1
|
Hernández-Zepeda C, Brown JK. Disease Tolerance in 'Anaheim' Pepper to PepGMV-D Strain Involves Complex Interactions Between the Movement Protein Putative Promoter Region and Unknown Host Factors. Viruses 2025; 17:268. [PMID: 40007023 PMCID: PMC11861509 DOI: 10.3390/v17020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Pepper golden mosaic virus (PepGMV) is a bipartite begomovirus of pepper and tomato from North America. In 'Anaheim' pepper plants PepGMV-Mo strain (Mo) causes systemic yellow foliar mosaic symptoms, while PepGMV-D strain (D) causes distortion of 1st-6th expanding leaves, and asymptomatic infection of subsequently developing leaves, like other known 'recovery' phenotypes. Infections established with DNA-A Mo and D components expressing red-shifted green fluorescent protein in place of coat protein and in situ hybridization, showed PepGMV-Mo localized to phloem and mesophyll cells, while -D was mesophyll restricted. Alignment of PepGMV-Mo and -D DNA-B components revealed three indels upstream of the BC1 gene that encodes the movement protein (MP). To determine if this non-coding region (*BC1) D-strain MP putative promoter contributed to 'recovery', plants were inoculated with chimeric DNA-B Mo/D components harboring reciprocally exchanged *BC1, and wild-type DNA-A Mo and D components. Symptoms were reminiscent but not identical to wild-type -Mo or -D infection, respectively, suggesting 'recovery' cannot be attributed solely to the *BC1. Both BC1 and D*BC1 were targeted by post-transcriptional gene silencing; however, 'recovered' leaves accumulated fewer transcripts and 21-24 nt vsiRNAs. Thus, inefficient in planta movement of PepGMV-D is associated with a non-pepper-adapted 'defective' BC1 that facilitates hyper-efficient PTGS, leading to BC1 transcript degradation that in turn limits virus spread, thereby recapitulating disease 'tolerance'.
Collapse
Affiliation(s)
- Cecilia Hernández-Zepeda
- Unidad de Ciencias del Agua, Centro de Investigación Científica de Yucatán, A.C., Cancún 77500, Mexico;
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Chen D, Zhang HY, Hu SM, He Z, Wu YQ, Zhang ZY, Wang Y, Han CG. The P2 protein of wheat yellow mosaic virus acts as a viral suppressor of RNA silencing in Nicotiana benthamiana to facilitate virus infection. PLANT, CELL & ENVIRONMENT 2024; 47:4543-4556. [PMID: 39016637 DOI: 10.1111/pce.15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.
Collapse
Affiliation(s)
- Dao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Hui-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Shu-Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Zheng He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong Qi Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Gu H, Pan Z, Jia M, Fang H, Li J, Qi Y, Yang Y, Feng W, Gao X, Ditta A, Khan MKR, Wang W, Cao Y, Wang B. Genome-wide identification and analysis of the cotton ALDH gene family. BMC Genomics 2024; 25:513. [PMID: 38789947 PMCID: PMC11127303 DOI: 10.1186/s12864-024-10388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are a family of enzymes that catalyze the oxidation of aldehyde molecules into the corresponding carboxylic acid, regulate the balance of aldehydes and protect plants from the poisoning caused by excessive accumulation of aldehydes; however, this gene family has rarely been studied in cotton. RESULTS In the present study, genome-wide identification was performed, and a total of 114 ALDH family members were found in three cotton species, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The ALDH genes were divided into six subgroups by evolutionary analysis. ALDH genes in the same subgroup showed similar gene structures and conserved motifs, but some genes showed significant differences, which may result in functional differences. Chromosomal location analysis and selective pressure analysis revealed that the ALDH gene family had experienced many fragment duplication events. Cis-acting element analysis revealed that this gene family may be involved in the response to various biotic and abiotic stresses. The RT‒qPCR results showed that the expression levels of some members of this gene family were significantly increased under salt stress conditions. Gohir.A11G040800 and Gohir.D06G046200 were subjected to virus-induced gene silencing (VIGS) experiments, and the sensitivity of the silenced plants to salt stress was significantly greater than that of the negative control plants, suggesting that Gohir.A11G040800 and Gohir.D06G046200 may be involved in the response of cotton to salt stress. CONCLUSIONS In total, 114 ALDH genes were identified in three Gossypium species by a series of bioinformatics analysis. Gene silencing of the ALDH genes of G. hirsutum revealed that ALDH plays an important role in the response of cotton to salt stress.
Collapse
Affiliation(s)
- Haijing Gu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zongjin Pan
- Jiangsu Coastal Area Institute of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Yancheng, Jiangsu, 224002, China
| | - Mengxue Jia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Junyi Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yingxiao Qi
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yixuan Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
- Nantong Middle School, Nantong, Jiangsu, 226001, China
| | - Wenxiang Feng
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xin Gao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Muhammad K R Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Wei Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Yancheng, Jiangsu, 224002, China.
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
4
|
Billah M, Renju L, Wei H, Qanmber G, Da Y, Lan Y, Qing-di Y, Fuguang L, Zhaoen Y. A cotton mitochondrial alternative electron transporter, GhD2HGDH, induces early flowering by modulating GA and photoperiodic pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14378. [PMID: 38887925 DOI: 10.1111/ppl.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/20/2024]
Abstract
D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.
Collapse
Affiliation(s)
- Masum Billah
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Liu Renju
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Hu Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ghulam Qanmber
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Da
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Lan
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Yan Qing-di
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
| | - Li Fuguang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Zhaoen
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Li X, Tao N, Xu B, Xu J, Yang Z, Jiang C, Zhou Y, Deng M, Lv J, Zhao K. Establishment and application of a root wounding-immersion method for efficient virus-induced gene silencing in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1336726. [PMID: 38708388 PMCID: PMC11066161 DOI: 10.3389/fpls.2024.1336726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/15/2024] [Indexed: 05/07/2024]
Abstract
In the post-genomic era, virus-induced gene silencing (VIGS) has played an important role in research on reverse genetics in plants. Commonly used Agrobacterium-mediated VIGS inoculation methods include stem scratching, leaf infiltration, use of agrodrench, and air-brush spraying. In this study, we developed a root wounding-immersion method in which 1/3 of the plant root (length) was cut and immersed in a tobacco rattle virus (TRV)1:TRV2 mixed solution for 30 min. We optimized the procedure in Nicotiana benthamiana and successfully silenced N. benthamiana, tomato (Solanum lycopersicum), pepper (Capsicum annuum L.), eggplant (Solanum melongena), and Arabidopsis thaliana phytoene desaturase (PDS), and we observed the movement of green fluorescent protein (GFP) from the roots to the stem and leaves. The silencing rate of PDS in N. benthamiana and tomato was 95-100%. In addition, we successfully silenced two disease-resistance genes, SITL5 and SITL6, to decrease disease resistance in tomatoes (CLN2037E). The root wounding-immersion method can be used to inoculate large batches of plants in a short time and with high efficiency, and fresh bacterial infusions can be reused several times. The most important aspect of the root wounding-immersion method is its application to plant species susceptible to root inoculation, as well as its ability to inoculate seedlings from early growth stages. This method offers a means to conduct large-scale functional genome screening in plants.
Collapse
Affiliation(s)
- Xinyun Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Na Tao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Bin Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junqiang Xu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Caiqian Jiang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ying Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Sharma V, Mohammed SA, Devi N, Vats G, Tuli HS, Saini AK, Dhir YW, Dhir S, Singh B. Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. STRESS BIOLOGY 2024; 4:10. [PMID: 38311681 PMCID: PMC10838894 DOI: 10.1007/s44154-023-00126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024]
Abstract
In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.
Collapse
Affiliation(s)
- Vasudha Sharma
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Shakeel A Mohammed
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Nisha Devi
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Gourav Vats
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Hardeep S Tuli
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Adesh K Saini
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Yashika W Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Sunny Dhir
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| | - Bharat Singh
- Department of Biosciences & Technology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
7
|
Pandey P, Patil M, Priya P, Senthil-Kumar M. When two negatives make a positive: the favorable impact of the combination of abiotic stress and pathogen infection on plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:674-688. [PMID: 37864841 DOI: 10.1093/jxb/erad413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Combined abiotic and biotic stresses modify plant defense signaling, leading to either the activation or suppression of defense responses. Although the majority of combined abiotic and biotic stresses reduce plant fitness, certain abiotic stresses reduce the severity of pathogen infection in plants. Remarkably, certain pathogens also improve the tolerance of some plants to a few abiotic stresses. While considerable research focuses on the detrimental impact of combined stresses on plants, the upside of combined stress remains hidden. This review succinctly discusses the interactions between abiotic stresses and pathogen infection that benefit plant fitness. Various factors that govern the positive influence of combined abiotic stress and pathogen infection on plant performance are also discussed. In addition, we provide a brief overview of the role of pathogens, mainly viruses, in improving plant responses to abiotic stresses. We further highlight the critical nodes in defense signaling that guide plant responses during abiotic stress towards enhanced resistance to pathogens. Studies on antagonistic interactions between abiotic and biotic stressors can uncover candidates in host plant defense that may shield plants from combined stresses.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Mahesh Patil
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Piyush Priya
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| |
Collapse
|
8
|
Tian Y, Fang Y, Zhang K, Zhai Z, Yang Y, He M, Cao X. Applications of Virus-Induced Gene Silencing in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:272. [PMID: 38256825 PMCID: PMC10819639 DOI: 10.3390/plants13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technique that has become an effective tool to investigate gene function in plants. Cotton is one of the most important economic crops globally. In the past decade, VIGS has been successfully applied in cotton functional genomic studies, including those examining abiotic and biotic stress responses and vegetative and reproductive development. This article summarizes the traditional vectors used in the cotton VIGS system, the visible markers used for endogenous gene silencing, the applications of VIGS in cotton functional genomics, and the limitations of VIGS and how they can be addressed in cotton.
Collapse
Affiliation(s)
- Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yao Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Kaixin Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Zeyang Zhai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yujie Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Meiyu He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Y.T.); (Y.F.); (K.Z.); (Z.Z.); (Y.Y.); (M.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| |
Collapse
|
9
|
McGarry RC, Ayre BG. Cotton Meristem Transcriptomes: Constructing an RNA-Seq Pipeline to Explore Crop Architecture Regulation. Methods Mol Biol 2024; 2812:215-233. [PMID: 39068365 DOI: 10.1007/978-1-0716-3886-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Plants stem cells, known as meristems, specify all patterns of growth and organ size. Differences in meristem activities contribute to diverse shoot architectures. As many architectural traits, such as branching patterns, flowering time, and fruit size, are yield determinants, meristem regulation is of fundamental importance to crop productivity. Cotton (Gossypium spp.) produces our most prevalent natural fiber that finds its way into products ranging from industrial cellulose, medical supplies, and paper currency, to a broad diversity of textiles, not least of which is our clothing. However, the cotton plant has growth habits that challenge management practices and limit harvest yield and quality. Unraveling and leveraging the genetic networks regulating meristem activities offers the potential to overcome these limitations. We use virus-based technologies in cotton to perturb signals regulating meristem fate and size. In this chapter, we describe our pipeline for altering cotton meristem dynamics and preparing, analyzing, and exploring the transcriptomes from isolated meristems.
Collapse
Affiliation(s)
- Róisín C McGarry
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA.
| | - Brian G Ayre
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| |
Collapse
|
10
|
Chen D, Zhang HY, Hu SM, Tian MY, Zhang ZY, Wang Y, Sun LY, Han CG. The P1 protein of wheat yellow mosaic virus exerts RNA silencing suppression activity to facilitate virus infection in wheat plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1717-1736. [PMID: 37751381 DOI: 10.1111/tpj.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.
Collapse
Affiliation(s)
- Dao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hui-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shu-Ming Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Meng-Yuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Zong-Ying Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li-Ying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Cheng-Gui Han
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, and State Key Laboratory of Agricultural Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Yang W, Chen X, Chen J, Zheng P, Liu S, Tan X, Sun B. Virus-Induced Gene Silencing in the Tea Plant ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:3162. [PMID: 37687408 PMCID: PMC10490191 DOI: 10.3390/plants12173162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
The recent availability of a number of tea plant genomes has sparked substantial interest in using reverse genetics to explore gene function in tea (Camellia sinensis). However, a hurdle to this is the absence of an efficient transformation system, and virus-induced gene silencing (VIGS), a transient transformation system, could be an optimal choice for validating gene function in the tea plant. In this study, phytoene desaturase (PDS), a carotenoid biosynthesis gene, was used as a reporter to evaluate the VIGS system. The injection sites of the leaves (leaf back, petiole, and stem) for infiltration were tested, and the results showed that petiole injection had the most effective injection, without leading to necrotic lesions that cause the leaves to drop. Tea leaves were inoculated with Agrobacterium harboring a tobacco rattle virus plasmid (pTRV2) containing a CsPDS silencing fragment. The tea leaves exhibited chlorosis symptoms 7-14 days after inoculation, depending on the cultivar. In the chlorosis plants, the coat protein (CP) of tobacco rattle virus (TRV) was detected and coincided with the lower transcription of CsPDS and reduced chlorophyll content compared with the empty vector control, with 81.82% and 54.55% silencing efficiency of 'LTDC' and 'YSX', respectively. These results indicate that the VIGS system with petiole injection could quickly and effectively silence a gene in tea plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Xindong Tan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| | - Binmei Sun
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.Y.); (X.C.); (J.C.); (P.Z.); (S.L.)
| |
Collapse
|
12
|
Anwar W, Amin H, Khan HAA, Akhter A, Bashir U, Anjum T, Kalsoom R, Javed MA, Zohaib KA. Chitinase of Trichoderma longibrachiatum for control of Aphis gossypii in cotton plants. Sci Rep 2023; 13:13181. [PMID: 37580401 PMCID: PMC10425378 DOI: 10.1038/s41598-023-39965-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Chitinase-producing fungi have now engrossed attention as one of the potential agents for the control of insect pests. Entomopathogenic fungi are used in different regions of the world to control economically important insects. However, the role of fungal chitinases are not well studied in their infection mechanism to insects. In this study, Chitinase of entomopathogenic fungi Trichoderma longibrachiatum was evaluated to control Aphis gossypii. For this purpose, fungal chitinase (Chit1) gene from the genomic DNA of T. longibrachiatum were isolated, amplified and characterised. Genomic analysis of the amplified Chit1 showed that this gene has homology to family 18 of glycosyl hydrolyses. Further, Chit1 was expressed in the cotton plant for transient expression through the Geminivirus-mediated gene silencing vector derived from Cotton Leaf Crumple Virus (CLCrV). Transformed cotton plants showed greater chitinase activity than control, and they were resistant against nymphs and adults of A. gossypii. About 38.75% and 21.67% mortality of both nymphs and adults, respectively, were observed by using Chit1 of T. longibrachiatum. It is concluded that T. longibrachiatum showed promising results in controlling aphids by producing fungal chitinase in cotton plants and could be used as an effective method in the future.
Collapse
Affiliation(s)
- Waheed Anwar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Huma Amin
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Hafiz Azhar Ali Khan
- Department of Entomology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Institute of Zoology, Faculty of Life Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Akhter
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Uzma Bashir
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Rabia Kalsoom
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asim Javed
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Karamat Ali Zohaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
13
|
McGarry RC, Kaur H, Lin YT, Puc GL, Eshed Williams L, van der Knaap E, Ayre BG. Altered expression of SELF-PRUNING disrupts homeostasis and facilitates signal delivery to meristems. PLANT PHYSIOLOGY 2023; 192:1517-1531. [PMID: 36852887 PMCID: PMC10231363 DOI: 10.1093/plphys/kiad126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/01/2023]
Abstract
Meristem maintenance, achieved through the highly conserved CLAVATA-WUSCHEL (CLV-WUS) regulatory circuit, is fundamental in balancing stem cell proliferation with cellular differentiation. Disruptions to meristem homeostasis can alter meristem size, leading to enlarged organs. Cotton (Gossypium spp.), the world's most important fiber crop, shows inherent variation in fruit size, presenting opportunities to explore the networks regulating meristem homeostasis and to impact fruit size and crop value. We identified and characterized the cotton orthologs of genes functioning in the CLV-WUS circuit. Using virus-based gene manipulation in cotton, we altered the expression of each gene to perturb meristem regulation and increase fruit size. Targeted alteration of individual components of the CLV-WUS circuit modestly fasciated flowers and fruits. Unexpectedly, controlled expression of meristem regulator SELF-PRUNING (SP) increased the impacts of altered CLV-WUS expression on flower and fruit fasciation. Meristem transcriptomics showed SP and genes of the CLV-WUS circuit are expressed independently from each other, suggesting these gene products are not acting in the same path. Virus-induced silencing of GhSP facilitated the delivery of other signals to the meristem to alter organ specification. SP has a role in cotton meristem homeostasis, and changes in GhSP expression increased access of virus-derived signals to the meristem.
Collapse
Affiliation(s)
- Róisín C McGarry
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Harmanpreet Kaur
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Yen-Tung Lin
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| | - Guadalupe Lopez Puc
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Biotecnología Vegetal, subsede Sureste, 97302 Mérida, México
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Brian G Ayre
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
14
|
Kabir N, Wang X, Lu L, Qanmber G, Liu L, Si A, Zhang L, Cao W, Yang Z, Yu Y, Liu Z. Functional characterization of TBL genes revealed the role of GhTBL7 and GhTBL58 in cotton fiber elongation. Int J Biol Macromol 2023; 241:124571. [PMID: 37100328 DOI: 10.1016/j.ijbiomac.2023.124571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
TBL (Trichome Birefringence Like) gene family members are involved in trichome initiation and xylan acetylation in several plant species. In our research, we identified 102 TBLs from G. hirsutum. The phylogenetic tree classified TBL genes into five groups. Collinearity analysis of TBL genes indicated 136 paralogous gene pairs in G. hirsutum. Gene duplication indicated that WGD or segmental duplication contributed to the GhTBL gene family expansion. Promoter cis-elements of GhTBLs were related to growth and development, seed-specific regulation, light, and stress responses. GhTBL genes (GhTBL7, GhTBL15, GhTBL21, GhTBL25, GhTBL45, GhTBL54, GhTBL67, GhTBL72, and GhTBL77) exhibited upregulated response under exposure to cold, heat, NaCl, and PEG. GhTBL genes exhibited high expression during fiber development stages. Two GhTBL genes (GhTBL7 and GhTBL58) showed differential expression at 10 DPA fiber, as 10 DPA is a fast fiber elongation stage and fiber elongation is a very important stage of cotton fiber development. Subcellular localization of GhTBL7 and GhTBL58 revealed that these genes reside inside the cell membrane. Promoter GUS activity of GhTBL7 and GhTBL58 exhibited deep staining in roots. To further validate the role of these genes in cotton fiber elongation, we silenced these genes and observed a significant reduction in the fiber length at 10 DPA. In conclusion, the functional study of cell membrane-associated genes (GhTBL7 and GhTBL58) showed deep staining in root tissues and potential function during cotton fiber elongation at 10 DPA fiber.
Collapse
Affiliation(s)
- Nosheen Kabir
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Xuwen Wang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Le Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Aijun Si
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Lian Zhang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Wei Cao
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China
| | - Zuoren Yang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yu Yu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture and Rural Affairs, Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science, Shihezi 832003, China.
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
15
|
Nabi SU, Mir JI, Yasmin S, Din A, Raja WH, Madhu GS, Parveen S, Mansoor S, Chung YS, Sharma OC, Sheikh MA, Al-Misned FA, El-Serehy HA. Tissue and Time Optimization for Real-Time Detection of Apple Mosaic Virus and Apple Necrotic Mosaic Virus Associated with Mosaic Disease of Apple ( Malus domestica). Viruses 2023; 15:v15030795. [PMID: 36992503 PMCID: PMC10059951 DOI: 10.3390/v15030795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Besides apple mosaic virus (ApMV), apple necrotic mosaic virus (ApNMV) has also been found to be associated with apple mosaic disease. Both viruses are unevenly distributed throughout the plant and their titer decreases variably with high temperatures, hence requiring proper tissue and time for early and real-time detection within plants. The present study was carried out to understand the distribution and titer of ApMV and ApNMV in apple trees from different plant parts (spatial) during different seasons (temporal) for the optimization of tissue and time for their timely detection. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) was carried out to detect and quantify both viruses in the various plant parts of apple trees during different seasons. Depending on the availability of tissue, both ApMV and ApNMV were detected in all the plant parts during the spring season using RT-PCR. During the summer, both viruses were detected only in seeds and fruits, whereas they were detected in leaves and pedicel during the autumn season. The RT-qPCR results showed that during the spring, the ApMV and ApNMV expression was higher in leaves, whereas in the summer and autumn, the titer was mostly detected in seeds and leaves, respectively. The leaves in the spring and autumn seasons and the seeds in the summer season can be used as detection tissues through RT-PCR for early and rapid detection of ApMV and ApNMV. This study was validated on 7 cultivars of apples infected with both viruses. This will help to accurately sample and index the planting material well ahead of time, which will aid in the production of virus-free, quality planting material.
Collapse
Affiliation(s)
- Sajad Un Nabi
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Javid Iqbal Mir
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Salwee Yasmin
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Ambreena Din
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Wasim H Raja
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - G S Madhu
- ICAR-Indian Institute of Horticultural Research, RS-Chettalli, Bangaluru 571248, Karnataka, India
| | - Shugufta Parveen
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Om Chand Sharma
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Muneer Ahmad Sheikh
- ICAR-Central Institute of Temperate Horticulture, Srinagar 191132, Jammu & Kashmir, India
| | - Fahad A Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int J Mol Sci 2023; 24:ijms24065608. [PMID: 36982682 PMCID: PMC10057534 DOI: 10.3390/ijms24065608] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/17/2023] Open
Abstract
Virus-induced gene silencing (VIGS) is an RNA-mediated reverse genetics technology that has evolved into an indispensable approach for analyzing the function of genes. It downregulates endogenous genes by utilizing the posttranscriptional gene silencing (PTGS) machinery of plants to prevent systemic viral infections. Based on recent advances, VIGS can now be used as a high-throughput tool that induces heritable epigenetic modifications in plants through the viral genome by transiently knocking down targeted gene expression. As a result of the progression of DNA methylation induced by VIGS, new stable genotypes with desired traits are being developed in plants. In plants, RNA-directed DNA methylation (RdDM) is a mechanism where epigenetic modifiers are guided to target loci by small RNAs, which play a major role in the silencing of the target gene. In this review, we described the molecular mechanisms of DNA and RNA-based viral vectors and the knowledge obtained through altering the genes in the studied plants that are not usually accessible to transgenic techniques. We showed how VIGS-induced gene silencing can be used to characterize transgenerational gene function(s) and altered epigenetic marks, which can improve future plant breeding programs.
Collapse
|
17
|
Huang X, Abuduwaili N, Wang X, Tao M, Wang X, Huang G. Cotton (Gossypium hirsutum) VIRMA as an N6-Methyladenosine RNA Methylation Regulator Participates in Controlling Chloroplast-Dependent and Independent Leaf Development. Int J Mol Sci 2022; 23:ijms23179887. [PMID: 36077287 PMCID: PMC9456376 DOI: 10.3390/ijms23179887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
N6-methyladenosine (m6A) is one of the most abundant internal modifications of mRNA, which plays important roles in gene expression regulation, and plant growth and development. Vir-like m6A methyltransferase associated (VIRMA) serves as a scaffold for bridging the catalytic core components of the m6A methyltransferase complex. The role of VIRMA in regulating leaf development and its related mechanisms have not been reported. Here, we identified and characterized two upland cotton (Gossypium hirsutum) VIRMA genes, named as GhVIR-A and GhVIR-D, which share 98.5% identity with each other. GhVIR-A and GhVIR-D were ubiquitously expressed in different tissues and relatively higher expressed in leaves and main stem apexes (MSA). Knocking down the expression of GhVIR genes by the virus-induced gene silencing (VIGS) system influences leaf cell size, cell shape, and total cell numbers, thereby determining cotton leaf morphogenesis. The dot-blot assay and colorimetric experiment showed the ratio of m6A to A in mRNA is lower in leaves of GhVIR-VIGS plants compared with control plants. Messenger RNA (mRNA) high-throughput sequencing (RNA-seq) and a qRT-PCR experiment showed that GhVIRs regulate leaf development through influencing expression of some transcription factor genes, tubulin genes, and chloroplast genes including photosystem, carbon fixation, and ribosome assembly. Chloroplast structure, chlorophyll content, and photosynthetic efficiency were changed and unsuitable for leaf growth and development in GhVIR-VIGS plants compared with control plants. Taken together, our results demonstrate GhVIRs function in cotton leaf development by chloroplast dependent and independent pathways.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Nigara Abuduwaili
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumuqi 830054, China
| | - Xinting Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Miao Tao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiaoqian Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Gengqing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumuqi 830054, China
- Correspondence:
| |
Collapse
|
18
|
Glushkevich A, Spechenkova N, Fesenko I, Knyazev A, Samarskaya V, Kalinina NO, Taliansky M, Love AJ. Transcriptomic Reprogramming, Alternative Splicing and RNA Methylation in Potato ( Solanum tuberosum L.) Plants in Response to Potato Virus Y Infection. PLANTS (BASEL, SWITZERLAND) 2022; 11:635. [PMID: 35270104 PMCID: PMC8912425 DOI: 10.3390/plants11050635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in controlling the temperature regulation of plant-virus interactions are poorly characterised. To elucidate these further, we analysed the responses of potato plants cv Chicago to infection by potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), the latter of which is known to significantly increase plant susceptibility to PVY. Using RNAseq analysis, we showed that single and combined PVY and heat-stress treatments caused dramatic changes in gene expression, affecting the transcription of both protein-coding and non-coding RNAs. Among the newly identified genes responsive to PVY infection, we found genes encoding enzymes involved in the catalysis of polyamine formation and poly ADP-ribosylation. We also identified a range of novel non-coding RNAs which were differentially produced in response to single or combined PVY and heat stress, that consisted of antisense RNAs and RNAs with miRNA binding sites. Finally, to gain more insights into the potential role of alternative splicing and epitranscriptomic RNA methylation during combined stress conditions, direct RNA nanopore sequencing was performed. Our findings offer insights for future studies of functional links between virus infections and transcriptome reprogramming, RNA methylation and alternative splicing.
Collapse
Affiliation(s)
- Anna Glushkevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Andrey Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Viktoriya Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
19
|
Dynamic Expression, Differential Regulation and Functional Diversity of the CNGC Family Genes in Cotton. Int J Mol Sci 2022; 23:ijms23042041. [PMID: 35216157 PMCID: PMC8878070 DOI: 10.3390/ijms23042041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein–protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.
Collapse
|
20
|
Wu H, Ren Z, Zheng L, Guo M, Yang J, Hou L, Qanmber G, Li F, Yang Z. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Rumbaugh AC, Girardello RC, Cooper ML, Plank C, Kurtural SK, Oberholster A. Impact of Rootstock and Season on Red Blotch Disease Expression in Cabernet Sauvignon ( V. vinifera). PLANTS (BASEL, SWITZERLAND) 2021; 10:1583. [PMID: 34451626 PMCID: PMC8401632 DOI: 10.3390/plants10081583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Grapevine red blotch virus (GRBV), the causative agent of grapevine red blotch disease, is widespread across the United States and causes a delay in ripening events in grapes. This study evaluates the effects of GRBV on Cabernet Sauvignon grape berry composition, grafted on two different rootstocks (110R and 420A) in two seasons (2016 and 2017). Total soluble solids, acidity, and anthocyanin concentrations were monitored through ripening and at harvest. Phenolic and volatile compounds were also analyzed at harvest to determine genotypic and environmental influences on disease outcome. Sugar accumulation through ripening was lower in diseased fruit (RB (+)) than healthy fruit across rootstock and season. GRBV impact was larger in 2016 than 2017, indicating a seasonal effect on disease expression. In general, anthocyanin levels and volatile compound accumulation was lower in RB (+) fruit than healthy fruit. Total phenolic composition and tannin content was higher in RB (+) fruit than healthy fruit in only 110R rootstock. Overall, GRBV impacted Cabernet Sauvignon grape composition crafted on rootstock 110R more than those crafted on rootstock 420A.
Collapse
Affiliation(s)
- Arran C. Rumbaugh
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - Raul C. Girardello
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - Monica L. Cooper
- University of California Cooperative Extension, 1710 Soscol Avenue, Napa, CA 94559, USA;
| | - Cassandra Plank
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - S. Kaan Kurtural
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| | - Anita Oberholster
- Department of Viticulture and Enology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; (A.C.R.); (R.C.G.); (C.P.); (S.K.K.)
| |
Collapse
|
22
|
Shi G, Hao M, Tian B, Cao G, Wei F, Xie Z. A Methodological Advance of Tobacco Rattle Virus-Induced Gene Silencing for Functional Genomics in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:671091. [PMID: 34149770 PMCID: PMC8212136 DOI: 10.3389/fpls.2021.671091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 05/19/2023]
Abstract
As a promising high-throughput reverse genetic tool in plants, virus-induced gene silencing (VIGS) has already begun to fulfill some of this promise in diverse aspects. However, review of the technological advancements about widely used VIGS system, tobacco rattle virus (TRV)-mediated gene silencing, needs timely updates. Hence, this article mainly reviews viral vector construction, inoculation method advances, important influential factors, and summarizes the recent applications in diverse plant species, thus providing a better understanding and advice for functional gene analysis related to crop improvements.
Collapse
Affiliation(s)
- Gongyao Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengyuan Hao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Gangqiang Cao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
24
|
Chadalavada K, Kumari BDR, Kumar TS. Sorghum mitigates climate variability and change on crop yield and quality. PLANTA 2021; 253:113. [PMID: 33928417 DOI: 10.1007/s00425-021-03631-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Global food insecurity concerns due to climate change, emphasizes the need to focus on the sensitivity of sorghum to climate change and potential crop improvement strategies available, which is discussed in the current review to promote climate-smart agriculture. Climate change effects immensely disturb the global agricultural systems by reducing crop production. Changes in extreme weather and climate events such as high-temperature episodes and extreme rainfalls events, droughts, flooding adversely affect the production of staple food crops, posing threat to ecosystem resilience. The resulting crop losses lead to food insecurity and poverty and question the sustainable livelihoods of small farmer communities, particularly in developing countries. In view of this, it is essential to focus and adapt climate-resilient food crops which need lower inputs and produce sustainable yields through various biotic and abiotic stress-tolerant traits. Sorghum, "the camel of cereals", is one such climate-resilient food crop that is less sensitive to climate change vulnerabilities and also an important staple food in many parts of Asia and Africa. It is a rainfed crop and provides many essential nutrients. Understanding sorghum's sensitivity to climate change provides scope for improvement of the crop both in terms of quantity and quality and alleviates food and feed security in future climate change scenarios. Thus, the current review focused on understanding the sensitivity of sorghum crop to various stress events due to climate change and throws light on different crop improvement strategies available to pave the way for climate-smart agriculture.
Collapse
Affiliation(s)
- Keerthi Chadalavada
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India.
| | - B D Ranjitha Kumari
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - T Senthil Kumar
- Department of Botany, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
25
|
A Prunus necrotic ringspot virus (PNRSV)-Based Viral Vector for Characterization of Gene Functions in Prunus Fruit Trees. Methods Mol Biol 2021. [PMID: 32557368 DOI: 10.1007/978-1-0716-0751-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Virus-induced gene silencing (VIGS) is a gene silencing mechanism by which an invading virus targets and silences the endogenous genes that have significant sequence similarity with the virus. It opens the door for us to develop viruses as powerful viral vectors and modify them for molecular characterization of gene functions in plants. In the past two decades, VIGS has been studied extensively in plants, and various VIGS vectors have been developed. Despite the fact that VIGS is in particular practical for functional genomic study of perennial woody vines and trees with a long life cycle and recalcitrant to genetic transformation, not many studies have been reported in this area. Here, we describe a protocol for the use of a Prunus necrotic ringspot virus (PNRSV)-based VIGS vector we have recently developed for functional genomic studies in Prunus fruit trees.
Collapse
|
26
|
Yuan L, Pan J, Zhu S, Li Y, Yao J, Li Q, Fang S, Liu C, Wang X, Li B, Chen W, Zhang Y. Evolution and Functional Divergence of SUN Genes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:646622. [PMID: 33763102 PMCID: PMC7982736 DOI: 10.3389/fpls.2021.646622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/18/2021] [Indexed: 05/27/2023]
Abstract
SUN-domain containing proteins are crucial nuclear membrane proteins involved in a plethora of biological functions, including meiosis, nuclear morphology, and embryonic development, but their evolutionary history and functional divergence are obscure. In all, 216 SUN proteins from protists, fungi, and plants were divided into two monophyletic clades (Cter-SUN and Mid-SUN). We performed comprehensive evolutionary analyses, investigating the characteristics of different subfamilies in plants. Mid-SUNs further evolved into two subgroups, SUN3 and SUN5, before the emergence of the ancestor of angiosperms, while Cter-SUNs retained one subfamily of SUN1. The two clades were distinct from each other in the conserved residues of the SUN domain, the TM motif, and exon/intron structures. The gene losses occurred with equal frequency between these two clades, but duplication events of Mid-SUNs were more frequent. In cotton, SUN3 proteins are primarily expressed in petals and stamens and are moderately expressed in other tissues, whereas SUN5 proteins are specifically expressed in mature pollen. Virus-induced knock-down and the CRISPR/Cas9-mediated knockout of GbSUN5 both showed higher ratios of aborted seeds, although pollen viability remained normal. Our results indicated divergence of biological function between SUN3 and SUN5, and that SUN5 plays an important role in reproductive development.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiulin Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chunyan Liu
- College of Plant Science, Tarim University, Xinjiang, China
| | - Xinyu Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Bei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
27
|
Fesenko I, Spechenkova N, Mamaeva A, Makhotenko AV, Love AJ, Kalinina NO, Taliansky M. Role of the methionine cycle in the temperature-sensitive responses of potato plants to potato virus Y. MOLECULAR PLANT PATHOLOGY 2021; 22:77-91. [PMID: 33146443 PMCID: PMC7749756 DOI: 10.1111/mpp.13009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/22/2023]
Abstract
Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant-virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Nadezhda Spechenkova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Anna Mamaeva
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Antonida V. Makhotenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- Belozersky Institute of Physico‐chemical BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | | | - Natalia O. Kalinina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- Belozersky Institute of Physico‐chemical BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | - Michael Taliansky
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- The James Hutton InstituteInvergowrie, DundeeUK
| |
Collapse
|
28
|
Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. PLANTA 2020; 252:42. [PMID: 32870402 DOI: 10.1007/s00425-020-03454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
29
|
van Munster M. Impact of Abiotic Stresses on Plant Virus Transmission by Aphids. Viruses 2020; 12:E216. [PMID: 32075208 PMCID: PMC7077179 DOI: 10.3390/v12020216] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/05/2023] Open
Abstract
Plants regularly encounter abiotic constraints, and plant response to stress has been a focus of research for decades. Given increasing global temperatures and elevated atmospheric CO2 levels and the occurrence of water stress episodes driven by climate change, plant biochemistry, in particular, plant defence responses, may be altered significantly. Environmental factors also have a wider impact, shaping viral transmission processes that rely on a complex set of interactions between, at least, the pathogen, the vector, and the host plant. This review considers how abiotic stresses influence the transmission and spread of plant viruses by aphid vectors, mainly through changes in host physiology status, and summarizes the latest findings in this research field. The direct effects of climate change and severe weather events that impact the feeding behaviour of insect vectors as well as the major traits (e.g., within-host accumulation, disease severity and transmission) of viral plant pathogens are discussed. Finally, the intrinsic capacity of viruses to react to environmental cues in planta and how this may influence viral transmission efficiency is summarized. The clear interaction between biotic (virus) and abiotic stresses is a risk that must be accounted for when modelling virus epidemiology under scenarios of climate change.
Collapse
Affiliation(s)
- Manuella van Munster
- INRA, UMR385, CIRAD TA-A54K, Campus International de Baillarguet, CEDEX 05, 34398 Montpellier, France
| |
Collapse
|
30
|
Genome-Wide Study of the GATL Gene Family in Gossypium hirsutum L. Reveals that GhGATL Genes Act on Pectin Synthesis to Regulate Plant Growth and Fiber Elongation. Genes (Basel) 2020; 11:genes11010064. [PMID: 31935825 PMCID: PMC7016653 DOI: 10.3390/genes11010064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
Pectin is a major polysaccharide component that promotes plant growth and fiber elongation in cotton. In previous studies, the galacturonosyltransferase-like (GATL) gene family has been shown to be involved in pectin synthesis. However, few studies have been performed on cotton GATL genes. Here, a total of 33, 17, and 16 GATL genes were respectively identified in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum. In multiple plant species, phylogenetic analysis divided GATL genes into five groups named GATL-a to GATL-e, and the number of groups was found to gradually change over evolution. Whole genome duplication (WGD) and segmental duplication played a significant role in the expansion of the GATL gene family in G. hirsutum. Selection pressure analyses revealed that GATL-a and GATL-b groups underwent a great positive selection pressure during evolution. Moreover, the expression patterns revealed that most of highly expressed GhGATL genes belong to GATL-a and GATL-b groups, which have more segmental duplications and larger positive selection value, suggesting that these genes may play an important role in the evolution of cotton plants. We overexpressed GhGATL2, GhGATL9, GhGATL12, and GhGATL15 in Arabidopsis and silenced the GhGATL15 gene in cotton through a virus induced gene silencing assay (VIGS). The transgenic and VIGS lines showed significant differences in stem diameter, epidermal hair length, stamen length, seed size, and fiber length than the control plant. In addition, the pectin content test proved that the pectin was significantly increased in the transgenic lines and reduced in VIGS plants, demonstrating that GhGATL genes have similar functions and act on the pectin synthesis to regulate plant growth and fiber elongation. In summary, we performed a comprehensive analysis of GhGATL genes in G. hirsutum including evolution, structure and function, in order to better understand GhGATL genes in cotton for further studies.
Collapse
|
31
|
Misra RC, Sharma S, Garg A, Ghosh S. Virus-Induced Gene Silencing in Sweet Basil (Ocimum basilicum). Methods Mol Biol 2020; 2172:123-138. [PMID: 32557366 DOI: 10.1007/978-1-0716-0751-0_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-induced gene silencing (VIGS) is a powerful reverse genetic tool for rapid functional analysis of plant genes. Over the last decade, VIGS has been widely used for conducting rapid gene knockdown experiment in plants and played a crucial role in advancing applied and basic research in plant science. VIGS was studied extensively in model plants Arabidopsis and tobacco. Moreover, several non-model plants such as Papaver (Hileman et al., Plant J 44:334-341, 2005), Aquilegia (Gould and Kramer, Plant Methods 3:6, 2007), Catharanthus (Liscombe and O'Connor, Phytochemistry 72:1969-1977, 2011), Withania (Singh et al., Plant Biol J 13:1287-1299, 2015), and Ocimum (Misra et al., New Phytol 214:706-720, 2017) were also successfully explored. We have recently developed a robust protocol for VIGS in sweet basil (Ocimum basilicum). Sweet basil, a popular medicinal/aromatic herb, is being studied for the diversity of specialized metabolites produced in it.
Collapse
Affiliation(s)
- Rajesh Chandra Misra
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Metabolic Biology Department,, John Innes Centre, Norwich, United Kingdom
| | - Shubha Sharma
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Anchal Garg
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sumit Ghosh
- Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.
| |
Collapse
|
32
|
Schachtsiek J, Hussain T, Azzouhri K, Kayser O, Stehle F. Virus-induced gene silencing (VIGS) in Cannabis sativa L. PLANT METHODS 2019; 15:157. [PMID: 31889981 PMCID: PMC6931244 DOI: 10.1186/s13007-019-0542-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The raised demand of cannabis as a medicinal plant in recent years led to an increased interest in understanding the biosynthetic routes of cannabis metabolites. Since there is no established protocol to generate stable gene knockouts in cannabis, the use of a virus-induced gene silencing (VIGS) method, resulting in a gene knockdown, to study gene functions is desirable. RESULTS For this, a computational approach was employed to analyze the Cannabis sativa L. transcriptomic and genomic resources. Reporter genes expected to give rise to easily scorable phenotypes upon silencing, i.e. the phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI), were identified in C. sativa. Subsequently, the targets of specific small interfering RNAs (siRNAs) and silencing fragments were predicted and tested in a post-transcriptional gene silencing (PTGS) approach. Here we show for the first time a gene knockdown in C. sativa using the Cotton leaf crumple virus (CLCrV) in a silencing vector system. Plants transiently transformed with the Agrobacterium tumefaciens strain AGL1, carrying the VIGS-vectors, showed the desired phenotypes, spotted bleaching of the leaves. The successful knockdown of the genes was additionally validated by quantitative PCR resulting in reduced expression of transcripts from 70 to 73% for ChlI and PDS, respectively. This is accompanied with the reduction of the chlorophyll a and carotenoid content, respectively. In summary, the data clearly demonstrate the potential for functional gene studies in cannabis using the CLCrV-based vector system. CONCLUSIONS The applied VIGS-method can be used for reverse genetic studies in C. sativa to identify unknown gene functions. This will gain deeper inside into unknown biosynthetic routes and will help to close the gap between available genomic data and biochemical information of this important medicinal plant.
Collapse
Affiliation(s)
- Julia Schachtsiek
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Tajammul Hussain
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Khadija Azzouhri
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Oliver Kayser
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Felix Stehle
- Laboratory of Technical Biochemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
33
|
Gao J, Shen L, Yuan J, Zheng H, Su Q, Yang W, Zhang L, Nnaemeka VE, Sun J, Ke L, Sun Y. Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC PLANT BIOLOGY 2019; 19:455. [PMID: 31664897 PMCID: PMC6819470 DOI: 10.1186/s12870-019-2065-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cells after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. RESULTS The three key genes of GhCHS, GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi, GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS, GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi, GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. CONCLUSION The three genes of GhCHS, GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.
Collapse
Affiliation(s)
- Jianfang Gao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Li Shen
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jingli Yuan
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Quansheng Su
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Weiguang Yang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Liqing Zhang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Vitalis Ekene Nnaemeka
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| |
Collapse
|
34
|
Anwar W, Javed MA, Shahid AA, Nawaz K, Akhter A, Ur Rehman MZ, Hameed U, Iftikhar S, Haider MS. Chitinase genes from Metarhizium anisopliae for the control of whitefly in cotton. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190412. [PMID: 31598241 PMCID: PMC6731705 DOI: 10.1098/rsos.190412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/01/2019] [Indexed: 06/01/2023]
Abstract
Entomopathogenic fungi produces endochitianses, involved in the degradation of insect chitin to facilitate the infection process. Endochitinases (Chit1) gene of family 18 glycosyl hydrolyses were amplified, cloned and characterized from genomic DNA of two isolates of Metarhizium anisopliae. Catalytic motif of family 18 glycosyl hydrolyses was found in Chit1 of M. anisopliae, while no signal peptide was found in any isolate, whereas substrate-binding motif was found in Chit1 of both isolates. Phylogenetic analysis revealed the evolutionary relationship among the fungal chitinases of Metarhizium. The Chit1 amplified were closely related to the family 18 glycosyl hydrolyses. Transient expressions of Chit1 in cotton plants using Geminivirus-mediated gene silencing vector of Cotton Leaf Crumple Virus (CLCrV) revealed the chitinase activity of Chit1 genes amplified from both of the isolates of M. anisopliae when compared with the control. Transformed cotton plants were virulent against fourth instar nymphal and adult stages of Bemisia tabaci which resulted in the mortality of both fourth instar nymphal and adult B. tabaci. Thus, the fungal chitinases expressed in cotton plants played a vital role in plant defence against B. tabaci. However, further studies are required to explore the comparative effectiveness of chitinases from different fungal strains against economically important insect pests.
Collapse
Affiliation(s)
- Waheed Anwar
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asim Javed
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Ahmad Ali Shahid
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kiran Nawaz
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Akhter
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Usman Hameed
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sehrish Iftikhar
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
35
|
Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M. Interactive Responses of Potato ( Solanum tuberosum L.) Plants to Heat Stress and Infection With Potato Virus Y. Front Microbiol 2018; 9:2582. [PMID: 30425697 PMCID: PMC6218853 DOI: 10.3389/fmicb.2018.02582] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 11/13/2022] Open
Abstract
Potato (Solanum tuberosum) plants are exposed to diverse environmental stresses, which may modulate plant-pathogen interactions, and potentially cause further decreases in crop productivity. To provide new insights into interactive molecular responses to heat stress combined with virus infection in potato, we analyzed expression of genes encoding pathogenesis-related (PR) proteins [markers of salicylic acid (SA)-mediated plant defense] and heat shock proteins (HSPs), in two potato cultivars that differ in tolerance to elevated temperatures and in susceptibility to potato virus Y (PVY). In plants of cv. Chicago (thermosensitive and PVY-susceptible), increased temperature reduced PR gene expression and this correlated with enhancement of PVY infection (virus accumulation and symptom production). In contrast, with cv. Gala (thermotolerant and PVY resistant), which displayed a greater increase in PR gene expression in response to PVY infection, temperature affected neither PR transcript levels nor virus accumulation. HSP genes were induced by elevated temperature in both cultivars but to higher levels in the thermotolerant (Gala) cultivar. PVY infection did not alter expression of HSP genes in the Gala cultivar (possibly because of the low level of virus accumulation) but did induce expression of HSP70 and HSP90 in the susceptible cultivar (Chicago). These findings suggest that responses to heat stress and PVY infection in potato have some common underlying mechanisms, which may be integrated in a specific consolidated network that controls plant sensitivity to multiple stresses in a cultivar-specific manner. We also found that the SA pre-treatment subverted the sensitive combined (heat and PVY) stress phenotype in Chicago, implicating SA as a key component of such a regulatory network.
Collapse
Affiliation(s)
- Svetlana Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Antonida Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
36
|
Zhu S, Yu X, Li Y, Sun Y, Zhu Q, Sun J. Highly Efficient Targeted Gene Editing in Upland Cotton Using the CRISPR/Cas9 System. Int J Mol Sci 2018; 19:E3000. [PMID: 30275376 PMCID: PMC6213220 DOI: 10.3390/ijms19103000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing system has been shown to be able to induce highly efficient mutagenesis in the targeted DNA of many plants, including cotton, and has become an important tool for investigation of gene function and crop improvement. Here, we developed a simple and easy to operate CRISPR/Cas9 system and demonstrated its high editing efficiency in cotton by targeting-ALARP, a gene encoding alanine-rich protein that is preferentially expressed in cotton fibers. Based on sequence analysis of the target site in the 10 transgenic cottons containing CRISPR/Cas9, we found that the mutation frequencies of GhALARP-A and GhALARP-D target sites were 71.4⁻100% and 92.9⁻100%, respectively. The most common editing event was deletion, but deletion together with large insertion was also observed. Mosaic mutation editing events were detected in most transgenic plants. No off-target mutation event was detected in any the 15 predicted sites analyzed. This study provided mutants for further study of the function of GhALARP in cotton fiber development. Our results further demonstrated the feasibility of use of CRISPR/Cas9 as a targeted mutagenesis tool in cotton, and provided an efficient tool for targeted mutagenesis and functional genomics in cotton.
Collapse
Affiliation(s)
- Shouhong Zhu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xiuli Yu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Yanjun Li
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Yuqiang Sun
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310016, Zhejiang, China.
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia.
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
37
|
Zhang J, Wang F, Zhang C, Zhang J, Chen Y, Liu G, Zhao Y, Hao F, Zhang J. A novel VIGS method by agroinoculation of cotton seeds and application for elucidating functions of GhBI-1 in salt-stress response. PLANT CELL REPORTS 2018; 37:1091-1100. [PMID: 29868984 DOI: 10.1007/s00299-018-2294-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/10/2018] [Indexed: 05/21/2023]
Abstract
A VIGS method by agroinoculation of cotton seeds was developed for gene silencing in young seedlings and roots, and applied in functional analysis of GhBI-1 in response to salt stress. Virus-induced gene silencing (VIGS) has been widely used to investigate the functions of genes expressed in mature leaves, but not yet in young seedlings or roots of cotton (Gossypium hirsutum L.). Here, we developed a simple and effective VIGS method for silencing genes in young cotton seedlings and roots by soaking naked seeds in Agrobacterium cultures carrying tobacco rattle virus (TRV)-VIGS vectors. When the naked seeds were soaked in Agrobacterium cultures with an OD600 of 1.5 for 90 min, it was optimal for silencing genes effectively in young seedlings as clear photo-bleaching phenotype in the newly emerging leaves of pTRV:GhCLA1 seedlings were observed at 12-14 days post inoculation. Silencing of GhPGF (cotton pigment gland formation) by this method resulted in a 90% decrease in transcript abundances of the gene in roots at the early development stage. We further used the tool to investigate function of GhBI-1 (cotton Bax inhibitor-1) gene in response to salt stress and demonstrated that GhBI-1 might play a protective role under salt stress by suppressing stress-induced cell death in cotton. Our results showed that the newly established VIGS method is a powerful tool for elucidating functions of genes in cotton, especially the genes expressed in young seedlings and roots.
Collapse
Affiliation(s)
- Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chuanyun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Junhao Zhang
- Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Guodong Liu
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanxiu Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Fushun Hao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China.
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
38
|
Singh DK, Lee HK, Dweikat I, Mysore KS. An efficient and improved method for virus-induced gene silencing in sorghum. BMC PLANT BIOLOGY 2018; 18:123. [PMID: 29914379 PMCID: PMC6006947 DOI: 10.1186/s12870-018-1344-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the draft genome of sorghum is available, the understanding of gene function is limited due to the lack of extensive mutant resources. Virus-induced gene silencing (VIGS) is an alternative to mutant resources to study gene function. This study reports an improved and efficient method for Brome mosaic virus (BMV)-based VIGS in sorghum. METHODS Sorghum plants were rub-inoculated with sap prepared by grinding 2 g of infected Nicotiana benthamiana leaf in 1 ml 10 mM potassium phosphate buffer (pH 6.8) and 100 mg of carborundum abrasive. The sap was rubbed on two to three top leaves of sorghum. Inoculated plants were covered with a dome to maintain high humidity and kept in the dark for two days at 18 °C. Inoculated plants were then transferred to 18 °C growth chamber with 12 h/12 h light/dark cycle. RESULTS This study shows that BMV infection rate can be significantly increased in sorghum by incubating plants at 18 °C. A substantial variation in BMV infection rate in sorghum genotypes/varieties was observed and BTx623 was the most susceptible. Ubiquitin (Ubiq) silencing is a better visual marker for VIGS in sorghum compared to other markers such as Magnesium Chelatase subunit H (ChlH) and Phytoene desaturase (PDS). The use of antisense strand of a gene in BMV was found to significantly increase the efficiency and extent of VIGS in sorghum. In situ hybridization experiments showed that the non-uniform silencing in sorghum is due to the uneven spread of the virus. This study further demonstrates that genes could also be silenced in the inflorescence of sorghum. CONCLUSION In general, sorghum plants are difficult to infect with BMV and therefore recalcitrant to VIGS studies. However, by using BMV as a vector, a BMV susceptible sorghum variety, 18 °C for incubating plants, and antisense strand of the target gene fragment, efficient VIGS can still be achieved in sorghum.
Collapse
Affiliation(s)
| | - Hee-Kyung Lee
- Noble Research Institute, Ardmore, Oklahoma 73401 USA
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583 USA
| | | |
Collapse
|
39
|
Lentz EM, Kuon JE, Alder A, Mangel N, Zainuddin IM, McCallum EJ, Anjanappa RB, Gruissem W, Vanderschuren H. Cassava geminivirus agroclones for virus-induced gene silencing in cassava leaves and roots. PLANT METHODS 2018; 14:73. [PMID: 30154909 PMCID: PMC6109987 DOI: 10.1186/s13007-018-0340-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/16/2018] [Indexed: 05/08/2023]
Abstract
AIM We report the construction of a Virus-Induced Gene Silencing (VIGS) vector and an agroinoculation protocol for gene silencing in cassava (Manihot esculenta Crantz) leaves and roots. The African cassava mosaic virus isolate from Nigeria (ACMV-[NOg]), which was initially cloned in a binary vector for agroinoculation assays, was modified for application as VIGS vector. The functionality of the VIGS vector was validated in Nicotiana benthamiana and subsequently applied in wild-type and transgenic cassava plants expressing the uidA gene under the control of the CaMV 35S promoter in order to facilitate the visualization of gene silencing in root tissues. VIGS vectors were targeted to the Mg2+-chelatase gene in wild type plants and both the coding and promoter sequences of the 35S::uidA transgene in transgenic plants to induce silencing. We established an efficient agro-inoculation method with the hyper-virulent Agrobacterium tumefaciens strain AGL1, which allows high virus infection rates. The method can be used as a low-cost and rapid high-throughput evaluation of gene function in cassava leaves, fibrous roots and storage roots. BACKGROUND VIGS is a powerful tool to trigger transient sequence-specific gene silencing in planta. Gene silencing in different organs of cassava plants, including leaves, fibrous and storage roots, is useful for the analysis of gene function. RESULTS We developed an African cassava mosaic virus-based VIGS vector as well as a rapid and efficient agro-inoculation protocol to inoculate cassava plants. The VIGS vector was validated by targeting endogenous genes from Nicotiana benthamiana and cassava as well as the uidA marker gene in transgenic cassava for visualization of gene silencing in cassava leaves and roots. CONCLUSIONS The African cassava mosaic virus-based VIGS vector allows efficient and cost-effective inoculation of cassava for high-throughput analysis of gene function in cassava leaves and roots.
Collapse
Affiliation(s)
- Ezequiel Matias Lentz
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Joel-Elias Kuon
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Adrian Alder
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Nathalie Mangel
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Ima M. Zainuddin
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Emily Jane McCallum
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Ravi Bodampalli Anjanappa
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Hervé Vanderschuren
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
- Plant Genetics Lab, TERRA Research and Teaching Centre, Gembloux Agro BioTech, University of Liège, Gembloux, Belgium
| |
Collapse
|
40
|
Reyes MI, Flores‐Vergara MA, Guerra‐Peraza O, Rajabu C, Desai J, Hiromoto‐Ruiz YH, Ndunguru J, Hanley‐Bowdoin L, Kjemtrup S, Ascencio‐Ibáñez JT, Robertson D. A VIGS screen identifies immunity in the Arabidopsis Pla-1 accession to viruses in two different genera of the Geminiviridae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:796-807. [PMID: 28901681 PMCID: PMC5725698 DOI: 10.1111/tpj.13716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 05/21/2023]
Abstract
Geminiviruses are DNA viruses that cause severe crop losses in different parts of the world, and there is a need for genetic sources of resistance to help combat them. Arabidopsis has been used as a source for virus-resistant genes that derive from alterations in essential host factors. We used a virus-induced gene silencing (VIGS) vector derived from the geminivirus Cabbage leaf curl virus (CaLCuV) to assess natural variation in virus-host interactions in 190 Arabidopsis accessions. Silencing of CH-42, encoding a protein needed to make chlorophyll, was used as a visible marker to discriminate asymptomatic accessions from those showing resistance. There was a wide range in symptom severity and extent of silencing in different accessions, but two correlations could be made. Lines with severe symptoms uniformly lacked extensive VIGS, and lines that showed attenuated symptoms over time (recovery) showed a concomitant increase in the extent of VIGS. One accession, Pla-1, lacked both symptoms and silencing, and was immune to wild-type infectious clones corresponding to CaLCuV or Beet curly top virus (BCTV), which are classified in different genera in the Geminiviridae. It also showed resistance to the agronomically important Tomato yellow leaf curl virus (TYLCV). Quantitative trait locus mapping of a Pla-1 X Col-0 F2 population was used to detect a major peak on chromosome 1, which is designated gip-1 (geminivirus immunity Pla-1-1). The recessive nature of resistance to CaLCuV and the lack of obvious candidate genes near the gip-1 locus suggest that a novel resistance gene(s) confers immunity.
Collapse
Affiliation(s)
- Maria Ines Reyes
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Miguel A. Flores‐Vergara
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
- Paradigm GeneticsResearch Triangle ParkNCUSA
| | - Orlene Guerra‐Peraza
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
- Present address:
Citrus Research and Education CenterUniversity of FloridaLake AlfredFL33850USA
| | - Cyprian Rajabu
- Mikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Jigar Desai
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | | | - Joseph Ndunguru
- Mikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Linda Hanley‐Bowdoin
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Susanne Kjemtrup
- Paradigm GeneticsResearch Triangle ParkNCUSA
- Present address:
Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Jose T. Ascencio‐Ibáñez
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Dominique Robertson
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
41
|
Kant R, Dasgupta I. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus. PLANT CELL REPORTS 2017; 36:1159-1170. [PMID: 28540496 DOI: 10.1007/s00299-017-2156-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/15/2017] [Indexed: 05/09/2023]
Abstract
Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v/F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
42
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
43
|
A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). Sci Rep 2017; 7:43902. [PMID: 28256588 PMCID: PMC5335549 DOI: 10.1038/srep43902] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
The complex allotetraploid genome is one of major challenges in cotton for repressing gene expression. Developing site-specific DNA mutation is the long-term dream for cotton breeding scientists. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is emerging as a robust biotechnology for targeted-DNA mutation. In this study, two sgRNAs, GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, were designed in the identical genomic regions of GhMYB25-like A and GhMYB25-like D, which were encoded by cotton A subgenome and the D subgenome, respectively, was assembled to direct Cas9-mediated allotetraploid cotton genome editing. High proportion (14.2–21.4%) CRISPR/Cas9-induced specific truncation events, either from GhMYB25-like A DNA site or from GhMYB25-like D DNA site, were detected in 50% examined transgenic cotton through PCR amplification assay and sequencing analyses. Sequencing results also demonstrated that 100% and 98.8% mutation frequency were occurred on GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2 target site respectively. The off-target effect was evaluated by sequencing two putative off-target sites, which have 3 and 1 mismatched nucleotides with GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, respectively; all the examined samples were not detected any off-target-caused mutation events. Thus, these results demonstrated that CRISPR/Cas9 is qualified for generating DNA level mutations on allotetraploid cotton genome with high-efficiency and high-specificity.
Collapse
|
44
|
Gong Q, Yang Z, Wang X, Butt HI, Chen E, He S, Zhang C, Zhang X, Li F. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae. BMC PLANT BIOLOGY 2017; 17:59. [PMID: 28253842 PMCID: PMC5335750 DOI: 10.1186/s12870-017-1007-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/24/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The complex mechanism underlying cotton resistance to Verticillium wilt remains uncharacterized. Identifying an endogenous resistance gene may be useful for controlling this disease. RESULTS We cloned the ribosomal protein L18 (GaRPL18) gene, which mediates resistance to Verticillium wilt, from a wilt-resistant cotton species (Gossypium arboreum). We then characterized the function of this gene in cotton and Arabidopsis thaliana plants. GaRPL18 encodes a 60S ribosomal protein subunit important for intracellular protein biosynthesis. However, previous studies revealed that some ribosomal proteins are also inhibitory toward oncogenesis and congenital diseases in humans and play a role in plant disease defense. Here, we observed that V. dahliae infections induce GaRPL18 expression. Furthermore, we determined that the GaRPL18 expression pattern is consistent with the disease resistance level of different cotton varieties. GaRPL18 expression is upregulated by salicylic acid (SA) treatments, suggesting the involvement of GaRPL18 in the SA signal transduction pathway. Virus-induced gene silencing technology was used to determine whether the GaRPL18 expression level influences cotton disease resistance. Wilt-resistant cotton species in which GaRPL18 was silenced became more susceptible to V. dahliae than the control plants because of a significant decrease in the abundance of immune-related molecules. We also transformed A. thaliana ecotype Columbia (Col-0) plants with GaRPL18 according to the floral dip method. The plants overexpressing GaRPL18 were more resistant to V. dahliae infections than the wild-type Col-0 plants. The enhanced resistance of transgenic A. thaliana plants to V. dahliae is likely mediated by the SA pathway. CONCLUSION Our findings provide new insights into the role of GaRPL18, indicating that it plays a crucial role in resistance to cotton "cancer", also known as Verticillium wilt, mainly regulated by an SA-related signaling pathway mechanism.
Collapse
Affiliation(s)
- Qian Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Xiaoqian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Hamama Islam Butt
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Eryong Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 China
| |
Collapse
|
45
|
Kushwaha NK, Chakraborty S. Chilli leaf curl virus-based vector for phloem-specific silencing of endogenous genes and overexpression of foreign genes. Appl Microbiol Biotechnol 2017; 101:2121-2129. [PMID: 27878582 DOI: 10.1007/s00253-016-7964-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/05/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Geminiviruses are the largest and most devastating group of plant viruses which contain ssDNA as a genetic material. Geminivirus-derived virus-induced gene silencing (VIGS) vectors have emerged as an efficient and simple tool to study functional genomics in various plants. However, previously developed VIGS vectors have certain limitations, owing to their inability to be used in tissue-specific functional study. In the present study, we developed a Chilli leaf curl virus (ChiLCV)-based VIGS vector for its tissue-specific utilization by replacing the coat protein gene (open reading frame (ORF) AV1) with the gene of interest for phytoene desaturase (PDS) of Nicotiana benthamiana. Functional validation of ChiLCV-based VIGS in N. benthamiana resulted in systemic silencing of PDS exclusively in the phloem region of inoculated plants. Furthermore, expression of enhanced green fluorescence protein (EGFP) using the same ChiLCV vector was verified in the phloem region of the inoculated plants. Our results also suggested that, during the early phase of infection, ChiLCV was associated with the phloem region, but at later stage of pathogenesis, it can spread into the adjoining non-vascular tissues. Taken together, the newly developed ChiLCV-based vector provides an efficient and versatile tool, which can be exploited to unveil the unknown functions of several phloem-specific genes.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India.
| |
Collapse
|
46
|
Andres RJ, Coneva V, Frank MH, Tuttle JR, Samayoa LF, Han SW, Kaur B, Zhu L, Fang H, Bowman DT, Rojas-Pierce M, Haigler CH, Jones DC, Holland JB, Chitwood DH, Kuraparthy V. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.). Proc Natl Acad Sci U S A 2017; 114:E57-E66. [PMID: 27999177 PMCID: PMC5224360 DOI: 10.1073/pnas.1613593114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.
Collapse
Affiliation(s)
- Ryan J Andres
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
| | | | | | - John R Tuttle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
| | - Luis Fernando Samayoa
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, NC 27695-7620
| | - Sang-Won Han
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Baljinder Kaur
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
| | - Linglong Zhu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
| | - Hui Fang
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
| | - Daryl T Bowman
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | - Candace H Haigler
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695
| | | | - James B Holland
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, NC 27695-7620
| | | | - Vasu Kuraparthy
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620;
| |
Collapse
|
47
|
Zhou Y, Yang Y, Zhou X, Chi Y, Fan B, Chen Z. Structural and Functional Characterization of the VQ Protein Family and VQ Protein Variants from Soybean. Sci Rep 2016; 6:34663. [PMID: 27708406 PMCID: PMC5052590 DOI: 10.1038/srep34663] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
Proteins containing the FxxxVQxhTG or VQ motif interact with WRKY transcription factors. Although VQ proteins have been reported in several plants, knowledge about their structures, functions and evolution is still very limited. Here, we report structural and functional analysis of the VQ protein family from soybean. Like Arabidopsis homologues, soybean VQ proteins bind only Group I and IIc WRKY proteins and a substantial number of their genes are responsive to stress-associated phytohormones. Overexpression of some soybean VQ genes in Arabidopsis had strong effects on plant growth, development, disease resistance and heat tolerance. Phylogenetic analysis, sequence alignment and site-directed mutagenesis revealed that the region immediately upstream of the FxxxVQxhTG motif also affects binding to WRKY proteins. Consistent with a larger WRKY-binding VQ domain, soybean VQ22 protein from cultivated soybean contains a 4-amino acid deletion in the region preceding its VQ motif that completely abolishes its binding to WRKY proteins. By contrast, the 4-amino acid deletion is absent in the VQ22 protein from wild soybean species (Glycine soja). Overexpression of wild soybean VQ22 in cultivated soybean inhibited growth, particularly after cold treatment. Thus, the mutation of soybean VQ22 is associated with advantageous phenotypes and may have been positively selected during evolution.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Xinjian Zhou
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Yingjun Chi
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
- Department of Botany and Plant Pathology, 915 W. State Street, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
48
|
McGarry RC, Prewitt SF, Culpepper S, Eshed Y, Lifschitz E, Ayre BG. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs. THE NEW PHYTOLOGIST 2016; 212:244-58. [PMID: 27292411 DOI: 10.1111/nph.14037] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/26/2016] [Indexed: 05/08/2023]
Abstract
Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.
Collapse
Affiliation(s)
- Roisin C McGarry
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Sarah F Prewitt
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Samantha Culpepper
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Yuval Eshed
- Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eliezer Lifschitz
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Brian G Ayre
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| |
Collapse
|
49
|
Adu-Gyamfi R, Wetten A, Marcelino Rodríguez López C. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.). PLoS One 2016; 11:e0158857. [PMID: 27403857 PMCID: PMC4942035 DOI: 10.1371/journal.pone.0158857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. KEY MESSAGE Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.
Collapse
Affiliation(s)
- Raphael Adu-Gyamfi
- Faculty of Agriculture, University for Development Studies, P.O. Box TL 1882, Tamale, Ghana
| | - Andy Wetten
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berks, RG6 6AS, United Kingdom
| | - Carlos Marcelino Rodríguez López
- Environmental Epigenetics and Genetics Group, Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
50
|
Zhang W, Zhang H, Qi F, Jian G. Generation of transcriptome profiling and gene functional analysis in Gossypium hirsutum upon Verticillium dahliae infection. Biochem Biophys Res Commun 2016; 473:879-885. [DOI: 10.1016/j.bbrc.2016.03.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|