic acid, and ethylene treatments were analyzed, which revealed the involvement of SmAP2/ERF genes in diverse signaling pathways. In addition, we integrated RNA-Seq data on anthocyanin biosynthesis in eggplant with yeast one-hybrid and dual-luciferase assays and identified involvement of the SmAP2/ERF genes (Smechr0902114.1 and Smechr1102075.1) in the regulation of anthocyanin biosynthesis. This study will enable further functional characterization of AP2/ERF genes in eggplant and extend the current understanding of the role played by AP2/ERF genes in anthocyanin biosynthesis regulation.
Collapse
Affiliation(s)
- Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - YongJun He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Linzhi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Chang CYY, Bräutigam K, Hüner NPA, Ensminger I. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. THE NEW PHYTOLOGIST 2021; 229:675-691. [PMID: 32869329 DOI: 10.1111/nph.16904] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Evergreen conifers are champions of winter survival, based on their remarkable ability to acclimate to cold and develop cold hardiness. Counterintuitively, autumn cold acclimation is triggered not only by exposure to low temperature, but also by a combination of decreasing temperature, decreasing photoperiod and changes in light quality. These environmental cues control a network of signaling pathways that coordinate cold acclimation and cold hardiness in overwintering conifers, leading to cessation of growth, bud dormancy, freezing tolerance and changes in energy metabolism. Advances in genomic, transcriptomic and metabolomic tools for conifers have improved our understanding of how trees sense and respond to changes in temperature and light during cold acclimation and the development of cold hardiness, but there remain considerable gaps deserving further research in conifers. In the first section of this review, we focus on the physiological mechanisms used by evergreen conifers to adjust metabolism seasonally and to protect overwintering tissues against winter stresses. In the second section, we review how perception of low temperature and photoperiod regulate the induction of cold acclimation. Finally, we explore the evolutionary context of cold acclimation in conifers and evaluate challenges imposed on them by changing climate and discuss emerging areas of research in the field.
Collapse
Affiliation(s)
- Christine Yao-Yun Chang
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Katharina Bräutigam
- Department of Biology, University of Toronto, Mississauga, ON, L5L1C6, Canada
- Graduate Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Norman P A Hüner
- Department of Biology and The Biotron Experimental Climate Change Research Centre, Western University, London, ON, N6A5B7, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto, Mississauga, ON, L5L1C6, Canada
- Graduate Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
12
|
Zhao M, Zhang N, Gao T, Jin J, Jing T, Wang J, Wu Y, Wan X, Schwab W, Song C. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. THE NEW PHYTOLOGIST 2020; 226:362-372. [PMID: 31828806 DOI: 10.1111/nph.16364] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/06/2019] [Indexed: 05/18/2023]
Abstract
Plants produce and emit terpenes, including sesquiterpenes, during growth and development, which serve different functions in plants. The sesquiterpene nerolidol has health-promoting properties and adds a floral scent to plants. However, the glycosylation mechanism of nerolidol and its biological roles in plants remained unknown. Sesquiterpene UDP-glucosyltransferases were selected by using metabolites-genes correlation analysis, and its roles in response to cold stress were studied. We discovered the first plant UGT (UGT91Q2) in tea plant, whose expression is strongly induced by cold stress and which specifically catalyzes the glucosylation of nerolidol. The accumulation of nerolidol glucoside was consistent with the expression level of UGT91Q2 in response to cold stress, as well as in different tea cultivars. The reactive oxygen species (ROS) scavenging capacity of nerolidol glucoside was significantly higher than that of free nerolidol. Down-regulation of UGT91Q2 resulted in reduced accumulation of nerolidol glucoside, ROS scavenging capacity and tea plant cold tolerance. Tea plants absorbed airborne nerolidol and converted it to its glucoside, subsequently enhancing tea plant cold stress tolerance. Nerolidol plays a role in response to cold stress as well as in triggering plant-plant communication in response to cold stress. Our findings reveal previously unidentified roles of volatiles in response to abiotic stress in plants.
Collapse
Affiliation(s)
- Mingyue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Na Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jieyang Jin
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jingming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yi Wu
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wilfried Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, Freising, 85354, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
13
|
Lv K, Li J, Zhao K, Chen S, Nie J, Zhang W, Liu G, Wei H. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110375. [PMID: 32005381 DOI: 10.1016/j.plantsci.2019.110375] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 05/20/2023]
Abstract
The AP2/ERF (APETALA2/ethylene-responsive factor) family of transcription factors (TF) is involved in regulating biotic and abiotic stress responses in plants. To explore the role of AP2/ERFs in cold tolerance in woody plants, BpERF13 was cloned and characterized in Betula platyphylla (white birch), a species primarily found in Asia in temperate and boreal climates. Based on phylogenetic analysis, BpERF13 is a member of the IXb subfamily of ERFs. Using qRT-PCR, we found that BpERF13 was differentially expressed in different tissues, and its expression could be induced by cold treatment (4 °C). BpERF13 protein, fused with GFP, was exclusively localized to nuclei. To further assess the role of BpERF13 in cold tolerance, BpERF13 overexpression (OE) transgenic lines were generated in B. platyphylla and used for cold stress treatment and biochemical/physiological studies. BpERF13 overexpression lines had significantly increased tolerance to subfreezing treatment and reduced reactive oxygen species. Using a TF-centered yeast one-hybrid (Y1H) experimental system, we showed that BpERF13 could bind to LTRECOREATCOR15 and MYBCORE cis-elements to activate a reporter gene. ChIP-seq and ChIP-PCR experiments further demonstrated that BpERF13 bound to these cis-elements when present in the 5' proximal regions of superoxide dismutase (SOD), peroxidase (POD), and C-repeat-binding factor (CBF) genes. qRT-PCR was employed to examine the expression levels of these genes in response to cold stress; SOD, POD, and CBF genes were significantly upregulated in BpERF13 transgenic lines compared to wild-type plants in response to cold stress. These results indicate that the transcription factor BpERF13 regulates physiological processes underlying cold tolerance in woody plants.
Collapse
Affiliation(s)
- Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China
| | - Jeff Nie
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, PR China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, PR China.
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, United States.
| |
Collapse
|
14
|
Liu Y, Dang P, Liu L, He C. Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana. PLANT CELL REPORTS 2019; 38:511-519. [PMID: 30652229 PMCID: PMC6488690 DOI: 10.1007/s00299-019-02376-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/04/2019] [Indexed: 05/18/2023]
Abstract
Cold acclimation is a process used by most temperate plants to cope with freezing stress. In this process, the expression of cold-responsive (COR) genes is activated and the genes undergo physiological changes in response to the exposure to low, non-freezing temperatures and other environmental signals. The C-repeat-binding factors (CBFs) have been demonstrated to regulate the expression of many COR genes. Recent studies have elucidated the molecular mechanisms of how plants transmit cold signals from the plasma membrane to the CBFs and the results have indicated that COR genes are also regulated through CBF-independent pathways. Climate change is expected to have a major impact on cold acclimation and freezing tolerance of plants. However, how climate change affects plant cold acclimation at the molecular level remains unclear. This mini-review focuses on recent advances in cold acclimation in Arabidopsis thaliana and discusses how signaling can be potentially impacted by climate change. Understanding how plants acquire cold acclimation is valuable for the improvement of the freezing tolerance in plants and for predicting the effects of climate change on plant distribution and agricultural yield.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| | - Peiyu Dang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education, College of Forestry, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China
| | - Lixia Liu
- School of Ecology and Landscape Architecture, Dezhou University, 566 West University Road, Dezhou, 253023, Shandong, People's Republic of China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, School of Life Sciences, Southwest Forestry University, 300 Bailong Si, Kunming, 650224, Yunnan, People's Republic of China.
| |
Collapse
|
15
|
Ahmad M, Li J, Yang Q, Jamil W, Teng Y, Bai S. Phylogenetic, Molecular, and Functional Characterization of PpyCBF Proteins in Asian Pears ( Pyrus pyrifolia). Int J Mol Sci 2019; 20:ijms20092074. [PMID: 31035490 PMCID: PMC6539064 DOI: 10.3390/ijms20092074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022] Open
Abstract
C-repeat binding factor/dehydration-responsive element (CBF/DRE) transcription factors (TFs) participate in a variety of adaptive mechanisms, and are involved in molecular signaling and abiotic stress tolerance in plants. In pear (Pyrus pyrifolia) and other rosaceous crops, the independent evolution of CBF subfamily members requires investigation to understand the possible divergent functions of these proteins. In this study, phylogenetic analysis divided six PpyCBFs from the Asian pear genome into three clades/subtypes, and collinearity and phylogenetic analyses suggested that PpyCBF3 was the mother CBF. All PpyCBFs were found to be highly expressed in response to low temperature, salt, drought, and abscisic acid (ABA) as well as bud endodormancy, similar to PpyCORs (PpyCOR47, PpyCOR15A, PpyRD29A, and PpyKIN). Transcript levels of clade II PpyCBFs during low temperature and ABA treatments were higher than those of clades I and III. Ectopic expression of PpyCBF2 and PpyCBF3 in Arabidopsis enhanced its tolerance against abiotic stresses, especially to low temperature in the first case and salt and drought stresses in the latter, and resulted in lower reactive oxygen species (ROS) and antioxidant gene activities compared with the wild type. The increased expression of endogenous ABA-dependent and -independent genes during normal conditions in PpyCBF2- and PpyCBF3-overexpressing Arabidopsis lines suggested that PpyCBFs were involved in both ABA-dependent and -independent pathways. All PpyCBFs, especially the mother CBF, had high transactivation activities with 6XCCGAC binding elements. Luciferase and Y1H assays revealed the existence of phylogenetically and promoter-dependent conserved CBF-COR cascades in the pear. The presence of a previously identified CCGA binding site, combined with the results of mutagenesis of the CGACA binding site of the PpyCOR15A promoter, indicated that CGA was a core binding element of PpyCBFs. In conclusion, PpyCBF TFs might operate redundantly via both ABA-dependent and -independent pathways, and are strongly linked to abiotic stress signaling and responses in the Asian pear.
Collapse
Affiliation(s)
- Mudassar Ahmad
- Department of Horticulture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, China.
| | - Jianzhao Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, China.
| | - Qinsong Yang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, China.
| | - Wajeeha Jamil
- Department of Horticulture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, China.
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, China.
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, the Ministry of Agriculture of China, Hangzhou 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
16
|
Li J, Yan X, Yang Q, Ma Y, Yang B, Tian J, Teng Y, Bai S. PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process. PLANT MOLECULAR BIOLOGY 2019; 99:575-586. [PMID: 30747337 DOI: 10.1007/s11103-019-00837-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 05/03/2023]
Abstract
PpCBF2 directly binds to the promoters of PpCBF3 and PpCBF4 to activate their expressions and selectively regulates PpDAMs during the leaf bud endodormancy process of 'Wonhwang' pear (Pyrus pyrifolia). Endodormancy is critical for temperate plant survival under freezing winter conditions, and low temperature is a vital environmental factor in endodormancy regulation. A C-repeat binding factor (CBF) has been found to regulate important DAM transcription factors during endodormancy in pear (Pyrus pyrifolia). In this study, we analyzed the regulation of pear DAM genes by CBFs in further detail. Four CBF and three DAM genes were identified in the pear cultivar 'Wonhwang'. Under natural conditions, PpDAM1 expression decreased from the start of chilling accumulation, while the other two DAM and three CBF genes peaked during endodormancy release. Under chilling treatment, the expressions of PpDAM1, PpDAM2 and PpCBF1 genes were similar to those under natural conditions. Different biochemical methods revealed that PpCBF2/4 can bind to the promoter of PpDAM1 and activate its expression and that PpCBF1/4 can activate PpDAM3. Interestingly, we found that PpCBF2 can activate PpCBF3/4 transcription by directly binding to their promoters. The ICE-CBF regulon is conserved in some plants; three ICE genes were identified in pear, but their expressions did not obviously change under natural and artificial chilling conditions. On the contrary, the selective transcriptional induction of PpCBFs by PpICE1s was observed in a dual-luciferase assay. Considering all these results, we propose that the PpCBF1-PpDAM2 regulon mainly responds to low temperature during endodormancy regulation, with further post-translational regulation by PpICE3. Our results provide basic information on CBF genes functional redundancy and differentiation and demonstrate that the CBF-DAM signaling pathway is involved in the pear bud endodormancy process.
Collapse
Affiliation(s)
- Jianzhao Li
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Xinhui Yan
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qinsong Yang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yunjing Ma
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Bo Yang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Juan Tian
- Dangshan County Agriculture Committee, Suzhou, Anhui, 235300, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Balogh E, Halász J, Soltész A, Erös-Honti Z, Gutermuth Á, Szalay L, Höhn M, Vágújfalvi A, Galiba G, Hegedüs A. Identification, Structural and Functional Characterization of Dormancy Regulator Genes in Apricot ( Prunus armeniaca L.). FRONTIERS IN PLANT SCIENCE 2019; 10:402. [PMID: 31024581 PMCID: PMC6460505 DOI: 10.3389/fpls.2019.00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 05/12/2023]
Abstract
In the present study, we identified and characterized the apricot (Prunus armeniaca L.) homologs of three dormancy-related genes, namely the ParCBF1 (C-repeat binding factor), ParDAM5 (dormancy-associated MADS-BOX) and ParDAM6 genes. All highly conserved structural motifs and the 3D model of the DNA-binding domain indicate an unimpaired DNA-binding ability of ParCBF1. A phylogenetic analysis showed that ParCBF1 was most likely homologous to Prunus mume and Prunus dulcis CBF1. ParDAM5 also contained all characteristic domains of the type II (MIKCC) subfamily of MADS-box transcription factors. The homology modeling of protein domains and a phylogenetic analysis of ParDAM5 suggest its functional integrity. The amino acid positions or small motifs that are diagnostic characteristics of DAM5 and DAM6 were determined. For ParDAM6, only a small part of the cDNA was sequenced, which was sufficient for the quantification of gene expression. The expression of ParCBF1 showed close association with decreasing ambient temperatures in autumn and winter. The expression levels of ParDAM5 and ParDAM6 changed according to CBF1 expression rates and the fulfillment of cultivar chilling requirements (CR). The concomitant decrease of gene expression with endodormancy release is consistent with a role of ParDAM5 and ParDAM6 genes in dormancy induction and maintenance. Cultivars with higher CR and delayed flowering time showed higher expression levels of ParDAM5 and ParDAM6 toward the end of endodormancy. Differences in the timing of anther developmental stages between early- and late-flowering cultivars and two dormant seasons confirmed the genetically and environmentally controlled mechanisms of dormancy release in apricot generative buds. These results support that the newly identified apricot gene homologs have a crucial role in dormancy-associated physiological mechanisms.
Collapse
Affiliation(s)
- Eszter Balogh
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Júlia Halász
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Alexandra Soltész
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Zsolt Erös-Honti
- Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Ádám Gutermuth
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - László Szalay
- Department of Pomology, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Mária Höhn
- Department of Botany and Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
| | - Attila Vágújfalvi
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Gábor Galiba
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Hungary
| | - Attila Hegedüs
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
- *Correspondence: Attila Hegedûs,
| |
Collapse
|
18
|
Feng W, Li J, Long S, Wei S. A DREB1 gene from zoysiagrass enhances Arabidopsis tolerance to temperature stresses without growth inhibition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:20-31. [PMID: 30471726 DOI: 10.1016/j.plantsci.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 05/23/2023]
Abstract
The DREB (dehydration-responsive element binding) protein family comprises transcription factors that can increase the survivability of a plant under abiotic stresses by regulating expression of multiple genes and altering downstream metabolism at the cost of growth retardation and developmental delay. In this study, a gene for the DREB1-type transcription factor, designated ZjDREB1.4, was isolated from zoysiagrass (Zoysia japonica Steud.), a popular warm-season turfgrass. This gene contains a conserved AP2/ERF DNA-binding domain flanking the signature sequence of DREB1 and belongs to a DREB1 branch in the grass family that expands in the warm-season species. The expression of ZjDREB1.4 was significantly induced by chilling stress (4-15 °C), moderately induced by salt stress, and only slightly induced by drought stress. The product of ZjDREB1.4 was targeted to the nucleus and showed strong transactivation activity but weak binding to the DRE with ACCGAC as the core sequence. The ZjDREB1.4 protein bound to GCCGAC more preferentially than to ACCGAC. Overexpression of ZjDREB1.4 in Arabidopsis induced the expression of multiple genes including a part of the CBF-regulon, and moderately increased the levels of proline and soluble sugars under normal growth conditions. The transgenic Arabidopsis plants showed an increase in tolerance to high and freezing temperature stresses without obvious growth inhibition and with only a few days delay in bolting. ZjDREB1.4 is potentially useful for producing transgenic plants that are tolerant to high temperature and/or cold stresses with few negative effects.
Collapse
Affiliation(s)
- Wanqian Feng
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Jing Li
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Sixin Long
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China
| | - Shanjun Wei
- College of Life & Environmental Science, Minzu University of China, Beijing, PR China.
| |
Collapse
|
19
|
Zhu W, Shi K, Tang R, Mu X, Cai J, Chen M, You X, Yang Q. Isolation and functional characterization of the SpCBF1 gene from Solanum pinnatisectum. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:605-616. [PMID: 30042616 PMCID: PMC6041227 DOI: 10.1007/s12298-018-0536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/23/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Low temperature causes a negative impact on plant growth and development, but plants evolve a series of mechanisms to respond to chilling stress, and one of them is CBF [C-repeat (CRT)/dehydration-responsive element (DRE) binding factor] gene family which has been well studied in different crops. In this paper, a new CBF1 gene, named as SpCBF1, was isolated from frost-tolerant Solanum pinnatisectum by PCR and analyzed for its function in cold-tolerance by over-expression technique. The ORF of SpCBF1 was 666 bp long and encoded a protein of 221 amino acids with a predicted molecular mass 24.5821 kDa and theoretically isoelectric point 5.0. SpCBF1 protein contained a highly conserved specific AP2/ERF domain. SpCBF1 was expressed in all tested tissues with the highest level in tuber and the lowest in root, and induced by chilling stress (0 °C). Under natural low temperature condition (1-10 °C), plants over-expressing SpCBF1 (OE) exhibited slighter necrotic lesion and lower necrotic injury, compared with untransformed Solanum tuberosum cv. Désirée (WT) and antisense-StCBF1 control lines. Over-expression of CBF1 increased the level of COR (cold-regulated) gene transcripts in OE lines, and the physiological indexes related to cold tolerance like the contents of SOD, soluble protein, MDA, proline and soluble sugar were higher in OE lines than in WT except RWC which was lower. All these results indicated that SpCBF1 gene plays a promoting role in potato responding to cold stress.
Collapse
Affiliation(s)
- Wenjiao Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Ke Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Ruimin Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiaoying Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Jinghui Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Min Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
20
|
Maurya JP, Triozzi PM, Bhalerao RP, Perales M. Environmentally Sensitive Molecular Switches Drive Poplar Phenology. FRONTIERS IN PLANT SCIENCE 2018; 9:1873. [PMID: 30619428 PMCID: PMC6304729 DOI: 10.3389/fpls.2018.01873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/04/2018] [Indexed: 05/20/2023]
Abstract
Boreal and temperate woody perennials are highly adapted to their local climate, which delimits the length of the growing period. Moreover, seasonal control of growth-dormancy cycles impacts tree productivity and geographical distribution. Therefore, traits related to phenology are of great interest to tree breeders and particularly relevant in the context of global warming. The recent application of transcriptional profiling and genetic association studies to poplar species has provided a robust molecular framework for investigating molecules with potential links to phenology. The environment dictates phenology by modulating the expression of endogenous molecular switches, the identities of which are currently under investigation. This review outlines the current knowledge of these molecular switches in poplar and covers several perspectives concerning the environmental control of growth-dormancy cycles. In the process, we highlight certain genetic pathways which are affected by short days, low temperatures and cold-induced signaling.
Collapse
Affiliation(s)
- Jay P. Maurya
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Rishikesh P. Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- *Correspondence: Rishikesh P. Bhalerao, Mariano Perales,
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- *Correspondence: Rishikesh P. Bhalerao, Mariano Perales,
| |
Collapse
|
21
|
Lloret A, Badenes ML, Ríos G. Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1368. [PMID: 30271422 PMCID: PMC6146825 DOI: 10.3389/fpls.2018.01368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
During autumn perennial trees cease growth and form structures called buds in order to protect meristems from the unfavorable environmental conditions, including low temperature and desiccation. In addition to increased tolerance to these abiotic stresses, reproductive buds modulate developmental programs leading to dormancy induction to avoid premature growth resumption, and flowering pathways. Stress tolerance, dormancy, and flowering processes are thus physically and temporarily restricted to a bud, and consequently forced to interact at the regulatory level. We review recent genomic, genetic, and molecular contributions to the knowledge of these three processes in trees, highlighting the role of epigenetic modifications, phytohormones, and common regulatory factors. Finally, we emphasize the utility of transcriptomic approaches for the identification of key structural and regulatory genes involved in bud processes, illustrated with our own experience using peach as a model.
Collapse
|
22
|
Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:3-22. [PMID: 30288701 DOI: 10.1007/978-981-13-1244-1_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Under low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation. The function of these proteins is tightly controlled, and an inadequate supply of CBF activity may be detrimental to the plant. Accumulated evidence has revealed an extremely intricate network of positive and negative regulators of cold acclimation that coalesce at the level of CBF promoters constituting a central hub where multiple internal and external signals are integrated. Moreover, CBF expression is also controlled at posttranscriptional and posttranslational levels further refining CBF regulation. Recently, natural variation studies in Arabidopsis have demonstrated that mutations resulting in changes in CBF expression have an adaptive value for wild populations. Intriguingly, CBF genes are also present in plant species that do not cold acclimate, which suggest that they may also have additional functions. For instance, CBFs are required for some cold-related abiotic stress responses. In addition, their involvement in plant development deserves further study. Although more studies are necessary to fully harness CBF biotechnological potential, these transcription factors are meant to be key for a rational design of crops with enhanced tolerance to abiotic stress.
Collapse
|
23
|
Pagter M, Alpers J, Erban A, Kopka J, Zuther E, Hincha DK. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genomics 2017; 18:731. [PMID: 28915789 PMCID: PMC5602955 DOI: 10.1186/s12864-017-4126-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022] Open
Abstract
Background During low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. This is accompanied by dampened oscillations of circadian clock genes and disrupted oscillations of output genes and metabolites. During deacclimation in response to warm temperatures, cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation. Results We report metabolic (gas chromatography-mass spectrometry) and transcriptional (microarrays, quantitative RT-PCR) responses underlying deacclimation during the first 24 h after a shift of Arabidopsis thaliana (Columbia-0) plants cold acclimated at 4 °C back to warm temperature (20 °C). The data reveal a faster response of the transcriptome than of the metabolome and provide evidence for tightly regulated temporal responses at both levels. Metabolically, deacclimation is associated with decreasing contents of sugars, amino acids, glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production for the activation of growth. The early phase of deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Hormonal regulation appears particularly important during deacclimation, with extensive changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolism. Members of several transcription factor families that control fundamental aspects of morphogenesis and development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are transcriptionally highly interrelated processes. Expression patterns of some clock oscillator components resembled those under warm conditions, indicating at least partial re-activation of the circadian clock during deacclimation. Conclusions This study provides the first combined metabolomic and transcriptomic analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underlie the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a large-scale dataset of genes, metabolites and pathways that are crucial during the initial phase of deacclimation. The data will be an important reference for further analyses of this and other important but under-researched stress deacclimation processes. Electronic supplementary material The online version of this article (10.1186/s12864-017-4126-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Majken Pagter
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany.,Present address: Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220, Aalborg East, Denmark
| | - Jessica Alpers
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476, Potsdam, Germany.
| |
Collapse
|
24
|
Tuan PA, Bai S, Saito T, Ito A, Moriguchi T. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism. PLANT & CELL PHYSIOLOGY 2017; 58:1378-1390. [PMID: 28586469 DOI: 10.1093/pcp/pcx074] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/10/2017] [Indexed: 05/20/2023]
Abstract
In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| | - Songling Bai
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Takanori Saito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Akiko Ito
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
| | - Takaya Moriguchi
- Institute of Fruit Tree and Tea Science, NARO, Tsukuba, Ibaraki 305-8605, Japan
- Institute of Fruit Tree and Tea Science, NARO, Okitsu-Nakacho Shimizu, Shizuoka 424-0292, Japan
| |
Collapse
|
25
|
Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat Genet 2017; 49:904-912. [PMID: 28481341 DOI: 10.1038/ng.3862] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/12/2017] [Indexed: 12/26/2022]
Abstract
Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.
Collapse
|
26
|
Zhang X, Teixeira da Silva JA, Niu M, Li M, He C, Zhao J, Zeng S, Duan J, Ma G. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves. Sci Rep 2017; 7:42165. [PMID: 28169358 PMCID: PMC5294638 DOI: 10.1038/srep42165] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/05/2017] [Indexed: 11/10/2022] Open
Abstract
Santalum album L. (Indian sandalwood) is an economically important plant species because of its ability to produce highly valued perfume oils. Little is known about the mechanisms by which S. album adapts to low temperatures. In this study, we obtained 100,445,724 raw reads by paired-end sequencing from S. album leaves. Physiological and transcriptomic changes in sandalwood seedlings exposed to 4 °C for 0-48 h were characterized. Cold stress induced the accumulation of malondialdehyde, proline and soluble carbohydrates, and increased the levels of antioxidants. A total of 4,424 differentially expressed genes were responsive to cold, including 3,075 cold-induced and 1,349 cold-repressed genes. When cold stress was prolonged, there was an increase in the expression of cold-responsive genes coding for transporters, responses to stimuli and stress, regulation of defense response, as well as genes related to signal transduction of all phytohormones. Candidate genes in the terpenoid biosynthetic pathway were identified, eight of which were significantly involved in the cold stress response. Gene expression analyses using qRT-PCR showed a peak in the accumulation of SaCBF2 to 4, 50-fold more than control leaves and roots following 12 h and 24 h of cold stress, respectively. The CBF-dependent pathway may play a crucial role in increasing cold tolerance.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jaime A. Teixeira da Silva
- Independent Researcher, P. O. Box 7, Miki cho post office, Ikenobe 3011-2, Miki-cho Kagawa-Ken, 761-0799, Japan
| | - Meiyun Niu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mingzhi Li
- Genepioneer Biotechnologies Co. Ltd., Nanjing 210014, China
| | - Chunmei He
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jinhui Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
27
|
Li Y, Song Y, Xu B, Xie J, Zhang D, Cooke J. Poplar CBF1 functions specifically in an integrated cold regulatory network. TREE PHYSIOLOGY 2017; 37:98-115. [PMID: 28175921 DOI: 10.1093/treephys/tpw079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
The C-repeat binding factors (CBFs), also termed dehydration-responsive element-binding protein 1 (DREB1) family members, play crucial roles in the acquisition of stress tolerance, but in trees, the underlying mechanisms of stress tolerance remain elusive. To gain insight into these mechanisms, we isolated five CBF1 orthologs from four poplar sections (Populus spp.) and assessed their expression under drought, cold, heat and salt stress conditions. Globally induced expression in response to cold suggested a correlation between poplar CBF1 expression and the acquisition of cold tolerance. Responses that varied between sections may reflect section-specific stress tolerance mechanisms, suggesting an effect of ecological context on the development of CBF1-mediated stress tolerance in poplar. We then used a genome-wide search strategy in Populus trichocarpa to predict 2263 putative CBF target genes; the identified genes participate in multiple biological processes and pathways. Almost all of the putative target genes contained multiple cis-acting elements that mediate responses to various environmental and endogenous signals, consistent with an important role of CBF1s in an integrated cold regulatory network. Finally, analysis of an association population of 528 individuals of Populus simonii identified six single-nucleotide polymorphisms (false discovery rate Q < 0.10) significantly (P < 0.005) associated with malondialdehyde production and electrolyte leakage, suggesting the potential importance of PsCBF1 in the regulation of some membrane-related functions. Our findings provide new insights into the function of PsCBF1 and shed light on the CBF-mediated regulatory network in poplar.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Baohua Xu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road, Beijing, PR China
| | | |
Collapse
|
28
|
Brunner AM, Varkonyi-Gasic E, Jones RC. Phase Change and Phenology in Trees. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2017. [DOI: 10.1007/7397_2016_30] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Noman A, Kanwal H, Khalid N, Sanaullah T, Tufail A, Masood A, Sabir SUR, Aqeel M, He S. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris. FRONTIERS IN PLANT SCIENCE 2017; 8:1388. [PMID: 28855910 PMCID: PMC5557727 DOI: 10.3389/fpls.2017.01388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/14/2023]
Abstract
Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Hina Kanwal
- Department of Botany, Government College Women UniversityFaisalabad, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women UniversitySialkot, Pakistan
| | - Tayyaba Sanaullah
- Institute of Pure and Applied Biology, Bahauddin Zakariya UniversityMultan, Pakistan
| | - Aasma Tufail
- Division of Science & Technology, Department of Botany, University of EducationLahore, Pakistan
| | - Atifa Masood
- Department of Botany, University of LahoreSargodha, Pakistan
| | - Sabeeh-ur-Rasool Sabir
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
- *Correspondence: Muhammad Aqeel
| | - Shuilin He
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
- Shuilin He
| |
Collapse
|
30
|
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. PLANT MOLECULAR BIOLOGY 2016; 92:483-503. [PMID: 27714490 DOI: 10.1007/s11103-016-0526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 08/06/2016] [Indexed: 05/14/2023]
Abstract
Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain.
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| |
Collapse
|
31
|
Expression and regulation of a cold-responsive gene,CsCBFinCitrus sinensis(L.) Osbeck under low temperature, high salinity and abscisic acid. ACTA ACUST UNITED AC 2016. [DOI: 10.17660/actahortic.2016.1135.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Artlip TS, Wisniewski ME, Arora R, Norelli JL. An apple rootstock overexpressing a peach CBF gene alters growth and flowering in the scion but does not impact cold hardiness or dormancy. HORTICULTURE RESEARCH 2016; 3:16006. [PMID: 26981253 PMCID: PMC4783695 DOI: 10.1038/hortres.2016.6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 05/15/2023]
Abstract
The C-repeat binding factor (CBF) transcription factor is involved in responses to low temperature and water deficit in many plant species. Overexpression of CBF genes leads to enhanced freezing tolerance and growth inhibition in many species. The overexpression of a peach CBF (PpCBF1) gene in a transgenic line of own-rooted apple (Malus×domestica) M.26 rootstock (T166) trees was previously reported to have additional effects on the onset of dormancy and time of spring budbreak. In the current study, the commercial apple cultivar 'Royal Gala' (RG) was grafted onto either non-transgenic M.26 rootstocks (RG/M.26) or transgenic M.26 (T166) rootstocks (RG/T166) and field grown for 3 years. No PpCBF1 transcript was detected in the phloem or cambium of RG scions grafted on T166 rootstocks indicating that no graft transmission of transgene mRNA had occurred. In contrast to own-rooted T166 trees, no impact of PpCBF1 overexpression in T166 rootstocks was observed on the onset of dormancy, budbreak or non-acclimated leaf-cold hardiness in RG/T166 trees. Growth, however, as measured by stem caliper, current-year shoot extension and overall height, was reduced in RG/T166 trees compared with RG/M.26 trees. Although flowering was evident in both RG/T166 and RG/M.26 trees in the second season, the number of trees in flower, the number of shoots bearing flowers, and the number of flower clusters per shoot was significantly higher in RG/M.26 trees than RG/T166 trees in both the second and third year after planting. Elevated levels of RGL (DELLA) gene expression were observed in RG/T166 trees and T166 trees, which may play a role in the reduced growth observed in these tree types. A model is presented indicating how CBF overexpression in a rootstock might influence juvenility and flower abundance in a grafted scion.
Collapse
Affiliation(s)
- Timothy S Artlip
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| | | | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, USA
| | - John L Norelli
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
| |
Collapse
|
33
|
Karimi M, Ebadi A, Mousavi SA, Salami SA, Zarei A. Comparison of CBF1, CBF2, CBF3 and CBF4 expression in some grapevine cultivars and species under cold stress. SCIENTIA HORTICULTURAE 2015; 197:521-526. [PMID: 26973374 PMCID: PMC4784723 DOI: 10.1016/j.scienta.2015.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Grapevine, an important horticultural crop in the world, is moderately tolerant to cold conditions and is subjected to the cold injuries at different regions. So studies on different aspects of tolerance mechanism to unexpected cold of late spring as well as winter freezing seems necessary about this vine. For this reason, study on genes responsible for acquiring cold tolerance is very important. Transcription factors are among regulatory proteins that are responsible for cold acclimation. In this research work, expression levels of CBF1, CBF2, CBF3, and CBF4 transcription factors were studied on two cvs of Vitis vinifera ("Khalili-Danedar" and "Shahroodi") as well as one Vitis riparia at different times after treating at 4 °C. Results showed that two vinifera cultivars, "Khalili-Danedar" and "Shahroodi", had similar trend for each transcription factor. Gene expression increased at the beginning of cold stress and then decreased. Expression of these TF started some minutes (CBF1) after cold treatment and continued for several hours (CBF2), even till the tenth day (CBF4). All together V. riparia which is endemic to the cold regions behaved stronger and showed higher expression for all studied transcription factors. Among two V. vinifera cultivars, "Khalili-Danedar" showed significantly higher expression compared with "Shahroodi". The comparison of expression levels of these four transcription factors revealed that the least and the greatest expressions were recorded for CBF1 and CBF3 respectively, and two CBF2 and CBF4 had approximately the same expression levels.
Collapse
|
34
|
Falavigna VDS, Miotto YE, Porto DD, Anzanello R, Santos HPD, Fialho FB, Margis-Pinheiro M, Pasquali G, Revers LF. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. PHYSIOLOGIA PLANTARUM 2015; 155:315-329. [PMID: 25809953 DOI: 10.1111/ppl.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple.
Collapse
Affiliation(s)
- Vítor da Silveira Falavigna
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yohanna Evelyn Miotto
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Diogo Denardi Porto
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Rafael Anzanello
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Henrique Pessoa dos Santos
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Flávio Bello Fialho
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Márcia Margis-Pinheiro
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giancarlo Pasquali
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luís Fernando Revers
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| |
Collapse
|
35
|
Wisniewski M, Norelli J, Artlip T. Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:85. [PMID: 25774159 PMCID: PMC4343015 DOI: 10.3389/fpls.2015.00085] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
The timing of cold acclimation and deacclimation, dormancy, and budbreak play an integral role in the life cycle of woody plants. The molecular events that regulate these parameters have been the subject of much study, however, in most studies these events have been investigated independently of each other. Ectopic expression of a peach CBF (PpCBF1) in apple increases the level of both non-acclimated and acclimated freezing tolerance relative to the non-transformed control, and also inhibits growth, induces early bud set and leaf senescence, and delays bud break in the spring. The current study examined differences in the seasonal expression of genes (CBF, DAM, RGL, and EBB) that have been reported to be associated with freezing tolerance, dormancy, growth, and bud break, respectively, in the PpCBF1 T166 transgenic apple line and the non-transformed M.26 control. Results indicated that expression of several of these key genes, including MdDAM, MdRGL, and MdEBB was altered in transgenic T166 trees relative to non-transformed M.26 trees. In particular, several putative MdDAM genes, associated with the dormancy-cycle in other species of woody plants in the Rosaceae, exhibited different patterns of expression in the T166 vs. M.26 trees. Additionally, for the first time a putative APETALA2/Ethylene-responsive transcription factor, originally described in poplar and shown to regulate the timing of bud break, was shown to be associated with the timing of bud break in apple. Since the overexpression of PpCBF1 in apple results in a dramatic alteration in cold acclimation, dormancy, and growth, this transgenic line (T166) may represent a useful model for studying the integration of these seasonal life-cycle parameters.
Collapse
Affiliation(s)
- Michael Wisniewski
- *Correspondence: Michael Wisniewski, United States Department of Agriculture – Agricultural Research Service, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA e-mail:
| | | | | |
Collapse
|
36
|
Strimbeck GR, Schaberg PG, Fossdal CG, Schröder WP, Kjellsen TD. Extreme low temperature tolerance in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:884. [PMID: 26539202 PMCID: PMC4609829 DOI: 10.3389/fpls.2015.00884] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/05/2015] [Indexed: 05/07/2023]
Abstract
Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions.
Collapse
Affiliation(s)
- G. Richard Strimbeck
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
- *Correspondence: G. Richard Strimbeck,
| | - Paul G. Schaberg
- Northern Research Station, United States Department of Agriculture Forest Service, BurlingtonVT, USA
| | | | | | - Trygve D. Kjellsen
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| |
Collapse
|
37
|
Harfouche A, Meilan R, Altman A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. TREE PHYSIOLOGY 2014; 34:1181-98. [PMID: 24695726 DOI: 10.1093/treephys/tpu012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.
Collapse
Affiliation(s)
- Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA
| | - Arie Altman
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
38
|
Jung HJ, Dong X, Park JI, Thamilarasan SK, Lee SS, Kim YK, Lim YP, Nou IS, Hur Y. Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br135K oligomeric chip. PLoS One 2014; 9:e106069. [PMID: 25167163 PMCID: PMC4148347 DOI: 10.1371/journal.pone.0106069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/27/2014] [Indexed: 12/02/2022] Open
Abstract
Genome wide transcription analysis in response to stresses is important to provide a basis of effective engineering strategies to improve stress tolerance in crop plants. We assembled a Brassica rapa oligomeric microarray (Br135K microarray) using sequence information from 41,173 unigenes and analyzed the transcription profiles of two contrasting doubled haploid (DH) lines, Chiifu and Kenshin, under cold-treatments. The two DH lines showed great differences in electrolyte leakage below −4°C, but similar patterns from 4°C to −2°C. Cold-treatments induced 885 and 858 genes in Chiifu and Kenshin, respectively. Overall, 134, and 56 genes showed an intrinsic difference in expression in Chiifu and Kenshin, respectively. Among 5,349 genes that showed no hit found (NHF) in public databases, 61 and 24 were specifically expressed in Chiifu and Kenshin, respectively. Many transcription factor genes (TFs) also showed various characteristics of expression. BrMYB12, BrMYBL2, BrbHLHs, BrbHLH038, a C2H2, a WRKY, BrDREB19 and a integrase-type TF were induced in a Chiifu-specific fashion, while a bHLH (Bra001826/AT3G21330), bHLH, cycling Dof factor and two Dof type TFs were Kenshin specific. Similar to previous studies, a large number of genes were differently induced or regulated among the two genotypes, but many genes, including NHFs, were specifically or intrinsically expressed with genotype specificity. Expression patterns of known-cold responsive genes in plants resulted in discrepancy to membrane leakage in the two DH lines, indicating that timing of gene expression is more important to conferring freezing tolerance rather than expression levels. Otherwise, the tolerance will be related to the levels of transcripts before cold-treatment or regulated by other mechanisms. Overall, these results indicate common signaling pathways and various transcriptional regulatory mechanisms are working together during cold-treatment of B. rapa. Our newly developed Br135K oligomeric microarray will be useful for transcriptome profiling, and will deliver valuable insight into cold stresses in B. rapa.
Collapse
Affiliation(s)
- Hee-Jeong Jung
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Xiangshu Dong
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | | | - Sang Sook Lee
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Yeon-Ki Kim
- GreenGene Biotech Inc., Genomics and Genetics Institute, Yongin, Republic of Korea
| | - Yong-Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
- * E-mail: (ISN); (YH)
| | - Yoonkang Hur
- Department of Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (ISN); (YH)
| |
Collapse
|
39
|
Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. PLANT MOLECULAR BIOLOGY 2014; 85:259-75. [PMID: 24532380 DOI: 10.1007/s11103-014-0181-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 02/06/2014] [Indexed: 05/08/2023]
Abstract
Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.
Collapse
Affiliation(s)
- Mingqi Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Wingler A. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature. FRONTIERS IN PLANT SCIENCE 2014; 5:794. [PMID: 25628637 PMCID: PMC4290479 DOI: 10.3389/fpls.2014.00794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/20/2014] [Indexed: 05/18/2023]
Abstract
Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.
Collapse
Affiliation(s)
- Astrid Wingler
- *Correspondence: Astrid Wingler, Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK e-mail:
| |
Collapse
|
41
|
DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 2013; 91:385-95. [PMID: 23271026 DOI: 10.1007/s12041-012-0201-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Drought, high salinity and low temperature are major abiotic stresses that influence survival, productivity and geographical distribution of many important crops across the globe. Plants respond to these environmental challenges via physiological, cellular and molecular processes, which results in adjusted metabolic and structural alterations. The dehydration-responsiveelement-binding (DREB) protein / C-repeat binding factors (CBFs) belong to APETALA2 (AP2) family transcription factors that bind to DRE/CRT cis-element and regulate the expression of stress-responsive genes. DREB1/CBF genes, therefore, play an important role in increasing stress tolerance in plants and their deployment using transgenic technology seems to be a potential alternative in management of abiotic stresses in crop plants. This review is mainly focussed on the structural characteristics as well as transcriptional regulation of gene expression in response to various abiotic stresses, with particular emphasis on the role of DREB1/CBF regulon in stress-responsive gene expression. The recent progress related to genetic engineering of DREB1/CBF transcription factors in various crops and model plants is also summarized.
Collapse
|
42
|
Artlip TS, Wisniewski ME, Bassett CL, Norelli JL. CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. TREE PHYSIOLOGY 2013; 33:866-77. [PMID: 23956128 DOI: 10.1093/treephys/tpt056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CBF (C-repeat Binding Factor) transcription factors are part of the AP2/ERF (Apetala2-ethylene responsive factor) domain family of DNA-binding proteins that recognize a C-repeat response cis-acting element that regulates a number of cold-responsive genes (CBF regulon). Induction of CBF gene expression by low temperature in Arabidopsis has been shown to be gated by a circadian clock. In peach (Prunus persica L.), five CBF genes are arranged in tandem on scaffold (linkage group) 5 of the peach genome. Since CBF gene regulation has been shown to be more complex in woody plants than herbaceous plants, the present study was conducted to determine if temperature-modulated CBF gene expression in peach leaf and bark tissues was also influenced by a circadian clock. One-year-old 'Loring' peach trees grafted on 'Bailey' rootstocks were entrained to a 12-h day/12-h night photoperiod at 25 °C. After 2 weeks, trees were exposed to 4 °C under continuous light for up to 48 h beginning at either subjective dawn + 4 h (ZT4; where ZT is Zeitgeber time) or subjective dawn + 16 h (ZT16) with leaf and bark tissues harvested at various time points. Gene expression of the five peach CBF genes and a DREB2 gene was assessed by real-time quantitative polymerase chain reaction. Results revealed a distinct gating of CBF gene expression by a circadian clock for four CBF genes in both leaf and bark tissues. CBF genes were highly induced by 4 °C in ZT4 leaf samples with expression peaking at 6-24 h depending on the specific CBF gene. In contrast, CBF gene expression was highly attenuated in leaf, and to a lesser extent in bark, samples exposed to 4 °C at ZT16. These results are similar to reports for Arabidopsis. Further experiments were conducted to verify environmental influence on the induction of CBF and DREB2 genes. In contrast to DREB2 genes from other dicots, the peach DREB2 ortholog was induced by both low temperature and dehydration. Induction of the peach CBFs and DREB2 by either low temperature or dehydration corresponded with regulatory motifs present in their promoter sequences. Low temperature and dehydration induction data for three peach dehydrin genes indicated that the regulation of these genes in peach is complex, with individual dehydrin gene expression being correlated with the expression of one or more CBF genes.
Collapse
Affiliation(s)
- Timothy S Artlip
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430, USA
| | | | | | | |
Collapse
|
43
|
Jiang Y, Peng D, Bai LP, Ma H, Chen LJ, Zhao MH, Xu ZJ, Guo ZF. Molecular switch for cold acclimation — anatomy of the cold-inducible promoter in plants. BIOCHEMISTRY (MOSCOW) 2013; 78:342-54. [DOI: 10.1134/s0006297913040032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci 2013; 14:5312-37. [PMID: 23466881 PMCID: PMC3634503 DOI: 10.3390/ijms14035312] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 11/16/2022] Open
Abstract
Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold response is highly complex process that involves an array of physiological and biochemical modifications. Furthermore, alterations of the expression patterns of many genes, proteins and metabolites in response to cold stress have been reported. Recent studies demonstrate that post-transcriptional and post-translational regulations play a role in the regulation of cold signaling. In this review article, recent advances in cold stress signaling and tolerance are highlighted.
Collapse
Affiliation(s)
- Kenji Miura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tsuyoshi Furumoto
- Department of Agriculture, Ryukoku University, Kyoto 610-8577, Japan; E-Mail:
| |
Collapse
|
45
|
Riikonen J, Kontunen-Soppela S, Vapaavuori E, Tervahauta A, Tuomainen M, Oksanen E. Carbohydrate concentrations and freezing stress resistance of silver birch buds grown under elevated temperature and ozone. TREE PHYSIOLOGY 2013; 33:311-9. [PMID: 23425688 DOI: 10.1093/treephys/tpt001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The effects of slightly elevated temperature (+0.8 °C), ozone (O3) concentration (1.3 × ambient O3 concentration) and their combination on over-wintering buds of Betula pendula Roth were studied after two growing seasons of exposure in the field. Carbohydrate concentrations, freezing stress resistance (FSR), bud dry weight to fresh weight ratio, and transcript levels of cytochrome oxidase (COX), alternative oxidase (AOX) and dehydrin (LTI36) genes were studied in two clones (clones 12 and 25) in December. Elevated temperature increased the bud dry weight to fresh weight ratio and the ratio of raffinose family oligosaccharides to sucrose and the transcript levels of the dehydrin (LTI36) gene (in clone 12 only), but did not alter the FSR of the buds. Genotype-specific alterations in carbohydrate metabolism were found in the buds grown under elevated O3. The treatments did not significantly affect the transcript level of the COX or AOX genes. No clear pattern of an interactive effect between elevated temperature and O3 concentration was found. According to these data, the increase in autumnal temperatures and slightly increasing O3 concentrations do not increase the risk for freeze-induced damage in winter in silver birch buds, although some alterations in bud physiology occur.
Collapse
Affiliation(s)
- Johanna Riikonen
- Finnish Forest Research Institute, FIN-77600 Suonenjoki, Finland.
| | | | | | | | | | | |
Collapse
|
46
|
Pagter M, Arora R. Winter survival and deacclimation of perennials under warming climate: physiological perspectives. PHYSIOLOGIA PLANTARUM 2013; 147:75-87. [PMID: 22583023 DOI: 10.1111/j.1399-3054.2012.01650.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Appropriate timing and rate of cold deacclimation and the ability to reacclimate are important components of winter survival of perennials in temperate and boreal zones. In association with the progressive increase in atmospheric CO₂, temperate and boreal winters are becoming progressively milder, and temperature patterns are becoming irregular with increasing risk of unseasonable warm spells during the colder periods of plants' annual cycle. Because deacclimation is mainly driven by temperature, these changes pose a risk for untimely/premature deacclimation, thereby rendering plant tissue vulnerable to freeze-injury by a subsequent frost. Research also indicates that elevated CO₂ may directly impact deacclimation. Hence, understanding the underlying cellular mechanisms of how deacclimation and reacclimation capacity are affected by changes in environmental conditions is important to ensure winter survival and the sustainability of plant sources under changing climate. Relative to cold acclimation, deacclimation is a little studied process, but the limited evidence points to specific changes occurring in the transcriptome and proteome during deacclimation. Loss of freezing tolerance is additionally associated with substantial changes in cell/tissue-water relations and carbohydrate metabolism; the latter also impacted by temperature-driven, altered respiratory metabolism. This review summarizes recent progress in understanding the physiological mechanisms of deacclimation and how they may be impacted by climate change.
Collapse
Affiliation(s)
- Majken Pagter
- Department of Food Science, Aarhus University, Aarslev, Denmark.
| | | |
Collapse
|
47
|
Cloning of galactinol synthase gene from Ammopiptanthus mongolicus and its expression in transgenic Photinia serrulata plants. Gene 2012; 513:118-27. [PMID: 23116941 DOI: 10.1016/j.gene.2012.10.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 10/04/2012] [Accepted: 10/08/2012] [Indexed: 11/23/2022]
Abstract
A cold induced galactinol synthase gene (AmGS) and its promoter sequence were identified and cloned from the cold-tolerant tree Ammopiptanthus mongolicus by using cDNA-AFLP, RACE-PCR and TAIL-PCR strategies combined with its expression pattern analysis after cold inducing treatment. Accession number of the AmGS gene in GenBank is DQ519361. The open reading frame (ORF) region of the AmGS gene is 987 nucleotides encoding for 328 amino acid residues and a stop codon. The genomic DNA sequence of AmGS gene contains 3 exons and 2 introns. Moreover, a variety of temporal gene expression patterns of AmGS was detected, which revealed the up-regulation of AmGS gene in stresses of cold, ABA and others. Then the AmGS gene was transformed into Photinia serrulata tree by Agrobacterium-mediated transformation, and the transgenic plants exhibited higher cold-tolerance comparing with non-transformed plants.
Collapse
|
48
|
Barros PM, Gonçalves N, Saibo NJM, Oliveira MM. Functional characterization of two almond C-repeat-binding factors involved in cold response. TREE PHYSIOLOGY 2012; 32:1113-28. [PMID: 22832014 DOI: 10.1093/treephys/tps067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Low temperature plays a crucial role in seasonal development of woody plants and may directly impact crop production, more particularly in temperate fruit trees. Given its high genetic variability and adaptability to different climatic conditions, almond (Prunus dulcis Mill.) is an interesting model to understand the mechanisms regulating low temperature sensing in fruit trees. In this paper, we report the cloning and characterization of two genes (PdCBF1 and PdCBF2) belonging to the C-repeat-binding factor (CBF) family of transcription factors. Southern blotting analysis showed that this family is composed of at least five members. In almond shoots propagated in vitro, transcription of these genes was rapidly induced by low temperature, suggesting an involvement in cold acclimation. Transactivation assays showed that PdCBF1 and PdCBF2 could bind to dehydration responsive element/C-repeat containing sequences, as activators of gene expression. In addition, induction of both PdCBFs by cold was higher towards the end of the day, which agreed with the expression pattern of PdDehydrin1, a predicted CBF target gene. Furthermore, PdCBF1 and PdCBF2 were also transiently induced by abscisic acid and drought treatments. Considering the bin mapping analysis that correlated PdCBFs and PdDHN1 (respectively in linkage groups 5 and 7) with two different quantitative trait locicontrolling blooming time, it is relevant to perform further association studies that may validate their effect on this trait.
Collapse
Affiliation(s)
- Pedro M Barros
- Genomics of Plant Stress Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
49
|
Barros PM, Gonçalves N, Saibo NJM, Oliveira MM. Cold acclimation and floral development in almond bud break: insights into the regulatory pathways. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4585-96. [PMID: 22685307 DOI: 10.1093/jxb/ers144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In temperate fruit trees, seasonal dormancy and cold acclimation have a major impact on blooming time and, consequently, fruit production. To gain insight into the still unclear molecular processes underlying blooming, expression of genes putatively involved in the cold response was studied in almond (Prunus dulcis Mill.), which is the earliest fruit tree in the family Rosaceae to bloom. The transcript levels of two C-repeat binding factor (PdCBF) genes and one of their putative targets, PdDehydrin1 (PdDHN1), were analysed in flower buds and shoot internodes during seasonal dormancy up to bud break. In parallel, expression of candidate genes related to flower development was also followed. In a 2-year study, PdCBF2 showed a progressive increase in transcript abundance during the autumn in close correlation with cold acclimation, while high transcript levels of PdCBF1 and PdDHN1 were already found by summer. After bud break, with temperatures still within the chilling range, both PdCBF genes and PdDHN1 were found to sharply reduce transcription in flower buds and internodes, suggesting damping of CBF-mediated cold signalling during growth resumption, in correlation with cold hardiness decline. Flower bud break was also followed by a decrease in the expression of PdGA20OX, a candidate gene involved in gibberellin biosynthesis, and an increase in the expression of two homeotic genes related to floral organ development, PdMADS1 and -3. These genes may also be relevant players in the regulation of anthesis in this model Rosaceae species.
Collapse
Affiliation(s)
- Pedro M Barros
- Genomics of Plant Stress Laboratory (GPlantS), Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal and IBET, Apartado 12, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
50
|
Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 2012. [PMID: 23271026 DOI: 10.1007/s12041-012-0201-203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drought, high salinity and low temperature are major abiotic stresses that influence survival, productivity and geographical distribution of many important crops across the globe. Plants respond to these environmental challenges via physiological, cellular and molecular processes, which results in adjusted metabolic and structural alterations. The dehydration-responsiveelement-binding (DREB) protein / C-repeat binding factors (CBFs) belong to APETALA2 (AP2) family transcription factors that bind to DRE/CRT cis-element and regulate the expression of stress-responsive genes. DREB1/CBF genes, therefore, play an important role in increasing stress tolerance in plants and their deployment using transgenic technology seems to be a potential alternative in management of abiotic stresses in crop plants. This review is mainly focussed on the structural characteristics as well as transcriptional regulation of gene expression in response to various abiotic stresses, with particular emphasis on the role of DREB1/CBF regulon in stress-responsive gene expression. The recent progress related to genetic engineering of DREB1/CBF transcription factors in various crops and model plants is also summarized.
Collapse
Affiliation(s)
- M Akhtar
- Department of Genetics and Plant Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar 263 145, India
| | | | | | | | | | | |
Collapse
|